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Abstract. The DTD of a set of XML documents may change due to
many reasons such as changes to the real world events, changes to the
user’s requirements, and mistakes in the initial design. In this paper,
we present a novel algorithm called DTD-Diff to detect the changes
to DTDs that defines the structure of a set of XML documents. Such
change detection tool can be useful in several ways such as maintenance
of XML documents, incremental maintenance of relational schema for
storing XML data, and XML schema integration. We compare DTD-
Diff with existing XML change detection approaches and show that
converting DTD to XML Schema (XSD) (which is in XML document
format) and detecting the changes using existing XML change detection
algorithms is not a feasible option. Our experimental results show that
DTD-Diff is 5–325 times faster than X-Diff when it detects the changes
to the XSD files. We also study the result quality of detected deltas.

1 Introduction

XML has emerged as the leading textual language for representing and exchang-
ing data over the Web. In many applications a schema (i.e., Document Type
Definition (DTD) or XML schema (XSD) [3] is associated with a set of XML
documents to define their legal structures. Schema of such XML documents may
also need to be updated to reflect a change in the real world, a change in the
user’s requirements, mistakes in the initial design, etc. For example, consider the
DTD D1 in Figure 1(a) at time t1. It may evolve to D2 (Figure 1(b)) at time t2
because the university may wish to restructure the information due to change in
the university administrators’ requirements. Such DTD change detection tools
can be useful in maintenance of XML documents when their DTD evolves, in-
cremental maintenance of relational schema of the schema-conscious approach
[9] for storing XML data, XML schema integration, etc. Let us elaborate further
on the usage of DTD change detection tool in maintenance of XML documents.
Let X be a set of XML documents where each document xi ∈ X conforms to
DTD D. Assume that due to mistakes in the initial design, D is modified to D′.
Consequently, xi ∈ X may not conform to D′ anymore. Therefore, it is necessary
to detect the differences between D and D′ (denoted by 4(D,D′)) automatically
so that it can be used to transform xi ∈ X to x′i such that x′i conforms to D′.



In this paper, we propose a novel algorithm, called DTD-Diff, for detecting
the changes to DTDs. To the best of our knowledge, this is the first approach
that addresses the DTD change detection problem. At first glance, it may seem
that the DTD change detection problem can easily be addressed by existing
change detection tools for XML documents [6, 7, 10]. Specifically, we can first
transform DTDs to XSD files that are in XML format. Then, the changes to
the DTDs can be detected using existing XML change detection tools (such as
X-Diff [10] and XyDiff [6]). Although this approach will clearly detect changes,
we argue that they suffer from these following limitations: granularity of types
of changes, inability to detect changes to both unordered and ordered nodes, de-
tection of semantically incorrect changes, generation of non-optimal edit scripts,
and performance bottleneck. The details can be found in [8].

In summary, the main contributions of this paper are as follows. (1) In Sec-
tion 2, we present data model to represent the changes to DTDs. By using this
data model we are able to detect the changes to DTDs, that are discussed Sec-
tion 3, correctly. (2) In Section 4, we propose a novel algorithm called DTD-Diff
for detecting the changes to DTDs. The algorithm takes as input two versions of
a DTD that are represented using our DTD data model and detects the changes
directly without converting them to XSD format. (3) Through an extensive ex-
perimental study in Section 5, we show that our approach is 5–325 times faster
than X-Diff [10]. Note that in our study, we convert DTDs to XSD files prior to
employing X-Diff to detect the changes.

2 DTD Data Model

A DTD consists of entity declaration (<!ENTITY ...>), element type declaration
(<!ELEMENT ...>), and attribute declaration (<!ATTLIST ...>) that describe
entities, elements, and attributes, respectively. Formally,

Definition 1. [DTD] A DTD is a 3-tuple D = (E ,A,G) where E is a set of
Element Type Declarations (ETD) in D, A is a set of Attribute Declarations
(AD) in D, G is a set of internal and external Entity Declarations (ED). Also,
if the numbers of ETDs, ADs, and EDs in a DTD are α, β, and γ then |E| = α,
|A| = β, and |G| = γ. ¤

For example, consider the DTD D2 in Figure 1(b). Lines 1-3, 4-17, and 18 are
examples of EDs, ETDs, and AD, respectively.

Element Type Declaration (ETD). In a DTD, XML elements are de-
clared using element type declaration. Each element type declaration E has
a name NE and element content CE . For example, consider the DTD D1 in
Figure 1(a). The name and the content of element type school (line 5) are
school and (name,dean,department*), respectively. Observe that element con-
tent can be very complex with multiple levels of nesting. For example, <!ELEMENT
E1 (E1,(E2+|E3),(E4?|E5*|(E6,E7)?)*)>. We represent the element content
CE as a content tree TE . For example, consider the element type declaration
<!ELEMENT E1 (E1,(E2+|E3), (E4?|E5*| (E6,E7)?)*)>. The content tree TE1



1  <!ENTITY univName “Open University”>

3  <!ELEMENT university (information,school+)>

8  <!ELEMENT course (#PCDATA)>
9  <!ELEMENT name (#PCDATA)>

12 <!ELEMENT telp (#PCDATA)>
13 <!ELEMENT fax (#PCDATA)>
14 <!ELEMENT website (#PCDATA)>
15 <!ELEMENT address (#PCDATA)>
16 <!ATTLIST course code CDATA #REQUIRED

2  <!ENTITY univName “Open University”>

4  <!ELEMENT university (information,school+)>

11 <!ELEMENT course (#PCDATA)>
12 <!ELEMENT name (#PCDATA)>

14 <!ELEMENT website (#PCDATA)>
15 <!ELEMENT telp (#PCDATA)>
16 <!ELEMENT fax (#PCDATA) >
17 <!ELEMENT address (#PCDATA) >
18 <!ATTLIST course code CDATA #REQUIRED 

(a) D1 (b) D2

4  <!ELEMENT information 
          (address,(telp|fax+|website))>
5  <!ELEMENT school (name,dean,department*)>
6  <!ELEMENT department (name,hod,courses)>
7  <!ELEMENT courses (course*)>

7  <!ELEMENT sinfo (%info;)>
6  <!ELEMENT school (sinfo,department*)>

9  <!ELEMENT dinfo (%info;)>
8  <!ELEMENT department (dinfo,courses)>

1  <!ENTITY % info “name,head,website,telp,fax”>

10 <!ELEMENT courses (course+)>

2  <!ENTITY myScript SYSTEM “script.pl” 
                     NDATA pl> 3  <!ENTITY myScript SYSTEM “newScript.pl” NDATA pl>

5  <!ELEMENT information ((telp|website|fax?),address)>

                    year CDATA #REQUIRED >

11 <!ELEMENT hod (#PCDATA)>
10 <!ELEMENT dean (#PCDATA)>

                    year CDATA #IMPLIED>

13 <!ELEMENT head (#PCDATA)>

Fig. 1. Two versions of a DTD.

1 Changes to Element Type Declaration (ETD)
  1.1 Insertion of new ETD
  1.2 Deletion of an ETD
  1.3 Changes to the Content Tree of an ETD

- Changes to a leaf node
      1.3.1  Insertion of a leaf node
      1.3.2  Deletion of a leaf node
      1.3.3  Move of a leaf node
      1.3.4  Update of order of a leaf node

- Changes to a subtree
      1.3.5  Insertion of a subtree
      1.3.6  Deletion of a subtree
      1.3.7  Move of a subtree
      1.3.8  Update of order of an internal node
             at which a subtree is rooted

- Changes to Cardinality
      1.3.9  Insertion of a cardinality

      1.3.10 Deletion of a cardinality
      1.3.11 Update of a cardinality

2 Changes to Attribute Declaration (AD)
  2.1 Insertion of a new AD
  2.2 Deletion of an AD
  2.3 Insertion of a new attribute in AD
  2.4 Deletion of an attribute in AD
  2.5 Update of attribute type
  2.6 Update of default value

3 Changes to Entity Declaration (ED)
  3.1 Insertion of a new ED
  3.2 Deletion of an ED
  3.4 Update of replacement text of an internal ED
  3.5 Update of URI of an external ED
  3.6 Update of content notation of an external ED
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(a) Content Tree (b) Types of changes

Fig. 2. Content Tree and Type of Changes.

is depicted in Figure 2(a). Note that in an element content CE we may have se-
quence (denoted by “,”) and choice (denoted by “|”) groups of elements. Observe
that the elements in a sequence group must be ordered, and the order of elements
in choice group is not significant. That is, a content tree TE may have ordered
and unordered parts.

Attribute Declaration (AD). The attribute declaration in a DTD is used
to define the attributes of an element. Each AD A has a name NA of element
type to which a set of attributes SA belongs. Each attribute a in the attribute
set SA has a name Na, type Ya, and an optional default value Da. For example,
reconsider D1 in Figure 1(a). The attribute declaration of element type course
is in line 16. The type of data and default value of the attribute code are CDATA
and #REQUIRED, respectively.

Entity Declaration (ED). Entities are variables used to define shortcuts
to common text. Entity references are references to entities. We have two kinds
of entities: general entity and parameter entity. Consider DTD D2 as depicted
in Figure 1(b). Line 1 is an example of parameter entity. An example of general
entity is in line 2. Note that we only consider the general entities. This is be-
cause the parameter entities automatically replace the entity references. Entities
can be declared as internal or external. An internal ED I has a name NI and
a replacement text RI . On the other hand, an external ED J has a name NJ ,
universal resource indicator (URI) UJ , and a content notation PJ . For example,
in D2 line 2 is an example of an internal ED. The name and replacement text



Input:  DTD D1=        
        DTD D2=   

Output: Edit Script Z

   /* Phase 1: 
      Parsing and Hashing */
1               ParseHash(D1)
2               ParseHash(D2)
   /* Phase 2: Finding the changes 
      to element type declaration */
3  FOR EACH t1 IN T1 DO
4    FOR EACH t2 IN T2 DO
5      IF t1 and t2 has the same name 

   THEN
6         Mmin     Matching(t1,t2)
7         BREAK

8      END IF
9    END FOR
10 END FOR  
   /* Phase 3: Detect Move Operation */
11 Mmin     DetectMove(   ,   ,Mmin)
   /* Phase 4: Finding the changes to 
      attribute declaration */
12 Mmin     DetectAttributeChanges(   ,   )
   /* Phase 5: Finding the changes to 
      entity declaration */
13 Mmin     DetectEntityChanges(   ,   )
   /* Phase 6: Generating Edit scripts */
14 Z     GenerateEditScripts(Mmin)
15 RETURN Z

Input: Node N
Output: The hash value of node N

1  IF N is leaf node THEN
2    RETURN MD5Value(label(N)  cardinality(N))
3  ELSE IF N is non-leaf node THEN
4    conentenated_text = empty text
5 FOR EACH child IN children OF N
6   CalculateHashValue ( child )
7 END FOR
8 IF N is choice group THEN
9   sort children of N by their hash values
10 END IF
11   FOR EACH child IN children OF N
12 conentenated_text = HashValue(child)
13 END FOR
14 conentenated_text = label(N)  cardinality(N)
15 RETURN MD5Value(conentenated_text)
16 END IF

(b) The CalculateHashValue Algorithm(a) Outline of DTDDiff Algorithm

Fig. 3. Outline of DTD-Diff Algorithm and The CalculateHashValue Algorithm.

Input: Two root node r1 and r2
Output: a set of matching pairs M

1   M = empty set
2   push pair {r1,r2} into queue Q
3 WHILE (Q is not empty)
4     pop a pair {r1,r2} from queue Q
5     M = M    {r1,r2}
6     IF HashValue(r1)<>HashValue(r2) AND
         N1, N2 are non-leaf nodes THEN
        /* compute the cost of matching every 
           pair of child nodes of r1 and r2 */
7 FOR EACH child1 IN children of r1
8         FOR EACH child2 IN children of r2
9           IF label(child1)=label(child2) THEN

10            ComputeCost(child1, child2) 
11          ELSE
12            Cost(child1,child2) = 
13          END IF
14        END FOR
15      END FOR
16      matched_pairs = set of pairs resulting from 
            minimum-cost bipartite-matching among 
            child nodes of r1 and r2
17      FOR EACH pair{x,y} IN matched_pairs
18        push pair{x,y} into queue Q
19      END FOR
20    END IF
21  END WHILE
22 RETURN M

∞

∪

Fig. 4. The Matching Algorithm.

of this entity are univName and "Open University", respectively. Line 3 (Fig-
ure 1(b)) is an example of an external ED. The name, URI, and content notation
are MyScript, "Script1.pl", and "pl", respectively. The details on the DTD
data model can be found in [8].

3 Types of Changes

A set of DTD changes that can be detected by DTD-Diff is depicted in Fig-
ure 2(b). We notice that a DTD indeed has richer of types of changes compared
to XML documents. In DTD, we have types of changes for cardinalities of el-
ements, more meaningful types of changes for AD and ED, etc. The details of
each type of changes depicted in Figure 2(b) can be found in [8]. In this section,
we only briefly discuss two issues regarding the types of changes to DTDs.

Update of Node/Attribute Name: We do not consider update of node/
attribute name for the following reason. Consider the ETDs school in D1 and
D2. We cannot consider that the name of element “name” is updated to “sinfo”
and element “dean” is deleted as it will lead us to have a delta that is seman-
tically incorrect. On the other hand, suppose we have a “lastname” element
whose name is updated to “surname”. DTD-Diff detects as a deletion of el-
ement “lastname” and an insertion of element “surname” as we do not have
information of semantic relationships between “lastname” and “surname”. Note
that the delta is still correct even though the result quality is reduced. There-
fore, we consider the update of node/attribute name as a pair of deletion and
insertion of a node in order to avoid semantically incorrect deltas in some cases.



Changes to Entity Type: If an entity g is changed from being an internal
entity to being an external entity, or vice versa, then we consider as a pair of a
deletion of an entity and an insertion of an entity.

4 DTD-Diff Algorithm

In this section, we present the DTD-Diff algorithm. The outline of the algo-
rithm is depicted in Figure 3(a). It takes as input two DTDs D1 = (E1,A1,G1)
and D2 = (E2,A2,G2) representing old and new versions of a DTD and returns
an edit script Z containing the differences between D1 and D2. The algorithm
consists of six phases (Figure 3(a)). We shall discuss each phase in turns.

The Parsing and Hashing Phase: Given two DTDs, D1 and D2, DTD-
Diff parses D1 and D2 into (T1,A1,G1) and (T2,A2,G2) respectively and com-
putes their hash values. Note that T1 and T2 are two sets of content trees of
E1 and E2, respectively. Since content tree of an element type declaration has
both ordered and unordered parts (the child nodes of the sequence and choice
groups respectively), the algorithm for computing the hash values must be able
to address this issue. We use the CalculateHashValue algorithm as shown in Fig-
ure 3(b). Note that “•” in Figure 3(b) denotes concatenation of strings. Function
MD5Value is a hash function based on the MD5 Message-Digest algorithm [1].

We also calculate the hash values of AD in A and ED in G. The hash value
of AD A ∈ A is calculated as follows. Hash(A) = MD5-Value(Hash(NA)
• Hash(s1) • . . . • Hash(sx), where Hash(sx) = MD5-Value(Hash(Ns) •
Hash(Ys) • Hash(Ds)), sx ∈ SA, and Hash(s1) < Hash(s2) < . . . < Hash(sx).
The hash value of ED E ∈ G is calculated as follows. Hash(E) = MD5-
Value(Hash(NE) • H), where if E is an internal entity declaration, then H =
Hash(RE). Otherwise, E is an external entity declaration, andH = Hash(UE) •
Hash(PE). The overall complexity of calculating the hash values is O(

∑|T1|
i=1(|TEi|×

di) +
∑|T2|

j=1(|TEj | × dj) + |A1| + |A2| + |G1| + |G2|) where |T1| and |T2| are the
numbers of content trees in T1 and T2, respectively, |TEi| is the number of nodes
in TEi, and di is the average out-degree of TEi.

The Matching Phase: Given two content trees of ETDs E1 and E2, denoted
as TE1 and TE2 respectively, DTD-Diff invokes the Matching algorithm as
depicted in Figure 4. The Matching algorithm returns a set of matching pairs
Mmin. The principle behind the Matching algorithm in DTD-Diff is based on
the one in X-Diff [10]. That is, our matching technique finds the minimum-cost
bipartite matchings of two content trees. However, there are critical differences
between the Matching algorithm in DTD-Diff and the one in X-Diff as we
exploit the unique structural and semantic features of a DTD.

First, the Matching algorithm in X-Diff is invoked once. DTD-Diff invokes
the Matching algorithm as many as the number of ETDs. Observe that each
ETD in a DTD has a unique name and hierarchy. Each root node in the content
tree appears only once and mapping occurs only between nodes with the same
signature. So each smaller content tree will be compared with another smaller
tree from the second version having the root node with same name. Note that



this computation is independent from the remaining content trees. Second, the
ComputeCost algorithm in Figure 5 that is invoked by the Matching algorithm
in DTD-Diff to compute the cost matching between r1 and r2 considers the
cardinality changes (line 3, Figure 5). Note that the Matching algorithm in X-
Diff does not consider the cardinality changes as it deals with XML documents,
not DTDs. Third, unlike X-Diff which is based on unordered trees, a content
tree can have ordered and unordered subtrees. Hence, in order to ensure our
matching technique works on ordered subtrees as well, we adopt the technique
used in XyDiff [6] to find the largest order preserving sequences among those
matching pairs in sequence groups (line 26-28, Figure 5). The overall complexity
of this phase is O(min{α1, α2}×|TE1|× |TE2|×max{d1, d2}× log(max{d1, d2}),
where |TE1| and |TE2| are the average numbers of nodes of the content trees in
TE1 and TE2, respectively, d1 and d2 are the average out-degree of the content
trees in TE1 and TE2, respectively, and α1 and α2 are the numbers of ETDs in
D1 and D2, respectively.

The Move Detection Phase: After we have a set of matching pairs Mmin,
DTD-Diff detects move operations. Formally, the move operation is defined as
follows. Let n1 and n2 be two nodes in TE1 and TE2 respectively. Let parent(n)
be the parent node of node n. Then, node n1 is moved to be node n2 iff
(parent(n1),parent(n2)) 6∈ Mmin and Hash(n1) = Hash(n2). Note that we only
consider a move operation if the hash values of n1 and n2 are the same. This is
because if the hash values of n1 and n2 are different, then we need to check the
differences in the subtrees rooted at n1 and n2. If the hash values of n1 and n2

are different, then the algorithm detects it as a deletion of n1 and an insertion
of n2. Now, we discuss how the move operations are detected. Let P and Q be
two lists of the subtrees from the first and second versions respectively that have
no matching subtrees in Mmin. Subtrees in P and Q are sorted by their size in
decreasing order. For each subtree in P , the algorithm checks whether there is
a subtree in Q that have the same hash value. If pi ∈ P and qj ∈ Q have the
same hash value, then the algorithm marks that subtree pi in the first version
is moved to be subtree qj in the second version. The complexity of this phase is
O(n× log(n)), where n is the number of nodes in the content tree.

The Attribute Declaration Change Detection Phase: Recall that at-
tribute list can be seen as a collection of attributes. The algorithm for de-
tecting the changes to attribute declarations works as follows. Given two ADs,
A1 ∈ A1 and A2 ∈ A1, we compare the hash values of these ADs. If Hash(A1) =
Hash(A2), then A1 is the same as A2 and we mark them to indicate that they
have been matched and are not changed. Otherwise, we start to compare the at-
tributes in the attribute list of A1 to the ones in the attribute list of A2. We use
the hash values and the attribute name of these attributes. If the hash values of
two attributes are the same, then they are not changed. Otherwise, we compare
their attribute names. If their names are the same, then we check their attribute
types and default values. Observe that if their attribute names are different, then
we do not need to compare their attribute types and default values as we do not
consider the update of the attribute name for the reasons discussed in Section 3.



Input: Two node r1 and r2
Output: C, Cost of matching r1 and r2

1   C = 0
2   IF HashValue(r1) = HashValue(r2) THEN RETURN 0
    /*Cost of update operation*/
3   IF cardinality(r1) <> cardinality(r2) THEN C=1 
4   IF r1 and r2 are leaf node THEN RETURN C

/* recursively compute the cost of matching every 
        pair of child nodes of r1 and r2 */
5   FOR EACH child1 IN children of r1
6     FOR EACH child2 IN children of r2
7       IF label(child1)=label(child2) THEN
8         ComputeCost(child1, child2) 
9       ELSE
10        Cost(child1,child2) = 
11      END IF
12    END FOR
13  END FOR

14  matched_pairs = set of pairs resulting from minimum-cost 
       bipartite-matching among child nodes of r1 and r2
15  C = C + cost of minimum-cost bipartite-matching 
       among child nodes of r1 and r2
16  FOR EACH child1 IN children of r1
17    IF child1  matched_pairs THEN 
18      C = C + 1 /* cost of delete operation*/
19    END IF
20  END FOR
21  FOR EACH child2 IN children of r2
22    IF child2  matched_pairs THEN 
23      C = C + size of child2 /* cost of insert operation*/
24    END IF
25  END FOR
26  IF r1 and r2 are sequence group THEN
27    C = C + number of local move operations required
28  END IF
29  RETURN C

∞

Fig. 5. The ComputeCost Algorithm.

Code
# Element 

Types File size 
(Kb)

E005-B05-D02 5 2 7

E010-B05-D02 10 3 12

E015-B05-D02 15 4 17

E025-B05-D02 25 6 30

E050-B05-D02 50 12 56

E075-B05-D02 75 18 87

E100-B05-D02 100 23 113

E150-B05-D02 150 36 170

E250-B05-D02 250 59 273

E500-B05-D02 500 122 570

DTD (DTD-Diff)

E025-B05-D02 5 6 30

E025-B10-D02 10 12 82

E025-B15-D02 15 21 162

E025-B25-D02 25 45 385

E025-B40-D02 40 114 1,032

E025-B50-D02 50 167 1,500

E025-B05-D01 1 5 13

E025-B05-D02 2 6 28

E025-B05-D03 3 10 68

E025-B05-D04 4 21 194

E025-B05-D05 5 46 500

E025-B05-D06 6 86 994

E025-B05-D07 7 209 2,853

E025-B05-D08 8 557 7,231

(a) Different Number of Element Types

(b) Different Number of Out-degree (c) Different Number of Depth

XSD (X-Diff)

# 
Nodes

691

1,031

390

1,847

3,460

5,360

7,044

10,564

16,903

35,076

1,731

3,896

868

10,444

25,720

49,068

122,182

328,862

5,022

10,047

1,837

24,021

64,611

94,014

# 
Nodes

 File size 
(Kb)

175

275

105

490

900

1,430

1,880

2,785

4,410

9,280

Code
Out-

degree Filesize 
(Kb)

DTD (DTD-Diff) XSD (X-Diff)

# Nodes
# 

Nodes
Filesize 

(Kb)

485

1,585

3,265

7,975

21,625

31,325

Code Depth Filesize 
(Kb)

DTD (DTD-Diff) XSD (X-Diff)

# Nodes# Nodes
Filesize 

(Kb)

150

465

1,215

3,585

9,045

17,305

43,465

117,180

DTD

SigmodRecord

PSD

Policy7

DBLP

NewsML_1.1

# Element 
Type

# Attribute 
List

11 1

66 10

56 26

36 12

117 114

(d) Real DTD Characteristics

Code
# Element 

Types File size 
(Kb)

DTD (DTD-Diff) XSD (X-Diff)

# 
Nodes

# 
Nodes

 File size 
(Kb)

Fig. 6. Data Sets.

The cost of detecting the changes to attribute declarations is O(n × log(n)),
where n is the number of attributes defined in the DTD.

The Entity Declaration Change Detection Phase: The change detec-
tion mechanism of EDs is quite straightforward and similar to the approach for
detecting changes to attribute declarations. Hence, we do not elaborate on this
step further. The complexity of the algorithm for finding the changes on the en-
tity declarations is O(n× log(n)), where n is the number of entity declarations
defined in the DTD.

Edit Scripts Generation Phase: The edit script Z is generated as fol-
lows. (1) An edit script Z is initialized as a set of move operations detected
in the preceding step. (2) Then, for all unmatching nodes in the first tree,
delete operations are added into edit script Z. (3) Next, for all unmatching
nodes in the second tree, insert operations are added into edit script Z. (4)
For all pairs of matching nodes that have different cardinality, cardinality up-
date operations are added into edit script Z. (5) For all pairs of matching
nodes that belong to sequence groups and have incorrect local order, local order
move operations are added into edit script Z. (6) The changes to the attributes
lists are added into edit script Z. (7) Finally, the changes to the entity dec-
larations are added into edit script Z. The overall complexity of this step is
O(

∑|T1|
i=1(|TEi|) +

∑|T2|
j=1(|TEj |) + |A1|+ |A2|+ |G1|+ |G2|).



5 Experimental Results

We have implemented DTD-Diff entirely in Java. The experiments were con-
ducted on a Microsoft Windows XP Professional machine having Pentium 4 1.7
GHz processor with 512 MB of memory. We use both real world DTDs and a set
of synthetic DTDs generated by using our DTD generator. The second versions of
DTDs are generated by using our DTD changes generator. We vary the numbers
of element types, the percentage of changes, the out-degree of each element types,
and the depth of each element types. We compare the performance of DTD-Diff
with the state-of-the-art approaches. Unfortunately, despite our best efforts (in-
cluding contacting the authors), we could not get the Java version of XyDiff.
Hence, we compared our approach to the Java version of X-Diff [10] (down-
loaded from http://www.cs.wisc.edu/∼yuanwang/xdiff.html) only. As X-Diff is
not designed for detecting the changes on DTDs, we convert the DTDs into XSD
[3] using Syntex dtd2xs (downloaded from http://www.syntext.com/downloads/)
before detecting the changes. Note that the results of X-Diff suffer from the lim-
itations discussed in Section 1. We also study the result quality of DTD-Diff.

Execution Time vs Number of Element Types: We set the out-degree
and depth of each element type to “5” and “3” respectively. Note that the average
of the maximum depth of real DTDs is “3” [5]. The number of attributes of
each element is set to “3”. We set the percentage of changes to “9%”. The
characteristic of the data sets used in this set of experiments is depicted in
Figure 6(a).

Figure 7(a) depicts the performance of DTD-Diff and X-Diff. We observed
that DTD-Diff significantly outperforms X-Diff. DTD-Diff is 5–272 times
faster than X-Diff. X-Diff failed to detect the changes when the numbers of
elements are more than or equal to 250 due to lack of main memory. The inability
of X-Diff to process large number of nodes in XML data is also highlighted in [7].
We now briefly discuss why our approach significantly outperforms X-Diff. First,
the tree representations of XSD files (XSD tree) contain elements with same
names. On the other hand, in DTD-Diff, each root node of the content trees
in a DTD has a unique name. As a result, there exists a one-to-one mapping
between a content tree in the old version to another content tree in the new
version. Hence, X-Diff does more number of bipartite matching compared to
DTD-Diff. Second, the number of nodes in the content trees is lesser in most
cases compared to an XSD tree. This further reduces the number and cost of
bipartite matching in DTD-Diff. The details can be found in [8]. Furthermore,
numbers of nodes in the XSD files are larger than the number of nodes in the
content trees (from 2.8 up to 5.8 times larger, Figure 6).

We also study the performance of DTD-Diff and X-Diff by using real
world DTDs [2, 4]. Figure 6(d) depicts the characteristics of the real world
DTDs. We set the percentage of changes to 3%. Figure 7(f) depicts the per-
formances of DTD-Diff and X-Diff. We notice that X-Diff has slightly better
performance than DTD-Diff. This is primarily due to the characteristics of
the data. For instance, although NewsML 1.1 has 117 elements, the perfor-
mance of DTD-Diff is comparable to X-Diff! Observe that for synthetic data
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Fig. 7. Experimental Results.

set with similar size, DTD-Diff outperforms X-Diff significantly. This is because
in NewsML 1.1, only 6 out of 117 ETDs have nested content and the maximum
depth of NewsML 1.1 DTD is only 2. Hence, cost of bipartite matching is al-
most the same. In summary, X-Diff performs relatively better than DTD-Diff
when the DTDs have simple and “flat” structure. When the DTD structure is
complex, DTD-Diff outperforms X-Diff as shown using synthetic dataset. Also,
note that DTD-Diff is still better than X-Diff because of the inaccuracies and
incompleteness in the results generated by X-Diff [8].

Execution Time vs Percentage of Changes: We use the E025-B05-D02
data set, whose number of element types, out-degree, and depth are 25, 5, and 2
respectively, as the first version of the DTD. We vary the percentages of changes
from “1%” to “20%”. Figure 7(b) depicts the execution time of DTD-Diff and
X-Diff for different percentages of changes. We observe that the percentage of
changes slightly affect the performance of DTD-Diff and X-Diff.

Execution Time vs Out Degree: We set the number of element types
and the depth to “25” and “2” respectively. We set the percentage of changes to
“9%”. We vary the out-degree of each element type from “5” to “50”. The charac-
teristic of the data sets used in this set of experiments is depicted in Figure 6(b).
Figure 7(c) depicts the performance of DTD-Diff and X-Diff for different num-
bers of out-degree of each element type. We observe that DTD-Diff is up to 325
times faster than X-Diff. This is because of the reasons discussed above. We also
notice that X-Diff cannot detect the changes to XSD files when the out-degree
is more than or equal to 25 due to the lack of main memory.

Execution Time vs Depth: We set the number of element types and
the out-degree to “25” and “5” respectively. We set the percentage of changes
to “9%”. We vary the out-degree of each element type from “1” to “8”. The
characteristic of the data sets used in this set of experiments is depicted in
Figure 6(c). Figure 7(d) depicts the performance of DTD-Diff and X-Diff for
different depth of each content tree. We observe that DTD-Diff is up to 89



times faster than X-Diff. X-Diff failed to detect the changes when the depth is
more than or equal to 8 due to the lack of main memory.

Result Quality: We also examine the quality of deltas detected by DTD-
Diff. We use E010-B05-D02 data set and the percentages of changes are varied
between “1%” to “10%”. Then, we calculate the result quality, that is, the ratio
between the number of edit operations detected by DTD-Diff and the optimal
one. Figure 7(e) depicts the ratios. We observe that DTD-Diff is able to detect
the optimal deltas until percentage of changes is set to “5%”. Afterwards, DTD-
Diff detects almost optimal deltas. This is because, in some cases, a move
operation is detected as a pair of deletion and insertion. Note that we do not
compare the result quality of DTD-Diff to other approaches as, to the best
of our knowledge, DTD-Diff is the first approach for detecting the changes to
DTDs. We do not compare the result quality of DTD-Diff to the one of X-Diff
(when we use XSD files) as the types of changes of DTD and XML are different.

6 Conclusions

A DTD change detection tool can be useful in several ways such as maintenance
of XML documents and incremental maintenance of relational schema for storing
XML data. In this paper, we present a novel technique for detecting the changes
to DTDs. Our work is motivated by the problem that converting DTD to XML
Schema (XSD) (which is in XML document format) and detecting the changes
using existing XML change detection algorithms (X-Diff and XyDiff) is not a
feasible option. Such effort is expensive and may generate semantically incorrect
and non-optimal edit scripts. We propose an algorithm DTD-Diff that directly
computes the changes between two versions of DTDs by taking into account
the structural and semantic features of DTDs. We experimentally demonstrate
that X-Diff performs relatively better than DTD-Diff when the DTDs have
simple and “flat” structure. When the DTD structure is complex, DTD-Diff
runs significantly faster (5–325 times) than X-Diff for given data set. DTD-Diff
is also able to produce optimal or at least near-optimal deltas.
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