
Detecting Content Changes on Ordered XML
Documents Using Relational Databases

Erwin Leonardi1 Sourav S. Bhowmick1 T.S. Dharma1 Sanjay Madria2

School of Computer Engineering1 Department of Computer Science2

Nanyang Technological University University of Missouri-Rolla
Singapore Rolla, MO 65409
{pk909134,assourav}@ntu.edu.sg madrias@umr.edu

Abstract. Previous works in change detection on XML focused on de-
tecting changes to text file using ordered and unordered tree model.
These approaches are not suitable for detecting changes to large XML
document as it requires a lot of memory to keep the two versions of XML
documents in the memory. In this paper, we take a more conservative
yet novel approach of using traditional relational database engines for
detecting content changes of ordered large XML data. First, we store
XML documents in RDBMS. Then, we detect the changes by using a set
of SQL queries. Experimental results show that our approach has better
scalability, better performance, and comparable result quality compared
to the state-of-the-art approaches.

1 Introduction

Over the next few years XML is likely to replace HTML as the standard format
for publishing and transporting documents over the Web. Since online infor-
mation changes frequently, being able to quickly detect the changes in XML
documents (hereafter called XML deltas or XDeltas) is an important problem.
Such change detection tool is important to incremental query evaluation, trigger
condition evaluation, search engine, data mining applications, and mobile appli-
cations [1]. In this paper, we focus on detecting content changes on the ordered
XML documents.

Let us illustrate changes to ordered XML with an example. Suppose we have
two versions of an XML document that is used for storing the contents of a
book. These XML documents are represented as trees as depicted in Figure 1.
These XML documents are classified into ordered XML since the content of a
book must be ordered. The highlighted ellipses in Figure 1 indicate the different
types of changes. The “XML Syntax” chapter is moved to be the second chapter
of the book because of insertion of “XML Introduction” chapter.

The changes on ordered XML documents can be classified into two types:
changes occur in the internal element and changes occur in the leaf element. An
internal element is the element which does not contain textual data and is not
a leaf element. For example, nodes 5 and 6 in Figure 1(a) are the internal ele-
ments. The changes occur in the internal elements (which are called as structural
changes) modify the structure and do not change textual data content. The types

Book

Title Authors

Author

Chapters

Chapter

Title Line Line

Author Chapter

Title Line

XML for
Beginners

Joe Mark

XML Syntax
These rules are very
easy to learn and ...

The rules of XML are
very simple and ...

Willy Paul

XML
Introduction

XML stands for
eXtensible Markup

Language.

Book

Title Authors

Author

Chapters

Chapter

Title Line Line Line

XML for
Beginners

J. Mark

XML Syntax
The syntax rules of XML
are very simple and ...

Manipulating XML is
very easy to do.

These rules are very
easy to learn and ...

A

A

A

Updated leaf node

Deleted leaf node

Inserted leaf node

(a) Version 1 (b) Version 2

1

2 3
4

5

6

7
8 9

10

51

52 53

54 55

56

57

58 59

60

61 62 63

Fig. 1. Tree representation of Ordered XML Documents.

of changes which are classified as structural changes are as following: insertion of
internal element, deletion of internal element, and internal element movement.
For instance, node 57 in Figure 1(b) is the new inserted element. Node 60 is
moved from being the first child of node 56 to be the second child of node 56. A
leaf element is the element/attribute which contains textual data. For example,
node 52 is a leaf element which has name “Title” and textual content “XML
for Beginners”. The changes in the leaf elements (which are called as content
changes) modify textual data content. There are four types of content changes
as following: leaf element insertion, leaf element deletion, content update of leaf
element, and leaf element movement. A leaf element “Line” which has value
“Manipulating XML is very easy to do.” is a new inserted leaf element. In this
paper, we present a technique for detecting content changes (changes to the leaf
element) on the ordered XML documents using relational database.

Some previous works [1–3] have been proposed to solve the problem of de-
tecting changes on XML documents. Cobena et al. [2] proposed an algorithm,
called XyDiff, for detecting changes on ordered XML documents. The changes
are detected by using the signature and weight of nodes. XMLTreeDiff [3] is
also proposed for solving the problem of detecting changes for ordered XML
documents by using DOMHash. In [1], the authors presented X-Diff, an algo-
rithm for detecting the changes on unordered XML documents. The algorithm
assigns XHash value for each node in the trees. The XHash value of a node is
calculated from the XHash values of its descendants. The algorithm tries to find
a minimum-cost matching between two documents before generating the edit
script in order to find the minimum edit script.

Our approach is different from the previous approaches in the following ways.
First, our approach focuses on the content change, while the state-of-art ap-
proaches detect both structural changes and content changes. Second, we detect
the changes on XML documents by using relational database. The state-of-art
approaches detect the changes on XML documents stored in main memory after
they are parsed. Our approaches give the opportunities to have more scalable
change detection system since we depend on the secondary storage rather than
the main memory. We store the XML documents in a relational database. Then,
we detect the changes by using a set of SQL queries.
2 Storing XML Data
There are two approaches for storing XML documents in relational database:
the structure-mapping and the model-mapping approaches [5, 7]. In this paper,
we have decided to adopt the model mapping approach.

We now discuss how XML documents are stored in relational database by
using SUCXENT (Schema UnConcious XML ENabled sysTem) schema [7].

Document

Path

LeafValue

AncestorInfo

Doc
Id

1
1
1
1
1
1
2
2
2
2
2
2
2
2

Leaf
Order

1
2
3
4
5
6
1
2
3
4
5
6
7
8

Path
Id

1
2
3
4
4
4
1
2
2
3
4
3
4
4

Sibling
Order

1
2
3
3
3
3
1
2
3
3
3
4
4
4

LeftSib
IxnLevel

-1
1
1
1
1
1
-1
1
1
1
1
2
2
2

LeafValue

XML for Beginners
J. Mark
XML Syntax
The syntax rules of XML are very simple and ...
Manipulating XML is very easy to do.
These rules are very easy to learn and ...
XML for Beginners
Joe Mark
Willy Paul
XML Intorduction
XML stands for eXtensible Markup Language.
XML Syntax
The rules of XML are very simple and ...
These rules are very easy to learn and ...

Local
Order

1
1
1
2
3
4
1
1
2
1
2
1
2
3

Dewey

1.1
1.2.1

1.3.1.1
1.3.1.2
1.3.1.3
1.3.1.4

1.1
1.2.1
1.2.2

1.3.1.1
1.3.1.2
1.3.2.1
1.3.2.2
1.3.2.3

PathExp

./Book./Title

./Book./Authors./Author

./Book./Chapters./Chapter./Title

./Book./Chapters./Chapter./Line

Path
Id

1
2
3
4

DocName

book01.xml
book02.xml

Doc
Id

1
2

Dewey

1
1.2
1.3

1
1.2
1.3

1.3.1
1.3.2

1.3.1

Max
SibOrder

3
2
3

4
2
4
3
4

3

Min
SibOrder

1
2
3

1
2
3
3
4

3

Node
Level

1
2
2

1
2
2
2
3

3

Node
Name

Book
Authors
Chapters

Book
Authors
Chapters
Chapter
Chapter

Chapter

Doc
Id

1
1
1

2
2
2
2
2

1

Document (DocID, DocName)

Path (PathID, PathExp)

LeafValue (DocId,
 LeafOrder,
 LeftSibIxnLevel,
 PathId, SiblingOrder,
 LeafValue)

AncestorInfo (DocId,
 NodeName, NodeLevel,
 MinSibOrder,
 MaxSibOrder)

(i) Original Schema

Document (DocID, DocName)

Path (PathID, PathExp)

LeafValue (DocId, LeafOrder,
 LeftSibIxnLevel, PathId,
 SiblingOrder, LeafValue,
 LocalOrder, Dewey)
AncestorInfo (DocId, NodeName,
 NodeLevel, MinSibOrder,
 MaxSibOrder, LocalOrder,
 Dewey)

(ii) Modified Schema

(a) SUCXENT Schema (b) XML Data in RDBMS

Input : document id of the first version docid1,
 document id of the second version docid2
Output : Unchanged leaf nodes U,
 Inserted leaf nodes T1,
 Deleted leaf nodes T2, Moved leaf nodes M,
 Relative updated leaf nodes UR,
 Absolute updated leaf nodes UA

1 detectChanges(docid1, docid2)
2 {
3 // Find the unchanged leaf nodes from the
4 // first version (docid1) and
5 // second version (docid2) documents
6 U=findUnchangedLeafNodes(docid1, docid2);
7
8 // Find the potential deleted leaf nodes
9 T1=findPotentialDeletedLeafNodes(docid1, docid2);
10
11 // Find the potential inserted leaf nodes
12 T2=findPotentialInsertedLeafNodes(docid1, docid2);
13
14 // Find the moved leaf nodes
15 M=findTheMovedLeafNodes(T1, T2);
16
17 // Find the relative updated leaf nodes
18 UR=findTheRelativeUpdatedLeafNodes(M, T1, T2);
19
20 // Find the absolute updated leaf nodes
21 UA=findTheAbsoluteUpdatedLeafNodes(T1, T2);
22 }

(c) The Algorithm

Fig. 2. SUCXENT.

SUCXENT is a model-mapping, path-oriented approach. We choose SUCXENT
because it outperforms significantly current state-of-the-art model mapping ap-
proaches like XParent [5] as far as storage size, insertion time, extraction time,
and path expression queries are concerned [7]. SUCXENT schema is shown in
Figure 2(a)(i). The details of the schema can be found in [7].

We modify the SUCXENT schema by adding the attribute LocalOrder in the
LeafValue table to store the position of a leaf element among its siblings. We
also need to know the ancestors’ local orders of each leaf and internal elements.
We adopt the Dewey Order Encoding [6]. Let us name this attribute Dewey. We
add attribute Dewey in the LeafValue and AncestorInfo tables. The modified
SUCXENT schema is depicted in Figure 2(a)(ii). Suppose we have two versions
of an XML document that are represented as trees depicted in Figure 1. The
XML documents stored in RDBMS by using SUCXENT schema are depicted in
Figure 2(b).

3 Content Changes Detection

In this section, we discuss how to detect the content changes by using our ap-
proach. The algorithm of our approach is shown in Figure 2(c).

3.1 Unchanged Leaf Elements Detection Phase

In the first phase, we find the leaf elements that are not changed during the
transition. The unchanged leaf elements must have the same paths (PathID),
values (LeafValue), local orders (LocalOrder), and the ancestors’ local orders
(Dewey).

Given a set of tuples in the LeafValue table which correspond to leaf elements
of two versions of an XML document, we are able to detect the unchanged
leaf elements by using the SQL query shown in Figure 3(a). The SQL query is
encapsulated in function findUnchangedLeafNodes (line 6) in Figure 2(c). Note
that docid1 and docid2 are the document ids of the first and second versions
respectively. Basically, the query tries to find the common leaf elements of the
first and the second versions. We use “INTERSECT ALL” SQL operator because
we want to preserve the duplicate tuples of two tables. The results of the queries
are stores in the table, namely UNCHANGED table as depicted in Figures 4(a)(i).

/ / Get t he l eaf el ement s i n
/ / t he f i r st document
1 SELECT
2 PATHI D, LEAFVALUE AS VALUE,
3 LOCALORDER, DEWEY
4 FROM LEAFVALUE
5 WHERE DOCI D = docid1
/ / Fi nd l eaf el ement s occur i n
/ / bot h document
6 I NTERSECT ALL
/ / Get t he l eaf el ement s i n t he
/ / second document
7 SELECT
8 PATHI D, LEAFVALUE AS VALUE,
9 LOCALORDER, DEWEY
10 FROM LEAFVALUE
11 WHERE DOCI D = docid2
/ / The r esul t wi l l be st or ed i n
/ / t abl e UNCHANGED

/ / Get t he l eaf el ement s i n t he
/ / document wi t h document i d = d1
1 SELECT
2 PATHI D, LEAFVALUE,
3 LOCALORDER, DEWEY
4 FROM LEAFVALUE
5 WHERE DOCI D = d1
/ / Fi nd l eaf el ement s onl y occur
/ / i n document wi t h i d = d1
6 EXCEPT ALL
/ / Get t he l eaf el ement s i n t he
/ / document wi t h document i d = d2
7 SELECT
8 PATHI D, LEAFVALUE,
9 LOCALORDER, DEWEY
10 FROM LEAFVALUE
11 WHERE DOCI D = d2

(a) Get Unchanged Leaf Elements (b) Get Leaf Elements Only in Document d1

1 SELECT
2 T1. PATHI D, T1. VALUE,
3 T1. LOCALORDER,
4 T2. LOCALORDER,
5 T1. DEWEY, T2. DEWEY
6 FROM T1, T2
7 WHERE
8 T1. PATHI D = T2. PATHI D AND
9 T1. VALUE= T2. VALUE AND
10 T1. DEWEY ! = T2. DEWEY AND
11 T1. DEWEY NOT I N
12 (SELECT DEWEY
13 FROM UNCHANGED) AND
14 T2. DEWEY NOT I N
15 (SELECT DEWEY
16 FROM UNCHANGED)

(c) Get Moved Leaf Elements

/ / A1 and A2 ar e t he moved ancest or s

1 SELECT
2 T1. PATHI D, T1. VALUE,
3 T2. VALUE,
4 T1. LOCALORDER, T1. DEWEY,
5 T2. DEWEY
6 FROM T1, T2
7 WHERE
8 T1. LOCALORDER=T2. LOCALORDER AND
9 T1. PATHI D=T2. PATHI D AND
10 T1. VALUE! =T2. VALUE AND
11 T1. DEWEY LI KE ' A1. DEWEY%' AND
12 T2. DEWEY LI KE ' A2. DEWEY%' AND
13 (T1. DEWEY - A1. DEWEY) =
 (T2. DEWEY - A2. DEWEY)

/ / T1. DEWEY - A1. DEWEY means t he r est
/ / par t of a node' s st r i ng af t er bei ng
/ / cut A1. DEWEY f r om t he begi ni ng

(d) Get Relative Updated Leaf Elements

Fig. 3. SQL Queries.

3.2 Potential Inserted and Deleted Leaf Elements Detection Phase
The objective of the second phase is to find the potential inserted and potential
deleted leaf elements. This phase is useful to filter out data which are not used
for detecting changes in the subsequent phases. We call them potential inserted
and potential deleted leaf elements because they are not only the deleted and
inserted leaf elements respectively, but also the updated leaf elements which are
detected as pairs of deleted and inserted leaf elements respectively. For example,
the corresponding tuples in the T1 and T2 tables of potential deleted and potential
inserted leaf elements as depicted in Figures 4(a)(ii) and (iii) respectively. The
first tuples in the T1 and T2 tables are the corresponding tuples of an updated
leaf element which is detected as a pair of potential deleted and potential inserted
leaf elements respectively.

Given a set of tuples in the LeafValue table which correspond to leaf elements
of two versions of an XML document, we can detect the potential deleted and po-
tential inserted leaf elements by using the SQL query as depicted in Figures 3(b).
The SQL query is encapsulated in functions findPossibleDeletedLeafNodes
(line 9) and findPossibleInsertedLeafNodes (line 12) in Figure 2(c). We use
“EXCEPT ALL” SQL operator in order to preserve the duplicate tuples of two
tables. If we want to find the potential deleted nodes, we set the value of d1
and d2 to the document ids of the first and second versions respectively. The
value of d1 and d2 are set to the document ids of the second and first versions
respectively if we want to get the potential inserted nodes. In the subsequent
phases, we are going to detect the content changes of these XML documents by
using the UNCHANGED, T1 and T2 tables.
3.3 Moved Leaf Elements Detection Phase
Next, we search for the moved leaf elements (if any) by using the results of the
first and second phases. There are three types of moved leaf elements as follows.
First, the leaf elements are moved because of the movement of their ancestors.
Second, they are moved because of the insertions or deletions of their siblings.
Third, the leaf elements are moved among their siblings.

Give two sets of tuples in the T1 and T2 tables, we execute a SQL query
as depicted in Figure 3(c) in order to detect these moved leaf elements. The
SQL query is encapsulated in function findTheMovedLeafNodes (line 15) in
Figure 2(c). Basically, the query tries to find tuples in the T1 and T2 tables
which have the same paths (PathID), and values (Value), but have different

(iv) Table Move

(i) Table UNCHANGED

(iii) Table T2

@

#

Dewey

1.1

Local
Order

1

Value

XML for Beginner

Path
ID

1

Path
ID

2
2
3
4
3
4
4

Value

Joe Mark
Willy Paul
XML Introduction
XML stands for eXtensible ...
XML Syntax
The rules of XML are ...
These rules are very easy ...

Local
Order

1
2
1
2
1
2
3

Dewey

1.2.1
1.2.2

1.3.1.1
1.3.1.2
1.3.2.1
1.3.2.2
1.3.2.3

(ii) Table T1

3
4

Path
ID

XML Syntax
These rules are very easy ...

Value

1
4

Local
Order1

3
1

Local
Order2

1.3.1.1
1.3.1.4

Dewey
1

1.3.2.1
1.3.2.3

Dewey
2

@ #

Path
ID

2
3
4
4
4

Local
Order

1
1
2
3
4

Dewey

1.2.1
1.3.1.1
1.3.1.2
1.3.1.3
1.3.1.4

Value

J. Mark
XML Syntax
The syntax rules of XML are ...
Manipulating XML is very ...
These rules are very easy ...

(a) Tables UNCHANGED, T1, T2, and Move

// A1 and A2 are the moved ancestors

1 SELECT
2 T1. PATHI D, T1. VALUE, T2. VALUE,
4 T1. LOCALORDER, T1. DEWEY
5 FROM T1, T2
6 WHERE
7 T1. LOCALORDER = T2. LOCALORDER AND
8 T1. PATHI D = T2. PATHI D AND
9 T1. VALUE ! = T2. VALUE AND
10 T1. DEWEY = T2. DEWEY AND
11 T1. DEWEY NOT LI KE ' A1. DEWEY%' AND
12 T2. DEWEY NOT LI KE ' A2. DEWEY%' ;

(b) SQL Query: Get Absolute Updated Leaf Elements

Fig. 4. Tables and SQL Query.

(a) Relative Updated Leaf Elements (UR)

LocalOrder DeweyPathID
1 1.2.12

Value2
Joe Mark

(b) Absolute Updated Leaf Elements (UA)

Value1
J. Mark

Dewey2
1.2.2.1

Dewey1
1.1.2.1

Value2
The rules of XML are ...

Value1
The syntax rules of XML are ...

PathID
4

LocalOrder
1

Fig. 5. Updated Leaf Elements Detection.

Dewey value. If the local order of a leaf element is changed, the Dewey value of
this node will also be changed. Similarly, the Dewey value of this node will be
changed if the ancestors’ local orders of a leaf element are changed. The results of
this query are stored in the Move table which is depicted in Figure 4(a)(iv). Since
these leaf elements have been detected as moved leaf elements, we have to delete
the corresponding tuples of these leaf elements in the T1 and T2 tables. The
highlighted rows in the T1 and T2 tables in Figures 4(a)(ii) and (iii) respectively
are the deleted rows.

3.4 Relative Updated Leaf Elements Detection Phase

There are two types of updated leaf elements, namely, absolute updated leaf
elements and relative updated leaf elements. If a leaf element which has the same
absolute position in the first and second versions is updated, then we classify it as
an absolute updated leaf element. We classify a leaf element as a relative updated
leaf element if it is updated and has different absolute positions in the first and
second versions. For example, the leaf element “Line” which has value “The
syntax rules of XML are ...” is updated to “The rules of XML are ...”. This
leaf element has different absolute positions in the first and second versions.
Detecting absolute updated leaf elements will be after detecting relative updated
leaf elements in our approach in order to avoid misdetection.

We illustrate misdetection with an example. Suppose we have two sets of
leaf elements which are stored as tuples in the T1 and T2 tables as depicted
in Figure 4(a)(ii) and (iii) respectively after the highlighted rows are deleted.
If we detect the absolute updated leaf elements first, the leaf element which is
stored as tuple in the T1 table with “1.3.1.2” as the value of its Dewey attribute
(denoted by “@” at the right of the rows) will be detected as an updated leaf
element from “The syntax rules of XML are ...” to “XML stands for eXtensible
...” since they have the same absolute position in both XML documents. The leaf
element which has value “The syntax rules of XML are ...” should be updated
to “The rules of XML are ...” (denoted by “]” at the right of the rows). The leaf
element which has value “XML stands for eXtensible ...” should be detected as
an inserted leaf element.

We now discuss how we detect the relative updated leaf elements. The dis-
cussion on how we detect the absolute updated leaf elements will be presented

in the later section. Before finding the relative updated leaf elements, we have to
do some preprocessing on the Dewey values. The aim of this preprocessing is to
find the ancestor nodes of the moved leaf elements which are moved. We need to
find these moved ancestor nodes in order to know which subtrees in XML trees
are moved. To find these moved ancestor nodes, we use the values of attributes
Dewey1 and Dewey2 in the Move table. For example, the first tuple in the Move
table has “1.3.1.1” and “1.3.2.1” in attributes Dewey1 and Dewey2 respectively.
We notice that the parent of the corresponding leaf elements is moved to be the
second child. The Dewey values of these moved ancestors are “1.3.1” and “1.3.2”.
The algorithm for finding the moved ancestors is depicted in Figure 6(a).

After finding the moved ancestors, we are able to find the relative updated leaf
elements. The SQL query shown in Figures 3(d) is used to detect the relative up-
dated leaf elements. The SQL query is encapsulated in function findTheRelative
UpdatedLeafNodes (line 18) in Figure 2(c). The query tries to find the tuples
belong to first and second versions of an XML document which have the same
local orders (LocalOrder), path (PathID), but have different value (Value) (Fig-
ures 3(d), lines 8-10). The prefix of Dewey attributes of the tuples corresponding
to first and second versions of the XML document are equal to the moved an-
cestors’ Dewey in the first and second versions respectively (Figures 3(d), line
11-12). We also have to make sure that the position of the corresponding leaf
elements of these tuples are not changed (Figures 3(d), line 13).

After we detect the relative updated leaf elements, we need to delete the
corresponding tuples of the updated leaf elements which are in the T1 and T2
tables. The deleted rows in the T1 and T2 tables in Figure 4(a) are indicated
with “]” at the right of the rows. The results of this query are stored in the UR
table as shown in Figure 5(a).

3.5 Absolute Updated Leaf Elements Detection Phase

Now, the T1 and T2 tables may only consist of the deleted and inserted leaf
elements respectively, and the absolute updated leaf elements which are detected
as a pair of deleted and inserted leaf elements respectively. The objective of this
phase is to find the absolute updated leaf elements. Intuitively, the absolute up-
dated leaf elements are the updated leaf elements which are not the descendants
of the moved ancestors. If the prefix of Dewey value of a leaf element is equal
to the Dewey value of a moved ancestor, it must be under that moved ancestor.
The absolute updated leaf elements are the leaf elements whose corresponding
tuples have the same LocalOrder values, PathID values, Dewey values, but have
different Value values.

Based on the above requirements, we are able to find the absolute updated
leaf elements by using the SQL query as depicted in Figure 4(b). The SQL
query is encapsulated in function findTheAbsoluteUpdatedLeafNodes (line 21)
in Figure 2(c). After we detect the absolute updated leaf elements, we need to
delete the corresponding tuples of these leaf elements in the T1 and T2 tables
which are already detected as absolute updated leaf elements. The results will
be stored in the the UA table as depicted in Figure 5(b).

Input:
 deweySet: A set of (Dewey1,Dewey2) in table Move
Output:
 movedAncestor: A set of (Dewey1, Dewey2) of the moved ancestors

1 function findMoveAncestors(deweySet) {
2 set movedAncestor to empty;
3 while (deweySet is not empty) {
4 Data = deweySet.removeFirst();
5 DW1 = splitDewey(Data.Dewey1); / / Spl i t " 1. 2. 3. 4"
6 DW2 = splitDewey(Data.Dewey2); / / t o <1, 2, 3, 4>
 / / St ar t checki ng f r om t he l ocal or der of t he par ent node
7 for (i=DW1.length - 2; i>=0; i++) {
8 if (DW1[i] != DW2[i]) {
9 ancestorDW1 = getAncestorDewey(DW1, i);
10 ancestorDW2 = getAncestorDewey(DW2, i);
11 if ((ancestorDW1,ancestorDW2) not in movedAncestor) {
12 movedAncestor.addLast((ancestorDW1,ancestorDw2));
 / / Add t he moved ancest or s ' Dewey val ues
13 deweySet.addLast((ancestorDW1,ancestorDW2));
14 break;
15 }
16 }
17 }
18 }
19 return movedAncestor;
20 }

(b) Datasets(a) Algorithm findMovedAncestor

0

0.2

0.4

0.6

0.8

1

1.2

239 578

Number of Nodes

E
xe

cu
ti

o
n

 T
im

e
(s

)

UnchangedLeafNodes UniqueLeafNodes
MovedLeafNodes MovedAncestors
RelativeUpdate AbsoluteUpdate
X-Diff

Code

SIGLN-01

SIGLN-03
SIGLN-04
SIGLN-05

SIGLN-02

Number of
Nodes

239

1,673
3,259
6,358

578

Size
(Kb)
12

64
124
240

22

Code Number of
Nodes

Size
(Kb)

SIGLN-06
SIGLN-07
SIGLN-08
SIGLN-09

13,569
27,524
69,098

166,064

513
1,040
2,610
6,272

(c) Performance: X-Diff and SUCXENT

Fig. 6. Algorithm, Datasets, and Experimental Results.

3.6 Inserted and Deleted Leaf Elements Detection Phase
After detecting the absolute updated leaf elements, the T1 and T2 tables will
only consist of the corresponding tuples of deleted and inserted leaf elements
respectively. Hence, we do not need an SQL query to detect the inserted and
deleted leaf elements.

4 Experimental Results
We now present the results of our experiments to study the performance of our
database approaches for detecting changes on ordered XML documents.
4.1 Experimental Setup and Data Set
We have implemented our approach entirely in Java. The Java implementation
and the database engine were run on a Microsoft Windows 2000 Professional
machine with a Pentium 4 1.7 GHz with 512 MB of memory. The database
system we used was IBM DB2 UDB 8.1. We also created appropriate indexes on
the relations to expedite query processing. We used a set of synthetic SIGMOD
Record XML documents. Figure 6(b) shows the characteristics of our data sets.
Note that we focus on numbers of nodes in our data sets. The higher number of
nodes in a tree will increase the query cost since the database engine will join
more tuples. We generated the second version of each XML document by using
our own change generator.

We also studied the performance of the state-of-the-art approaches. We could
not find the Java version of XyDiff [2]1 which was proposed to solve the prob-
lem of detecting changes on ordered XML documents. Hence, we compared our
approach to X-Diff [1]2 and XMLTreeDiff [3]3 which are implemented in Java.
Since X-Diff was proposed for detecting changes in unordered XML documents,
our change generator did not permute the order of any nodes.
1

Unfortunately, despite our best efforts (including contacting authors), we could not get the Java

version.
2

Downloaded from http://www.cs.wisc.edu/∼yuanwang/xdiff.html
3

Available at http://www.alphaworks.ibm.com

(a) Execution Time vs Number of Nodes (3%)

0.500

1.000

1.500

2.000

0% 15% 30% 45% 60%

Percentange of Changes

R
es

u
lt

Q
u

al
ity

SUCXENT

X-Diff

(f) Result Quality vs Percentage of Changes (SIGLN-02)(e) Execution Time vs Percentage of Changes (SIGLN-03)

0

10

20

30

40

50

60

70

0% 10% 20% 30% 40% 50% 60% 70%

Percentage of Changes

E
xe

cu
ti

o
n

 T
im

e
(s

)

SUCXENT XParent

X-Diff XMLTreeDiff

10

100

1000

10,000 100,000 1,000,000

Number of Nodes

E
xe

cu
ti

o
n

 T
im

e
(s

)

SUCXENT

XParent

0.1

1

10

100

100 1000 10000 100000

Number of Nodes

E
xe

cu
ti

o
n

 T
im

e
(s

)
SUCXENT
XParent
X-Diff
XMLTreeDiff

(c) Execution Time vs Number of Nodes (3%)

0.1

1

10

100

100 1000 10000 100000

Number of Nodes

E
xe

cu
ti

o
n

 T
im

e
(s

)

SUCXENT
XParent
X-Diff
XMLTreeDiff

(b) Execution Time vs Number of Nodes (9%)

10

100

1000

10000

10,000 100,000 1,000,000

Number of Nodes

E
xe

cu
ti

o
n

 T
im

e
(s

)

SUCXENT

XParent

(d) Execution Time vs Number of Nodes (9%)

Fig. 7. Datasets and Experimental Results.

We also implemented our approach using XParent schema [5] by doing some
modifications. XParent outperforms some model-mapping approaches in some
cases as far as path expression queries are concerned. We add one more relation
for storing the information on the documents. The Document table consists of
two tuples: DocID and DocuName which records the unique id and filename of
XML documents respectively. Hence, XParent is able to store multiple versions
of XML documents. We notice that the Data table in XParent stores informa-
tion on leaf elements, while the Element table stores information on all nodes
(including leaf elements). We modify such that the Element table only stores
information on internal elements in order to avoid data redundancy. We use pre-
order traversal rather than level-order traversal for node id in XParent because
we use SAX Parser that works in depth-first search fashion. We also added
attribute Dewey, that has the same function as that in modified SUCXENT
schema, in the Element and Data tables. Due to space constraints, we do not
show the SQL queries for detecting changes using XParent.

4.2 Execution Time vs Number of Nodes

In this experiment, we analyze the execution time of our approach implemented
in SUCXENT and XParent on different numbers of nodes.

Figures 7(a) and (b) depict the execution times of SUCXENT, XParent,
X-Diff, and XMLTreeDiff on small datasets (the number of nodes is less than
20,000 nodes) when the percentages of changes are set to 3% and 9% respectively.
We notice that XParent has better performance compared to other approaches.
XParent is about 2 to 25 times faster than X-Diff, and is about 15 to 70 times
faster than XMLTreeDiff. Compared to SUCXENT, XParent performs better in
terms of execution time. XParent is about 1.2 to 2 times faster than SUCXENT
for small datasets. Figures 7(c) and (d) depict the execution times of SUCXENT,
and XParent on large datasets (the number of nodes is more than 20,000 nodes)
when the percentages of changes are set to 3% and 9% respectively. We notice
that SUCXENT is about faster 1.3 to 2 times faster than XParent for large
datasets. We also notice that SUCXENT and XParent have better scalability and
performance compared to X-Diff and XMLTreeDiff. X-Diff and XMLTreeDiff fail

to detect large XML documents due to lack of main-memory. In this experiment,
X-Diff and XMLTreeDiff are only able to detect the changes on XML documents
which have around 2000 nodes.

The difference of execution time between SUCXENT and X-Diff increases as
number of nodes increased. Recall the complexity of X-Diff as discussed in [1].
The performance of X-Diff is significantly influenced by the number of nodes and
the out-degrees of nodes. X-Diff performs more numbers of node comparisons
when the number of nodes and out-degree of nodes are increased. That is, the
increment of the numbers of nodes from 400 to 2000 significantly influences the
performance of X-Diff. In the first two phases of our approach, we query from
the LeafValue table. The query plans of these queries show that RDBMS uses
the indexed access method. In other phases, we only query from the T1, T2,
UNCHANGED, MOVE, UR, and UA tables that are relatively much smaller than the
LeafValue table. We also create appropriate indexes on these tables to expedite
query processing. Figure 6(c) depicts the comparison between X-Diff and each
phase in our approach using the first two datasets. We observe that most of the
execution time of our approach is taken by finding the unchanged leaf nodes,
detecting moved leaf nodes, and detecting the relative updated leaf nodes. Even
then, it is faster than X-Diff.

The execution times of first and second steps (unchanged leaf elements de-
tection phase and potential deleted and inserted leaf elements detection phase
respectively) of SUCXENT and XParent are significantly different. The exe-
cution times of other steps are same because we use the same tables and the
same SQL queries. XParent is faster than SUCXENT for small XML documents
because XParent does not perform θ-joins while SUCXENT does. When the
number of nodes is increased, the performance of XParent becomes slower than
SUCXENT because the size of the Ancestor table in XParent becomes very
large. Consequently, the cost of θ-joins performed by SUCXENT is cheaper that
one of joining the Ancestor table in XParent.
4.3 Execution Time vs Percentage of Changes
In this experiment, we analyze the execution time of our approach implemented
in SUCXENT and XParent on different percentages of changes.

Figure 7(e) depicts the execution times of SUCXENT, XParent, X-Diff, and
XMLTreeDiff on different percentages of changes. We use dataset “SIGLN-03”
in this set of experiments. We observed that the execution times of SUCXENT,
XParent, and X-Diff are affected insignificantly to the changes of percentages
of changes. When we vary the percentages of changes from “3%” to “60%”,
the execution times of SUCXENT and XParent are less than 5 seconds. If the
percentages of changes are increased from “3%” to “60%”, the execution times
of X-Diff are between 15 and 25 seconds. We also notice that the execution
times of XMLTreeDiff are affected to the changes of percentages of changes. The
execution times of XMLTreeDiff are between 40 and 60 seconds if the percentages
of changes are increased from “3%” to “60%”.
4.4 Result Quality vs Percentage of Changes
In this set of experiments, we study the result quality [1] of our approach com-
pared to the X-Diff. The results of SUCXENT and XParent are same because we

use the same queries against the same tables. In X-Diff, we may have insertions
and deletions of subtrees. In this case, we only count numbers of leaf elements
which are in the inserted and deleted subtrees. We use dataset “SIGLN-02” in
this set of experiments.

Figure 7(f) depicts the result quality of our approach compared to X-Diff of
different percentages of changes. We notice that if the percentage of changes is
less than 10%, both approaches results the optimal deltas. When the percentage
of changes becomes larger, our approach has better quality results compared to
the X-Diff. This happens because when the XML documents are changed signif-
icantly, some subtrees in the XML trees are also changed significantly. Hence,
X-Diff may detect these subtrees as inserted and deleted subtrees. Note that
X-Diff does not focus only on the leaf elements changes.

5 Conclusions

In this paper, we present an approach to detect the content changes on ordered
XML documents stored in relational databases. This approach focuses on the
changes to the leaf elements. This approach is motivated by the scalability prob-
lem on the native approaches and the necessity of detecting the changes on the
leaf elements for several applications. In our approach, first, it tries to find the
unchanged, potential inserted, and potential deleted leaf elements from the XML
documents. These leaf elements are kept in tables. From these tables, the SQL
queries are issued in order to find the moved, the relative updated, and abso-
lute updated leaf elements. The experimental results indicate that our approach
has better performance and scalability compared to the native approaches. We
also show that our approach has better result quality for the XML documents
which are changed significantly. We also notice that the performance of our ap-
proach is schema dependent, while the result quality of our approach is schema
independent.

References

1. Y. Wang, D. J. DeWitt, J. Cai. X-Diff: An Effective Change Detection
Algorithm for XML Documents. Proceedings of 19th ICDE, India, 2003.

2. G. Cobena, S. Abiteboul, A. Marian. Detecting Changes in XML Docu-
ments. Proceedings of 18th ICDE, San Jose, California, USA, 2002.

3. Curbera, D. A. Epstein. Fast Difference and Update of XML Documents.
XTech’99, San Jose, 1999.

4. D. Florescu, D. Kossmann. Storing and Querying XML Data using an
RDMBS. IEEE Data Engineering Bulletin, Volume 22, Number 3, 1999.

5. H. Jiang, H. Lu, W. Wang, J. Xu Yu. XParent: An Efficient RDBMS-Based
XML Database System. Proceedings of the 18th ICDE 2002 (Poster Paper),
San Jose, California, USA, 2002.

6. Online Computer Library Center. Introduction to the Dewey Decimal
Classification. http://www.oclc.org/oclc/fp/about/about the ddc.htm.

7. S. Prakash, S. S. Bhowmick, S. Mardia. SUCXENT: An Efficient Path-
based Approach to Store and Query XML Documents. Proceedings of the 15th
DEXA, Zaragoza, Spain, 2004.

