
Detecting Semantically Correct Changes to
Relevant Unordered Hidden Web Data

Vladimir Kovalev Sourav S. Bhowmick

School of Computer Engineering
Nanyang Technological University, Singapore
assourav@ntu.edu.sg

Abstract. Current proposals for XML change detection use structural
constraints to detect the changes and they ignore semantic constraints.
Consequently, they may produce semantically incorrect changes. In this
paper, we argue that the semantics of data is important for change detec-
tion. We present a semantic-conscious change detection technique for the
hidden web data. In our approach we transform the unordered hidden
web query results to XML format and then detect the changes between
two versions of XML representation of the hidden web data by extend-
ing X-Diff, a published unordered XML change detection algorithm. By
taking advantage of the semantics, we experimentally demonstrate that
our change detection approach runs up to 7 times faster than X-Diff on
real life hidden web data and always detect changes that are semantically
more correct than those detected by existing proposals.

1 Introduction
Data in the hidden web can change any time and in any way. These changes
are reflected on the results of the queries posed on the hidden web. Hence the
problem of detecting and representing changes to hidden web data in the context
of such query results is an important problem. Let us illustrate with an example.

Consider the AutoTrader.com which is one of the largest car Web sites with
over 1.5 million used vehicles listed for sale by private owners, dealers, and manu-
facturers. The search page is available at http://www.autotrader.com/findacar/
index.jtmpl?ac afflt=none. Figures 1(a) and 1(b) represent snapshots of re-
sults returned for searching for Jaguar cars on 2nd and 5th July, 2003 respec-
tively. The results are presented as a list of cars. Each result contains car details
such as Model, Year, Price, Color, Seller, Vehicle Identification Number
(VIN), etc. Given the query results and our understanding of its semantics, we
may wish to state the following constraints. First, the VIN in the results uniquely
identifies a particular car entity. Note that VIN may not be present for some
results. However, if it exists then it will not be removed from the subsequent
versions of query results involving the particular car. Second, the year of man-
ufacturing and the model of each car do not get modified in different versions.
That is, a “mercedes” cannot be updated to “jaguar” or if the manufacturing
year of a car is “2001” then it cannot be modified to “2002” or any other year
in the subsequent versions. Similarly, the seller attribute of a car does not get
modified in different versions for the same car entity. Furthermore, as underlying
information related to the Jaguar cars has changed during this time period, the

(a) 2 July, 2003. (b) 5 July, 2003.
Fig. 1. The results of searching for Jaguar cars.

query results in Figure 1(b) contain the relevant changes that have occurred be-
tween 2nd July, 2003 and 5th July, 2003. Particularly, the first car in Figure 1(b)
has been inserted, the last car in Figure 1(a) has been deleted, and the price of
the first car in the older version has been updated from “$51950” to “$50950”
during this period.

In this paper, we consider the problem of detecting the above types of changes
automatically taking structural as well as a broad class of semantic constraints
into account. Note that our goal is to detect and represent the changes that are
relevant to a user’s query, not any arbitrary change to the hidden web data.
Also, we assume that the hidden web query results are unordered.

In our approach, we do not directly compare the two versions of hidden web
query results (Figures 1(a) and 1(b). This is because hidden web data is HTML-
formatted and every hidden web site generates it in its own fashion. Thus it
becomes extremely difficult and cumbersome to develop a generalized technique
that can be used for change detection to the hidden web data. Consequently, it
is important to develop a technique for transforming the hidden web data to a
more structured format so that we can develop such generalized technique for
the hidden web data. Hence, the hidden web query results are transformed into
XML format before they are used for change detection.

Since there are several recent efforts in the research community to develop
change detection algorithms for XML documents [1, 5], an obvious issue is the
justification for designing a separate algorithm for detecting changes to the XML
representation of hidden web data. We argue that although such algorithms
will clearly detect syntactically correct changes, they fail to detect semantically
correct changes. For example, these algorithms may detect that the model of
a car element has been updated from “mercedes” to “jaguar”. However, this is
semantically incorrect! We elaborate on this further in Section 2.

<Cars>
 <Car>
 <Make>Jaguar</Make>
 <Price>80,000</Price>
 </Car>
 <Car>
 <Make>Ford</Make>
 <Price>20,000</Price>
 </Car>
</Cars>

<Cars>
 <Car>
 <Make>Mercedes</Make>
 <Price>80,000</Price>
 </Car>
 <Car>
 <Make>Ford</Make>
 <Price>20,000</Price>
 </Car>
</Cars>

(a) Version 1 (b) Version 2

(a) Sample documents.

<Cars>
 <Car>
 <Make>Mercedes
 <?UPDATE FROM "Jaguar"?>
 </Make>
 <Price>80,000</Price>
 </Car>
 <Car>
 <Make>Ford</Make>
 <Price>20,000</Price>
 </Car>
</Cars>

<unit_delta>
 <update XID=5>
 <oldval>Jaguar</oldval>
 <newval>Mercedes</newval>
 </update>
</unit_delta>

(a) X-Diff

(b) XyDiff

(b) Edit scripts.
Fig. 2. Change detection.

We have developed a semantic-conscious change detection algorithm called
HW-Diff to address the above issue. As we assume the query results to be un-
ordered, we have extended X-Diff [5], a published unordered XML change detec-
tion algorithm to implement HW-Diff using Java. To the best of our knowledge,
this is the first approach that address an important limitation of state-of-the-art
XML change detection algorithms by making them semantic-conscious. Our ex-
perimental results on four real data sets show that the HW-Diff detects more
semantically correct changes compared to the X-Diff algorithm. Furthermore,
it runs up to 7 times faster than X-Diff due to the exploitation of semantic
constraints.

2 Related Work

XyDiff [1] is designed for detecting changes in ordered XML documents. X-
Diff [5] is designed for computing the deltas for two unordered XML documents.
However, these algorithms in many cases produce semantically incorrect changes.
Let us illustrate this limitation with a simple example. Figure 2(a) shows the
old and new versions of an XML document. The results returned by X-Diff and
XyDiff are depicted in Figures 2(b). Observe that both the algorithms detect
that the Make of the first car is updated from Jaguar to Mercedes. However, in
reality the car whose Make is Jaguar definitely cannot be updated to Mercedes.
Hence, the results generated by X-Diff and XyDiff are semantically incorrect. The
correct types of changes that should be detected here are deletion of the first
car element in Figure 2(a)(i) and insertion of a new car (the first car element
in Figure 2(a)(ii)). HW-Diff address this limitation by extending an existing
algorithm (X-Diff) with semantic constraints. By incorporating such semantic
knowledge in a general-purpose change detection algorithm, we can dramatically
decrease the number of matching possibilities between the two versions of the
document and increase the performance of the algorithm. Hence, HW-Diff
shows better response time compared to X-Diff.

3 Semantic Constraints in Hidden Web Query Results

In this section, we present the semantic constraints in hidden web query results
that are captured in the XML representation of the query results using HW-
Stalker [2, 3].

Jaguar XKR

$63950

12150

Id "SAJDA42B52PA2375"

Cars

Car

Model Price Miles

2

(a) T1 (Version 1)

F1="*"

6 8 9

25

27

28

90

91

Jaguar XK8

$49499

19586

Id="SAJDA42CO1NA17712"

Car

Model

Price

Miles

3

F1="2001"

10

13 14

29

32

33 92

93

2001

Year

Platinum

Color
11

30

12

31 Jaguar S-Type

$40299

26757

Car

Model

Price

Miles

4

F1="2001"

15

18 19

34

37

38

94

2001

Year

Bronze

Color
16

35

17

36 Jaguar XKR

$49595

30340

Car

Model

Price

Miles

5

F1="2000"

20

23 24

39

42

43

95

2000

Year

Bronze

Color
21

40

22

41

1

Cars

(b) T2 (Version 2)

44

Jaguar XK8

$50995

2650

Car

Model

Price

Miles

45

F1="2001"

49

52 53

70

73

74

96

2001

Year

Bronze

Color
50

71

51

72 Jaguar XK8

$49499

19586

Id="SAJDA42CO1NA17712"

Car

Model

Price

Miles

47

F1="2001"

59

62 63

80

83

84 99

100

2001

Year

Platinum

Color
60

81

61

82Jaguar XKR

$63950

12150

Id="SAJDA42B52PA2375"

Car

Model

Price

Miles

46

F1="2002"

54

57 58

75

78

79 97

98

2002

Year

Anthracite

Color
55

76

56

77 Jaguar XKR

$38995

1039

Car

Model

Price

Miles

48

F1="2000"

64

67 68

85

88

89

101

2000

Year

Bronze

Color
65

86

66

87

Fig. 3. Partial XML trees of results in Figures 1.

Identifier: Some elements in a set of query results can serve as a unique iden-
tifier for the particular result, distinguishing them from other results. For ex-
ample, the VIN uniquely characterizes every Car in the query results from a car
database. These elements are called identifiers. In this work we assume that the
identifier, being assigned to a particular query result, does not change for this
result through different versions of the query results. However, it is possible for
the identifier to be missing in a result. Also, if an identifier is specified (not
specified) for a result in the initial version of the query results or when the
result appeared for the first time, then it will remain specified (not specified)
throughout all versions, until the result is deleted. This reflects the case for most
web sites we have studied. HW-Stalker allows specifying only one identifier
for each result. As each result is transformed into a subtree in the XML rep-
resentation of the hidden web query results, the identifier of a particular node
in the subtree is modeled as an XML attribute with name Id and the identifier
information as value. We now illustrate with an example the usefulness of the
identifiers in change detection.

Reconsider the query results in autotrader.com. Figure 3 shows partial XML
trees of the results in Figure 1. The Car nodes in T1 and T2 have child attributes
with name Id and value equal to the VIN. Intuitively, if we wish to detect the
changes between the two versions of the query results, then we can match the
Car nodes between two subtrees by comparing the Id values. For instance, the
node 2 in T1 matches the node 46 in T2 and the node 3 in T1 matches the node
47 in T2 (same VIN values). However, the nodes 2 and 3 do not match the node
45 as it does not have any identifier attribute.
Facilitator: One or more elements in the result of the hidden web query result
set can serve as non-unique characteristics for distinguishing the results from
one another. This is particularly important when the results do not have any
identifier attribute. Two results that have the same characteristics (same at-
tribute/value pair) can be matched with each other. While results that have
different characteristics can not be matched with each other. Examples of types
of such characteristics are: the Year or Model of a Car node in the query results
from car trading site. These non-unique elements are called facilitators. Note
that these elements may not identify a result (entity) uniquely. But they may

provide enough information to identify results that do not refer to the same
entities.

We allow specifying any number of facilitators on a node. The facilitators
are denoted by node attributes with names F1, F2, . . . , Fn for all n facilitator
attributes specified for a particular node. If a node does not have a facilitator
attribute (the subelement may be missing) then the facilitator value is set to
“*”. Note that the facilitator attribute for a node can appear in any version of
the query results, but once it appears we assume that it will not disappear in the
future versions. As we never know which facilitator may appear for a node in the
future, a node with missing facilitator attribute should be matched with nodes
having facilitators. The reader may refer to [3] for guidelines the user may follow
to choose facilitators. In [4], an algorithm is discussed for automatic discovery
of facilitators from hidden web data.

Reconsider the Figure 1. We can find several candidates for facilitators, i.e.,
Color, Year, or Model. However, based on the semantic constraints introduced
in Section 1, it is reasonable to use the Year or Model as the facilitator. Figure 3
shows the facilitators for various nodes. There is one facilitator specified: the
Year as an attribute with name F1 for every Car node. Note that if a Car node
does not have an subelement Year then F1 is set to “*”. Now let us match the
node 45 in T2 with all the nodes in T1. Observe that node 45 does not have a
VIN. Therefore, it cannot match with nodes 2 and 3. Hence we do not need to
compare node 45 with these nodes. Using F1 we also observe that the node 45
cannot match with node 5 as the facilitators do not match. We can see that
the node 45 only matches node 4 in T1 as it does no have any VIN and its
F1=“2001”. However, this is not sufficient information to confirm whether these
two nodes represent the same car entity. But if we use both the Year and Model
as facilitators then we can answer this question by comparing the Model of node
45 with that of node 4. As the Model of nodes 4 and 45 are not identical, we can
say that these nodes do not represent the same car entity. Thus, we can state
that the node 45 is inserted in T2 as none of the car entities in T1 matches the
car entity described by node 45.

4 Change Detection

4.1 HW-Signature

In order to detect the changes between two trees, we first need to find a matching
of corresponding nodes in the two trees. Obviously, matching every node in
the first tree to every node in the second tree is an inefficient solution. In X-
Diff, this problem is addressed by using the concept of node signature [5]. The
node signature compares not only the node type (text, element, and attribute
nodes) and the node name (e.g., car and price nodes) of two nodes, but also
their ancestors to determine the nodes that are to be matched. It is obtained
by concatenating the names of all its ancestor with its own name and type.
However, this notion of signature ignores semantic constraints embedded in the
data. Hence, we extend the definition of signature in X-Diff by incorporating the
semantic constraints associated with the hidden web query results. We call this

extended notion of signature as HW-signature. Hereafter, in this paper signature
refers to the X-Diff version of node signature and HW-signature refers to the
signature used in HW-Diff.

The HW-signature imposes semantic constraints by adding the notion of
identifiers and facilitators in the definition of signature. It is used later in our
change detection algorithm HW-Diff to facilitate the process of matching nodes
between the trees representing different versions of the hidden web query results.
It not only reduces the number of nodes that are to be matched to one another,
but also facilitates more semantically accurate matching compared to the signa-
ture.

We first introduce the notion of HW-node signature which is one of the basic
component of HW-signature. The HW-node signature of a node is concatenation
of the name of the node and its identifiers and facilitators (if any).

Let us define some terms for our exposition. Given a node x in the DOM
tree T , let Type(x) and Name(x) be the node type of x and the node name of
x (including the attributes) respectively. Also, if node x contains identifiers and
facilitators then let IdV alue(x) and FV alue(Fi, x) be the values of the identifier
and the facilitator attribute Fi of x respectively. Then,

Definition 1. [HW-node Signature] Suppose x is an element node and F
be a set of facilitator attributes on x. Then the HW-node signature is de-
fined as follows: HW − node(x) =Name(x)[Id(x)][Fac(x)] where (1) [Id(x)] =
/Id/IdV alue(x) if identifier attribute is defined for node x, otherwise [Id(x)]=∅;
(2) If F 6= ∅ then [Fac(x)] = [F1(x)][F2(x)] . . . [Fn(x)] where [Fm(x)] = /Fm/
FV alue(Fm, x) ∀ 1≤m≤ n and Fm ∈ F . Otherwise, [Fac(x)] = ∅.

For example, consider the two trees in Figure 3. Based on the above definition,
HW−node(3)=Car/Id/AJDA42C01NA17712/F1/2001 and HW−node(52)=Price.

Definition 2. [HW-Signature] Let x be an element node. Then
HW-Signature(x)=/HW-node(x1) /HW-node(x2)/.../HW-node(xn)/
HW-node(x)/Type(x), where x1 is the root of T, (x1,x2,. . .,xn,x) is the path
from x1 to x. If x is a text node, then HW-Signature(x)=/HW-node(x1)/HW-
node(x2) /.../HW-node(xn)/Type(x).

Definition 3. [HW-node Equality] Let x and y be the element nodes in T1

and T2. Let Ix and Iy be the identifiers of x and y. Let Fx and Fy be sets of fa-
cilitators of x and y respectively and |Fx| = |Fy|. Let P = {(Fx1, Fy1), (Fx2, Fy2)
. . . (Fxk, Fyk)} be the set of pairs of facilitators such that Fxi ∈ Fx, Fyi ∈ Fy,
FV alue(Fxi, x) 6= “*”, and FV alue(Fyi, x) 6= “*” ∀ 1 ≤ i ≤ k. Then HW-
Node(x)=HW-Node(y) iff (1) signature(x)=signature(y); (2) IdV alue(x) =
IdV alue(y); and (3) If |P | 6= ∅ then FV alue(Fxi, x) = FV alue(Fyi, y), ∀
1 ≤ i ≤ |P |.

In Figure 3, HW-node(3)=HW-node(47), but HW-node(2) 6=HW-node(47) as
they have Id attributes with different values. Note that for all nodes that have a
facilitator F where FV alue(F, x) = “*” the last condition in the above definition
is ignored. That is, only first two conditions are sufficient for HW-node equality.

Definition 4. [HW-signature Equality] Let x and y be element nodes in
trees T1 and T2 respectively. Let x1 be the root of T1 and (x1,x2,...,xn,x) is the
path from x1 to x. Let y1 be the root of T2 and (y1,y2,...,yn,y) is the path from y1

to y. Then, HW-signature(x)=HW-signature(y) iff Type(x)=Type(y) and
HW-node(xi)=HW-node(yi) ∀ 1 ≤ i ≤ n.

Observe that the above definition of HW-signature equality combines the
criteria of matching nodes by their signatures and matching nodes based on the
semantic constraints in the hidden web data. If two nodes have identical HW-
signatures then they have identical signatures. However, the inverse is not always
true.

4.2 Minimum Cost Matching

In this section we introduce the notion of matching. Formally,
Definition 5. [Matching] A set of node pairs (x, y), M, is called a matching
from tree T1 to tree T2 iff (1) ∀ (x,y) ∈M, x ∈ T1, y ∈ T2, HW-signature(x)=HW-
signature(y); (2) ∀ (x1,y1) ∈ M, (x2,y2) ∈ M, x1=x2 iff y1=y2 (one-to-one); (3)
Given (x,y) ∈ M, suppose x

′
is the parent of x, y

′
is the parent of y, then (x

′
,y
′
)

∈ M (preserving ancestor relationships).
Observe that the notion of matching is defined in the same way as in [5]. The

key difference is in Criteria (1): we use the HW-signature as basic criterion for
matching nodes instead of signature as used in X-Diff. Criteria (2) and (3) in
this definition prevent children being matched if their ancestors are not matched.
These criterion reflect the integrity of XML segments.

Based on a matching M from T1 and T2, we can generate an edit script. It
can be shown using the same method as in [5] that there is a minimum-cost
matching that corresponds to a minimum-cost edit script. Note that we use the
same notion of minimum cost edit script as defined in [5] except for that fact
that instead of using the signature, we use the notion of HW-signature. Observe
that every matching in our approach is also a matching in X-Diff. However,
the inverse is not always true. Thus, the X-Diff approach always has equal or
more number of matchings compared to our approach. As a particular matching
defines a particular edit script, the X-Diff approach chooses the minimum-cost
edit script from more number of scripts compared to our approach.

4.3 Algorithm HW-Diff

The algorithm HW-Diff takes as input the old and new versions of the XML
representation of the hidden web query results D1 and D2. It returns as output
the edit script E for transforming D1 to D2. As the algorithm is an extension
of the X-Diff algorithm, it can be best described by the following three phases.
Note that we do not present the pseudocode here as it is similar to X-Diff except
that we use the HW-signature instead of the signature to match nodes.
Phase 1: Parsing and Hashing Phase: In this step, the algorithm parses the
input XML documents to trees, and assigns the HW-signatures to each node and
computes the XHash values [5] for all the nodes in both trees. After this step,

0

10

20

30

40

50

60

70

400 800 1200 1600 2000

Number of Result

E
xe

cu
ti

o
n

 T
im

e
(s

)

Id (VIN)
F1=Model, F2=Year, F3=Color
F1=Model, F2=Year
F1=Model
F1=Year

0

5

10

15

20

25

30

35

400 800 1200 1600 2000

Number of Results

E
xe

cu
tio

n
 T

im
e

(s
)

Id (ISBN)

F1=Year

0

5

10

15

20

25

30

35

400 800 1200 1600 2000

Number of Results

E
xe

cu
tio

n
 T

im
e

(s
)

F1=Author, F2=Date

F1=Author

F1=Date

0

10

20

30

40

50

60

400 800 1200 1600 2000

Number of Results

E
xe

cu
ti

o
n

 T
im

e
(s

)

Id (Abstract)

F1=Title,F2=Year,F3=Authors

F1=Title,F2=Year

F1=Title,F2=Authors

F1=Year,F2=Authors
F1=Title

F1=Authors

F1=Year

0

4

8

12

16

20

0 10 20 30 40

Percentage of Changes (%)
Q

 (%
)

Id (VIN)

F1=Model, F2=Year, F3=Color
F1=Model, F2=Year

F1=Model

F1=Year
X-Diff

0

4

8

12

16

20

0 5 10 15 20 25 30 35

Percentage of Changes (%)

Q
 (

%
)

Id (ISBN)

F1=Year

X-Diff

0

4

8

12

16

20

0 10 20 30 40

Percentage of Changes (%)

Q
 (%

)

F1=Author, F2=Date

F1=Author

F1=Date

X-Diff

0

4

8

12

16

20

24

28

32

0 10 20 30 40

Percentage of Changes (%)

Q
 (%

)

Id (Abstract)

F1=Title,F2=Year,F3=Authors

F1=Title,F2=Year

F1=Title,F2=Authors

F1=Year,F2=Authors

F1=Title

F1=Authors

F1=Year

X-Diff

(a) AutoTrader.com (b) Amazon.com (c) IMDb.com

(d) CiteSeer.org (e) AutoTrader.com (f) Amazon.com

(h) CiteSeer.org(g) IMDb.com

0

20

40

60

80

100

0 10 20 30 40 50

Percentage of Changes (%)

E
xe

cu
ti

o
n

 T
im

e
(s

)

Id (VIN)
F1=Model, F2=Year, F3=Color
F1=Model, F2=Year
F1=Model
F1=Year
X-Diff

(i) AutoTrader.com

Fig. 4. Performance study.

the algorithm checks if the two trees are equivalent by comparing the XHash
values of the roots.
Phase 2: Matching Phase: In this step, the algorithm generates the minimum-
cost matching between two trees by computing the editing distances between the
nodes with equal HW-signatures on each level of the trees, going from the leaf
nodes to the root nodes. The steps for computing the minimum-cost matching
in our approach are the same as the steps of computing it for the X-Diff al-
gorithm except that we only compute distances between the nodes with equal
HW-signatures instead of equal signatures. As the number of nodes with equal
HW-signatures is always less or equal to the number of nodes with equal signa-
tures, the number of distances between the nodes to be calculated in the X-Diff
approach is equal or more than the number of distances to be calculated using
the HW-Diff approach. These two numbers are identical only when there are
no facilitators or identifiers specified in the query results.
Phase 3: Edit Script Generation Phase: In this phase, we generate a
minimum-cost edit script for changes to the hidden web data based on the
minimum cost matching found in the matching phase. This step is similar to
X-Diff.

5 Performance Evaluation

We have implemented HW-Diff using Java. All the experiments have been per-
formed on a Pentium 4 CPU 2.4 GHz with 512 MB of RAM. We used Microsoft
Windows 2000 Professional as operating system. We use the data from the fol-
lowing four hidden web sites for our experiments: AutoTrader.com, Amazon.com,

IMDb.com, and CiteSeer.org. We generated a data set for the experiments based
on the results of a set of queries. We created a data set containing files with 400,
800, 1200, 1600, and 2000 results for each site. We monitored these sites for a
period of 6 months and archived the query results for our change detection pro-
cess. We also implemented a program that generates semantically meaningful
changed versions of these files with 5%, 10%, 20%, 30%, and 40% of changes of
all three types of changes (insert, update, and delete) equally distributed. Note
that in this experimental set up and data set, the Java implementation of X-
Diff (downloaded from www.cs.wisc.edu/∼yuanwang/xdiff.html) cannot detect
the changes when the percentage of change is more than 20% due to lack of
memory (java.lang.outofmemory.error). For some data set it cannot detect
the changes when more than 10% data has changed. Similar situation arises for
HW-Diff if there are too many equal values for the facilitators.

Execution Time vs Semantic Attributes: Our first experiment is to evaluate
the affect of the selection of attributes in the query results as identifiers and
facilitators on the change detection time. We applied HW-Diff to the data
with different combinations of attributes selected as the facilitators and the
identifier. We used the data set described above with 10% changes. Figures 4(a)
to 4(d) show the results for different hidden web sites. HW-Diff demonstrates
best performance when we use the identifier attribute. If no identifier attribute
can be modeled for a particular result set then several facilitator attributes
help us to achieve similar performance. Observe that for small sets of query
results, the execution time is almost the same and is actually defined by the
parsing time. However, as the result size increases, sometimes a single facilitator
attribute results in significant increase in the change detection time compared
to other attributes due to the frequent appearance of results having identical
values for this attribute in the sample data. For example, Figure 4(a) shows
that if we only use the Year of the Car as facilitator attribute then the change
detection time increases significantly, but not so much when we select the Model
as facilitator attribute. This is because more number of cars in the two versions
of the query results have the same manufacturing Year compared to the number
of cars having the same Model.

Semantic Incorrectness of Changes: This experiment evaluates the seman-
tic incorrectness of the changes detected by HW-Diff compared to X-Diff. Let
N be the total number of results in the change detection delta file D. Let M
of these results contain semantically incorrect changes. Then, the semantic in-
correctness of changes (denoted as Q) is defined as Q=M

N × 100%. As in the
previous experiment, we applied HW-Diff to the data with different combina-
tions of attributes selected as the facilitators and the identifier. The data for
X-Diff is same but without any facilitators or identifier. For each web site, we
used the data set with 800 results and 5%, 10%, 20%, 30%, and 40% changes.
Figures 4(e) to 4(h) show the results for the different hidden web sites. As in
the previous experiment, HW-Diff demonstrates best performance when the
identifier attribute is used. In this case the semantic incorrectness is reduced to
0% for all cases. If no identifier attribute can be modeled for a particular result

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50

Percentage of Changes (%)

E
xe

cu
tio

n
 T

im
e

(s
)

Id (ISBN)

F1=Year

X-Diff

0

40

80

120

160

0 10 20 30 40 50

Percentage of Changes (%)

E
xe

cu
tio

n
 T

im
e

(s
)

F1=Author, F2=Date

F1=Author

F1=Date

X-Diff

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35 40 45

Percentage of Changes (%)

E
xe

cu
tio

n
 T

im
e

(s
)

Id (Abstract)
F1=Title,F2=Year,F3=Authors
F1=Title,F2=Year
F1=Title,F2=Authors
F1=Year,F2=Authors
F1=Title
F1=Authors
F1=Year
X-Diff

(b) IMDb.com (c) CiteSeer.org(a) Amazon.com

Fig. 5. Performance study (Contd.).

set then several facilitator attributes help us to achieve similar performance. For
example, for AutoTrader.com the combination of Model, Year, and Color helps
to achieve similar performance. Observe that for all cases HW-Diff outperforms
X-Diff as far as detection of the number of semantically correct changes. In fact,
the number of incorrect changes detected by X-Diff approximately equals the
number of changes in the document for all the cases. Also observe that even
though single facilitator attribute leads to increase in detection of semantically
incorrect changes, it is still less than X-Diff for the given sites.
Execution Time vs Percentage of Changes: Our last experiment measures
the execution time on different percentage of changes. For each web site, we
used the data set with 1200 results and 5%, 10%, 20%, 30%, and 40% changes.
Figures 4(i) and 5 show the results for different hidden web sites. The affects
of the identifiers and facilitators are the same as the previous two experiments.
Observe that for all the sites HW-Diff outperforms X-Diff (up to 7 times)
especially when the percentage of changes is more than 10%.
6 Conclusions

In this paper, we presented a technique to detect semantically correct changes to
the hidden web query results. Our work is motivated by the problem that existing
change detection algorithms do not exploit the semantic constraints of the data.
In our approach, the unordered hidden web query results are transformed to
XML format using the HW-Stalker algorithm [2] and then detect the changes
between the two versions of XML representation of the hidden web query results.
We propose an algorithm HW-Diff that extends X-Diff, a published change de-
tection algorithm for unordered XML, by incorporating the semantic constraints
associated with the data. HW-Diff detects more semantically correct changes
compared to X-Diff and runs up to 7 times faster than X-Diff for the given data
set.
References

1. G. Cobena, S. Abiteboul, A. Marian. Detecting Changes in XML Documents. In ICDE , San

Jose, 2002.
2. V. Kovalev, S. S. Bhowmick, S. Madria. HW-Stalker: A Machine Learning-based Approach to

Transform Hidden Web Data to XML. In DEXA, Zaragoza, Spain, 2004.
3. V. Kovalev, S. S. Bhowmick, S. Madria. HW-Stalker: A Machine Learning-based System for

Transforming QURE-Pagelets to XML. To appear in Data and Knowledge Engineering Journal

(DKE) , Elsevier Science, 2005/2006.
4. V. Kovalev, S. S. Bhowmick. Mining Facilitators and Identifiers from Hidden Web Query Re-

sults. Technical Report , CAIS-06-2005, 2005.
5. Y. Wang, D. DeWitt, J-Y Cai. X-Diff: A Fast Change Detection Algortihm for XML Documents.

ICDE , India, 2003.

