DB <t HCI: Towards Bridging the Chasm Between
Graph Data Management and HCI

Sourav S Bhowmick

School of Computer Engineering, Nanyang Technological University, Singapore
assourav@ntu.edu.sg

Abstract. Visual query interfaces enable users to construct queries without spe-
cial training in the syntax and semantics of a query language. Traditionally, efforts
toward such interface design and devising efficient query processing techniques
are independent to each other. This is primarily due to the chasm between HCI
and data management fields as since their inception, rarely any systematic ef-
fort is made to leverage techniques and principles from each other for superior
user experience. In this paper, we lay down the vision of bridging this chasm in
the context of visual graph query formulation and processing. Specifically, we
present the architecture and novel research challenges of a framework for query-
ing graph data visually where the visual interface management is data-driven and
query processing and performance benchmarking are HCI-driven.

1 Introduction

“Thirty years of research on query languages can be summarized by: we have
moved from SQL to XQuery. At best we have moved from one declarative lan-
guage to a second declarative language with roughly the same level of expres-
siveness. It has been well documented that end users will not learn SQL; rather
SQL is notation for professional programmers.”

Abiteboul et al. [1]

“A picture is worth a thousand words. An interface is worth a thousand pic-
tures.”
B. Shneiderman, 2003

It is widely acknowledged that formulating a textual query using a database query
language (e.g., XQuery, SPARQL) often demands considerable cognitive effort from
end users [1]. The traditional approach to alleviate this challenge is to improve the user-
friendliness of the task by providing a visual querying scheme to replace data retrieval
aspects of a query language. This has paved the way to a long stream of research in
visual query languages in the context of relational databases [4, 30], object-oriented
databases [10, 15], the Web [5, 13], semi-structured and XML databases [9, 14, 23],
and graph databases [7, 8, 12]. These approaches leverage principles from the human-
computer interaction (HCI) field to build visual query interfaces that involve a sequence



of tasks ranging from primitive operations such as pointing and clicking a mouse but-
ton, keyboard entry to higher-level tasks such as selection of menu items, selection and
dragging of target objects, etc. In this paper, we leverage on this grand desire to provide
user-friendly visual querying interface to lay down the vision of integrating DB and HCI
(hereafter, referred to as HCI-aware data management) techniques and tools towards
superior consumption and management of data.

Specifically, we discuss HCI-aware data management in the context of graph-structured
data. This is because many modern applications (e.g., drug discovery, social networks,
semantic Web) are centered on such data as graphs provide a natural way of model-
ing data in a wide variety of domains. For example, searching for similar chemical
compounds to aid drug design is essentially searching for graphs as it can be used to
represent atoms and bonds in chemical compounds. Consequently, there is a pressing
need to build user-friendly visual framework (e.g., [12,21]) on top of a state-of-the-art
graph query system that can support user-friendly formulation of various types of graph
queries such as subgraph search, reachability queries, homeomorphic queries, etc. Our
vision can be easily extended to other types of data such as relational, XML, etc.

A visual interface for graph query formulation is typically composed of several
panels such as a panel to display the set of labels of nodes or edges of the underlying
data graph(s), a panel to construct a graph query graphically, a panel containing canned
patterns to aid query formulation, and a panel to display query results in an intuitive
manner. For example, Figure 1 depicts the screenshot of a real-world visual interface
provided by PubChem! for substructure (subgraph) search for chemical compounds.
Specifically, Panel 3 provides a list of chemical symbols that a user can choose from to
assign labels to nodes of a query graph. Panel 2 lists a set of canned patterns (e.g., ben-
zene ring) which a user may drag and drop in Panel 4 during visual query construction.
Note that the availability of such patterns greatly improves usability of the interface by
enabling users to quickly construct a large query graph with fewer clicks compared to
constructing it in an “edge-at-a-time” mode. For instance, the query graph in Panel 4
can be constructed by dragging and dropping two such canned patterns from Panel 2
instead of taking the tedious route of constructing 9 edges iteratively.

One may observe that the above efforts toward visual query interface design and de-
vising efficient query processing techniques are traditionally independent to each other
for decades. This is primarily due to the fact that the two key enablers of these efforts,
namely HCT and database management, have evolved into two disparate and vibrant sci-
entific fields, rarely making any systematic effort to leverage techniques and principles
from each other towards superior realization of these efforts. Specifically, data manage-
ment researchers have striven to improve the capability of a database in terms of both
performance and functionality, often devoting very little attention to the HCI aspects of
the solutions. On the other hand, the HCI community has focused on human factors,
building sophisticated models of various types of visual tasks and menu design that are
orthogonal to the underlying data management system.

We believe that the chasm between these two vibrant fields sometimes create obsta-
cles in providing superlative visual query formulation and data management services
to end users. On the one hand, as visual query interface construction process is tradi-

! http://pubchem.ncbi.nlm.nih.gov/edit2/index.html?cnt=0



[ pubchem.ncbi.nlm.nih.gov/edit2/index html?cnt=0

Broadband [¥]  [[SMILES  [¥] [[c1=cc=cc=cr)cic)c 1] -
New |udo cin | sty | el fary [«}» Cﬂ-t— e Panel 4
— == |~ t] — | < | | PRI
ORI eEEOEE
o~ [ A Y | 0 [t e [0

5

]

H 2 =] Ppn€l3
Li | Be B|C|N|[O|F|Ne
Na | Mg Al|lSi|P|[S|Cl|Ar

K [ca|sc|sc[¥]|Ga|Ge|As]|se|Br|Ke
Ro|sr| Y|y [=]|m|sn|so|Te| 1 |xe

Cs|Ba|Lu|Lu[>]| T |PofBi|PofAtfRn

Export [ MDL Molfle  [¥] Done

Hydrogen || Keep Asls [=] I Help

import | Choose File | No file chosen &

Fig. 1. GUI for substructure search in PubChem.

tionally data-unaware, it may fail to generate flexible, portable, and user-friendly query
interface. For instance, reconsider the canned patterns in Panel 2 in Figure 1. Given the
space constraint in the GUI, the selection of a limited set of patterns that are to be dis-
played on it are not “data-driven” but typically carried out manually by domain experts.
An immediate aftermath of such manual selection is that the set of canned patterns may
not be sufficiently diverse enough to support a wide range of graph queries as it is un-
realistic to expect a domain expert to have comprehensive knowledge of the topology
of the entire graph dataset. Consequently, an end user may not find the canned patterns
in Panel 2 useful in formulating certain query graphs. Similar problem may also arise
in Panel 3 where the labels of nodes may be manually added instead of automatically
generated from the underlying data. Additionally, the visual interface is “static” in na-
ture. That is, the content of Panels 2 and 3 remain static even when the underlying data
evolves. As a result, some patterns (resp. labels) in Panel 2 (resp. Panel 3) may become
obsolete as graphs containing such patterns (resp. labels) may not exist in the database
anymore. Similarly, some new patterns (resp. labels), which are not in Panel 2 (resp.
Panel 3), may emerge due to the addition of new data graphs. Furthermore, such visual
query interface lacks of portability as the same interface cannot be seamlessly integrated
on a graph database in a different domain (e.g., computer vision, protein structure). As
the contents of Panels 2 and 3 are domain-dependent and remain static, the GUI needs
to be reconstructed from scratch when the domain changes in order to accommodate
new domain-specific canned patterns and labels.

On the other hand, traditionally query processing techniques are only invoked once
a user has completed her visual query formulation as the former is completely decou-
pled from the latter. For instance, during the formulation of a visual query in Panel 4,
the underlying query processing engine remains idle and is only initiated after the Run
icon is clicked. That is, although the final query that a user intends to pose is revealed
gradually during visual query construction, it is not exploited by the query processor
prior to clicking of the Run icon. Consequently, valuable opportunities to significantly



%
\
—y
Data-driven Visual Query Interface Visual Action-Aware Query Performance
Manager Simulator
Y T
v [

{ Visual Action-aware Query Processing Engine )

Visual Action-Aware Indexer

A4

iDBJ

Fig. 2. The architecture.

improve the system response time (SRT)? by initiating query processing during visual
query construction are wasted. Note that in contrast to the traditional paradigm where
the SRT is the time taken to process the entire query, by bridging the chasm between
visual query formulation and query processing activities, the SRT is reduced to pro-
cessing a part of the query that is yet to be evaluated (if any). Additionally, due to
this chasm, opportunities to enhance usability of graph databases by providing relevant
guidance and feedback during query formulation are lost as efficient and timely real-
ization of such functionalities may require prefetching of candidate data graphs during
visual query construction. For instance, whenever a newly constructed edge makes a
graph query fragment yield empty answer, it can be immediately detected by process-
ing the prefetched data graphs. It is not efficient if it is only detected at the end of query
formulation as a user may have wasted her time and effort in formulating additional
constraints.

In this paper, we lay down the vision of bridging the long-standing chasm between
traditional data management and HCI in the context of querying graph-structured data.
Specifically, we propose an HCl-aware visual graph querying framework that aims to
encapsulate several novel and intriguing research challenges toward the grand goal of
bridging this chasm. Realization of these challenges entail significant rethinking of sev-
eral long-standing strategies for visual interface construction and data management.

2 Novel Research Challenges

In this section, we first present the generic architecture of the HCI-aware visual graph
querying framework to realize our vision. Next, we identify the key novel research chal-
lenges that need to be addressed to realize this framework. To facilitate exposition of

2 . . . . .
The SRT is the duration between the time a user presses the Run icon to the time when the user gets the query results.



these challenges, we assume that the graph database consists of a large number of small
or medium-sized graphs. However, these challenges are not limited to such collection
of graphs as they are also pertinent to querying large networks such as social networks,
biological networks, etc.

2.1 Architecture

Figure 2 depicts the generic architecture of the framework for realizing our vision of
bridging the chasm between HCI and graph data management. The Data-driven Visual
Query Interface Manager component provides a framework to construct various panels
of the visual query interface in a data-driven manner. It also provides an interactive vi-
sual environment for query formulation without the knowledge of complex graph query
languages as well as a framework for intelligent guidance and interruption-sensitive
feedback to users to further ease the cognitive overhead associated with query formula-
tion. The Visual Action-aware Query Processing Engine embodies our vision of blend-
ing query processing with visual query formulation by utilizing the latency offered by
the GUI actions. The Visual Action-aware Query Performance Simulator module aims
to provide a comprehensive framework for large-scale empirical study of the query pro-
cessor by simulating the paradigm of blending query formulation and query processing.
Finally, the Visual Action-aware Indexer component provides an array of action-aware
indexes to support efficient query processing as well as query performance simulation
in our proposed paradigm.

2.2 Data-driven Visual Interface Management

Data-driven visual query interface construction. Recall from Section 1 the limita-
tions associated with the manual construction of panels of the visual query interface.
There is one common theme that runs through these limitations: the visual query inter-
face construction is not data-driven. Specifically, the GUI does not exploit the under-
lying graph data to automatically generate and maintain the content of various panels.
Hence, it is necessary to rethink the traditional visual query interface construction strat-
egy by taking a novel data-driven approach for visual interface construction. While the
unique set of labels of nodes of the data graphs (Panel 3) can be easily generated by
traversing them, automatically generating the set of canned patterns is computationally
challenging. These patterns should not only be able to maximally cover the underlying
graph data but should also minimize fopological similarity (redundancy) among them-
selves so that a diverse set of canned patterns is available to the user. Note that there can
be prohibitively large number of such patterns. Hence, the size of the pattern set should
not be too large due to limited display space on the GUI as well as users’ inability to
absorb too many patterns for query formulation.

As some of the canned patterns may be frequent in the graph database, at first glance
it may seem that they can be generated using any frequent subgraph mining algorithm
(e.g., gSpan [27]). However, this is not the case as it is not necessary for all canned
patterns to be frequent. It is indeed possible that some patterns are frequently used by
end users to formulate visual queries but are infrequent in the database. Also, graph



summarization techniques [25], which focus on grouping nodes at different resolutions
in a large network based on user-selected node attributes and relationships, cannot be
deployed here as we generate concise canned pattern set by maximizing coverage while
minimizing redundancy under the GUI constraint.

Data-driven visual query suggestion and feedback. Any visual querying interface
should intelligently guide users in formulating graph queries by (a) helping them to for-
mulate their desired query by making appropriate suggestions and (b) providing appro-
priate feedback whenever necessary in a timely manner. In order to realize the former,
it is important to devise efficient techniques which can predict relevant node labels and
canned patterns that may be of interest to a user during query formulation. Also, given a
partial query already drawn by a user, it is important to provide suggestion of a concise
set of fragments (canned patterns) that she is likely to draw in the next step. Success-
ful realization of these tasks require analyzing topological features of the underlying
data as well as query log (if any) w.r.t to the partially constructed query. On the other
hand, query feedbacks are essential during query construction as a user may not know
if the query she is trying to formulate will return any results. Hence it is important to
observe user’s actions during query formulation and notify her if a query fragment con-
structed at a particular step fails to return any results and possibly advise the user on
which subgraph in the formulated query fragment is the “best” to remove in order to get
non-empty results.

Interruption-sensitive notifications. Addressing aforementioned challenges improve
the usability of visual querying systems by enabling users to construct graph queries
without special training in the syntax and semantics of a query language. They also
guide users into correct query construction by notifying them of a variety of problems
with a query such as incorrect syntax, alerts for an empty result, etc. The state-of-
the-art algorithms that notify users of such alerts and suggestions are, however, overly
aggressive in their notifications as they focus on immediate notification regardless of
its impact on the user. More specifically, they are insensitive to the cognitive impact of
interruptions caused by notifications sent at inopportune times that disrupt the query
construction process.

Many studies in the cognitive psychology and HCI communities have demonstrated
that interrupting users engaged in tasks by delivering notifications inopportunely can
negatively impact task completion time, lead to more errors, and increase user frustra-
tion [6, 16,22]. For instance, suppose a user is notified (with a pop-up dialog box) of an
empty result (due to previously formulated condition) when she is undertaking a task
such as dragging a canned pattern from Panel 2 and preparing to drop it in Panel 4.
This interruption may frustrate her as mental resources allocated for the current task are
disrupted because she is forced to leave it to acknowledge and close the dialog box. Al-
though, such inopportune interruption adversely affects the usability of visual querying
systems, traditional data management techniques have devoted very little attention to
the cognitive aspect of a solution. Here we need to ensure that a solution to the afore-
mentioned issues is “cognitive-aware” by devising models and techniques to deliver a
notification quickly but at an appropriate moment when the mental workload of the user
is minimum. Detecting such an opportune moment should be transparent to the user and
must not seek explicit input from her.



A promising direction in achieving this goal is to seamlessly integrate defer-to-
breakpoint strategy [18, 19] with visual query formulation tasks when reasoning about
when to notify the user. This will also entail to leverage work in HCI to build quantitative
models for time available to complete various data management tasks (e.g., detection
of empty results, query suggestion) in order to ensure notification delivery at optimal
breakpoints that lower the interruption cost. A keen reader may observe that making
aforementioned solutions interruption-sensitive essentially questions the holy grail of
database research over the past forty years: whether faster evaluation is always better?
As remarked earlier, the HCI and cognitive psychology communities have observed that
slowing or deferring some activities (e.g., notification delivery) can increase usability.
Hence, by making visual query formulation process cognitive-aware, we essentially aim
to slow down a small part of the system in order to increase its usability.

2.3 Visual Action-aware Query Processing

Visual action-aware graph indexing. A host of state-of-the-art graph indexing strate-
gies have been proposed since the last decade to facilitate efficient processing of a
variety of graph queries (e.g., [28]). While several of these techniques are certainly in-
novative and powerful, they cannot be directly adopted to support our vision. These
techniques are based on the conventional paradigm that the entire query graph must be
available before it can leverage the indexes for processing the query. However, in our
proposed framework we aim to initiate query evaluation as soon as a fragment of the
query graph is visually formulated. Hence, the indexes need to be aware of visual ac-
tions taken by a user and accordingly filter negative results after every action taken by
her. Recall that a user may construct a single edge or a canned pattern at a particular
step during query formulation. She may also modify it by deleting an existing canned
pattern or an edge. Hence, the size of a partially-constructed query graph may grow
or shrink by £ > 1 at each step. Furthermore, a query fragment may evolve from a
frequent pattern to infrequent one and vice versa. In this case, it is important to devise
efficient indexing schemes to support identification of the data graphs that match (exact
or approximate) the partially constructed query graph at each step. Note that since sub-
graph isomorphism testing is known to be NP-complete, the indexing scheme should
minimize expensive candidate verification in order to retrieving these partial results.

Visual action-aware query matching. Our goal is to utilize the latency offered by the
GUI actions to retrieve partial candidate data graph. Specifically, when a user draws a
new edge or canned pattern on the query canvas, candidate data graphs containing the
current query fragment need to be efficiently retrieved and monitored by leveraging the
indexes. If the candidate set is non-empty at a specific step then high-quality suggestions
to complete the construction of the subsequent steps may be provided at an opportune
time. On the other hand, if the candidate set is empty then there does not exist any data
graphs that match the query fragment at a specific step. In this scenario, the user needs
to be notified appropriately in an interruption-sensitive manner and guided to modify
the query appropriately. The above process is repeated until the user clicks on the Run
icon to signify the end of the query formulation step. Consequently, the final query re-
sults are generated from the prefetched candidate data graphs by performing verification



test whenever necessary. Note that as this step invokes the subroutine for subgraph iso-
morphism test, the verification process needs to be minimized by judiciously filtering
as many false candidates as possible without any verification test.

Non-traditional design issues. Observe that in order to realize the aforementioned
visual query processing paradigm, we need a query processor that incorporates the fol-
lowing three non-traditional design issues.

— First, is the need for materialization of intermediate information related to all par-
tial candidate graphs matching the query at each step during query construction.
While this has always been considered as an unreasonable assumption in tradi-
tional databases, materialization of all intermediate results is recently supported
to enhance database usability [11]. Note that this issue is particularly challenging
here due to computational hardness of subgraph isomorphism test. Hence judicious
strategy to minimize candidate verification while retrieving partial candidates is
required.

— Second, materialization of partial candidates needs to be performed efficiently within
the available GUT latency. This is pivotal as inefficient materialization can slow
down generation of candidate graphs at each query construction step eventually ad-
versely affecting the SRT. Ideally, we should be able to materialize candidate graphs
of a query fragment before the construction of the succeeding edge (or canned pat-
tern). Consequently, it is paramount to accurately and systematically estimate the
time taken by a user for constructing a query fragment (edge or pattern) as this la-
tency is exploited by the query processing paradigm to prefetch candidate matches.
Here it is important to drew upon the literature in HCI (e.g., [2, 3]) to quantita-
tively model the time available to a user to perform different visual tasks such as
selection of canned patterns. This will enable us to quantify the “upper bound” of
materialization time and seek efficient solution accordingly.

— Third, the query processor needs to support selectivity-free query processing.
Selectivity-based query processing, that exploits estimation of predicate selectiv-
ities to optimize query processing, has been a longstanding approach in classical
databases. Unfortunately, this strategy is ineffective in our proposed framework as
users can formulate low and high selective fragments in any arbitrary sequence of
actions. As query processing is interleaved with the construction (modification) of
each fragment, it is also not possible to “push-down” highly selective fragments.
Similarly, query feedbacks such as detection and notification of empty result are
intertwined with the order of constructed query conditions as it must be delivered
at an opportune time. Hence, it needs to operate in a selectivity-free environment as
well. The only possible way to bypass this stumbling block in this environment is
to ensure that the sequence of visual actions formulated by a user is ordered by their
selectivities. However, users cannot be expected to be aware of such knowledge and
it is unrealistic to expect them to formulate a query in a “selectivity-aware” order.

2.4 HCI-driven Performance Simulation

The aforementioned framework must have adequate support to evaluate visual query
performance at a large scale. In contrast to traditional paradigm where the runtime per-



formance of a large number of graph queries can be easily measured by automatically
extracting a random collection of query graphs from the underlying data and executing
them, each query in the proposed framework must be formulated by a set of real users.
Furthermore, each query can follow many different query formulation sequences. Con-
sequently, it is prohibitively expensive to find and engage a large number of users who
are willing to formulate a large number of visual queries. Hence, there is a need for a
performance measurement framework that can simulate formulation of a large number
of visual graph queries without requiring a large number of users.

The performance benchmarking framework needs to address two key challenges.
First, is the automated generation of a large number of queries of different types (fre-
quent and infrequent), topological characteristics, and result size. The action-aware
graph indexing framework can be leveraged here to extract frequent and infrequent
subgraphs from the underlying data graphs that satisfy different constraints. Second,
is to simulate the formulation of each generated query following different query for-
mulation sequences. Note that different users may take different time to complete each
visual action during query formulation. For instance, time taken to move the mouse
to Panel 2 (Figure 1) and select a canned pattern may be different for different users.
It is important to accurately and systematically estimate the time taken by a user for
each of these actions as this latency is exploited by the query processing paradigm to
prefetch candidate matches. Similar to the materialization of candidate graphs, here it
is important to drew upon the literature in HCI (e.g., [2, 3]) to quantitatively model the
time available to a user to perform different visual tasks. Then for each step in the query
construction process, the query simulation algorithm waits for appropriate amount of
time to simulate the execution of the task by a user before moving to the next step.

2.5 Extension to Massive Graphs

Recall that the aforementioned research challenges to realize our vision assume that
the database contains a large collection of small or medium-sized graphs. However, in
recent times graphs with millions or even billions of nodes and edges are common-
place. As a result, there is increasing efforts in querying massive graphs by exploiting
distributed computing [24]. We believe that the aforementioned challenges need to be
addressed as well to realize our vision on such massive graph framework. However, the
solution to these challenges in this framework differ. For example, the data-driven visual
interface construction needs to generate the canned patterns and labels in a distributed
manner as graph data is stored in multiple machines. Similarly, each visual action during
query processing needs to be judiciously processed in a distributed environment by
selecting relevant slaves that may contain the candidate matches as well as minimizing
communication costs among the machines.

3 Early Efforts

In [7,7,17,20,21], we took the first step to implement the visual action-aware query
processing module for subgraph containment and subgraph similarity search queries for



a set of small or medium-sized graphs as well as for large networks. Our study demon-
strates that the paradigm of blending visual query formulation and query processing
significantly reduces the SRT as well as number of candidate data graphs compared to
state-of-the-art techniques based on traditional paradigm. However, in these efforts we
assume that the visual query is formulated using an “edge-at-a-time” approach (canned
patterns are not used), making it tedious to formulate large queries. Consequently, the
underlying indexing schemes and query processing strategies need to be adapted to
support such query construction. Furthermore, it is interesting to investigate whether
the proposed paradigm can efficiently support a wider variety of graph queries such
as reachability queries, supergraph containment queries, homeomorphic graph queries,
etc. Lastly, the data-driven visual interface management and the HCI-aware performance
benchmarking framework are open research problems that are yet to be addressed.

Visual action-aware query processing is also studied in the context of XML query
processing [26,29]. Similar to visual graph querying, here we proposed a visual XML
query system called XBLEND which blends visual XML query formulation and query
processing in a novel way. It is built on top of a relational framework and exploits the
latency offered by the GUI-based query formulation to prefetch portions of the query
results by issuing a set of SQL queries.

4 Conclusions

This paper contributes a novel vision of HCI-aware graph data management to bridge the
chasm between HCI and data management fields. We present a framework for querying
graph data visually where the visual interface management is data-driven and query pro-
cessing and performance benchmarking are HCI-driven. Addressing the research chal-
lenges associated with this vision entail a multi-disciplinary effort drawing upon the
literature in HCI, cognitive psychology, and data management. Although, in this paper
we focused on graph querying, it is easy to see that our vision can be extended to other
visual querying environments.

Acknowledgement: Sourav S Bhowmick was supported by the Singapore-MOE AcRF
Tier-1 Grant RG24/12. His travel expenses were supported by the Marsden fund council
from Government funding, administered by the Royal Society of New Zealand. The au-
thor would also like to thank Changjiu Jin, H. Hung, and B. Q. Trung for implementing
several features of the vision.

References

1. S. Abiteboul, R. Agrawal, P. Bernstein et al. The Lowell Database Research Self-Assessment.
In Communication of the ACM, 2005.

2. J. Accot, S. Zhai. Refining Fitts’ Law Models for Bivariate Pointing. In ACM SIGCHI, 2003.

3. D. Ahlstrom. Modeling and Improving Selection in Cascading Pull-Down Menus Using
Fitt’s Law, the Steering Law, and Force Fields. In CHI, 2005.

4. M. Angelaccio, T. Catarci, G. Santucci. QBD*: A Graphical Query Language with Recur-
sion. In IEEE Trans. Soft. Engg. , 16(10):1150-1163, 1990.



[}

10.

11.
12.

13.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.
26.

217.
28.
29.

30.

P. Atzeni, G. Mecca, P. Merialdo. To Weave the Web. In VLDB, 1997.

B. P. Bailey, J. A. Konstan. On the Need for Attention Aware Systems: Measuring Effects of
Interruption on Task Performance, Error Rate, and Affective State. In Journal of Computers
in Human Behavior, 22(4), 2006.

. S. S. Bhowmick, B. Choi, S. Zhou. VOGUE: Towards a Visual Interaction-aware Graph

Query Processing Framework. In CIDR, 2013.

. H.Blau, N. Immerman , D. Jensen. A Visual Language for Querying and Updating Graphs.

Tech. Report 2002-037, Univ. of Mass., Amherst, 2002.

. D. Braga, A. Campi, S. Ceri. XQBE (XQuery By Example): A Visual Interface to the Stan-

dard XML Query Language. In TODS, 30(2), 2005.

M. Carey, L. Haas, V. Maganty, J. Williams. PESTO: An Integrated Query/Browser for Ob-
ject Databases.In VLDB, 1996.

A. Chapman, H. V. Jagadish. Why Not? In SIGMOD, 2009.
D. H. Chau , C. Faloutsos, H. Tong, et al. GRAPHITE: A Visual Query System for Large
Graphs. ICDM Workshop , 2008.

S. Comai, E. Damiani, R. Posenato, L. Tanca. A Schema Based Approach for Modeling and
Querying WWW data. In FQAS, 1998.

. S. Comai, E. Damiani, P. Fraternali. Computing Graphical Queries Over XML Data. In ACM

TOIS, 19(4): 371-430, 2001.

L. F. Cruz, A. O. Mendelzon, P. T. Wood. A Graphical Query Language Supporting Recur-
sion. In ACM SIGMOD, 1987.

E. Cutrell, et al. Notification, Disruption, and Memory: Effects of Messaging Interruptions
on Memory and Performance. In Proc. of the IFIP TC.13 Int Conf on HCI, Tokyo, Japan,
2001.

H. Hung, S. S. Bhowmick et al. QUBLE: Towards Blending Interactive Visual Subgraph
Search Queries on Large Networks. The VLDB Journal, 23(3), Springer-Verlag, May 2014.

S. T. Igbal, B. P. Bailey. Understanding and Developing Models for Detecting and Differen-
tiating Breakpoints during Interactive Tasks. In CHI, 2007.

S. T. Igbal, B. P. Bailey. Effects of Intelligent Notification Management on Users and Their
Tasks. In CHI, 2008.

C. Jin, et al. GBLENDER: Towards Blending Visual Query Formulation and Query Process-
ing in Graph Databases. In ACM SIGMOD, 2010.

C. Jin, et al. PRAGUE: A Practical Framework for Blending Visual Subgraph Query Formu-
lation and Query Processing. In ICDE, 2012.

C. A. Monk, D. A. Boehm-Davis, J. G. Trafton. The Attentional Costs of Interrupting Task
Performance at Various Stages. In Proc of the Human Factors and Ergonomics Society, 2002.

Y. Papakonstantinou, et al. QURSED: Querying and Reporting Semistructured Data. In ACM
SIGMOD, 2002.

Z. Sun, et al. Efficient Subgraph Matching on Billion Nodes Graphs. In VLDB, 2013.
Y. Tian, et al. Efficient Aggregation for Graph Summarization. In SIGMOD, 2008.

B. Q. Truong, S. S. Bhowmick, et al. MUSTBLEND: Blending Visual Multi-Source Twig
Query Formulation and Query Processing RDBMS. In DASFAA, 2013.

X. Yan, et al. gSpan: Graph-based Substructure Pattern Mining. In ICDM, 2002.

X. Zhao, et al. A Partition-Based Approach to Structure Similarity Search. In VLDB, 2013.
Y. Zhou, S. S. Bhowmick, et al. XBLEND: Visual XML Query Formulation Meets Query
Processing. In ICDE, 2009.

M. M. Zloof. Query-By-Example: A Data Base Language. IBM Syst. J., 16(4):324-343,
1977.



