HW-STALKER: A Machine Learning-based
System for Transforming QURE-Pagelets to
XML

Vladimir Kovalev?, Sourav S Bhowmick ® and Sanjay Madria P

aSchool of Computer Engineering, Division of Information Systems, Nanyang
Technological University, Singapore 639798

b Department of Computer Science, University of Missouri-Rolla, Rolla 65409

Abstract

In this paper, we address the problem of extracting and transforming dynamically
generated hyperlinked hidden web query results to XML. Our approach is based
on the STALKER approach. As STALKER was designed to extract data from a single
web page, it cannot handle a set of hyperlinked pages. We propose an algorithm
called HW-Transform for transforming hidden web query results (also called Q URE-
Pagelets) to XML format using machine learning by extending STALKER to handle
hyperlinked hidden web pages. One of the key features of our approach is that we
identify and transform key attributes of query results into XML attributes. These
key attributes facilitate applications such as change detection and data integration
by efficiently identifying related or identical results. Based on the proposed algo-
rithm, we have implemented a prototype system called HW-STALKER using Java.
Our experiments demonstrate that HW-Transform shows acceptable performance
for transforming QURE-pagelets to XML.

Key words: Hidden Web, dynamic content, identifiers, facilitators, STALKER,
XML, QURE-Pagelets.

1 Introduction

Current-day web crawlers retrieve content only from a portion of the Web,
called the publicly indexable Web (PTW) [16]. This refers to the set of web pages
reachable exclusively by following hypertext links, ignoring search forms and
pages required authorization or registration. However, recent studies [17,10]
observed that a significant fraction of Web content lies outside the PIW. A

Email addresses: assourav@ntu.edu.sg, madrias@umr.edu (Sanjay Madria).

Preprint submitted to Elsevier Science 3 January 2005

great portion of the Web is “hidden” in databases and can only be accessed by
posing queries over these databases using search forms (lots of databases are
available only through HTML forms)[10]. This portion of the Web is known as
the hidden Web or the deep Web [10]. Pages in the hidden Web are dynamically
generated in response to queries submitted via the search forms. We illustrate
such hidden web queries with an example.

Example 1 AutoTrader.com (at http://www.autotrader.com) is the largest
used car web site with over 2 million new and used vehicles listed for sale by
private owners, dealers, and manufacturers. To get any information on the
listed vehicles, a user should first specify search conditions. Figure 1 depicts
the search interface available on the AutoTrader.com site. This interface is
composed from two consecutive pages. In the first page, a user specifies the
car make he is searching for. In the second page, a user specifies the details of
the car such as model, year, price range, color, etc. After submitting the search
query, a user gets a list of cars relevant to this query. Figure 2 represents a set
of pages returned as the result of searching for Ford cars at AutoTrader.com
on 02 July, 2003. There are 500 car descriptions returned to a user. The first
page contains short descriptions of 25 cars. Each such short description pro-
vides a link to a separate page containing more details on the particular car.
There is also a link to a page containing the next 25 car descriptions that
is formatted in a similar way as the first page. The second page is linked to
the third page, and so on. Note that all the pages in this set are generated
dynamically. This means that every time a user queries AutoTrader.com with
the same query, all the resulting pages and the links that connect them to
one another are generated from the hidden web database anew. As the re-
sults are always ordered by some criteria (e.g. price, year, mileage, year, etc.),
the description of the same car may appear in different positions each time a
particular query is executed. i

The task of harvesting information from the hidden web can be divided into
following four steps.

(1) Formulate a query or search task description;

(2) Discover sources that pertain to the task;

(3) For each potentially useful source, fill in the source’s search form and
execute the query;

(4) Extract query results from result pages as useful data is embedded into
the HTML code.

In this paper, we will assume that the task is formulated clearly (Step 1).
Step 2, source discovery, usually begins with a keyword search on one of the
search engines or a query to one of the web directory services. The works
in [4,18,6] address the resource discovery problem and describe the design
of topic-specific PIW crawlers. Techniques for automatically querying hidden

Fle Edt view Favorites Tools Help

3 AutoTrader.com - Used Cars For Sale: Step 1 of 2 - Microsoft Internet Explorer 8

=[x

-5 - REAAES

Addvess [£] hitpeautotrader comfindacarfindex. jrmpl7ac_ffit=none

=] ¢ |

AutoTrader @°

Your car s walting.

Sign In | My AutoTrader.com | About | Help

| Research & Compare Find Your Car | Sell Your Car | Mew Cars | Carloans | Insurance | Collector Cars |

L2

Home » Car Szarch

Car Search |

The make | want is |Acura b
Near ZIP code Required

Twant @ Used Cars
© hlew Cars

Q)

[

(a) Step 1 of 2.

JF\lE Edt Yiew Favortes Toos Help

AutoTrader.com - Used Cars For Sale: Step 2 of 2 - Micrasoft Internet Explorer]

| mnternet

BN

Je=-2 -0 0Ed

| adstess [htep:fjuwms, autotrader.comiindacen F ndacar_formi,jtmplPmadl=LANCERRstart year=19838end_year=20048min_price=Sma_price=elstance=anydcertfisd=niadvanced=yiacy| @60

AutoTrader @°

Your car Is walting.

Sign In | My AutoTrader.com | About | Help

| Research & Compare Find Your Car | Sell Your Car | MNew Cars | Carloans | Insurance | Collector Cars

[

Home > Car Gearch > Lsed Car Search

| [‘BasicSeamh) Advanced Search |

Make Mitsubishi changs rake

Model |Lancer B

Body Style |All Styles ¥| (ie. Convertible, Coupa)

To rafect Colors, hold down the

Color e “Contral® key on your keyboard
o ("Commaad® for Mac users), and
Black | o up b three selactions,

Mileage |AnyMileage 7| (e, Under 25,000, Uader 30,000)
Doors | Ay Number = | (i.e. Twe Door, Four Door)

Engine [AllEngines | (i.e. 4 Cplinder, 6 Cplindar)
Fuel Type [All Types ¥| (ie Diesel, Gasolive)

Drive Type |All Types w| (e 2 wheel drive, & wheel drive)

Transmission |All Types ¥ | (i.e. Avtomatic, Manuad)

From year {1983 x| to year [2004 *

I you do not enter 2 price, your Search

Results wil inchude vehiclas with po price

fistad,

™ Cars with prices only
Distance |Any Distance | from 00501

Only vehicles matching your selections will be shovwn.

From price to price (i.e. 20500 not $20,500)

(b) Step 2 of 2.

Fig. 1. AutoTrader.com: Search interface.

[|4 mtemet

web search forms (Step 3) has been proposed in [12,21,19,9]. These techniques
allow a user to specify complex queries to hidden web sites that are executed
as combination of real queries. In this paper, we focus on Step 4.

3

Details on the car

.Flu Edt View Favorites Tools Help
Qbak + () - [(2] (0| Hsearch iFavorkes o Meda £ | [0

address [E] mpiacar i Ladeder_i
23 miles
. .
First page with the results —
. Find Your Car: rnet Explorer mw 3
Fle Edk View Favorkes Toos Help powarad by LandingTras 8 i faserpnoto
Opeck = O -) 8]] Psearch < Favortes Wthsdin & (- L il - tneurance Quotas:
s [81 z r T Pp— o] e W ooz Ot bis Vehicie History Report
EE— 1
Research & Compare Find Your Car | Sell Your Car | New Cars | Carloans | Insurance | Collector Gafs — This Car's Detalls
Homs > Car Saareh > Uskd Car Batie Suanch > | 3 Rasutt Frae warranty r Price $36999
Used Car Results |__Certifled Cars Only) Auction- Style Cars Only) this Ford
‘ ! Mileage 231
1983-2004 Ford Wehicle History: B
rior Color Ry
500 Found Within 25 Miles et a viehicle Hi Exterior Coloy ed
Mot o 1 Renortfor this Fon Interior Color Tan
Wahicla Inspections: Body Style Truck
Inspect before you buy
/ Doors Four Door
- - N > SN G Engine 8 Cylinder Diesel
2002 Ford F350 1 Ton Truck 4x4 Grew Cah DRV Get bore Money,
This vehiele has a7 3L UE Diesel engine and an avtomatic verhea Sellf Yourselt Trans. Automatic
transmission. It includes Power Mitiors, Power Daor Luds, Motors 2
Povesr Windows. Consola, Cantar ... mare Riverhead Ford Fuel Type Diesel
[iwerhead Fo GelTrade-in Values
Lineoln Mereury Drive Tvne 4 wheel drive
Color: Red View Our
Miles: 22361 Inventon
Distance: 23 Miles Email Seller L4
MIN: 1FTWAR3FE2EC7 433 -
[
| 8 2002 Ford F250 3/4 Ton Truck x4 Super Duty Crew Cab
ThEs veniele has 3 79L VB Diesel engine and an automatic |l ILTL) Just follow these
i ing Boards, 4 Wheel Drive, Rear Motors Steps at -
Ciy
Details on the car

2} AutaTrader.con osoft Internet Explores

.fh Edt View Favorites Tools Help
Qexk =~ 0 - = 7] | S seach CiFavokes o Mede £

Miles: 63700 sdess [&] el
Distance: 8 Miles Car Loa
WIN: FTIX21FRAEDATEAT // Rates as low a5 3 9%’
onhis Fo
i 2002 Ford Exp 14 Do 4! pasared by LindingTisa =
2002 FORD Expadition Eddle Bauss® Photo Includad!* Has][L G0N View larger phato
Wisrtantyl ™ This lsbe model vehicle inclhedes Poves Stesring Insurance Quotes:
ez, Powner Daor Lode, . mare. Hunlinglon Gel a Free Quote for this
Price: §27260 Chevrole Ford WVehicle History Report
Caolor: Black View Our
Wiles: 36370 Inventny SRR This Car's Details
Distance: 17 Miles . . Eree waranty quote for
. EMPUTELE A0 this Ford Price 527280
Vehicle is Mileage 36370
ReporforhisFord Exterior Color Black
Madify Search T — Body Style Sport Utility
Email this page to a friend 15D fore you buy Doors Four Door
e 3oa0%e &4 Ingpect betore you bu
& T N e S ol Vo s Engine 8 Cylinder Gasoline
Gelldore Mone Trans. Automatic with Overdrive
Sell it Yourself
Fuel Type Gasoling
et Trade-in Valus: Drive Type 4 wheel drive
Price 3 new Ford like this Stock No. P399
ong
N t 2 f 25 'th th It VIN AFMPLITAL 921 2430193
ex rom page wi e resuits e
icrosoft Internet Explorer T eS|

]ﬁemmw;s'rmkw

IERE B JE fen I J)

| address [@] art_year=19838end_year=20048min_price=gmax_prica=adistanc] h _record=25 7| 60 ‘

Research & Compare Find ar | Sell Your Car New Cars Car Loans Insurance Collector Cars

Homa > Car Search > Used Car Basio Saarch » Usad Car Result

Used Car Resutts | Certified Cars Only) Auction-Style Cars Only)
19832004 Ford
500 Found Within 25 Miles Modify Search
= Previous Mext» 123

TR

VIN: AFTRAITLA1NEOS608

< Brevious Next> 123 Modify Search
Advertised Price¢anas for this search [0 Email this paae to = friend
Highest price: \33000
| nwest nrice: 995
] CTT Ty et

Fig. 2. A set of pages returned as the result of searching for Ford on 2 July, 2003.

4

1.1 Motivation

Dynamically generated web pages typically consist of a handful of presentation
region types. Three common examples include [3]:

e The query-result regions, which present the primary content directly related
to a query posed on the search interface of the content provider. Some web
sites support multiple primary content regions.

e The advertisement region, which presents the information about other prod-
ucts offered by the content provider or about related products offered by
other companies.

e The nawigational region, which presents a collection of navigational links,
often to other web sites provided by the same content provider.

In this paper, we focus on the transformation of data in query-result regions to
XML. We introduce the concept of QUery-REsult Pagelet' (QURE-Pagelet
for short) to refer to the query results related content region in a dynamic
page generated by the execution of a query on a hidden web site. Extracting
relevant results automatically from QURE-pagelets is a challenging problem.
First, the search and the extraction of the required data from the dynamic
pages are highly complicated tasks as each web form interface is designed
for human consumption and, hence, has its own method of formatting and
layout of elements on the page. For instance, Figure 2 depicts the original
AutoTrader result page with formatting and non-informative elements (such
as banners, advertisements, etc.). Accordingly, extraction tools must be able to
filter out the relevant QURE-Pagelets from the pages. Second, is the structural
complexity of hidden web query results. The search query usually returns not
a single HTML page, but a set of HTML pages. Most hidden web sites use
hyperlinks to connect these HTML pages. However, some sites use client-side
scripts like JavaScript for this purposes. These scripts are used to generate
hyperlinks on-demand based on parameters provided by user on submission.
Unfortunately, it is computationally hard to automatically analyze client-side
scripts.

We present HW-STALKER, a prototype system for extracting relevant QURE-
pagelets and transforming them to XML using machine learning technique.
Our motivation to transform QURE-pagelets to XML is the following. Hid-
den web data is HTML-formatted and every hidden web site generates it in
its own fashion. Thus it becomes extremely difficult and cumbersome to de-
velop generalized techniques that can be used for hidden web data integration,
change detection to hidden web data [13], warehousing hidden web data etc.
Consequently, it is important to develop a technique for transforming hidden

1 The term pagelet was first introduced in [1] to describe a region of a web page that is distinct in terms

of its subject matter or its content

web data to more structured format (eg. XML) so that we can develop such
generalized techniques for hidden web data. A shorter version of this paper
appeared in [14].

1.2 Owverview

We propose an algorithm called HW-Transform for transforming QURE-pagelets
to XML format. Our approach is based on the STALKER technique [11,20]. We
use STALKER because apart from being easy to use, in most cases it needs
only couple of examples to learn extraction rules, even for documents contain-
ing lists. The extraction rules are typically very small, and consequently, they
are easy to induce. This is a crucial feature because from the user’s perspec-
tive it makes the wrapper induction process both fast and painless. Moreover,
STALKER models a page as unordered tree and many hidden web query results
are unordered. However, STALKER was designed to extract data from a single
web page and cannot handle a set of hyperlinked pages. Hence, we need to
extend the STALKER technique to extract results from a set of dynamically
generated hyperlinked web pages.

We use machine learning-based technique to induce the rules for this trans-
formation. The process of transforming QURE-pagelets from HTML to XML
can be divided into three steps:

(1) Constructing extended EC description [11,20] describing the hidden web
query results. In contrast to the STALKER approach, on of the key feature
of our approach is that a user maps special key attributes (identifiers and
facilitators) of query results into XML attributes. These key attributes
facilitate change detection, data integration etc. by efficiently identifying
related or identical results. We shall elaborate on the importance of these
key attributes in the context of change detection to hidden web data in
Section 3.

(2) Learn extraction rules based on examples labeled by the user. A GUI
allows a user to mark up several pages on a site, and the system then
generates a set of extraction rules that accurately extract the required
information. We do not discuss this step here as it is similar to that of
STALKER approach.

(3) Transforming QURE-pagelets from HTML to XML using extended £C
tree with assigned rules. We discuss this step in Section 4. Note that we
do not address transformation related to client-side scripts in this paper.

The rest of the paper is organized as follows. Section 2 discuss briefly the
STALKER approach. In Section 3, we propose how to adapt the STALKER ap-
proach to model and transform hyperlinked QURE-pagelets to XML. Section 4
presents HW-Transform, a formal algorithm for transforming QURE-pagelets
to XML format. We discuss the implementation of HW-STALKER and highlight

2§ Search results - Microsoft Internet Explorer E |8 x|

|| Fle Edt WVew Favortes Tads Help E
IR DG
Addrass [£] hup: /search.auctions.shopping. yahos comfsear chidesc=canonif =1z 3128auce ®apg c=Ustalocale=0ustsh=resc =] oo
powered [
YA_HOO.%SHO&?#Q&& Auctions Home - Shopping Horme - Yahoo! - Help L U]

IM - Instant Messaging s

Other_ISP: Now? You're online! | can put the internet on hold! EEDS
NZRouser: | have V.92 &) e
Welcome, vy_kovalev Sell Stuff- My Auctions - Options - Sign Out —
Title Search Results Found 142 auctions for canon Auctions Home
Search Wiew by: Photos & Tewt | Text Only | Phatos Only Showing 1 - 26 of 142 items | Mext =>
[canon | Search || Tile Price Bids Time Left [&]
Advanced Search Featured Auctions (fnore info)
) = C;:\NON Ik CARTRIDGE SALE ONLY §2 05 EACH B $295 - 1 day 3 hrs

Search History % BUY NOW!

canon & CAMERA: Canon EX Auta GLR with Lsns and Case 44 & @ 36900 - 1 daydhrs

Related Wards:canon

same zanoen ses canen & CAMERA: Canon EOS Rebel S w Lens, Buili-in Flash 44 & &% $12500 - 1dayShrs

rebel 2000, sanan 4";

=lph, sanen g2 CAMERA: Canon AL-1 35mrm SLR like Canon AE-1 Micel

on G P $12500 - 1dayGhrs

Related Wards:zany v, sany -

electionics, sany ded. somy v Canon BJ 200 ex Ink jet printer BUY NoW! $200 - 2daysShrs

electionics weas Canon BJC 210 Printer Black and YWhite BUY Now! $2.00 - 2days5hrs

canon

BRAMND MEW CANOM S50+ 128 MB COMPACT FLASH &

sony = + N $45000 B 4 days 6 hrs

canon G nuv wow:
MNarrow Your Search @ Canon PowerShot 5230 3.2 px Brand Mew BUY Now! $81.00 12 Sdays5hrs

Fig. 3. Search results for canon.

some experimental results in Section 5. Section 6 discusses related research
in this area. Finally, the last section concludes the paper.

2 STALKER Approach

In this section, we present the STALKER approach for wrapper construction
that enables users to turn web pages into relational information sources [11,20].
STALKER is a machine learning based approach where Embedded Catalog(EC)
formalism is used to describe the content of a web page. The £C description of
a page is a tree-like structure (also called EC tree) in which the leaves represent
the relevant data. The internal nodes (elements) of the EC tree represent lists
of k-tuples, where each item in the k-tuple can be either a leaf [or another
list L (in which case L is called an embedded list). For example, Figure 4
displays the sample EC description of Yahoo!Auctions (Figure 3). At the top
level this page contains 3 tuples: a total number of auctions denoted by leaf
element Total, a search keyword denoted by leaf element Keyword, and an
embedded list of Auctions, respectively.

2.1 Extracting Data from a Document

In order to extract the items of interest, a wrapper uses the £C description
of the document and a set of extraction rules. For each node in the tree,
the wrapper needs a rule that extracts that particular node from its parent.

Auctions_Document

%\

Total Keyword LIST(Auction)
Title Price Bids Time_Left

Fig. 4. £C description of Yahoo!Auctions list of auctions from Figure 3.

E1: Canon BJ 200 ex Ink jet printer $2.00<i>E}/i> 2 days 5 hrs
E2: Canon BJC 210 Printer Black and White $2.00<i>[Z/i> 2 days 5 hrs
E3: BRAND NEW CANON S50+ 128 MB FLASH $450.00[8/b> 4 days 6 hrs

E4: Canon PowerShot $230 3.2 Mpx Brand New $81.00[12] 5 days 5 hrs

Fig. 5. Four examples of auction descriptions.

Additionally, for each list node, the wrapper requires a list iteration rule that
decomposes the list into individual tuples. Given the £C tree and the rules,
item can be extracted by simply determining the path P from the root to
the corresponding node and by successively extracting each node in P from
its parent. If a parent of a node z is a list, the wrapper first applies the list
iteration rule and then applies the z’s extraction rule to each extracted tuple.

In the STALKER framework, a document is treated as a sequence of tokens
S (e.g. words, HTML tags, wildcards, etc.). The content of the root node in
EC tree is the whole sequence S, while the content of each of its children is
a subsequence of S respectively. Generally, the content of an arbitrary node
represents a subsequence of the content of its parent.

A key idea of STALKER approach is that the extraction rules are based on
“landmarks” that enable a wrapper to locate the start and end of the item
within the page. For example, let us consider the four examples of auction
descriptions in Figure 5. In order to identify the beginning of the price, we
can use the rule

R1 = SkipTo()

which has the following meaning: start from the beginning of the document
and skip everything until you find the landmark. Note that R1 is applied
to the content of the node’s parent, which in this particular case is the auction
list. R1 is called a start rule because it identifies the beginning of the price.
One can write a similar end rule that finds the end of the price from the end
of the document towards its beginning. These rules are not unique. That is,
R1 is by no means the only way to identify the beginning of the price.

To deal with variations in the format of the documents, the STALKER extrac-
tion rules allow the use of disjunctions. For example, let us assume that the
auctions that do not have any bid appears in italic (see E1 and E2 in Figure 5),
while the other ones are displayed as bold (eg. E3, E4). STALKER can extract
all the bids based on the disjunctive start rule

either SkipTo(<i>)
or SkipTo()

Disjunctive rules are ordered lists of individual disjuncts. Applying a disjunc-
tive rule is a straightforward process in STALKER: the wrapper successively
applies each disjunct in the list until it finds the first one that matches.

2.2 Learning Extraction Rules

The authors have developed a hierarchical wrapper induction algorithm that
learns extraction rules based on examples labeled by the user. A GUI allows a
user to mark up several pages on a site, and the system then generates a set of
extraction rules that accurately extract the required information. Specifically,
the input to stalker algorithm consists of sequences of token representing the
prefixes that must be consumed by the induced rule. To create such training
examples, the user has to select a few sample pages and use GUI to mark up
the relevant data (i.e., the leaves of the EC tree). Once a page is marked up,
the GUI generates the sequences of tokens that represent the content of the
parent p, together with the index of the token that represents the start of item
2 and uniquely identifies the prefix to be consumed.

STALKER exploits the hierarchical structure of the source to constrain the
learning problem. For instance, instead of using one complex rule that extracts
all auctions, titles, bids, price, etc. from a page, STALKER takes a hierarchical
approach. First it applies a rule that extracts the whole list of auctions; then
it use another rule to break the list into tuples that correspond to individual
auctions; finally, from each such tuple the algorithm extracts the title, price,
bids, and time left of the corresponding auction.

To generate a rule that extracts an item z from its parent p, STALKER takes
a list of pairs (T}, Idz;) as input, where each sequence of tokens 7; is the
content of an instance of p, and T;[Idx;] is the token that represents the
start of x within p. Any sequence S ::= T;[l], T;[2],. .., T;[Idz; — 1] (i.e., any
instance of prefix of p with respect to z) represents a positive example, while
any other sub-sequence or super-sequence of S represents a negative example.
STALKER, tries to generate a rule that accepts all positive examples and rejects
all negative ones.

STALKER is a sequential covering algorithm that, given the training examples

E, tries to learn a minimal number of perfect disjuncts that cover all examples
in E. By definition, a perfect disjunct is a rule that covers at least one training
example and on any example the rule matches it produces the correct result.
STALKER first creates an initial set of candidate-rules C' and then repeatedly
applies the following three steps until it generates a perfect disjunct:

e select most promising candidate from C
e refine the candidate
e add the resulting refinements to C'

Once STALKER obtains a perfect disjunct P, it removes from E all examples
on which P is correct, and the whole process is repeated until there are no
more training examples in £/. STALKER uses two types of refinements: landmark
refinements and topology refinements. The former makes the rule more specific
by adding a token to one of the existing landmarks, while the latter adds a
new 1-token landmark to the rule. More details on this algorithm can be found
in [20].

Example 2 Let us consider the auction list from Figure 3. Figure 5 depicts
four examples (E1, E2, E3, Ej) of auction descriptions matching Auction
node in the £C tree in Figure 4. We want to learn a start rule for the bids.
STALKER proceeds as follows. First, it selects an example, say F1, to guide
the search. Second, it generates a set of initial candidates, which are rules
that consist of a single 1-token landmark; these landmarks are chosen so that
they match the token that immediately precedes the beginning of the bids in
the guiding example. The last token to be consumed in F1 is “<i>". HtmlTag
and Anything are the wildcards that match this token. Consequently, STALKER
creates three initial candidates:

e R1=SkipTo(<i>)
e R2=:SkipTo(HtmlTag) (stops as soon as it encounters an HTML tag)
e R3=5SkipTo(Anything)

As R1 is a perfect disjunct, STALKER returns Rl and the first iteration ends.
During the second iteration, the algorithm is invoked with the uncovered train-
ing examples £3 and E4. After this step, it returns rule R4=Skip To(< /b>)
covering both examples. Consequently, STALKER stops the learning process
and returns the disjunctive rule either R1 or RA4. i

2.3 Summary
In summary, STALKER has the ability to wrap a large variety of sources. The
experimental results described in [20] show that in most cases STALKER needs

only couple of examples to learn extraction rules, even for documents contain-
ing lists. The number of required examples is small because the £C description

10

Distance: 121 Miles See More Cars ArchitectureWeek - Building - 2003.0806 %

VIN: JHAKASES52 0006745 Like This The building, located i the heart of earthquake territory, will contain seven linear acce
Ernail Seller ageinst both earthquakes and radiation has posed sigmficant challenges for the general contre
Sort by: |Price Atipfieww.grehitectureweek. com/2003/0800/biiding, tinl 1111303, 24448 bytes
Mext> 1234567089101112131415 1617181920 (Modify Sea Pages
Advertised Price Range for this search 54 Emall this page to a “ o SO006000
Email this page to a | 1

Highest prics: §65993
Lowest price: $11990

(a) Chain links on AutoTrader. com. (b) Chain links on ArchitectureWeek.com.

a data interchange format because of its simplicity, Web conformance, and e
#ML is expected to be the successor of HTWL on the Weh. It is a generic, ct
i informatics. sintef. no/UML2=MUpaper-preview. pdf Comments index for The Mmy

Documents 21 to 40 Previous 20 Mext 20

See the next 20 comments, there are 844 in total
Tryyour query at - Amazon Bames & Moble Google (R} Goog -

CiteSeer - citesesr org - Tertns of Serice - Privacy Policy - Copyright © 1597, Add another cCom mel‘lt

(c) Chain links on CiteSeer. com. (d) Chain links on IMDb. com.

Fig. 6. Chains links on different hidden web sites.

of a page simplifies the problem tremendously: as the web pages are intended
to be human readable, the £C structure is generally reflected by actual land-
marks on the page. STALKER merely has to find the landmarks, which are
generally in the close proximity of the items to be extracted. In other words,
the extraction rules are typically very small, and consequently, they are easy
to induce. This is a crucial feature because from the user’s perspective it makes
the wrapper induction process both fast and painless.

3 Transforming QURE-Pagelets

In this section, we present our approach to transform the hidden web query
results or QURE-pagelets to XML format. Our approach is based on the
STALKER technique [11,20]. Recall that we use the STALKER because apart
from being easy to use, in most cases it needs only couple of examples to
learn the extraction rules, even for documents containing lists. Moreover, the
STALKER models a page as unordered tree and many hidden web query results
are unordered. However, the STALKER was designed to extract data from a sin-
gle web page and cannot handle a set of hyperlinked pages. Hence, we need
to extend the STALKER technique to extract results from a set of dynamically
generated hyperlinked web pages.

As mentioned in Section 1, the process of transforming the hidden web query
results to XML can be divided into three steps: (1) Constructing the extended
EC tree [11,20] describing the hidden web query results. (2) Learning extrac-
tion rules to precisely locate relevant information from a page by providing
learning examples. We do not discuss this step here as it is similar to that

11

< Previous
Next >

Next > 1l

1 2

2 3

20 20

Mext> 1234567891011121334151617181820 < Previous Mext> 1234567891011 121314 151617151920
(a) Page 1 (b) Page 2

the previous page (page 18)”>< Previous

the next page (page 20)”>Next >
the page 17>1 < Previous
2 1
2

18 PN
19 19

20 20
< Previous Mext> 1234567821011 121314151617 151920 < Previous 123456783101112 1314151617 1819 20
(c) Page 19. (d) Page 20.

Fig. 7. AutoTrader.com: chain links in query results.

of the STALKER approach. (3) Transforming the results from HTML to XML

using extended £C tree with assigned rules. We now elaborate on Steps (1)
and (3).

3.1 Modelling QURE-Pagelets

As the hidden web results are distributed between a set of pages, we need a
general model to represent these pages. In other words, we should model the
links between a collection of hyperlinked hidden web pages. We distinguish
these links into two types - the chain links and the fanout links. When the
pages returned by a query are linked to one another by a set of links, we
say that the links between them are the chain links. Examples of chain links
in results from four different sites are depicted in Figure 6. When the result
returned by a query contains hyperlinks to pages with additional information,
we say that these links are the fanout links. For example, consider the Figure 2.
As there are 500 result matches, these results are distributed in 20 pages.
These pages are connected by chain links - each page contains links to the
next (except the last page) and to the previous page (except the first page)
in the set. However, these pages only contain short summary of each result.
The full details of each result can be found in an additional page by clicking
on the hyperlink in each result (e.g., the link labeled “2002 Ford Expedition
Eddie Bauer 4 Door 4 x 4” in Figure 2). This link is called the fanout link.

12

3.2 Constructing HW-EC Tree

The STALKER uses Embedded Catalog(EC) formalism to model an HTML page.
This formalism is used to compose tree-like structure of the page based on
List and Element nodes. The £C tree nodes are unordered. Thus, to be able
to apply the STALKER to a set of pages we should extend the £C formalism
for modelling a set of pages. We add three new types of nodes (chain, fanout,
and semantic nodes) to the EC tree formalism. The new formalism is called
the Hidden Web Embedded Catalog (HWW — EC). The chain and the fanout
nodes are assigned with descriptions of the chain and the fanout links in the
results. The semantic nodes are used to facilitate result/entity identification
in different versions of QURE-Pagelet. We now elaborate on these three types
of nodes.

Fanout Node: The fanout node models a fanout of pages. The node should
be assigned with the STALKER extraction rules for extracting the fanout links.
This node should be nested at the List node, so that the rules for searching a
fanout link are applied inside each element of this List. The fanout node does
not appear in the output XML document. All the nodes that are nested at the
fanout node appear nested at each element of the List which is the ancestor
of the particular fanout node.

Chain Node: The chain node models a chain of pages. The node should
be assigned with the STALKER extraction rules for extracting the chain links.
The chain node should be nested at the element node so that the rules for
searching a chain link are applied inside each next page with results. The chain
node does not appear in the output XML document. All the nodes that are
nested at the chain node appear nested at the element that is the ancestor of
the particular chain node. There is also a parameter called ChainType that
should be specified. This parameter can be assigned with only two possible
values: “RightChain” or “LeftChain”. We elaborate on this parameter below.

All the hidden web sites compose the chain links in their own way. The main
type of chain link that is common for most of the sites is the link to the “next”
page containing a set of results. For example, reconsider the AutoTrader.com
query results. Figure 2 shows the first page with results. We can see that the
“next” link is followed by the text “1” and the text is followed by 19 links to
other pages containing results. The “next” in the second page (see Figure 7(a))
is followed by a link to the first page. This link is followed by the text “27,
and the text is followed by 18 links to other pages containing results. And so
on for all the pages in the chain except the last page (Figure 7(d)). Thus, the
“next” is followed by different suffix in every page of the results except the
last.

13

The STALKER extraction rules are rules for locating the beginning and the
end, i.e., the prefix and suffix of the piece of data to be extracted. These
rules may contain real tags and real text data or wildcards for them. In order
to be extracted, a piece of information should be always surrounded by the
same prefix and suffix. Some elements are surrounded by different prefixes and
suffixes in different results, for these elements, several alternative prefixes and
suffixes should be specified using sufficient number of learning examples. As
we have noticed above, to extract a chain of results, we need to extract the
“next” link from every page in the chain. Moreover, we have shown that for
the “next” link it is common to be followed by (or follow) a block of links to
every other page with results (see Figures 6(a) and (b)). Let us illustrate this
issue with an example.

Example 3 Figure 7 shows the chain navigation links in several pages with
results from AutoTrader.com. There are 20 pages totally in the chain. Fig-
ure 7(a) shows the first page with results. We can see that the “next” link is
followed by the text “1” and the text is followed by 19 links to other pages
with results. “Next” in the second page (see Figure 7(b)) is followed by one
link (to the first page with results), that link is followed by the text “2”, and
the text is followed by 18 links to other pages with results and so on for all
the pages in the chain. Thus, “next” is followed by a different suffix in every
page of the results. According to STALKER technique, a user should provide
20 examples (one example per page from the chain) to learn extraction rules
for the “next” link in the results from this site. i

As we can notice (see Figures 6), the “next” link along with the block of links
to every other page with results are usually surrounded by the environment
(decorative elements and links) that seems to be not changing through different
pages with results. To decrease the number of learning examples for extracting
the “next” link, we ask a user to specify learning examples for extracting the
“next” link along with the block of links to every other page and also to
specify whether the “next” link is followed by (see Figure 7(a)) or follows (see
Figure 7(b)) the block of links to every other page. We call the first choice
LeftChain and the second choice RightChain.

Semantic Node: Due to the dynamic nature of the hidden web, the underly-
ing databases change at any time and in any way. Hence, the QURE-Pagelets
returned by a specific query executed at different time points may change also.
Often each query result in the QURE-Pagelet represents a distinct real world
entity/object. For instance, each result in Figure 2 represents a car entity.
Hence, it is necessary to be able to identify a particular entity in different
versions of the query results to facilitate hidden web data integration, change
detection, etc. For example, we may wish to determine whether the first car en-
tity (Ford F350 1 Ton Truck 4x4 Crew Cab) in Figure 2 occurs in another
version of the query results. The semantic node is used to capture necessary

14

Cars

CHAIN
Type: Left chain

LIST (Car)

FANOUT
Model Color Price Miles SEMANTIC SEMANTIC
Name: VIN Name: Year

Type: Identifier
ParentNode: Car
isOnlyAttribute: True

Fig. 8. HW — £C description.

Type: Facillitator
ParentNode: Car
isOnlyAttribute: False

<Car s>

<l-- Car 1.1 -->

<Car |d="SAJDA42B52PA2375" F1="*">
<Mbdel >Jaguar XKR</ Mbdel >
<Pri ce>$63950</ Pri ce>
<M | es>12150</ M | es>

</ Car>

<l-- Car 1.2 -->

<Car |d="SAJDA42COLNA17712" F1="2001">
<Mbdel >Jaguar XK8</ Mbdel >
<Col or >Pl at i nunx/ Col or >
<Year >2001</ Year >
<Pri ce>$49499</ Pri ce>
<M | es>19586</ M | es>

</ Car >

<l-- Car 1.3 -->

<Car F1="2001">
<Mbdel >Jaguar S- Type</ Model >
<Year >2001</ Year >
<Col or >Br onze</ Col or >
<Pri ce>$40299</ Pri ce>
<M | es>26567</ M | es>

</ Car>

<l-- Car 1.4 -->

<Car F1="2000">
<Mbdel >Jaguar XKR</ Mbdel >
<Year >2000</ Year >
<Col or >Br onze</ Col or >
<Pri ce>$49595</ Pri ce>
<M | es>30340</ M | es>

</ Car>

</ Car s>

(a) Version 1

<Car s>

<l-- Car 2.1 -->

<Car F1="2001">
<Mbdel >Jaguar XK8</ Mbdel >
<Year >2001</ Year >
<Col or >Br onze</ Col or >
<Pri ce>$50995</ Pri ce>
<M | es>2650</ M | es>

</ Car >

<l-- Car 2.2 -->

<Car |d="SAJDA42B52PA2375" F1="2002">
<Mbdel >Jaguar XKR</ Mbdel >
<Year >2002</ Year >
<Col or >Ant hr aci t e</ Col or >
<Price>$63950</ Pri ce>
<M | es>12150</ M | es>

</ Car >

<l-- Car 2.3 -->

<Car |d="SAJDA42COLNA17712" F1="2001">
<Mbdel >Jaguar XK8</ Mbdel >
<Col or >Pl at i nunx/ Col or >
<Year >2001</ Year >
<Price>$49499</ Pri ce>
<M | es>19586</ M | es>

</ Car>

<l-- Car 2.4 -->

<Car F1="2000">
<Mbdel >Jaguar XKR</ Mbdel >
<Year >2000</ Year >
<Col or >Br onze</ Col or >
<Pri ce>$38995</ Pri ce>
<M | es>1039</ M | es>

</ Car>

</ Cars>

(b) Version 2

Fig. 9. XML representation of query results.

information from the query results to facilitate such entity identification.

Semantic node is a leaf node in the HW — EC tree. It is transformed to an XML
attribute in the output XML file. It can be used to identify a result/entity in
a QURE-Pagelet uniquely (identifier) or it may provide enough information
to determine which results are related and has the potential to be identical
(facilitator) in the old and new versions of the QURE-Pagelet. There are
four parameters that needs to be specified for the semantic nodes in order
to facilitate such entity identification and representation: ParentNode, Tiype,
Name, and the isOnlyAttribute. The ParentNode parameter is the link to the
particular node in the HW — £C description that should be assigned with

15

this attribute in the output XML file. The Type parameter is for defining the
type of an attribute (it can be of only two types: identifier or facilitator).
We discuss these two types in the following subsections. The Name denotes
the name of this node. The isOnlyAttribute contains a boolean value. If the
isOnlyAttribute is set to “true” then it denotes that the piece of data extracted
for this node should only appear in output XML as an attribute/value pair.
Otherwise, it should appear both as an attribute and as an element. So if this
information is needed as a part of an XML document then the isOnlyAttribute
parameter is set to “false” so that the node appears as an element. Following
is the example illustrating the HW — £C formalism and mapping of a set of
hidden web pages to XML.

Example 4 Consider the AutoTrader.com. Suppose a user wishes to search
for Jaguar cars on 2nd and 5th July, 2003 respectively. The results are pre-
sented as a list of cars. Each result contains car details such as Model, Year,
Price, Color, Seller, Vehicle Identification Number (VIN), etc. Fig-
ure 8 depicts a partial HVWW — EC tree for the QURE-pagelets and Figure 9
depicts the two versions of XML representation of the results according to the
tree. For clarity and space, we only show a subset of the element set E in
each result of the query. The root Cars node is established for uniting all the
other nodes. The next node Chain models the set of pages connected with the
“left” chain links. The List (Car) node is assigned with an iterative rule for
extracting the elements of the Car. The fanout node denotes that each Car
element contains a link to the page with extra data. The fanout is assigned
with rules for extracting this link from the piece of HTML document that was
extracted for each Car element in the previous step. The next level of the tree
contains six elements. Four of them are Element nodes. The last two nodes
are semantic nodes, each containing four parameters as discussed above. We
can see in Figure 9 that the VIN is extracted only once for each Car as the
value of attribute Id (isOnlyAttribute is set to true). It does not appear as a
child element of a Car node. The rest of the elements are nested in the output
XML the same way they are nested in the tree. i

3.3 Identifier

Some elements in a set of query results can serve as a unique identifier for
the particular result, distinguishing them from other results. For example, the
Auction Id uniquely characterizes every Auction information returned as
the result of querying an on-line auction site. The VIN uniquely characterizes
every Car in the query results from a car database. These elements are called
identifiers. Table 1 contains examples of Identifiers in query results from some
hidden web sites. An identifier may be either automatically generated by
the hidden web database (like the Auction Id) or stored in the database
along with the data (like the VIN). In this work we assume that the identifier,

16

1

2
car 3 4 s

6 8 o Mlles 15 MI|ES 22 MI|ES
[Model | [Price][Mies Model Color Model Color Model Color
28 91 11 13 |14 16 19 9 24
25 () [Year [Price Year Pnce Year Pnce
40 42

95

12150 "
F =201 F=2000°
Jaguar XkR 90 ’—‘i‘ ’—‘i‘ @ SAJDAAZCOlNAlWlZ [%5 [37
2001 19499 2001 10299 2000 19595
L al l | | [se0299] [4955 |

39

(a) T, (Version 1)

27
Id"SAJDA42B52PA3T5"
$63950 d"SAIDALZBS2PAZSTS Jaguarxkg | | Plainum] 31 [19586] 33 92 Jaguar SType | [Bronze] 36 [26757 | 38 JaguarXKR | [Bronze] 41 [30340] 43

« o]

Car Car
5] 54 56 59 61]
!_‘_\ !_‘—\ W] | e !_‘—\ % [!_‘—\ e
Model Color 53 % Model 5 Color 57 158 @ Model 50 Color
Year Pnce Year Price Year Pnce
71 73 F,="2001"

‘ 76 ‘ 8 Id=" SA.]DAAZBSZPAZE?S Id SAJDAAZCOINAlWlZ ‘86 ‘ 88

Car
66
& Model Color Mélgs
F,="2001"
Year Pnce 101
F=2000"

7 2001 [850095 | - [2002] | [s6a%50 | 80 2001 $49499 5 [2000 | |[$38995 |

Jaguarxke | [(Browe |72 [2650] 74 [paguarxkr| [Antracie] 77 12150] 79 97 Jaguar kg | [Platnum] 82 [1958] 84 9 Naguarxkr | [Broze |87 [1039] 89

(b) T, (Version 2)

Fig. 10. Tree representation of two XML documents from Figures 9.

being assigned to a particular query result, does not change for this result
through different versions of the query results. That is, an identifier behaves
like an unique identifier or “key” for the result. However, it is possible for
the identifier to be missing in a result. Also, if an identifier is specified (not
specified) for a node in the initial version of the query results or when the
node appeared for the first time in the results, then it will remain specified
(not specified) throughout all versions, until the node is deleted. This reflects
the case for most web sites we have studied. Note that we allow specifying
only one identifier for each result. As each result is transformed into a subtree
in the XML representation of the hidden web query results, we model the
identifier of a particular node in the subtree as an XML attribute with name
14 and the identifier information as value. We now illustrate with an example
the usefulness of the identifiers in change detection. Note that details of the
change detection problem is beyond the scope of this paper. The readers may
refer to [13] for further details.

Example 5 Consider the QURE-pagelets of Autotrader (Figure 2). Given the
query results and our understanding of its semantics, we may wish to state
the following constraints:

e The VIN in the results uniquely identifies a particular car entity. Note that
VIN may not be present for some results. For instance, the third car in the
results depicted in Figure 9(a) has no VIN specified. However, if it exists
then it will not be removed from the subsequent versions of query results
involving the particular car.

e The year of manufacturing and the model of each car do not get modified
in different versions. That is, a “mercedes” cannot be updated to “jaguar”
or if the manufacturing year of a car is “2001” then it cannot be modified

17

Site Query Element Identifier Presence
www.autotrader.com Search for | Car (siblings: Model, | VIN (Vehicle Iden- | Optional
(Buying cars, etc.) cars Color, Year, etc.) tification Number)
www.autobytel.com Search for | Car (siblings: Model, | VIN (Vehicle Iden- | Optional
(Buying cars, etc.) cars Color, Year, etc.) tification Number)
www.travelocity.com Search for | Flight (siblings: Depar- | Flight Number Compulsory
(Booking hotels, flights, | flights ture, Arrival, Airline, etc.)

cars, etc.)

www.ebookers.com Search for | Flight (siblings: Depar- | Flight Number Compulsory
(Booking hotels, flights, | flights ture, Arrival, Airline, etc.)

cars, etc.)

libweb.ntu.edu.sg Search for ti- | Title (siblings: Status, | Call Number Compulsory
(NTU library) tles Authors, Location)
www.pubmed.org Search for | Publication (siblings: Ti- | PMID (PubMed | Compulsory
(Medical publications) publications tle, Authors, Date, etc.) ID)
www.auctions.yahoo.com | Search for | Auction (siblings: Title, | Yahoo! AuctionID | Compulsory
(On-line auctions) auctions Seller, Price, etc.)
www.ebay.com Search for | Auction (siblings: Title, | Ebay Auction ID Compulsory
(On-line auctions) auctions Seller, Price, etc.)
www.nationjob.com Search for | Job (siblings: Descrip- | NationJob Job ID | Compulsory
(Job database) jobs tion, Requirements, Con-

tact, etc.)
ads.harvard.edu Search for ab- | Abstract (siblings: Au- | NASA Biblio- | Compulsory
(Database of astronomy | stracts thors, Journal, Date, etc.) | graphic Code
abstracts)
www.uspto.gov Search for | Patent (siblings: Patent | Patent Number Compulsory
(US Patent Full Text | patents Number, Title, etc.)
Database)

Article (siblings: Authors, | Article ID

Issue, Pages, etc.)

Search for ar- Compulsory

ticles

www.architectureweek.com
(Architecture magazine)

Table 1
Examples of Identifiers in query results from different hidden web sites.

to “2002” or any other year in the subsequent versions.
e Similarly, the seller attribute of a car does not get modified in different
versions for the same car entity.

In particular, the VIN is the unique identifier for a specific car. If we use
the VINs as identifiers for the cars in the list, then we can distinguish cars
with VINs effectively. A sample of tree representations of the documents in
Figure 9 are shown in Figure 10. The Car nodes in T; and Ty have child
attributes with name Id and value equal to the VIN. Intuitively, if we wish to
detect the changes between the two versions of the query results, then we can
match the Car nodes between two subtrees by comparing the Id values. For
instance, the node 2 in T; matches the node 46 in Ty and the node 3 in T,
matches the node 47 in Ty (same VIN values). However, the nodes 2 and 3 do
not match the node 45 as it does not have any identifier attribute. i

18

Site Query Result Item Facilitator | Presence

www.autotrader.com Search for cars Car (siblings: Model, | Seller Compulsory
(Buying cars, etc.) Color, Year, etc.)
Search for cars Car (siblings: Model, | Year Optional
Color, Year, etc.)
www.cbooks.com Search for books Book (siblings: Author, | Title Compulsory
(buying computer books, Title, Price, etc.)
etc.)
Search for books Book (siblings: Author, | Publisher Optional
Title, Price, etc.)
www.imdb.com Search for movies Movie (siblings: Title, | Title Compulsory
(information on movies, Status, Year, Crew, etc.)
actors, etc.)
Search for movies Movie (siblings: Title, | Status Optional
Status, Year, Crew, etc.)
www.travelocity.com Search for hotels Hotel (siblings: Title, | Title Compulsory
(booking hotels, flights, Address, Rooms, Rates,
cars, etc.) etc.)
Search for cars to rent | Car (siblings: Model, | Agency Compulsory
Rental price, Agency,
etc.)
www.stanford.edu Search for people in | Person (siblings: Name, | Designatio Compulsory
Stanford Status, Department, etc.)
Search for people in | Person (siblings: Name, | Name Compulsory
Stanford Status, Department, etc.)
star-www.rl.ac.uk (" Per- | Search for astronomy | Person (siblings: Name, | Name Compulsory
sons in Astronomy” | related persons Institution, E-mail, etc.)
database)
www.hoovers.com Search for companies Company (siblings: Title, | Title Compulsory
(Hoover's — company Address, Phone, Com-
intelligence) pany News, etc.)
Search for companies Company (siblings: Title, | Phone Optional

Address, Phone, Com-
pany News, etc.)

www.ipl.org Search for associations | Association (siblings: | Title Compulsory
(IPL Association Finder) Title, Description, URL,
etc.)
www.kiplinger.com Search for publications | Publication (siblings: Ti- | Date Optional
(Kiplinger financial tle, Date, Abstract, Num-
publications) ber of words, etc.)
Table 2

Examples of Facilitators in query results from different hidden web sites.

3.4 Facilitator

One or more elements in the result of the hidden web query result set can serve
as non-unique characteristics for distinguishing the results from one another.
This is particularly important when the results do not have any identifier at-
tribute. Two results that have the same characteristics (same attribute/value
pair) can be matched with each other. While results that have different char-
acteristics can not be matched with each other. Examples of types of such
characteristics are: the Year or Model of a Car node in the query results from

19

car trading site, the Title or Year for a Movie node in the query results from
movie database, the Title or Publisher for a Book node in the query results
from an online book catalog. These non-unique elements are called facilitators.
Note that these elements may not identify a result (entity) uniquely. But they
may provide enough information to identify results that do not refer to the
same entities. For example , if we wish to match the last result (node 5) in
Figure 10(a) with the first result (node 45) in Figure 10(b) then these two cars
are not same entities in the two versions as they have different manufacturing
year.

We allow specifying any number of facilitators on a node. The facilitators are
denoted by node attributes with names Fy, Fs, ..., F, for all n facilitator
attributes specified for a particular node. If a node does not have a facilitator
attribute (the subelement may be missing) then the facilitator value is set to
“x”7. Note that the facilitator attribute for a node can appear in any version of
the query results, but once it appears we assume that it will not disappear in
the future versions. As we never know which facilitator may appear for a node
in the future, a node with missing facilitator attribute should be matched with
nodes having facilitators. This statement reflects the case for most hidden web
sites we have studied. Table 2 depicts some examples of facilitators in query
results from different hidden web sites. In particular, this table shows us that
the presence of facilitators is not always compulsory.

The choice of facilitators made by the user is based on the following two
guidelines.

(1) Let R;(Ax) and R;(Vj) be the attribute set and its corresponding value set
in a hidden web query result R;. Let R and Ry be two query results for a
given query. If Ry(Vy) # Ra(Vi) indicates that Ry and Ry represents two
distinct objects then A, can be considered as a possible facilitator. Note
that, unlike identifiers, if R1(Vy) = Ra(Vi) then it does not necessarily
indicate that R, and R, represents two identical objects. For example,
consider the year of manufacturing of a car. If two query results have
different manufacturing year then definitely the two cars cannot be iden-
tical. On the other hand, if the manufacturing years are identical then it
does not necessarily indicate that the cars are identical. However, consider
the price attribute of a car. If the price values of two results are distinct
then it does not necessarily indicate that they represent two distinct car
objects as the price of the car can be updated. Hence, choosing year of
manufacturing over price as facilitator is a better choice as it can po-
tentially reduce number of comparisons required to identify identical car

entities/objects.
(2) Let Ag1, Aga, - .., A, be the set of possible facilitators identified from the
above step and C4, (s, ..., C, be the number of distinct possible values

of the facilitators in the query results for n > 1. Then, Ay; is chosen as

20

the facilitator if C; > C; for j # ¢ and V 0 < j < n. Intuitively, we choose
the facilitator that has largest number of distinct values. This is because
the larger the number of distinct values the potentially lesser number to
results that needs to be compared to identify identical/related objects.
For example, consider the attributes year of manufacturing and number
of doors of a car object. Note that if the values of these attributes
are not identical in a pair of query results then definitely they represent
distinct car objects. Generally, the potential number of distinct values
for year is much larger than that of number of doors. Hence, if we
use year rather than number of doors as facilitator, then matching by
facilitators becomes more effective as the number of object comparison
will be much lesser.

We now illustrate with an example how the facilitators can be useful for the
change detection problem.

Example 6 Reconsider the Figure 9. We can find several candidates for fa-
cilitators, i.e., Color, Year, or Model. However, based on the above guidelines,
it is reasonable to use the Year or Model as the facilitator. Figure 10 shows
the facilitators for various nodes. There is one facilitator specified: the Year
as an attribute with name Fj for every Car node. Note that if a Car node
does not have an subelement Year then F} is set to “x”. Now let us match the
node 45 in Ty with all the nodes in T;. Observe that node 45 does not have
a VIN. Therefore, it cannot match with nodes 2 and 3. Hence we do not need
to compare node 45 with these nodes. Using F; we also observe that the node
45 cannot match with node 5 as the facilitators do not match. We can see
that the node 45 only matches node 4 in 7T} as it does no have any VIN and
its F1="“2001". However, this is not sufficient information to confirm whether
these two nodes represent the same car entity. But if we use both the Year
and Model as facilitators then we can answer this question by comparing the
Model of node 45 with that of node 4. As the Model of nodes 4 and 45 are not
identical, we can say that these nodes do not represent the same car entity.
Thus, we can state that the node 45 is inserted in T as none of the car entities
in 77 matches the car entity described by node 45. i

4 Algorithm HW-Transform

Figure 11 depicts the HW-Transform algorithm for transforming QURE-pagelets
to XML format. This algorithm takes as input the first page of the results and
the HW — £C description of these results, and returns the XML representa-
tion of the results. There are three main steps in the algorithm. The first step
is to extract information from query results and generate tree T" storing ex-
tracted information in hierarchical order according to the HW — £C descrip-
tion of these results. Lines 8-11 in Figure 11 describe this step. In the tree
T, all the attributes are presented as leaf nodes, according to the HW — EC

21

~No oA Ww

8
9
10
11

12

13
14

Input: Index, /* index page of query results */
HWEC /* HWEC description of these results */
Qutput: Doc /* XM representation of query results */
1 Titree /* for storing tree representation of
query results */
2 Ta: tree /* which is enabled to store attributes

for every node */
[Te]: set of trees
Doc: XM. docunent
set T, Ta, [Te], and Doc enpty
l et Root be the root of HWEC
add Root as a root to T
/* extract information fromquery results */
for all Ch that is a child of Root in HWEC do
add ExtractNode(lndex, Ch) to [Te]
end for
add every Te from[Te] as a child of root node to T
/* assign attributes */
Ta = AssignAttributes(T, HWEC
/* generate XM */
Doc = GenerateXM.(Ta)
Ret urn Doc

Fig. 11. The algorithm HW-Transform.

Input: Doc, /* a piece of source code */)))
HWEC, /* HMEC description of query results */ ii ford:I lExtCh t?i.‘ LSDi Chll_,wEOf (’\:‘h' ntH\NEC do
N /* node in H¥EC to be extracted from Doc */ 15 engfor ract Li st (Doc, C Ch) to [Te]
. * *
Qutoput: [Te] /* a set of trees */ /* load next page in the chain using rule
1 [Te]: set of trees assigned to Nto extract its URL */
16 Doc = Doc. Next Page
2 set [Te] empty 17 til (Doc. Next Page==)
/* extract Elenment or Attribute */ 18 ggtl (TC. Xt Page==2)
3 if (N Type=="Elenment" or N Type=="Attribute") 19 q _;”n [Te]
4 add ExtractEl ement (Doc, HWEC, N) to [Te] end |
/* extract Fanout */
5 Return [Te] . . .
6 endif 20 if (N Type=="Fanout")
* Dot /* load fanout page in the chain using rule
/* extract List */ h .
:) g w assigned to Nto extract its URL */
7oif (N Type==rList®) 21 Doc = Doc. Get Fanout Page
Ex Li HW E Ti - . .) .
g g?urnt[ig; i st (Doc, C N to[Te] 22 for all Chthat is a child of Nin H¥EC do
10 end if 23 add ExtractNode(Doc, HWEC, Ch) to [Te]
[* extract Chain */ gg‘ ;2? for T
11 if (N Type=="Chain") 2 ern [Te]
12 repeat end 1

Fig. 12. The algorithm ExtractNode.

description. The next step is to traverse tree T" in order to assign attributes
to the nodes. Line 12 in Figure 11 describe this step. The final step is to gen-
erate XML representation of the results. Line 13 in Figure 11 describe

this step. We elaborate on these steps now.

4.1 Eztracting Information

ExtractNode is a recursive algorithm for extracting pieces of data from query
results corresponding node N in the HW — £C description of the results. As
output, ExtractNode returns a set (one or more) of trees representing com-

22

Input: T I* tree representation of query results */ 17 add attribute vith nare 1d and
put=- 1, present query val ue Hash(Attr.Value) to Node

HWEC /* HMEC description of results */ . . "
Qutput: Ta /* tree with attributes assigned to nodes */ 18 if (_AkmsOﬂy_Atmbute) then delete Attr fromTa endif

’ /* assign Facilitator attribute */
1 Ta: tree /* which is enabled to store attributes for every node */ 19 else |f(AtFr.Attr!buteType?: faCIIIIator)
2NN AL R Av nodes in HWEC 20 add attribute with name "F_"+p and
P i’nte 'er T val ue Hash(Attr.Value) to Node
1 ?é—Tg 21 if (Ak.isOnlyAttribute) then delete Attr fromTa endif

-)) .) 22 p=p+l
5 for all Nin HWVEC which has at |east one attribute defined do o e) .
6 let AL, A2... Andenote all the nodes that are attributes for N 23 /els:SSIgn comon attribute */
; Mwwly\j“he ancestor for all its attributes in HWVEC) 2 add attribute with name Attr.Nare and
9 else_ value Attr.Value to Node
10 let Mbe the |east conmon ancestor of N AL A2 ... An ;2 enldfigAk.\sOlIyAltrlbute) then delete Attr fromTa endif
g feg;! la{l Node of type Min Ta do /* substitute Facilitator attribute that is not found */
13 -1 s 27 else if(Attr. AttributeType=="Facilitator")

p= 28 add attribute with name "F_"+p and value "*" to Node

I* extract Attribute */ 29 041
14 foral A 1<=k<=ndo » s
15 if (there is node Attr of type Ak

. 31 end for
in subtree of Ta rooted at Node) 2 end for
I* assign Identifier attribute */ 33 end for

16 if (Attr.AttributeType=="Identifier") 34 Return Ta

Fig. 13. The algorithm AssignAttributes.

plete set of data corresponding to node N extracted from the query results.
In this data set Attribute nodes are extracted as Element nodes.

The ExtractNode algorithm is based on functions ExtractList and Ex-
tractElement (see Section 2) designed for iterating Lists and extracting El-
ements according £C description of the page. The ExtractNode algorithm is
designed to provide the superstructure that enables us to work with a set of
pages. So all the procedures used in this algorithm are based on ExtractList
and ExtractElement.

Let us now go to Figure 12 showing the ExtractNode algorithm. Lines 1,2
contain initialization of the set trees T, that is to be grown by further steps and
finally returned as output. Lines 3-6 contain procedures that will be executed if
input node is Element or Attribute. Lines 7-10 contain procedures that should
be executed if input node is List. Lines 11-19 contain procedures that will be
executed if input node is Chain. These procedures include downloading all the
pages from a Chain. Lines 20-26 contain procedures that should be executed if
input node is Fanout. These procedures include downloading a Fanout page. If
a particular List or Element extracted by ExtractList or ExtractElement is
still the ancestor of any Chains or Fanouts, ExtractNode is called recursively.

4.2 Assigning Attributes

In the tree T, all the attributes are presented as leaf nodes, according to the
HW — EC description. The next step is traverse tree 1" in order to assign
attributes to the nodes. Line 12 in Figure 11 describes this step. Note that

23

we do not assign attributes to particular nodes while first parsing the tree in
the previous step as attributes can be located in different parts of the tree.
It is faster to assign all attributes doing one traversal in a separate step than
doing a lot of additional traversals in the previous step. Figure 13 shows the
algorithm for assigning attributes.

The algorithm traverses tree 1" generated by the previous step and assigns
attributes in tree T according to the HW — £C description of the query re-
sults. First, the algorithm localizes the least common ancestor of the node and
its attribute, and then localizes the attribute by the relative path from this
ancestor. This procedure runs until all the nodes that are assigned with any
attributes in the HW — £C description are traversed in this manner.

Let us now go through the algorithm (Figure 13) step by step. Lines 1-4 contain
initialization and description of the variables used in the algorithm. Lines 5-33
contain the main cycle going through all the nodes that have any attributes
assigned in the HW — EC'. The embedded cycle in lines 12-32 goes through
last common ancestors of such nodes and their attributes. Inside this cycle
there are three conditions: for assigning Identifier attributes in lines 16-18,
for assigning Facilitator attributes in lines 19-22, and for assigning common
attributes in lines 23-26. The last action inside this cycle is filling values of
facilitator attributes that are not found with “x”.

The final step is to generate XML representation of the results. To
generate XML document from the tree, we use simple depth/breadth-first
traversal of tree starting from the root.

5 Implementation

We used Microsoft Windows 2000 Professional as operating system. We have
implemented HW-STALKER using Java. We first briefly describe our system
architecture and then present some performance results.

5.1 Architecture

As shown in Figure 14, our prototype system consists of two main modules
namely FExtraction Module and Change Detection Module, and Repository for
storing intermediate data and system output.

o Extraction Module. This module is designed for extracting information
from original HTML-formatted hidden web query results and for transform-
ing it into XML format. XML versions of query results are to be stored in
Repository. There are three inner modules in Fxtraction Module. User In-

24

Extraction Module

User Interface

(Constructing HW-EC trees and
providing samplesfor rule
induction)

A
A
P Rule Induction Module

\ 4

Web

HTML to XML Transformation
Module

\ 4

Change Detection Module

Repository
v

A

Parsing Module . B
. . Descriptions Repository
(Parsing XML to trees and hashing) (HW-EC trees assigned with

l extraction rules)

Tree Comparison Module
(Detecting changes between two
trees) .| ResultsRepository (XML versions
of al the results)

v
Change Representation Module

» Changes Repository

Fig. 14. The system architecture.

terface is designed to assist a user in constructing HW — EC tree for a
set of pages with hidden web query results. User Interface is also designed
for marking examples that are further used for rule induction. The result-
ing tree is to be stored in Repository. Rule Induction Module is designed
to induce extraction rules being provided with the examples mapped by
a user and HW — EC tree constructed by a user that are both stored in
the Repository. Rule induction is based on the STALKER algorithm as dis-
cussed earlier. HTML to XML Transformation Module is designed to trans-
form QURE-pagelets into XML format being provided with extraction rules
HW — EC tree that are taken from the Repository. This module is based on
the HW-Transform algorithm (Section 4).

Change Detection Module. This module is designed to detect changes
between different versions of query results. It is based on the HW-Diff al-
gorithm [13]. Note that this module is beyond the scope of this paper.
The XML versions of these changes are to be stored in Repository. There
are three inner modules in Change Detection Module. Parsing Module is
designed for converting XML to trees and hashing tree nodes. Tree Com-

25

Open
Open URL
Save
Load Tree
Save Tree

Exit

File: En:lit Analyse __Help

Analyse Tree
Domain

HTML ta XML

HTML b %ML (URL)

Add Selection
Crop

Create Node

Delete Mode

Rename

Fig. 15. Main menus of User Interface from Extraction Module.

B] AutoTracer
E-] CHAIN
B Car
Model
® Year
* I

: ﬁ- Create Child
Mie: Delete Child
X Rename
FH_] AutoTrader
|J:'|__| CHAIN v save.ﬂsEIeent _
|J:-|_ F savedsattribute » savedsattribute
| Car isFanout AutoTrader
®n Cscan I
LA LeftChain Modsl
L v RightChain fear
& p - uIM
®C Color
P Miles

(a) Results general structure. (b) Assigning attributes.

Fig. 16. Constructing HW — £C description of results from AutoTrader.com.

parison Module is designed for detecting changes between two trees repre-
senting query results. Change Representation Module is designed to convert
the changes detected between two trees to XML format.

Repository. Repository is aimed to store HW — EC trees, XML versions
of query results, and the changes that are detected to hidden web data. In
the current implementation Repository is simply based on file system.

26

2000 Acura 3.2TL Sedan

File Edit Analyse Help

2000 ACURAZ2Z2TL™ Photo Included! ® Has Waranty! ® This Dievan Acura of

o T8

=10l x|

-] AutaTrader
|
E'F_ Create Child
Delete Child
Rename

» savehsElement

isFanout
 isChain
L4 in

RightChain

CHAIN: 0 suffixes, 0 prefjdes.

saveRsOttbute b

#4 hret="helpfoms_article_page jrmpl?article_id=078#advertized"=Advertized Price Range<iz=for thiz search=br=
il
=div style="margin-left150x;"=
<table cellpadding="0" horde " cellspacing="1"=
<tr=

Price: §19835
Distance: 8 lies

Advernsed Price Range for this search
Highest price: $63333
Lowest price: $5600
Average price: $18356

iG] 2000 Acura NSX T Coupe

Sort by: |Price 'I

[=] Email this page to & friend

(a) Chain selection.

| Lendinglree |

2000 ACURA NSX-T * Fhoto

late model twa dosr vehicle features Low Milzage, Power Marwalk W
Steering, Power Brakes, Power Door ...

Price: BA3333
Color: Gray

* Has i tyl = This Devan Acura of v Acura |

Certified

Want Banks to
Compete Over

Acurs Cetified
Pre-Crvned
Wehicles

Email Seller

Private Seller

nes
Bl Fil= Edit Analyse Help
Cof B | AutaTrader =hr: ;I
Wil =1 CHAN Distani
Dit =) car <hr=

g -# Model <img sro=
20 @ ‘Year = =
=1 - m =div clagz="srlmil
200 -® Price <natr=in: I ; thakrs
pfs <hr= Add Selection
Iod @ Color

3 =fdiv= Crop

Pri - hiiles i

il =itng src="fitnchlank_dat oi
Di: =hr=

| =itng sro="lmgMlank_dot gif" width="1" height='
20 <hr=
Pri =hil=

=td clazs="srlpadding" valign="top" width="100" align="left"=
e <div class="srlliny">
il =k clag Fitiry"=
Dit =a href="ffindacarfvdetail trplrcar_id=1428556638dealer_id=92270&. &start_year=19538color=&cardist=25"=Devan Acura of
Morwalk=iz=
ViIK
=il |

YIN: 0 suffizes, O prefizes.

Some Companies advertise on cars and they need people like

¥OUto drive them.You could even GET PAID to drive wour own

car.For just $24.05 get unlimited socess to our database of
companies that have given away aimest ONE MILLIONCARS!

2000 Acura 3.5 RIL Sedan

GET A FREE CAR!

4.d1.5 oyl ABS,air bags,air,alamm,all power,alloy whe els,amfm wu
cass,auto,CD,cruize fully [oaded,leath int,pb,pdl,p moonroof,p

.. more

Price: §24987

Fig. 17. Sample selections in results from AutoTrader.com.

Lexus ofWestport

(b) Element selection.

27

Let us now illustrate the transformation of QURE-pagelets to XML step by
step.

(1) The first step is to specify HW — EC tree describing query results from
this site. The User Interface in our system has two main areas. One area
is for composing HW — £C trees and other area is for marking training
examples. Main menu of User Interface is depicted in Figure 15. Figure 16
shows a tree composed to describe query results from AutoTrader.com.
This figure also shows how a user can assign some node in HW — EC tree
as an attribute of another node.

(2) The next step is to induce extraction rules by studying examples of
queries. Figures 17 shows examples of assigning training examples to
the nodes of the HW — EC tree composed at the previous step. After all
the examples are assigned, a user starts rule induction process by going
to Analyse — AnalyseTree in main menu (see Figure 15). After all the
rules are induced, a user can save HWW — EC tree with assigned rules and
use this tree later to extract query results.

(3) Finally, a user uses a HW — EC created at the previous step to trans-
form the QURE-pagelets to XML and stores them in the Repository. At
this step a user uses the same User Interface (See the Main menu from
Figure 15: Fiile — LoadTree and Analyse — HT M LtoX M L).

5.2 Performance Study

In this section, we present performance analysis of our prototype system.
All the experiments have been performed on a Pentium 4 CPU 2.4 GHz
with 512 MB of RAM. We use the data from the following six hidden web
sites for our experiments: AutoTrader.com, Amazon.com, Architecture. com,
NationJob.com, IMDb.com, and CiteSeer.org.

5.2.1 FExtraction Time

To evaluate the performance of the extraction of relevant data from hidden web
pages to XML format, we have to evaluate the performance of rule induction
mechanism and the performance of HTML to XML transformation mecha-
nism. Performance of the rule induction system is determined by the time a
user spends on creating HW — EC tree. It is also determined by the time a user
needs to provide examples of data for each element of HW — £C tree. This
time dramatically depends on the number of examples a user should provide
for each element of results to learn correct extraction rules. The HW — EC
trees that were composed to describe results of sample sites are presented in
Figure 18. The variable Pec; denotes the facilitator in this figure. The number
of training examples for some of the elements of the hidden web data that was
used in our experiments are shown in Table 3. Observe that we only need one
example to learn extraction rules for one element for 40% of elements in the

28

Aut oTr ader . com

Searching for cars with w de range
of car paraneters

http://ww. aut ot rader. cont f i ndacar
/index.jtnpl ?2ac_afflt=none

E-_] AutoTrader

CHAIM
=) Car

hade!
Year
W
Price
Calor
hiles

LE B K B B

<! ELEMENT Aut oTrader (Car)*>

<! ELEMENT Car (Model, Year, VIN, Price, Color, Mles)>
<l-- VIN -->

<! ATTLI ST Car |d CDATA #l MPLI ED>
<!-- Model -->

<! ATTLI ST Car Pec_1 CDATA #l MPLI ED>
<l-- Year -->

<! ATTLI ST Car Pec_2 CDATA #l MPLI ED>
<l-- Color -->

<! ATTLI ST Car Pec_3 CDATA #l MPLI ED>
<I ELEMENT Mbdel (#PCDATA) >

<! ELEMENT Year (#PCDATA)>

<I ELEMENT VI N (#PCDATA) >

<I ELEMENT Price (#PCDATA)>

<I ELEMENT Col or (#PCDATA) >

<! ELEMENT M | es (#PCDATA)>

Amazon. com
Sear ching for books with keyword

http://ww. anmazon. com

=] &mazon
B CHAN
IJ:'|—_| Book

B) FaNoUT
ISBM
Title
Price
Year
Authors
Acailability

LR B K N N

<! ELEMENT Anmazon (Book)*>

<! ELEMENT Book (ISBN, Title, Price, Year, Authors,
Availability)>

<!-- ISBN -->

<! ATTLI ST Book |d CDATA #l MPLI ED>
<l-- Year -->

<! ATTLI ST Book Pec_1 CDATA #l MPLI ED>
<! ELEMENT | SBN (#PCDATA) >

<IELEMENT Title (#PCDATA)>

<I ELEMENT Price (#PCDATA)>

<I ELEMENT Year (#PCDATA)>

<I ELEMENT Aut hors (#PCDATA) >

<! ELEMENT Avai |l abi lity (#PCDATA)>

Archi tectureWeek. com

Sear ching for exhibitions,
references, articles, etc. with
keywor d

http://wwv. ar chi t ect ur eneek. com
Isearch. ht i

EH_] Architectureieek
=] CHAM
IJ:'|—_| Record
#* Title
Dezcription
Date
Size

<! ELEMENT ArchitectureWek (Record)*>
<! ELEMENT Record (Title, Description, Date, Size)>
<!-- Description -->

<! ATTLI ST Record | d CDATA #l MPLI ED>
<l-- Date -->

<! ATTLI ST Record Pec_1 CDATA #l MPLI ED>
<l-- Size -->

<! ATTLI ST Record Pec_2 CDATA #| MPLI ED>
<IELEMENT Title (#PCDATA)>

<! ELEMENT Descri ption (#PCDATA) >

<I ELEMENT Date (#PCDATA)>

<I ELEMENT Size (#PCDATA)>

Nat i onJob. com

Searching for jobs with w de range
of paraneters

http://ww. nationj ob. com

=] MationJok
B Job
E-) FANOUT

Company

Position

® Location

® Qualifications
#® Saolary

<! ELEVMENT Nat i onJob (Job)*>
<! ELEMENT Job (Conpany, Position, Location,
Qualifications, Salary)>

<!-- Conpany -->

<! ATTLI ST Job Pec_1 CDATA #l MPLI ED>

<!-- Position -->

<! ATTLI ST Job Pec_2 CDATA #l MPLI ED>

<! ELEMENT Conpany (#PCDATA) >

<! ELEMENT Position (#PCDATA) >

<! ELEMENT Location (#PCDATA) >

<l ELEMENT Qualifications (#PCDATA)>

<I ELEMENT Sal ary (#PCDATA)>

| MDb. com

Sear ching for user conments with
novie title

http://ww.indb. com

E-_] IMDE_Comments
E-) CHAIM
=] Comment
® Author
Fram
Date
Summary

<! ELEMENT | MDB_Comments (Comment) *>
<! ELEMENT Conment (Author, From Date, Summary)>
<!-- Author -->

<! ATTLI ST Comment Pec_1 CDATA #l MPLI ED>

<!-- Date -->

<! ATTLI ST Conment Pec_2 CDATA #l MPLI ED>

<! ELEMENT Aut hor (#PCDATA) >

<!I ELEVENT From (#PCDATA) >

<I ELEVENT Date (#PCDATA)>

<! ELEMENT Sunmary (#PCDATA) >

CiteSeer.org

Searching for on-line scientific
papers with keyword

http://citeseer.nj.nec.conl cs

EH_] CiteSeer
=) CHAM
IJ:'I—_l Paper

E-] FANOUT
* Title
® Year
® Authors
® Conference
® Abstract

<! ELEMENT Ci teSeer (Paper)*>

<I ELEMENT Parper (Title, Year, Authors, Conference,
Abstract) >

<!-- Abstract -->

<! ATTLI ST Paper |d CDATA #| MPLI ED>

<l-- Title -->

<! ATTLI ST Conment Pec_1 CDATA #l MPLI ED>
<l-- Year -->

<! ATTLI ST Conment Pec_2 CDATA #l MPLI ED>
<!-- Authors -->

<! ATTLI ST Conment Pec_3 CDATA #l MPLI ED>
<IELEMENT Title (#PCDATA)>

<IELEMENT Year (#PCDATA)>

<I ELEMENT Aut hors (#PCDATA) >

<! ELEMENT Conf erence (#PCDATA)>

<! ELEMENT Abstract (#PCDATA)>

Fig. 18. HW — £C descriptions and D'TDs for modelling query results from different

sites.

29

Site Element Number Site Element Number
of sam- of sam-
ples ples

AutoTrader.com AutoTrader 1 Amazon.com Amazon 1

Car 8 Book [§

Model 5 ISBN 2

Year 5 Title 1

VIN 1 Price 1

Price 1 Year 1

Color 1 Authors 3

Miles 2 Availability 1

CHAIN 5 CHAIN [§

FANOUT 3

ArchitectureWeek.com | ArchitectureWeek | 2 NationJob.com | NationJob 1
Record 4 Job 2

Title 2 Company 1

Description 2 Position 1

Date 3 Location 2

Size 2 Qualifications | 2

CHAIN 3 Salary 3

FANOUT 1

IMDb.com IMDB_Comments | 2 CiteSeer.org CiteSeer 2
Comment 3 Parper 3

Author 2 Title 1

From 2 Year 1

Date 1 Authors 1

Summary 1 Conference 1

CHAIN 3 Abstract 1

CHAIN 4

FANOUT 3

Table 3

Number of samples needed to learn extraction rules.

query results. We need more than five examples for one element for only 5% of
the elements. The number of results needed to learn extraction rules for par-
ticular element is determined by the number of different HTML-environments
which can be found for this element in different results [11].

To evaluate the performance of the Transformation Module that is based
on the HW-Transform algorithm, we have extracted the results of different
queries from the six hidden web sites. The list of queries that we have used in
this experiment is shown in Table 4. The complete results of this experiment
is shown in Table 5. The summary of this experiment is shown in Figure 19.
This figure demonstrates us that the dependence between extraction time and

number of extracted results can be approximated as linear function.

30

Site Query Number Number Number of
of results of CHAIN | FANOUT
pages pages
AutoTrader.com 2000-2004 Acura of any model within | 48 2 -
25 miles from ZIP 00501
1983-2004 Ford Escort within 25 Miles | 120 5 -
from ZIP 10001
1983-2004 Jaguar of any model within | 202 9 -
50 Miles from ZIP 00501
1983-2004 Land Rover Range Rover | 310 13 -
within 200 Miles from ZIP 00501
1990-2004 Cadillac with mileage under | 430 18 -
75,000 within 50 Miles from ZIP10001
1991-2004 Toyota with price range from | 472 19 -
10,000 to 15,000 within 50 Miles from
ZIP 10001
1983-2004 Ford of any model within 25 | 500 20 -
Miles from ZIP 10001
Amazon.com Search for “gardenia” 21 2 21
Search for “snooker” 190 19 190
Search for “intranet” 431 44 431
Search for “dock” 599 60 599
Search for “dot” 1001 101 1001
ArchitectureWeek.com | Search for “chalet” 35 4 -
Search for “tall building” 311 32 -
Search for “column” 619 62 -
Search for “street” 780 78 -
Search for “environment” 1053 106 -
NationJob.com Computers/l.T./Telecommunications: 10 - 10
Computer Operator
Computers/I.T./Telecommunications: 121 - 121
Software Design/Project Management
Accounting/Finance/Insurance: Bank- | 693 - 693
ing
Education/Teaching/Child Care 1478 - 1478
IMDb.com User comments to “Arrival” 58 3 -
User comments to “Once Upon a Time | 201 11 -
in Mexico”
User comments to “Star Wars V" 746 38 -
User comments to “Harry Potter and | 1212 61 -
the Sorcerer's Stone”
CiteSeer.org Search for “hidden web” 38 2 38
Search for “google” 523 27 523
Search for “p2p” 754 38 754
Search for “web” 1000 50 1000

Table 4

Different queries to sample sites.

31

Site Query Number XML file | Transformation
of size, KB time, ms
results

AutoTrader.com 2000-2004 Acura of any model within | 48 11 6376

25 miles from ZIP 00501
1983-2004 Ford Escort within 25 Miles | 120 36 17657
from ZIP 10001
1983-2004 Jaguar of any model within | 202 55 34141
50 Miles from ZIP 00501
1983-2004 Land Rover Range Rover | 310 87 174863
within 200 Miles from ZIP 00501
1990-2004 Cadillac with mileage under | 430 113 225767
75,000 within 50 Miles from ZIP10001
1991-2004 Toyota with price range | 472 139 264660
from 10,000 to 15,000 within 50 Miles
from ZIP 10001
1983-2004 Ford of any model within | 500 152 289084
25 Miles from ZIP 10001
Amazon.com Search for “gardenia” 21 5 3032
Search for “snooker” 190 51 100455
Search for “intranet” 431 112 204034
Search for "dock” 599 130 423400
Search for “dot” 1001 234 702333
ArchitectureWeek.com | Search for “chalet” 35 17 50994
Search for “tall building” 311 159 324437
Search for “column” 619 312 572231
Search for “street” 780 394 730452
Search for “environment” 1053 473 852432
NationJob.com Computers/l.T./Telecommunications: | 10 3 8094
Computer Operator
Computers/I.T./Telecommunications: | 121 45 64484
Software Design/Project Management
Accounting/Finance/Insurance: Bank- | 693 203 454328
ing
Education/Teaching/Child Care 1478 567 773671
IMDb.com User comments to “Arrival” 58 19 5034
User comments to “Once Upon a Time | 201 66 15443
in Mexico”
User comments to “Star Wars V" 746 257 244543
User comments to “Harry Potter and | 1212 485 384254
the Sorcerer’s Stone”

CiteSeer.org Search for “hidden web” 38 16 70343

Search for “google” 523 237 173799

Search for “p2p” 754 390 262405

Search for “web” 1000 561 400541
Table 5

Time needed to transform results of sample queries.

5.2.2 Extraction Accuracy

Since the goal of our HW-STALKER is to extract query results from the QURE-
Pagelets and transform them to XML, we adopt precision and recall as our

32

900000 4 —e—Aut oTr ader . com

800000 - —m—Nat i onJob. com
£ 200000 | —aA—Amazon. com
- —%—Ar chi t ect ureWeek. com
% 600000 4 —%—CiteSeer.org
g 500000 4 —e— | Mdb. com
é 400000 1
é 300000 4
2
& 200000 |
=

100000 -

0 200 400 600 800 1000 1200 1400 1600
Number of results
Fig. 19. Number of hidden web query results vs. extraction time.
Site No. of | No. of Query | No. of trans- | Recall Precision
Queries | Results formed XML | (%) (%)
Results
www.autotrader.com 7 2082 2468 81 96
Amazon.com 5 2242 2469 87 79
ArchitectureWeek.com 5 2798 2768 91 92
NationJob.com 4 2302 2452 98 92
IMDb.com 4 2217 1914 82 95
CiteSeer.org 4 2315 2240 920 93
RealEstate.yahoo.com 6 4004 4335 88 81
PubMed.com 9 3145 3191 100 98
Table 6

Precision and recall related to number of query results extracted.

Site No. of | No. of chain | No. of ex- | Recall Precision
Queries | links in query | tracted chain | (%) (%)
results links
www.autotrader.com 7 79 101 100 78
Amazon.com 5 221 193 84 96
ArchitectureWeek.com 5 277 274 91 92
RealEstate.yahoo.com 6 267 293 99 90
IMDb.com 4 109 98 89 99
CiteSeer.org 4 113 124 88 80

Table 7
Precision and recall related to chain link extraction.

performance measurement of extraction accuracy. For each set of query results,
we manually extract the results and compare with the ones extracted by HW-
STALKER. We measure the results in the following three ways.

33

Site No. of | No. of fanout | No. of ex- | Recall Precision

Queries | links in query | tracted (%) (%)
results fanout links

PubMmed.org 9 3145 3171 100 99

Amazon.com 5 2242 2494 99 89

NationJob.com 4 2302 2423 100 95

RealEstate.yahoo.com 6 4004 4299 97 90

CiteSeer.org 4 2315 2239 88 91

Table 8

Precision and recall related to fanout link extraction.

e Number of results returned: Let (), denote the set of query results returned
by the hidden web site. Let)5 be the set of transformed results in XML
format using HW-STALKER. Then the following formula P, and R, calculate
the precision and recall respectively.

P:Qsth :Qsth
! Qh 7 Qs

Table 6 summarizes the results for the six hidden web sites.

o Chain links extraction: Let C, denote the set of chain links in the query
results returned by the hidden web site. Let C}, be the set of chain links
extracted by HW-STALKER. Then the following formula P, and R, calculate
the precision and recall respectively.

Ry

_GNG L, _GNG

PC Y
Ch Cs

Table 7 summarizes the results for the six hidden web sites.

o Fanout links extraction: Let Fs denote the set of fanout links in the query
results returned by the hidden web site. Let F} be the set of fanout links
extracted by HW-STALKER. Then the following formula Py and Ry calculate
the precision and recall respectively.

FNF,
=25

F.NF,

Py 7

Ry

Table 8 summarizes the results for the six hidden web sites.

Note that we do not measure the accuracy of extraction of different attributes
in a query result as such effort has already been reported in [11,20]. We only
report accuracy of those features that are unique to HW-STALKER. Also, the
results from this set of experiments show that we can achieve reasonably good
performance across heterogeneous hidden web sites. Our results show rela-
tively few items are extracted or transformed incorrectly. This is mainly due
to the heterogeneous nature of HTML format. The server-side applications
sometimes generate unexpected markup, provide incomplete information, or

34

2000 Toyota RAVA 4x4

FA%4 ™ 9 Photos! * Toyota Certified ™ Contact MARTIN Aljrgpd-,}f vy
FLORES Today@S66-054-5374 for INTERNET SPECIAL or AT AAE LS

Test Drive. CARFAX _CERTIFIED * Vehicle ... more

Idore Photos

: Atlantic T a Toyota Cerified
Price: $12495 Uzed Yehicles
Color: Green rol tree

o 1-B66-664-5374
Miles: 59531 See Mare Cars tar
Distance: 31 Miles Like This o Thiz Vehicle
VIN: JTEHPA0WT ¥0324037 Email Seller Cnstar Equipped

PR 100R Tawata ARunnar | imitad dvd

Fig. 20. Query results containing 3 banners.

sometimes due to the existence of banners in unexpected places. For exam-
ple, consider the Autotrader web site. Suppose we wish to search for "toyota
within 50 miles from zip 10001". The query returns around 500 results
and most of these results contain at the most two banners. However, there are
two results that contain 3 banners (Figure 20). In this case, HW-STALKER fails
to perform correct extraction as it is only trained for case with 0 to 2 banners.

6 Related Work

The machine learning community has carried out research on learning ex-
traction rules which occurred in mainly two contexts: creating wrappers for
information agents and developing general purpose information extraction sys-
tems for natural language text. We review some of these technologies here.
WIEN [15] takes as input a set of example pages where data of interest is la-
belled, and the output is a wrapper that is consistent with each labelled page.
A specific induction heuristics is used to generate specific wrappers. The pages
to be wrapped are assumed to have the same predefined structure as the exam-
ples. WIEN do not support nesting objects. In WIEN, items are expected to
be always presented and ordered in the same manner. The work in [8] presents
a language for wrapper development as part of TSIMMIS project. The main
shortcoming of this work is that a user must examine the document and find
the HTML tags that separate the objects of interest, and then write a program
to separate the object regions. The whole process of discovering object bound-
aries is carried out manually . SRV [7] is an approach for wrapper generation
based on the Natural Language Processing (NLP). SRV is a tool for learning
extraction rules of text documents, based on a given set of training examples.
It also relies on a set of token-oriented features that can be either simple or
relational, thus it can be applied to extract information from HTML. SRV
distinguishes a number of HT'ML-specific features related to HTML tags, e.g.,
in-p or after-b, This makes SRV able to extract data from HTML documents
effectively. SRV is a single-slot tool, like WIEN, thus it supports neither nest-
ing nor semistructured objects. A technique for supervised wrapper generation
based on a logic-based declarative language called Elog is presented in [2]. This

35

technique is implemented in a system called Lixto which assists the user to
semi-automatically create wrapper programs by providing a fully visual and
interactive user interface. With Lixto, expressive visual wrapper generation is
possible.

Compared to WIEN, which extracts all items at one time, in our approach we
use several single slot rules based on STALKER. Also, we support nesting unlike
WIEN and SRV. Compared to Lixto, our approach is much more user-friendly
as it is based on STALKER. As user should define extraction rules himself in
Lixto, it is a complicated task even using GUI. Another significant strength
of STALKER compared to Lixto is that a user does not need to know HTML
or to construct any extraction rules by himself. The only task for user is to
construct £C description of the page that can be done without looking into a
source code of the page and to mark several sample pieces of information in
HTML using GUI. The flexibility and universality of STALKER extraction rules
is based on usage of the wildcards, including domain-specified wildcards. Like
Lixto extraction rules, STALKER extraction rules are iterative and designed to
extract nested information. However, STALKER is able to construct wrappers
only for single HTML pages but not for the sets of pages. Unlike the above
approaches, HW-STALKER is developed specifically for hidden web data and
hence is able to extract key attributes (identifiers and facilitators) from the
query results. Our system is also focused on extracting data from dynamically
generated hyperlinked web pages only.

RoadRunner [5] is the HTML-aware tool for automatic wrapper generation
based on the inherent features of HI'ML documents. ROADRUNNER runs by
comparing the HTML structure of two (or more) sample pages believed to
have similar structures, and as a result, generates a schema for the data con-
tained in the pages. From this schema, a grammar is inferred which is capable
of recognizing instances of the attributes identified in the sample pages. The
extraction process is based on an algorithm that compares the tag structure
of the sample pages and generates regular expressions handling structural
mismatches found between the two structures. The unique feature that dis-
tinguishes ROADRUNNER from all other approaches is that the process of
wrapper generation is fully automatic and no user intervention is requested.
However, such flexibility poses disadvantage as far as extracting hidden web
data is concerned as it cannot extract identifiers and facilitators automatically.

Caverlee et al. [3] introduce the concept of a QA-Pagelet to refer to the con-
tent region in a dynamic page that contains query matches. Our notion of
QURE-Pagelet is similar to this. The authors present a system called THOR
that focus on discovering and extracting QA-Pagelets from the hidden Web.
First, pages from each web site are grouped into clusters of structurally sim-
ilar pages. Then, pages from the top-ranked clusters are examined through a
subtree filtering algorithm. Our approach differs in the following ways. First,

36

we use machine learning-based mechanism to transform query results to XML
format. Second, we identify the semantic constraints associated with the data
values (using identifiers and facilitators) during the transformation process.
THOR does not exploit such semantic constraints. Such semantic constraints
are useful in several applications such as change detection, hidden web data
integration etc.

7 Conclusions

In this paper, we present a machine learning-based approach for extracting
relevant hidden web query results and transforming them to XML. We pro-
pose an algorithm called HW-Transform for transforming QURE-pagelets to
XML format. In our approach, we extend the STALKER technique to extract
results from a set of dynamically generated hyperlinked web pages. The XML
representation of query results encapsulates only the data that a user is in-
terested in. One of the key features of our approach is that a user maps
special key attributes in query results, called identifiers and facilitators, into
XML attributes. These attributes facilitate change detection, data integration
etc. by efficiently identifying related results. As a proof of concept, we have
implemented a prototype system called HW-STALKER using Java. Our exper-
iments demonstrate that HW-Transform shows acceptable performance for
transforming QURE-pagelets to XML.

References

[1] Z. Bar-Yossef and S. Rajagopalan. Template Detection via Data Mining and
its Applications. In Proceedings of the World Wide Web Conference, 2002.

[2] R.Baumgartner, S. Flesca, and G. Gottlob. Visual Web Information Extraction
with Lixto. In Proceedings of the 27th VLDB Conference, Roma, Italy, 2001.

[3] J. Caverlee, L. Liu, and D. Buttler. Probe, Cluster, and Discover: Focus
Extraction of QA-Pagelets from the Deep Web. In Proceedings of the
International Conference on Data Engineering (ICDE), 2004.

[4] S. Chakrabarti, M. van den Berg, and B. Dom. Focused Crawling: A New
Approach to Topic-Specific Web Resource Discovery. In 8th World Wide Web
Conference, May 1999.

[5] V. Crescenzi, G. Mecca, and P. Merialdo. RoadRunner: Towards Automatic
Data Extraction from Large Web Sites. In Proceedings of the 26th International
Conference on Very Large Database Systems, pages 109-118, Roma, Italy, 2001.

[6] M. Diligenti, F. Coetzee, S. Lawrence, C. L. Giles, and M. Gori. Focused
Crawling using Context Graphs. In 26th International Conference on Very
Large Databases, VLDB 2000, September 2000.

37

[7] D. Freitag. Machine Learning for Information Extraction in Informal Domains.
Machine Learning, 39, 2/3:169-202, 2000.

[8] J. Hammer, H. Garcia-Molina, S.Nesterov, R. Yerneni, M. Breunig, and
V. Vassalos. Template-Based Wrappers in the TSIMMIS System. SIGMOD
Record, 26, 2:532-535, 1997.

[9] H.Davulku, J.Freire, M.Kifer, and I.V.Ramakrishnan. A Layered Architecture
for Querying Dynamic Web Content. In ACM Conference on Management of
Data (SIGMOD), June 1999.

[10] M. K.Bergman. The Deep Web: Surfacing Hidden Value, September 2001.
http://www.brightplanet.com/deepcontent /tutorials/DeepWeb/deepwebwhitepaper.pdf.

[11] C. A. Knoblock, K. Lerman, S. Minton, and I. Muslea. Accurately and Reliably
Extracting Data from the Web: A Machine Learning Approach. IEEE Data
Engineering Bulletin, 23(4):33-41, 2000.

[12] D. Konopnicki and O. Shmueli. Information Gathering in the World-Wide
Web: The W3QL Query Language and the W3QS System. ACM Transactions
on Database Systems, 23(4):369-410, 1998.

[13] V. Kovalev. Change detection to the hidden web. Master’s thesis, School of
Computer Engineering, Nanyang Technological University (Singapore), 2003.

[14] V. Kovalev, S. S. Bhowmick, and S. Madria. HW-STALKER: A Machine
Learning-based Approach to Transform Hidden Web Data to XML. In
Proceedings of the 15th International Conference on Database and Expert
Systems Applications (DEXA 2004), 2004.

[15] N. Kushmerick. Wrapper Induction: Efficiency and Expressiveness. Artificial
Intelligence Journal, 118, 1-2:15-68, 2000.

[16] S. Lawrence and C. L. Giles. Searching the World Wide Web. Science,
280(5360):98-100, April 1998.

[17] S. Lawrence and C. L. Giles. Accessibility of Information on the Web. Nature,
400:107-109, July 1999.

[18] A. McCallum, K. Nigam, J. Rennie, and K. Seymore. Building Domain-specific
Search Engines with Machine Learning Techniques. In Proc. AAAI-99 Spring
Symposium on Intelligent Agents in Cyberspace, 1999.

[19] G. Mecca, P. Atzeni, A. Masci, P. Merialdo, and G. Sindoni. The ARANEUS
Web-base Management System. In Proceedings of the International Conference
on Management of Data, pages 544-546, 1998.

[20] I. Muslea, S. Minton, and C. A. Knoblock. Hierarchical Wrapper Induction
for Semistructured Information Sources. Autonomous Agents and Multi-Agent
Systems, 4(1/2):93-114, 2001.

[21] D. Shestakov, S. S. Bhowmick, and E.-P. Lim. DEQUE: Querying the Deep
Web. Data and Knowledge Engineering Journal, 52(3):273-311, 2005.

38

