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As one of the most important tasks of Web Usage Mining (WUM), web user clustering,
which establishes groups of users exhibiting similar browsing patterns, provides useful
knowledge to personalized web services and motivates long term research interests in
the web community. Most of the existing approaches cluster web users based on the snap-
shots of web usage data, although web usage data are evolutionary in the nature. Conse-
quently, the usefulness of the knowledge discovered by existing web user clustering
approaches might be limited. In this paper, we address this problem by clustering web
users based on the evolution of web usage data. Given a set of web users and their associ-
ated historical web usage data, we study how their usage data change over time and mine
evolutionary patterns from each user’s usage history. The discovered patterns capture the
characteristics of changes to a web user’s information needs. We can then cluster web
users by analyzing common and similar evolutionary patterns shared by users. Web user
clusters generated in this way provide novel and useful knowledge for various personalized
web applications, including web advertisement and web caching.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Web Usage Mining (WUM) is an active area of research and commercialization. The goal of WUM is to leverage the data
collected as a result of user interactions with the web to learn user models which are beneficial for web personalization. Exist-
ing web usage data mining techniques include statistical analysis [18], association rules [14,9], sequential patterns [24], clas-
sification [12], and clustering [13,11]. An important topic in Web Usage Mining is clustering web users – discovering clusters
of users that exhibit similar information needs, e.g., users that access similar pages. By analyzing the characteristics of the
clusters, web users can be understood better and thus can be provided with more suitable and customized services [23].

There are quite a few methods for clustering web users proposed in the literature [8,23,21]. In general, web user clustering
consists of three phases: data preparation, cluster discovery, and cluster analysis. Since the last phase is application-dependent, let
us briefly describe the first two. In the first phase, web sessions of users are extracted from the web server log by using some user
identification and session identification techniques [7]. A web session, which is an episode of interaction between a web user and
the web server, consists of pages visited by a user in the episode [8]. For example, Fig. 1a shows four requests from one session.

The first line means that the user at foo.ntu.edu accessed the page www.uow.edu/sce/Jeffrey/pub.html at 10:30:05 on Jan-
uary 01, 2005. In the second phase, clustering techniques are applied to generate clusters of users. For example, consider the
three users, u1;u2 and u3, and their web session data about visiting the web site rooted at the home page a in a particular
time period p1, as shown in Fig. 2a. Note that, only accessed pages are presented in the figure, where other information
in web sessions are ignored. Existing web user clustering methods which use commonly accessed web pages as the cluster-
ing feature, such as the work in [8], will group the three users together as their web sessions share common pages.
. All rights reserved.
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foo.cs.ntu.edu — [01/Jan/2005:10:30:05 -0800]
   “GET / www.uow.edu/sce/Jeffrey/pub.html HTTP/1.0” 200 3027
foo.cs.ntu.edu — [01/Jan/2005:10:30:08 -0800]
   “GET / www.uow.edu/sce/Jeffrey/ HTTP/1.0” 200 1205
foo.cs.ntu.edu — [01/Jan/2005:10:30:18 -0800]
   “GET / www.uow.edu/sce/ HTTP/1.0” 200 1967
foo.cs.ntu.edu — [01/Jan/2005:10:30:23 -0800]
   “GET / www.uow.edu/sce/Henry HTTP/1.0” 200 994

www.uow.edu

www.uow.edu/sce

www.uow.edu/
sce/Jeffrey

www.uow.edu/
sce/Henry

www.uow.edu/
sce/Jeffrey/
pub.html

(a) (b)

Fig. 1. Web session and web session tree.
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Fig. 2. Historical web sessions of users u1;u2 and u3.
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1.1. Motivating example

Existing web user clustering methods cluster users based on web sessions collected in a certain time period. However,
web usage data is evolutionary in nature. The information needs of users may vary over time, consequently, pages accessed
by users in different time periods may be different as well. For example, Fig. 2b–d show the web sessions of users u1;u2 and
u3 visiting the web site at subsequent time periods p2; p3 and p4, where users accessed different pages in different periods.
Such evolutionary nature of the web usage data poses both challenges and opportunities to web user clustering. In particular,
the evolutionary nature of web usage data leads to the following two challenging problems:

� Maintenance of web user clustering results: Take the web sessions in Fig. 2 as an example. Although users u1;u2 and u3

accessed similar web pages in the period p1, they visited different pages in p2 and beyond. Hence, the clustering results,
generated by existing algorithms in a particular time period, have to be updated with the changes to web usage data. This
requires development of efficient incremental web user clustering techniques.

� Discovery of novel web user clusters: Considering the evolutionary characteristics of web usage data, interesting and
novel web user clusters may be discovered. For example, clusters of users that exhibit similar characteristics in the evo-
lution of their usage data may be discovered. Examples of such clusters will be illustrated in the following paragraphs.

The first problem has been addressed by some incremental clustering algorithms proposed in the literature [22,17]. Our
focus here is the second problem. Particularly, we propose a new web user clustering method, COWES (Clustering Of Web users
based on historical web session), which discovers novel knowledge of web users sharing common evolutionary characteris-
tics of their usage data.

Let us look at novel clusters which can be discovered based on evolutionary characteristics of web usage data in our moti-
vating example in Fig. 2. Pages accessed in a web session can be organized into a hierarchical structure, called web session tree,
based on the URLs of the pages [8]. For example, Fig. 1b is the web session tree constructed for the pages in the web session
shown in Fig. 1a. A web session tree represents the information needs of a user. Similarly, the sequences of historical web
sessions of web users u1;u2 and u3 in Fig. 2 are represented as sequences of web session trees as depicted in Fig. 3. Each gray
node in the figure represents a page that was not accessed in the subsequent web session and each black node denotes a page
that was not accessed in the previous session. Obviously, changes to the structures of web session trees of a user, i.e., gray and
black nodes, reflect varying information needs of the user. Observing the sequence of web session trees of user u1, we notice
that u1 frequently varies his information needs in the web session subtree a=b (we use the root path arriving at the root of a
web session subtree to denote the subtree), which is highlighted by dotted lines in Fig. 3. Similarly, users u2 and u3 frequently
vary their information needs in the web session subtrees a=c and a=d. In this paper, we extract such subtrees as a type of
evolutionary frequent pattern called FRACTURE (FRequently And Concurrently muTating substructUREs), which we proposed
in the context of XML documents in our previous work [5]. FRACTUREs are mined from the evolution history of tree-structured
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Fig. 3. Historical page hierarchies of users u1;u2 and u3.
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data (e.g., XML document). A discovered FRACTURE is a set of substructures that frequently change together. Since they capture
the evolutionary characteristics of each user’s usage data, we propose to use the FRACTUREs discovered from each user’s histor-
ical web sessions as the clustering feature to group web users. For example, given the web users and their historical web ses-
sions in Fig. 2, our proposed clustering method COWES will cluster u2 and u3 together while leaving u1 in another cluster.
Knowledge can be inferred from the clustering result that users in the same cluster exhibit similar variation patterns in their
information needs. Note that such clusters cannot be discovered by existing approaches based on snapshot web usage data.

1.2. Applications

Similar to existing web user clustering, the results of COWES provide knowledge on users’ information needs and can be
used in various web personalization applications. In contrast to existing methods, COWES discovers novel knowledge on the
evolutionary characteristics of users’ information needs. Thus, the results of COWES are useful for various web personalization
scenarios. We elaborate two of the applications of COWES in the following paragraphs.

� Intelligent web advertisement: 99% of all web sites offer standard banner advertisements [2], underlying the importance
of this form of on-line advertising. For many web-based organizations, revenue from advertisements is often the only or the
major source of income (e.g., Yahoo.com, Google.com) [1]. One of the ways to maximize revenues for the party who owns
the advertising space is to design intelligent techniques for the selection of an appropriate set of advertisements to display
in appropriate web pages. Web user clusters generated by COWES can be beneficial for designing intelligent advertisement
placement strategies. For example, after clustering users in Fig. 2 based on the evolution of historical web sessions, we
know that the variation of information needs of u1 is different from that of users u2 as well as u3. Suppose an advertisement
is targeting all the three users. Although all of them accessed the page a=b=e in the current period p4, the advertisement
should be put in the page a=b instead of a=b=e for user u1 because he frequently changes his information needs under a=b.

� Proxy cache management: Web caching is another interesting problem [3,24] as web caches can reduce not only net-
work traffic and but also download latency. Because of the limited size of cache regions, it is important to design effective
replacement strategies to maximize hit rates. One of the frequently used replacement strategies is LRU (Least Recently
Used), which assigns priorities to the most recently accessed pages. Web user clusters generated by COWES can be used with
LRU to manage the caching region more optimally. For example, analyzing the clusters generated by COWES in Fig. 2, we
know that users u2 and u3 frequently vary their information needs under a=c and a=d together. In other words, once user
u2ðu3Þ varies information needs under a=c, he probably will vary his information needs under a=d as well. Thus, if u2ðu3Þ
accesses different pages under a=c in a subsequent time period, such as p5, we can degrade the priority of cached pages
under a=d so that their eviction from the cache becomes more probable.
1.3. Overview of COWES

The overview of COWES system is presented in Fig. 4. The input is a collection of web users fu1;u2; . . . ;ung. Each user is asso-
ciated with a sequence of historical web sessions that are collected at a sequence of time periods hp1; p2; . . . ; pmi with some

http://Yahoo.com
http://Google.com
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particular time granularity. Each sequence of web sessions of user ui can be represented as a sequence of web session trees
hSp1

i ; S
p2
i ; . . . ; Spm

i i.
The first step extracts FRACTUREs from web session trees. As discussed before, we aim to cluster users based on the evolu-

tionary characteristics of their usage data. In particular, we mine FRACTUREs, where each FRACTURE is a set of subtrees that fre-
quently undergo significant changes together, from each user’s historical web session trees and use FRACTUREs as the clustering
feature. Then, each web user can be represented as a set of FRACTUREs ui ¼ fX1

i ;X
2
i ; . . . ;Xk

i g.
Given a set of users represented by the FRACTUREs mined from their historical web session trees, the second step is to mea-

sure the similarity between users based on their FRACTUREs. We define the User Similarity in terms of their shared FRACTUREs by
considering not only their elements (e.g., subtrees) but also their strength (e.g., how frequently the subtrees undergo signif-
icant changes together). After computing the similarity between each pairs of users, a similarity matrix of users can be
generated.

Finally, given a similarity matrix of web users, existing appropriate clustering algorithms, such as partitional clustering
algorithms or agglomerative clustering algorithms, can be performed on the similarity matrix to generate the clusters of
web users.

1.4. Contributions

The main contributions of this paper are summarized as follows:

� We propose an approach that is, to the best of our knowledge, the first one to discover novel knowledge by clustering web
users based on the evolutionary features of historical web sessions.

� We capture the evolution characteristics web usage data with an interesting evolutionary pattern and show that user clus-
ters generated based on this pattern are useful in real-life applications.

� We define similarity metrics which measure the proximity of the evolutionary patterns and the proximity of web users in
terms of their evolutionary patterns, respectively.

� We present the results of extensive experiments with both synthetic and real datasets that we have conducted to dem-
onstrate the performance of COWES and the novelty of generated clusters.

The rest of the paper is organized as follows. In Section 2, we explain the notion of FRACTURE that can be mined from his-
torical web session trees. We define the similarity metrics in Section 3. In Section 4, we present the framework of our clus-
tering approach. We evaluate the performance of clustering web users based on historical web sessions in Section 5 and
review related works in Section 6. Finally, we present some conclusive remarks in Section 7. A preliminary version of this
paper appeared in [6]. Table 1 summarizes the notations used in this paper.

2. FRequently And Concurrently muTating substructUREs (FRACTURE)

In this section, we briefly introduce the evolutionary pattern FRACTURE, which is used as our clustering feature. Readers can
refer to our previous work [5] for details.

As in [8], pages in a web session can be organized into a page hierarchy based on their URLs. Hereafter, we refer to a page
hierarchy of a web session as a web session tree. Formally, a web session tree is an unordered tree S ¼ hN; Ei, where N is the
set of nodes where a leaf node represents a web page corresponding to a file in the web server and a non-leaf node represents



Table 1
A summary of symbols in this paper.

Symbol Description

u A web user
p A time period with certain granularity
S A web session tree
si A web session subtree
N A set of web session tree (subtree) nodes
E A set of web session tree (subtree) edges
X A FRACTURE pattern
DoC Degree of Change
SoC Significance of Change
FoC Frequency of Change
a User-defined threshold of DoC
b User-defined threshold of FoC
c User-defined threshold of SoC
dðX1;X2Þ The distance between a pair of FRACTUREs X1 and X2

FSðu1;u2Þ FRACTURE similarity of users u1 and u2

USðu1; u2Þ User Similarity of users u1 and u2

X1 ¼ X2 A pair of identical FRACTUREs
X1 � X2 A pair of Approximate FRACTUREs
LðsÞ Root path arriving at the root of web session subtree s
PLðsi; sjÞ Prefix Level of web session subtrees si and sj

xðX1;X2Þ Weight assigned to FRACTURE pair X1 and X2

IS Average internal similarity of clusters
ES Average external similarity of clusters
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a web page corresponding to a directory in the server, E is the set of edges where each edge from a parent node to a child
node represents the consisting-of relationship between the corresponding pages. In particular, a node r; r 2 N, is the root of
the tree which represents the home page of a web site. An example web session tree is shown in Fig. 1. Accordingly, a tree
si ¼ hNi; Eii is a web session subtree, denoted as si � S, if and only if (1) Ni # N; ð2ÞEi # E; ð3Þ the labeling of Ni is preserved in
si; ð4Þ for a node x 2 N, if x 2 Ni then all descendants of x (if any) must be in Ni.

Given a sequence of historical web session trees of a web user, we are interested in how the structures of the trees change,
which reflects the variation of the user’s information needs. We define two basic operations that change the structure of a
tree as follows.

� Insertðxðname; valueÞ; yÞ: This operation creates a new node x, with node name ‘‘name” and node value ‘‘value”, as a child
node of node y in a web session tree.

� DeleteðxÞ: This operation is the inverse of the insertion one. It removes node x from a web session tree.

A web session subtree is considered as a changed subtree once a change operation, i.e., insertion or deletion, occurs to it.
For example, the sequence of web session trees of user u2 in Fig. 3 is redrawn in Fig. 5, where the black nodes depict the

newly inserted nodes in the current session and the grey nodes depict the nodes that will be deleted in the next session.
Consider the first two versions of the web session tree. A new node h is inserted in the subtree a=c. Thus, the subtree a=c
is a changed subtree in the two versions.

Changed web session subtrees are elements of FRACTURE. In order to measure the interestingness of a FRACTURE, we defined
three metrics: Degree of Change (DoC), Frequency of Change (FoC) and Significance of Change ðSoCÞ. Given a sequence of web
session trees, the metric DoC measures how significantly a subtree changed in two sessions, the metric FoC measures how
frequently a set of subtrees change together in the sequence and SoC measures how frequently a set of subtrees undergo
significant changes together.

Definition 1 (DoC). Given two versions of a web session subtree spi and spiþ1 , let spi ¼ hNi; Eii and spiþ1 ¼ hNiþ1; Eiþ1i. The
Degree of Change ðDoCÞ of web session subtree s in the two versions is1:
1 For
also con
DoCðs;pi; piþ1Þ ¼
jfxjx 2 fNi [ Niþ1g&x R fNi \ Niþ1ggj

jfxjx 2 fNi [ Niþ1ggj
That is, the DoC of a subtree in two versions is the ratio of the number of inserted/deleted nodes to the total number of
unique nodes of the subtree in the two versions. The value of DoC ranges from 0 to 1. The higher the DoC value, the more
significantly the subtree changes. For example, in Fig. 5, the DoC of the subtree a=c in the first two sessions is 1/3.

While the metric DoC is defined for a single subtree, the metrics FoC and SoC are defined for a set of subtrees.
simplicity, our definition of DoC is based on the assumption that no two nodes bear same labels in a tree structure. Our more refined definition in [5]
siders the situation of duplicate labels.
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Definition 2 (FoC). Let hSp1 ; Sp2 ; . . . ; Spn i be a sequence of n historical web session trees of a web user. Let X be a set of
subtrees, X ¼ fs1; s2; . . . ; smg, where 8jð1 6 j 6 mÞ; 9ið1 6 i 6 nÞ s:t: sj � Spi . Let DoCðsj; pi; piþ1Þ be the DoC of subtree sj from
the pi version to the piþ1th version. The Frequency of Change (FoC) of the set X is:
2 In t
FoCðXÞ ¼
Pn�1

i¼1 Vi

n� 1

where Vi ¼
Ym
j¼1

Vji and Vji ¼
1; if DoCðsj; pi;piþ1Þ – 0
0; if DoCðsj; pi;piþ1Þ ¼ 0

�
1 6 j 6 m
Obviously, FoC of a set of subtrees X is the fraction of transitions between successive sessions where all subtrees in X
changed. The value of FoC ranges from 0 to 1 as well. The more times the set of subtrees change together, the higher the
FoC. For example, consider the sequence of web sessions trees in Fig. 5 again. Let X be two subtrees: a=c and a=d. Then,
FoCðXÞ ¼ 3=3 ¼ 1 as both subtrees changed in the three transitions of successive versions.

Definition 3 (SoC). Let hSp1 ; Sp2 ; . . . ; Spn i be a sequence of n historical web session trees of a web user. Let X be a set of
subtrees, X ¼ fs1; s2; . . . ; smg, where 8jð1 6 j 6 mÞ; 9ið1 6 i 6 nÞ s:t: sj � Spi . Let DoCðsj; pi; piþ1Þ be the degree of change of
subtree sj from the pi version to the piþ1 version and FoCðXÞ be the Frequency of Change of the set X. Given a user-defined
threshold of DoC a, the Significance of Change (SoC) of the set X is defined as follows:
SoCaðXÞ ¼
Pn�1

i¼1 Di

ðn� 1Þ � FoCðXÞ

where Di ¼
Ym
j¼1

Dji and Dji ¼
1; if DoCðsj;pi;piþ1ÞP a
0; otherwise

�
1 6 j 6 m
That is, the SoC of a set of subtrees X is the ratio of the number of times all subtrees in X change significantly (compared
with the user-defined threshold of DoC) to the number of times all subtrees in X changed together. The range of the value of
SoC is [0,1]. For example, let X be the two subtrees of a=c and a=d in Fig. 5. Let the user-defined threshold of DoC be 0.5.
SoC0:5ðXÞ ¼ 2=3 because the two subtrees changed together for three times, while they changed significantly together in
the last two times. Hereafter, we omit the subscript of SoC when the DoC threshold a is clear from the context.

Based on the above metrics, the FRequently And Concurrently muTating substructUREs (FRACTURE) can be defined as follows.

Definition 4 (FRACTURE). Let hSp1 ; Sp2 ; . . . ; Spn i be a sequence of n historical web session trees of a web user. Let X be a set of
subtrees, X ¼ fs1; s2; . . . ; smg, where 8jð1 6 j 6 mÞ; 9ið1 6 i 6 nÞ s:t: sj � Spi . Given the user-defined DoC threshold a, FoC
threshold b and SoC threshold c;X is a FRequently And Concurrently muTating substructURE (FRACTURE) if it satisfies the following
two conditions:

(1) FoC of the set is no less than the user-defined FoC threshold b; FoCðXÞP b.
(2) SoC of the set is no less than the user-defined SoC threshold c; SoCðXÞP c.

That is, a FRACTURE, mined from a sequence of historical web session trees of a web user, is a set of web session subtrees that
frequently change together and frequently change significantly together. For example, suppose the user-defined thresholds
are: a ¼ b ¼ c ¼ 0:5. Let X be the two subtrees a=b and a=d in Fig. 5. Then X is a FRACTURE as FoCðXÞ ¼ 1 P b and
SoCðXÞ � 0:67 P c.

For each web user, a set of FRACTUREs can be mined from his/her historical web session trees with respect to a set of spec-
ified thresholds. Consider the web users and their historical web session trees in Fig. 2. Suppose the thresholds are
a ¼ b ¼ c ¼ 0:5. Table 2 shows the discovered FRACTUREs of each user2. Algorithm to discover FRACTUREs is discussed in [5].
he second column of the table, we use the subscript to denote the user identity and the superscript to denote the pattern identity.



Table 2
FRACTUREs discovered from web session trees.

User ID FRACTURE ID FRACTURE FoC SoC

u1 X1
1 {a/b} 1.00 1.00

u1 X2
1 {a/c/i} 0.66 1.00

u1 X3
1 {a/b, a/c/i} 0.66 1.00

u2 X1
2 {a/c} 1.00 0.66

u2 X2
2 {a/d} 1.00 0.66

u2 X3
2 {a/c, a/d} 1.00 0.66

u3 X1
3 {a/c} 1.00 1.00

u3 X2
3 {a/d} 1.00 0.66

u3 X3
3 {a/c, a/d} 1.00 0.66
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3. Similarity measure

After representing each user as a set of FRACTUREs, we need to measure the proximity of users. We measure the similarity
between users in terms of their shared FRACTUREs. In this section, we present two similarity metrics, User Similarity and FRACTURE

Similarity.
Given two users represented as two sets of FRACTUREs, they may share some of their FRACTUREs. Then, the complete set of

features is the combination of the two set of FRACTUREs. For example, suppose user u1 has a set of FRACTUREs fX1;X2g and user
u2 has a set of FRACTUREs fX1;X3g. The complete set of features are fX1;X2;X3g. Users u1 and u2 share the first FRACTURE only.
Suppose a similarity measure FRACTURE Similarity ðFSÞ can be computed on a pair of shared FRACTUREs. According to the algorithm
introduced in Section 2.4.6 in [19], the measure User Similarity ðUSÞ can be computed by the following three steps:

� For the kth FRACTURE, compute a similarity, FSðu1;u2Þ, in the range [0,1].
� Define an indicator variable dk, such that
dk ¼
0; if one of the users has a missing value for the kth fracture
1; otherwise

�

� Compute the overall similarity between the two users using the following formula:
USðu1;u2Þ ¼
Pn

k¼1dkFSkðu1;u2ÞPn
k¼1dk

ð1Þ
However, in our application, we observed that such a similarity measure has the following two limitations.
First, the denominator in Eq. (1) counts only the number of shared FRACTUREs. Actually, the number of FRACTUREs which are

not shared by the two users affects the proximity of the users as well. Consider two users who have m and n FRACTUREs, respec-
tively (m� 1 and n� 1) and share only one FRACTURE with FS as 1. Then, according to Eq. (1), the two users are completely
similar even if they have so many different FRACTUREs. We address this problem by revising the denominator in Eq. (1) as mþn

2 so
that the total number of FRACTUREs of the two users are considered.

Second, the numerator in Eq. (1) treats all shared FRACTUREs equally. However, if there exist different types of shared FRAC-

TUREs (e.g., we will define two types of shared FRACTUREs, Identical FRACTURE and Approximate FRACTURE, in the next subsection),
which contribute different importance to the proximity of the users, the numerator of Eq. (1) should be modified by intro-
ducing weights to different types of shared FRACTUREs. Consequently, the numerator of Eq. (1) becomes:

Pn
k¼1xkdkFSkðu1;u2Þ,

where xk is the weight of the kth shared FRACTURE.
In the following, we first introduce the two types of shared FRACTUREs and the way to weigh their contribution to the prox-

imity of users ðxÞ. Then, we define the similarity measure FS. Finally, the similarity measure US is formally defined.
3.1. Types of shared FRACTUREs

Recall that a FRACTURE discovered from historical web session trees is a set of web session subtrees (web directories). If two
FRACTUREs have the same web session subtrees, they certainly contribute to the similarity of the two users. We refer to such
type of FRACTUREs shared by two users as Identical FRACTUREs.

Definition 5 (Identical FRACTUREs). Let X1 ¼ fs1; . . . ; smg;X2 ¼ fs1; . . . ; sng be two FRACTUREs. Let LðsÞ be the root path arriving at
the root of web session subtree s. X1 and X2 is a pair of Identical FRACTUREs, denoted as X1 ¼ X2, if (1) m ¼ n, and (2)
8ið1 6 i 6 mÞ; 9jð1 6 j 6 nÞ s:t: LðsiÞ ¼ LðsjÞ and (3) 8jð1 6 j 6 nÞ; 9ið1 6 i 6 mÞ s:t: LðsjÞ ¼ LðsiÞ.
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That is, two FRACTUREs are Identical FRACTUREs if there is a one-to-one mapping between the subtrees of the two FRACTUREs and
the corresponding subtrees have same labels. For example, consider the FRACTUREs in Table 2. The two FRACTUREs X1

2 and X1
3 is a

pair of Identical FRACTUREs. The two users u2 and u3 share another two pairs of Identical FRACTUREs, X2
2 ¼ X2

3 and X3
2 ¼ X3

3.
It was observed in [8] that web directories (pages) are not randomly organized. Normally, a web directory (page) is stored

in another web directory which semantically contains it. Thus, web session subtrees, whose labels have prefix relationships,
are semantically related. For example, given two web session subtrees s1 and s2, suppose Lðs1Þ ¼ a=b and Lðs2Þ ¼ a=b=c. Since
Lðs1Þ is a prefix of Lðs2Þ, the two web session trees are semantically related, e.g., s1 semantically contains s2. Then, a pair of
FRACTUREs whose corresponding subtrees are semantically related contribute to the similarity of users as well. Hence, besides
Identical FRACTUREs, we define another type of shared FRACTUREs called Approximate FRACTUREs as follows.

Definition 6 (Approximate FRACTUREs). Let X1 ¼ fs1; . . . ; smg and X2 ¼ fs1; . . . ; sng be two FRACTUREs. Let LðsÞ be the root path
arriving at the root of web session subtree s. X1 and X2 is a pair of Approximate FRACTUREs, denoted as X1 � X2, if (1) m ¼ n, and
(2) 8ið1 6 i 6 mÞ; 9jð1 6 j 6 nÞ s:t: LðsiÞ is a prefix of LðsjÞ or LðsjÞ is a prefix of LðsiÞ and (3) 8jð1 6 j 6 nÞ;
9ið1 6 i 6 mÞ s:t: LðsjÞ is a prefix of LðsiÞ or LðsiÞ is a prefix of LðsjÞ.

That is, two FRACTUREs are Approximate FRACTUREs if there is a one-to-one mapping between the subtrees of the two FRACTUREs
and labels of corresponding subtrees have prefix relationships. For example, the two FRACTUREs X2

1 and X1
2 in Table 2 is a pair of

Approximate FRACTUREs.
We now explain how to assign different weights to different types of shared FRACTUREs. Given two web session subtrees

whose labels have prefix relationship, we define Prefix Level to measure the distance between the two subtrees.

Definition 7 (Prefix Level). Let si and sj be two web session subtrees s.t. LðsiÞ is a prefix of LðsjÞ. The length of the path LðsiÞ,
denoted as jLðsiÞj, is the number of edges traversed by the path. Then, the Prefix Level between si and sj, denoted as PLðsi; sjÞ,
can be computed as
3 A v
weight.
differen
PLðsi; sjÞ ¼ jLðsjÞj � jLðsiÞj
For example, consider the two subtrees in the pair of Approximate FRACTUREs, X2
1 � X1

2, in Table 2 again. Since the labels of
the subtrees are a=c=i and a=c, the Prefix Level between the two subtrees is 1. Note that, Identical FRACTUREs can be viewed as a
special case of Approximate FRACTUREs from the perspective that the Prefix Level between each pair of corresponding subtrees of
Identical FRACTUREs is 0.

According to the observation in [8], the less the Prefix Level between two web session subtrees, the more semantically
related the two subtrees. Given a pair of Identical/Approximate FRACTUREs, the sum of the Prefix Levels between corresponding
subtrees can be computed, which takes value in ½0;þ1Þ. Particularly, the sum is zero for a pair of Identical FRACTUREs. Obvi-
ously, the less the sum, the more importance the shared FRACTUREs contribute to the similarity of users. Thus, we use some
monotonic decreasing function3 to transform the sum to some weight value, ranging between (0,1]. Then, the weight assigned
to a pair of shared FRACTUREs can be computed as follows.

Definition 8 (Weight). Given a pair of shared FRACTUREs X1 ¼ fs1
1; . . . ; sm

1 g and X2 ¼ fs1
2; . . . ; sm

2 g s.t. PLðsi
1; s

i
2ÞP 0ð1 6 i 6 mÞ.

The weight assigned to the pair of FRACTUREs, denoted as xðX1;X2Þ, is defined as,
xðX1;X2Þ ¼ e
�
Pm
i¼1

PLðsi
1 ;s

i
2Þ
Thus, when the pair of shared FRACTUREs are Identical FRACTUREs, they are assigned the weight 1. The more similar the two
FRACTUREs in terms of their subtrees, the more weight will be assigned. For example, the weight assigned to the Approximate
FRACTUREs, X2

1 � X1
2, in Table 2 can be computed as follows. xðX2

1;X
1
2Þ ¼ e�1 � 0:37.
3.2. FRACTURE Similarity (FS)

A pair of shared FRACTUREs may have different FoC and SoC values. Hence, we define the metric FRACTURE Similarity ðFSÞ to
measure the similarity of shared FRACTUREs in terms of their FoC and SoC values.

Note that, although FoC is involved in the definition of SoC, the correlation between FoC and SoC is uncertain. That is, for
different data set, the correlation between the two variables is different as well. Hence, we adopt the Mahalanobis distance to
measure the distance between the FoC and SoC values of a pair of Identical/Approximate FRACTUREs X1 and X2.
dðX1;X2Þ ¼ ðX1 � X2ÞTR�1ðX1 � X2Þ ¼ FoCðX1Þ � FoCðX2ÞSoCðX1Þ � SoCðX2Þð ÞR�1 FoCðX1Þ � FoCðX2Þ
SoCðX1Þ � SoCðX2Þ

� �
ariety of monotonic decreasing functions can be used here. For example, let R be the overall Prefix Levels between a pair of shared FRACTUREs and x be the
Then functions x ¼ 1

aRþ1 and x ¼ a�R can be used, where a > 0. The goodness of a function depends on the data. We evaluate the performance of
t functions in Section 5.
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where R�1 is the inverse of the covariance matrix of the complete set of FoC and SoC values of all users. Particularly, when FoC
and SoC are uncorrelated for the data set, the Mahalanobis distance is actually the Euclidean distance between the FoC and SoC
values of a pair of shared FRACTUREs X1 and X2.
4 Aga
dðX1;X2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFoCðX1Þ � FoCðX2ÞÞ2 þ ðSoCðX1Þ � SoCðX2ÞÞ2

q
ð2Þ
In order to define the FRACTURE Similarity based on the distance between FoC and SoC values of shared FRACTUREs, we use a mono-
tonic decreasing function to convert the distance to a similarity4.

Definition 9 (FRACTURE Similarity). Let X1 and X2 be a pair of Identical/Approximate FRACTUREs. Suppose dðX1;X2Þ is the
distance between the FoC and SoC values of X1 and X2. The FRACTURE Similarity (FS) of the pair of FRACTUREs, denoted as FSðX1;X2Þ,
is defined as,
FSðX1;X2Þ ¼
1

1þ dðX1;X2Þ
Since the Mahalanobis distance takes values in ½0;þ1Þ; FS ranges in (0,1]. The closer the FoC and SoC values of the two
FRACTUREs, the higher the FS. FS have the following two properties.

Property 1 (Positivity Property). FSðX1;X2Þ ¼ 1 only if X1 ¼ X2 ð0 < FS 6 1Þ.

That is, given two FRACTUREs X1 and X2; FSðX1;X2Þ ¼ 1 only if FoCðX1Þ ¼ FoCðX2Þ and SoCðX1Þ ¼ SoCðX2Þ. Since Mahalanobis
distance is a metric, which has the Positivity Property, dðX1;X2Þ ¼ 0 only if FoCðX1Þ ¼ FoCðX2Þ and SoCðX1Þ ¼ SoCðX2Þ. As
FS ¼ 1

1þdðX1 ;X2Þ
is a monotonic function, FS ¼ 1 only if d ¼ 0. Hence, the property holds for FS.

Property 2 (Symmetry Property). FSðX1;X2Þ ¼ FSðX2;X1Þ for all X1 and X2.

Again, since Mahalanobis distance is a metric, dðX1;X2Þ ¼ dðX2;X1Þ. Thus, FSðX1;X2Þ ¼ 1
1þdðX1 ;X2Þ

¼ 1
1þdðX2 ;X1Þ

¼ FSðX2;X1Þ.

Example 1. Consider the FoC and SoC of the FRACTUREs in Table 2. The covariance matrix between the complete set of FoC and
SoC is
R ¼
0:0225 �0:0161
�0:0161 0:0321

� �
For the pair of Identical FRACTUREs, X3
2 ¼ X3

3; dðX
3
2;X

3
3Þ ¼ 0 and FSðX3

2;X
3
3Þ ¼ 1, since the two FRACTUREs have the same FoC and SoC

values. While, for the pair of Approximate FRACTUREs, X2
1 � X1

2,
dðX2
1;X

1
2Þ ¼ �0:34 0:34ð ÞR�1 �0:34

0:34

� �
¼ 5:6
Hence, FSðX2
1;X

1
2Þ= 1

1þ5:6 � 0:15.
3.3. User Similarity

After discussing the two limitations of the Eq. (1), the similarity measure FS, and the way to assign different weights to
different types of shared FRACTUREs, the User Similarity can be formally defined as follows.

Definition 10 (User Similarity). Let u1 ¼ fX1
1;X

2
1; . . . ;Xm

1 g and u2 ¼ fX1
2;X

2
2; . . . ;Xn

2g be two web users that are represented as
two sets of FRACTUREs. Suppose there exists kð0 6 k 6 m 6 nÞ s:t: X1

1 ¼ X1
2 or X1

1 � X1
2; . . . ;Xk

1 ¼ Xk
2 or Xk

1 � Xk
2. The Similarity of

Users, denoted as USðu1;u2Þ, is defined as,
USðu1;u2Þ ¼
2
Pk

i¼1xðX
i
1;X

i
2ÞFSðXi

1;X
i
2Þ

mþ n
If each pair of corresponding FRACTUREs of the two users are Identical FRACTUREs with the FS value 1, then US has the maxi-
mum value of 1. Otherwise, if the two users share no FRACTURE, US is 0. The Positivity Property and the Symmetry Property
hold for US as well.

Property 3 (Positivity Property). USðu1;u2Þ ¼ 1 only if u1 ¼ u2. ð0 6 US 6 1Þ.

First, if u1 ¼ u2, which means u1 and u2 share all of their FRACTUREs and all shared FRACTUREs are Identical FRACTUREs with FS as
1, then it is obvious USðu1;u2Þ ¼ 1. Second, if u1 – u2, there exists at least one FRACTURE of one user which cannot be shared by
the other user. Thus, for k;m;n in Definition 10, k < m or k < n. Let us suppose k < m. k is either less than n or equal to n. If
k < n; kþ k < mþ n; k < mþn

2 ;US < 1, that is US – 1. If k ¼ n, similarly, kþ k < mþ k;2k < mþ n, and US – 1. Thus, the
Positivity Property holds for US.
in, other monotonic decreasing functions can be used as well. The performance of some alternative functions is evaluated in Section 5.



876 L. Chen et al. / Data & Knowledge Engineering 68 (2009) 867–885
Property 4 (Symmetry Property). USðu1;u2Þ ¼ USðu2; u1Þ for all u1 and u2.

According to Definition 8, xðXi
1;X

i
2Þ ¼ xðXi

2;X
i
1Þ. Moreover, it is shown above that FS has the Symmetry Property. Hence,

USðu1;u2Þ ¼ USðu2;u1Þ.

Example 2. Consider the users and their FRACTUREs in Table 2 again. Since the two users u2 and u3 share three pairs of Identical
FRACTUREs, where each pair has the FS value 1;USðu2;u3Þ ¼ 2�3

3þ3 ¼ 1. On the other hand, users u1 and u2 share a pair of
Approximate FRACTUREs with FRACTURE similarity equal to 0.15 and assigned weight being 0.37. Then USðu1;u2Þ ¼
2�0:37�0:15

3þ3 ¼ 0:0185.
4. Framework of COWES

In this section, we describe the framework of COWES. Given a collection of web users, where each user is associated with a
sequence of his historical web sessions, COWES generates the clusters of users in the follows phases:

� Phase I. From the historical web sessions of each user, we extract a set of FRACTUREs, which will be treated as a vector of
features for clustering.

� Phase II. Compute the similarity matrix between pairs of web users based on the defined similarity measure US.
� Phase III. Perform clustering on the generated similarity matrix of web users.

In [5], we have proposed two algorithms of mining FRACTURE patterns from a sequence of historical tree structures: Apriori-
FRACTURE and FPG-FRACTURE. We discuss the Phases II and III in the following subsections.

4.1. Similarity computation

As the output of Phase I, each web user is represented as a set of FRACTUREs, where each FRACTURE is a set of web session sub-
trees and associated with two values: FoC and SoC. We need to compute the similarity between each pair of users in the sec-
ond phase.

Given two web users represented as two sets of FRACTUREs, we first compute an optimal assignment of their FRACTUREs so that
the total weight between shared FRACTUREs is maximized (i.e., the total Prefix Level between matched subtrees of the two FRAC-

TUREs is minimized). For example, suppose u1 ¼ fX1
1g where X1

1 ¼ fa=b; a=cg, and u2 ¼ fX1
2;X

2
2g where X1

2 ¼ fa=b; a=c=ig and
X2

2 ¼ fa=b=e; a=c=ig. Although X1
1 is approximate with both X1

2 and X2
2, we assign X1

1 to X1
2 so that the total weight between

shared FRACTUREs of the two users is maximized. This problem is referred to as Assignment Problem, in the branch of optimi-
zation or operations research in mathematics, which can be defined as follows [25]:

Any problem involving minimizing the sum of Cða; bÞ over a set P of pairs ða; bÞ where a is an element of some set A and b is an
element of set B, and C is some function, under constraints such as ‘‘each element of A must appear exactly once in P” or similarly
for B, or both.

In our problem, A is the set of FRACTUREs of one user, B is the set of FRACTUREs of the other user, C is the total Prefix Level
between matched subtrees from a pair of shared FRACTUREs5, and P is the assignment solution. Many algorithms have been
developed to handle the assignment problem. Here, we use the Hungarian algorithm, which solves assignment problems
in Oðn3Þ time6. An implemented version of Hungarian algorithm can be downloaded from [26]. After getting the optimal assign-
ment, the FS of shared FRACTUREs and the US of the two users can be computed according to Definitions 9 and 10.
4.2. Cluster generation

After Phase II, we get a similarity matrix of web users. Many appropriate clustering methods can be used to generate the
clusters. In general, the suitability of different methods are application-dependent. In our work, we compare the perfor-
mance of 8 clustering methods provided by CLUTO (CLUstering TOolkit), which is a freely distributed clustering package cre-
ated by Karypis [27]. In particular, we experimented with four partitional methods using different clustering criterion
functions, three agglomerative methods using different merging schemes and one graph-based clustering algorithm.

We briefly describe the employed clustering methods in the following. For more details, please refer to the document pro-
vided by CLUTO [27]. The partitional clustering methods we used generate the desired k-way clustering solutions by per-
forming a sequence of k� 1 repeated bisections. During each step, the cluster is bisected so that the resulting 2-way
clustering solution optimizes a particular clustering criterion function. The mathematical definitions of the four criterion
5 Finding matched subtrees from a pair of Approximate FRACTUREs is an assignment problem, too. For example, given a pair of Approximate FRACTUREs,
fa=b; a=b=cg and fa=b; a=b=c=dg, the minimum sum of Prefix Level should be 1. The sum of Prefix Level can be 3 if assigning subtrees differently.

6 Although the complexity is polynomial, the number n (the number of FRACTUREs of a user or the number of subtrees of a FRACTURE) in our problem is usually not
high.



L. Chen et al. / Data & Knowledge Engineering 68 (2009) 867–885 877
functions used by us are shown in Eqs. (4)–(7), where k is the number of clusters, ni is the number of users in the ith cluster, u
and v are two individual users, Ci is the ith cluster and C represents clusters other than Ci.
Table 3
Parame

(a) Para
U

w
G
F
P
S
N
R

Data

(b) Data
D1

D2

D3

D4

D5

D6

D7
I1 : maximize
Xk

i¼1

1
ni

X
v;u2Ci

simðu; vÞ
 !

ð3Þ

I2 : maximize
Xk

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
v;u2Ci

simðu; vÞ
s

ð4Þ

E1 : minimize
Xk

i¼1

ni

P
v2Ci ;u2Csimðv;uÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

v;u2Ci
simðu; vÞ

q ð5Þ

G1 : minimize
Xk

i¼1

P
v2Ci ;u2Csimðv;uÞP

v;u2Ci
simðu; vÞ ð6Þ
The agglomerative clustering methods we used generate the desired k-way clustering solution based on the agglomerative
paradigm, which starts with points (users) as individual clusters and, at each step, merge the closest pair of clusters. Three
different merging schemes are used: single-link, complete-link and UPGMA (Unweighted Pair Group Method with Arithmetic
mean) [10]. The three merging schemes define the cluster proximity based on the closest two points in different clusters, the
farthest two points in different clusters, and the average pairwise proximities of all pairs of points from different clusters.

The graph-based clustering method computes the desired k-way clustering solution by first modeling the points (users)
using a nearest-neighbor graph, and then splitting the graph into k-clusters using a min-cut graph partitioning algorithm.

5. Experimental results

In this section, we evaluate the performance of COWES via experiments on both synthetic and real data sets. We point out
here that the novelty of COWES is not the clustering method, but the extraction of appropriate information from historical web
sessions as a base for clustering and the similarity measures we defined to measure the proximity of web users in terms of
their characteristics in usage data evolution. The first two steps of COWES are implemented in the Java programming language.
All experiments are carried out on a Pentium IV 2.8 GHz PC with 512 MB memory. The operating system is windows 2000
professional.

5.1. Experiments on synthetic data

We conduct two experiments on the synthetic data. The first experiment is carried out to evaluate alternative similarity
measures. The second experiment is used to study the performance of different clustering methods in our application.

5.1.1. Synthetic data generator
We implemented a synthetic data generator which generates FRACTUREs for users with the following steps. Parameters used

by the generator are shown in Table 3(a), where the third column shows the default values of the parameters.
ters and datasets.

meter list
Number of web users 1000

Average number of FRACTUREs per user 3
Number of FRACTURE groups 6
Average number of FRACTUREs of each group 6
Number of FRACTUREs 36
Average number of subtrees of each FRACTURE 3
Number of nodes of web session tree 1000
Range of overall Prefix Levels 0–5

Feature parameters

set list
R ¼ 0� 1
R ¼ 0� 5
R ¼ 0� 10
w ¼ 5; F ¼ 4
w ¼ 4; F ¼ 5
w ¼ 3; F ¼ 6
w ¼ 2; F ¼ 7



878 L. Chen et al. / Data & Knowledge Engineering 68 (2009) 867–885
� First, we generate a general web session tree with the given number of nodes N. At a given node, the number of children is
sampled uniformly at random from the range 0–10. For each child, the process is performed recursively if the depth of the
tree is less than or equal to R or the total number of nodes reaches N.

� Then, we select subtrees from the general web session tree to compose P FRACTUREs. The size of each FRACTURE is picked from a
Poisson distribution with mean equal to S. The subtrees are sampled uniformly at random from the general web session
tree.

� Then, we organize FRACTUREs into FRACTURE groups. We sample the size of a FRACTURE group from a uniform distribution in the
range of 0–F. The group to which a FRACTURE will be assigned is sampled uniformly at random from the range 0–G.

� Finally, we generate FRACTUREs for web users. For each web user, we decide the number of FRACTUREs from a Poisson distri-
bution with mean equal to w. Each FRACTURE group is associated with a weight, which corresponds to the probability that it
will be selected for a web user. The weight is picked from an exponential distribution with unit mean. Weights of each
group is normalized so that the sum of weights is 1. The next group to be used for a user is chosen by tossing an G-sided
weighted coin, where the weight of a side is the probability of picking the corresponding group. To model the phenom-
enon that all FRACTUREs in a group do not always occur together, we associate to each group a corruption level, which is
obtained from a normal distribution with mean 0.5 and variance 0.1. Then, when adding FRACTUREs for a user, we keep drop-
ping a FRACTURE from the group as long as a uniformly distributed random number between 0 and 1 is less than the corrup-
tion level of the group. To model the phenomenon of Approximate FRACTURE, for each FRACTURE, we replace some of its
subtrees with its ancestor/descendant subtrees. The number of replaced subtrees is decided randomly from a uniform dis-
tribution in the range of 0 and the size of the FRACTURE. The Prefix Level between the original subtree and the replacing sub-
tree is also sampled randomly from a uniform distribution in the range of 0 and R. Finally, we assign FoC and SoC to each
selected FRACTURE from a uniform distribution in the range of [0,1].

In total, we use seven datasets in our experiments. As shown in Table 3(b), the first three datasets are generated with the
default parameter values except that the value of parameter R is varied. We use the three datasets to conduct the first exper-
iment which evaluates the alternative similarity measures. Hence, datasets generated with different R values will affect the
weight of shared FRACTUREs, which in turn affect the performance of alternative similarity measures. The last four datasets are
generated by varying the parameters w and F. The four datasets are used in the second experiment which studies the per-
formance of different clustering methods. Datasets generated with different w and F values exhibit different degrees of data
dense, which affects the performance of clustering methods.

5.1.2. Result analysis
Before conducting any experiment to evaluate alternative similarity measures or clustering methods, we first carried out

an initial experiment to see whether the natural number of clusters can be decided clearly. We then performed clustering on
the dataset D2 using the partitional methods with criterion functions I1; I2 and E1. The plots of overall value of criterion func-
tions versus the number of clusters are shown in Fig. 6. Since there exists no distinct knees or peaks in the overall value of
criterion function, according to [19], the number of clusters cannot be decided clearly. Then, we simply generate 10 clusters
in the remaining experiments.

As we mentioned in Section 3, different monotonic decreasing functions can be used in transforming a distance measure
to a similarity measure. Hence, the similarity measure US can be defined alternatively. We now conduct experiments to
study the performance of 6 alternative similarity measures as in Table 4. For example, for US1, we use the function e�d for
both FS and x. While, for US2, we use the function e�d for FS and 1

1þd for x. In addition, we use similarity measure US3

(and US6) to consider Identical FRACTUREs only. That is, x is either 1 for Identical FRACTUREs, or 0 for other situations.
We perform clustering with the six similarity measures on datasets D1;D2 and D3. The results are shown in Fig. 7a–c,

respectively. In Fig. 7, we use the two measures IS and ES to compare the clustering qualities. The IS refers to the average
internal similarity of clusters, which can computed as follows.
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Table 4
Alternative similarity measures.

US x FS

US1 e�d e�d

US2
1

1þd e�d

US3 0=1 e�d

US4 e�d 1
1þd

US5
1

1þd
1

1þd
US6 0=1 1

1þd

I1 I2 E1 G1 slink upgmaclink
IS 0.487 0.494 0.490 0.486 0.063 0.518 0.428 0.201

ES 0.104 0.104 0.116 0.107 0.120 0.125 0.101 0.005

ES 0.131 0.130 0.131 0.131 0.159 0.123 0.123 0.005
IS 0.516 0.506 0.511 0.502 0.067 0.535 0.445 0.205
ES 0.139 0.139 0.139 0.139 0.169 0.131 0.133 0.005
IS 0.454 0.463 0.414 0.441 0.053 0.394 0.374 0.183

IS 0.514 0.514 0.517 0.514 0.068 0.534 0.452 0.209
ES 0.142 0.142 0.123 0.141 0.172 0.133 0.134 0.006
IS 0.537 0.538 0.533 0.536 0.182 0.553 0.529 0.215
ES 0.152 0.152 0.153 0.151 0.153 0.141 0.153 0.006
IS 0.456 0.481 0.445 0.459 0.056 0.434 0.396 0.187
ES 0.112 0.110 0.117 0.114 0.132 0.127 0.107 0.005

partitional agglomerative graph-
based

US1

US2

US3

US4

US5

US6

I1 I2 E1 G1 slink upgmaclink
IS 0.319 0.319 0.301 0.327 0.067 0.275 0.301 0.150

ES 0.064 0.062 0.075 0.062 0.047 0.073 0.040 0.005

ES 0.090 0.090 0.091 0.079 0.075 0.079 0.060 0.004
IS 0.373 0.369 0.358 0.368 0.015 0.352 0.353 0.149
ES 0.108 0.111 0.112 0.114 0.102 0.096 0.077 0.004
IS 0.277 0.261 0.267 0.268 0.049 0.262 0.255 0.115

IS 0.323 0.322 0.319 0.332 0.067 0.276 0.266 0.133
ES 0.092 0.090 0.103 0.081 0.076 0.085 0.064 0.004
IS 0.381 0.381 0.371 0.381 0.381 0.376 0.376 0.152
ES 0.116 0.116 0.118 0.119 0.119 0.119 0.077 0.004
IS 0.266 0.263 0.268 0.270 0.049 0.265 0.262 0.116
ES 0.065 0.062 0.075 0.062 0.047 0.073 0.038 0.005

partitional agglomerative graph-
based

US1

US2

US3

US4

US5

US6

I1 I2 E1 G1 slink upgmaclink
IS 0.286 0.286 0.284 0.282 0.186 0.226 0.311 0.109

ES 0.051 0.051 0.051 0.051 0.040 0.062 0.047 0.004

ES 0.085 0.085 0.085 0.082 0.057 0.091 0.078 0.004
IS 0.345 0.286 0.344 0.341 0.114 0.326 0.300 0.127
ES 0.112 0.085 0.112 0.108 0.090 0.110 0.105 0.004
IS 0.225 0.217 0.215 0.220 0.209 0.256 0.213 0.092

IS 0.290 0.290 0.287 0.286 0.186 0.229 0.286 0.108
ES 0.087 0.087 0.086 0.084 0.059 0.089 0.073 0.004
IS 0.356 0.356 0.355 0.352 0.114 0.342 0.277 0.129
ES 0.117 0.117 0.117 0.113 0.095 0.108 0.107 0.004
IS 0.226 0.218 0.213 0.221 0.209 0.312 0.220 0.092
ES 0.052 0.051 0.051 0.052 0.037 0.062 0.044 0.004

partitional agglomerative graph-
based

US1

US2

US3

US4

US5

US6

(a) Performance of alternative similarity measures on D1

(b) Performance of alternative similarity measures on D2

(c) Performance of alternative similarity measures on D3

Fig. 7. Similarity matrix ordered by clustering results.

L. Chen et al. / Data & Knowledge Engineering 68 (2009) 867–885 879
IS ¼ 1
k

Xk

i¼1

1
ni

X
v;u2Ci

simðv; uÞ
 !

ð7Þ
while, ES refers to the average external similarity of clusters, which is defined as Eq. (9).
ES ¼ 1
k

Xk

i¼1

1
ni

X
v2Ci ;u2C

simðv;uÞ ð8Þ
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For a good clustering, the IS should be large while the ES should be small. From the experimental results in Fig. 7, we have the
following observations:

� There is a tradeoff between IS and ES. That is, similarity measures which works well in IS do not perform well in ES, vice
versa. For example, US5 can achieve high IS value, while its ES is quite high as well. Similarly, although US3 (or US6)
generates low ES, it sacrifices too much in IS. Generally, US4, which is the User Similarity measure defined in Definition
10, generates good IS without sacrificing too much in ES.

� From each table, it can be discovered that the performance of a similarity measure is independent of the clustering meth-
ods. That is, no matter what kind of clustering method is used, the performance of a similarity measure is consistent (note
that, the agglomerative clustering method which uses the simple-link merging scheme is not a suitable method here
because the generated IS is lower than ES in many cases).

� From the tables, it can be noticed that when the dataset changes so that the overall Prefix Levels between Approximate FRAC-

TUREs increases, the goodness of the similarity measures is consistent. For example, Fig. 8a and b, respectively plot the IS and ES
values generated by the partitional clustering method with the I1 function and the six similarity measures on the three data-
sets. We learned that US2 and US5 always achieve the highest IS (ES) while US3 and US6 persistently have the lowest IS ðESÞ.

We now describe the second experiment conducted to evaluate the performance of different clustering methods. Differ-
ent methods have different performance with respect to characteristics of the datasets. In our experiment, we use the four
synthetic datasets D4;D5;D6 and D7, which are generated by using different values for parameters w and F. According to the
way we generate synthetic datasets, the higher the w and the lower the F, the more overlapped the user groups. Conse-
quently, the dataset D4 is more overlapped than D7. Fig. 9 shows the results of the experiments, where the defined similarity
measure US4 is used. It can be observed that the partitional clustering method using the criterion function I1 usually achieves
the highest IS value while the graph-based clustering method works best in ES. Figs. 10 and 11 show the gray scale images of
the same similarity matrix ordered by the clusters generated by the eight algorithms. The shade of each point in the images
represents the value of the corresponding entry in similarity matrix. In extreme cases, white and black correspond to the
similarity values of 1 and 0, respectively. Hence, for a good clustering, the rectangles on the diagonal should be as white
as possible as they represent the web users in the same clusters, while the remaining areas should be as black as possible.
We observed that generally, the partitional clustering methods perform well not only in achieving the better accuracy but
also in controlling the balance of the cardinality of the clusters.

5.2. Experiments on real data

We also conducted three experiments on real-life data. In the first experiment, we compare the accuracy of COWES and an
existing algorithm [20] which clusters tree-structured data without considering its evolution. The second experiment is con-
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Fig. 8. IS and ES generated by partitional I1 on different datasets.

I1 I2 E1 G1 slink upgmaclink
IS 0.268 0.275 0.270 0.288 0.014 0.238 0.311 0.091

ES 0.117 0.122 0.121 0.115 0.094 0.112 0.083 0.006

ES 0.134 0.120 0.121 0.124 0.139 0.122 0.106 0.007
IS 0.402 0.379 0.371 0.385 0.182 0.298 0.252 0.156
ES 0.201 0.183 0.184 0.142 0.023 0.158 0.099 0.010
IS 0.363 0.327 0.320 0.309 0.063 0.289 0.276 0.138

IS 0.417 0.411 0.364 0.408 0.054 0.327 0.382 0.229
ES 0.079 0.079 0.076 0.079 0.107 0.071 0.068 0.003

partitional agglomerative graph-
based

D4

D5

D6

D7

Fig. 9. Performance of different clustering methods on different datasets.



Fig. 10. Similarity matrix ordered by clustering results I.
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ducted to compare the effectiveness of our similarity measure and alternative similarity measures. The third experiment
shows the performance variation with respect to the parameters of COWES.

5.2.1. Datasets
The real-life datasets are collected from Internet Traffic Archive (http://ita.ee.lbl.gov), sponsored by ACM SIGCOMM. We

use the trace that contains a day’s worth of all HTTP requests to the EPA www server located at Research Triangle Park, NC. In
considering the evolution of web usage data, the requests of a host are grouped with a time interval of one hour. All the re-
quests of all 2333 hosts in the trace form the Dataset I. In order to study the novelty of the knowledge that can be discovered
by COWES, we collect the requests of 57 hosts that browse the subtree with two paths, ‘‘/docs/whatsNew.html” and ‘‘/docs/

http://ita.ee.lbl.gov


Fig. 11. Similarity matrix ordered by clustering results II.

IS ES IS ES IS ES IS ES
5 0.36 0.013 0.09 0.007 3 0.67 0.24 0.35 0.24
6 0.36 0.014 0.08 0.006 4 0.72 0.39 0.37 0.24
7 0.38 0.017 0.21 0.006 5 0.73 0.34 0.38 0.23
8 0.39 0.019 0.18 0.008 6 0.72 0.32 0.40 0.22

Num of
Clusters

Num of
Clusters

Dataset I Dataset II
COWES COWESSTRUCTURE STRUCTURE

Fig. 12. Comparison of clustering algorithms.
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whatsHot.html” to form the Dataset II. Since hosts in the Dataset II are similar in their requests, without considering the evo-
lutionary characteristics of the requests, they may not be distinguished by existing cluster algorithms. We study to see
whether COWES can generate clusters of high quality based on evolutionary features of the requests.

5.2.2. Result analysis
We first conduct experiments to evaluate the accuracy of COWES on real-life data. The defined similarity measure US4 and

the partitional clustering method with criterion function I1 are used. Similarly, we use IS and ES to evaluate the quality of the
clustering results. We compare the results of COWES with those of an existing clustering method [20], referred to as STRUCTURE in
Fig. 12, which clusters hosts based on their a day’s worth all HTTP requests without considering the evolution of the requests.
The reason we compare COWES against STRUCTURE instead of other classical web user clustering methods [23,21] is as follows.
Classical web user clustering methods usually represent each web session as a bag pages. However, STRUCTURE considers web
sessions as tree structures, which capture more semantic similarity between pages. For example, given two web sessions,
fa=b; a=cg and fa=b=d; a=cg, STRUCTURE defines similarity based on shared edges. Then, the Jaccard similarity between the
two web sessions is 2/3. If we consider the two web sessions as bags of pages, the Jaccard similarity between the two ses-
sions is 1/3. Since COWES represents web sessions as trees also, it is fair to compare COWES with STRUCTURE instead of other clas-
sical web user clustering algorithms.

The experimental results are shown in Fig. 12. The DoC; FoC and SoC thresholds for FRACTURE mining are fixed at 0.5, 0.2 and
0.6, respectively. On Dataset I, the number of generated clusters ranges from 5 to 8. Since there are fewer hosts in Dataset II,
we generate 3 through 6 clusters. We observed that for Dataset I, the accuracy achieved by COWES is compatible with respect
to that of STRUCTURE. However, for Dataset II, COWES achieves much better IS and competitive ES. The reason that STRUCTURE cannot
perform as well as COWES on Dataset II is as follows. STRUCTURE clusters hosts based on all pages accessed by each host in one
day. Hence, it cannot distinguish hosts which accessed similar pages (e.g., ‘‘/docs/whatsNew.html” and ‘‘/docs/what-
sHot.html”). Nevertheless, COWES clusters hosts based on the evolutionary features of web sessions. Although hosts accessed
similar pages, COWES can distinguish them if they share similar FRACTUREs. For example, we observed that in all the clustering
results on Dataset II when the cluster number is varied from 3 to 6, the two hosts, ‘‘e659229.boeing.com” and ‘‘key-
hole.es.dupont.com”, are consistently clustered together. After analyzing the historical web sessions of the two hosts, we ob-
served that although they share similar pages with other hosts in Dataset II, they share a particular pair of FRACTUREs
fEPA� AIR=1995; docs=EPA� AIR=1995g7, whose sequential DoC values are shown in Fig. 14a and b, respectively. For
‘‘e659229.boeing.com”, FoC of the FRACTURE is 0.22 and SoC of the FRACTURE is 1.0. For ‘‘keyhole.es.dupont.com”, the FoC and SoC
7 The two hosts share some other FRACTUREs which are shared by other hosts in the cluster also. For clarity, we do not show them all.
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IS ES IS ES IS ES IS ES
5 0.36 0.013 0.21 0.015 3 0.67 0.24 0.59 0.21
6 0.36 0.014 0.22 0.015 4 0.72 0.39 0.67 0.34
7 0.38 0.017 0.38 0.019 5 0.73 0.34 0.65 0.31
8 0.39 0.019 0.30 0.024 6 0.72 0.32 0.65 0.29
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Fig. 13. Comparison of similarity measures.
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values of the FRACTURE are 0.26 and 1.0. COWES successfully distinguished them from other hosts in Dataset II because they fre-
quently vary their information needs under the two web session subtrees together.

We conduct another experiment to evaluate the effectiveness of our similarity measure in the real-life data. In particular,
we compare the two similarity measures US4 and US6 described in the previous subsection. The former is the defined sim-
ilarity measure while the latter considers Identical FRACTUREs only. The experimental results are shown in Fig. 13. We noticed
that although both similarity measures have similar performance in ES, the defined similarity measure works much better in
IS.

We then examine how the performance of COWES varies with respect to the variations of DoC; FoC and SoC thresholds. The
experiments are conducted on the Dataset I. The cluster number is fixed at 5 (Note that, our objective in this experiment is to
study the variation trend of the performance. Hence, the number of clusters will not affect the trend.). When varying one of
the thresholds, the other two are set as default values. The default values of the three thresholds are 0.4, 0.6, and 0.7, respec-
tively (see Fig. 14). The normalized IS and ES values with respect to each threshold are shown in Fig. 15a–c, respectively. We
observed that when the threshold values are increased, both the IS and ES values decreased. The reason is that when the
threshold values are low, more FRACTURE patterns can be discovered for each web user. Hence, users probably share more FRAC-

TUREs and both the average internal similarity and average external similarity increase. On the contrary, when the thresholds
are high, fewer FRACTUREs can be discovered and web users probably share fewer FRACTUREs. Consequently, both IS and ES values
decrease. We also observed that our approach on this dataset is more sensitive to the thresholds of DoC and SoC than the
threshold of FoC. The reason is that even if the threshold of FoC is lowered, it is not necessary more FRACTUREs can be found
for each user, because the threshold of SoC is fixed. Generally, the performance of COWES depends on the thresholds. Users of
COWES need to adjust the thresholds until acceptable IS and ES values are reached.
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6. Related work

Clustering Of Web users is an important task of Web Usage Mining. Existing work on web user clustering usually extract
access patterns of users from web server log files and organize them into web sessions. Xiao and Zhang [23] clustered web
user sessions based on various similarity measures, such as the number of shared web pages, the frequency of accessing the
shared web pages, the visiting time spent on shared pages and the order of visiting shared paged. Rather than clustering web
users based on web sessions directly, Fu et al. [8] first generalized the sessions so that pages representing the similar seman-
tics are collapsed. This approach reduces the dimension of clustering feature significantly. Wang and Zaiane [21] also cluster
web users based on snapshots of web sessions. They represented web sessions as vectors of encoded page IDs and then a
clustering algorithm handling categorical data was employed. The critical difference between existing works on clustering
web users and our effort is that we address the dynamic nature of web usage data. Existing approaches cluster web users
by the snapshots of web sessions, whereas we cluster web users by their historical web sessions. Furthermore, our similarity
measure is different from existing ones. We measure the proximity of web users based on the characteristics of their usage
data evolution. Existing approaches measure the likeness between web users based on the information in snapshot web
sessions.

Recently, the evolutionary feature of data was addressed by some data mining work which aim to maintain consistent
mining results over time. Chakrabarti et al. [4] proposed to cluster timestamped data such that a clustering at each timestep
is similar to the clustering at the previous timestep. Furthermore, each clustering should accurately reflect the data arrived
during that timestep. The dynamic nature of web access patterns were also observed by Nasraoui et al. [16,15]. As an alter-
native to locking the state of the web access patterns in a frozen state depending on when the web log data was collected and
preprocessed, they proposed to consider the web usage data as a reflection of a dynamic environment. These approaches are
different in the way that they cope with the dynamic nature of web usage data by designing evolutionary approaches to up-
date knowledge, whereas we mine the historical web usage data to obtain novel knowledge.

7. Conclusions

In this paper, we have presented a novel web user clustering method called COWES. To the best of our knowledge, this is the
first work which clusters web users based on the evolution of their web usage data. In order to capture the evolutionary
characteristics of web usage data, we mine evolutionary patterns, FRACTURE, from users’ historical web sessions and use dis-
covered patterns as the clustering features. We identified two types of FRACTUREs that can be shared by users and assigned
different weights to them to distinguish their contribution to the proximity of users. We then define the similarity between
users in terms of their shared FRACTUREs.

Various clustering methods are employed to generate clusters of web users. The experimental results show that ðiÞ COWES

is effective in discovering high quality clusters when users accessing similar pages exhibit different characteristics in usage
evolution; ðiiÞ the defined similarity measure works well in achieving high average internal similarity of clusters, without
sacrificing much in average external similarity of clusters; ðiiiÞ partitional clustering methods are preferable to agglomerative
clustering methods and graph-based methods in our application.

References

[1] A. Amiri, S. Menon, Efficient scheduling of internet banner advertisements, ACM TOIT 3 (4) (2003) 334–346.
[2] C. Buchwalter, M. Ryan, D. Martin, The state of online advertising: data covering 4th Q 2000, in TR Adrelevance, 2001.
[3] P. Cao, S. Irani, Cost-aware WWW proxy caching algorithms, in: Proc. of USENIX SITSY, 1997.
[4] D. Chakrabarti, R. Kumar, A. Tomkins, Evolutionary clustering, in: KDD, 2006, pp. 554–560.
[5] L. Chen, S.S. Bhowmick, L.T. Chia, FRACTURE mining: mining frequently and concurrently mutating structures from historical XML documents, in: Data

and Knowl. Eng., vol. 59, 2006, pp. 320–347.
[6] L. Chen, S.S. Bhowmick, J. Li, COWES: clustering web users based on historical web sessions, in: Proc. of DASFAA, 2006.
[7] R. Cooley, B. Mobasher, J. Srivastava, Data preparation for mining world wide web browsing patterns, in: Knowledge and Information Systems, vol. 1,

1999.
[8] Y. Fu, K. Sandhu, M. Shih, A generalization-based approach to clustering of web usage sessions, in: Proc. of WEBKDD’99, 1999.
[9] X. Huang, A. An, N. Cercone, G. Promhouse, Discovery of interesting association rules from livelink web log data, in: Proc. of ICDM, 2002.

[10] Anil K. Jain, Richard C. Dubes, Algorithms for Clustering Data, Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1988.
[11] N. Labroche, N. Monmarche, G. Venturini, Web sessions clustering with artificial ants colonies, in: Proc. of www, 2003.
[12] T. Li, Q. Yang, K. wang, Classification pruning for web-request prediction, in: Proc. of www, 2001.
[13] B. Mobasher, R. Cooley, J. Srivastava, Creating adaptive web sites through usage-based clustering of URLs, in: Proc. of IEEE KDEX workshop, 1999.
[14] B. Mobasher, H. Dai, T. Luo, M. Nakagawa, Effective personalization based on association rule discovery from web usage data, in: Proc. of wIDM, 2001.
[15] O. Nasraoui, C. Cardona-Uribe, C. Rojas-Coronel, Techno-streams: tracking evolving clusters in noisy data streams with a scalable immune system

learning model, in: Proc. of ICDM, 2003.
[16] O. Nasraoui, R. Krishnapuram, H. Frigui, A. Joshi, One step evolutionary mining of context sensitive associations and web navigation patterns, in: Proc.

of SDM, 2002.
[17] D. Simovici, N. Singla, M. Kuperberg, Metric incremental clustering of nominal data, in: ICDM, 2004, pp. 523–526.
[18] J. Srivastava, R. Cooley, M. Deshpande, P.-N. Tan, Web usage mining: discovery and applications of usage patterns from web data, in: SIGKDD

Explorations, vol. 1 (2), 2000, pp. 12–23.
[19] P.-N. Tan, M. Steinbach, V. Kumar, Introduction to Data Mining, Addison wesley, 2006.
[20] L. Wang, D.w.-L. Cheung, N. Mamoulis, S.-M. Yiu, An efficient and scalable algorithm for clustering XML documents by structure, in: IEEE TKDE, vol. 16

(1), 2004, pp. 82–96.
[21] W. Wang, O.R. Zaiane, Clustering web sessions by sequence alignment, in: Proc. of DEXA, 2002.



L. Chen et al. / Data & Knowledge Engineering 68 (2009) 867–885 885
[22] D. Widyantoro, T. Ioerger, J. Yen, An incremental approach to building a cluster hierarchy, in: ICDM, 2002, pp. 705–708.
[23] J. Xiao, Y. Zhang, Clustering of web users using session-based similarity measures, in: Proc. of ICCNMC’01, 2001.
[24] Q. Yang, H.H. Zhang, T. Li, Mining web logs for prediction models in WWW caching and prefetching, in: Proc. of ACM SIGKDD, 2001.
[25] Assignment Problem Definition. <http://www.definethat.com/define/3622.htm>.
[26] Munkres’ (Hungarian) Algorithm. <http://www.spatial.maine.edu/~kostas/dev/soft/munkres.htm>.
[27] CLUTO 2.1.1: Software for Clustering High-Dimensional Datasets. <http://www.cs.umn.edu/~karypis>.

Ling Chen received her Ph.D in Computer Engineering at Nanyang Technological University, Singapore, in 2007. She is currently
a post-doc researcher at L3S Research Center, University of Leibniz, Germany. Her research interest includes data mining,
machine learning, social web mining, collaborative filtering and web personalization.
Sourav S. Bhowmick is an Associate Professor in the School of Computer Engineering, Nanyang Technological University and the
Director of Centre for Advanced Information Systems (CAIS). He is currently Visiting Associate Professor at the Biological Engi-
neering Division, Massachusetts Institute of Technology (MIT), USA. He also holds the position of Singapore-MIT Alliance (SMA)
Fellow in Computation and Systems Biology program (2005–2008). He received his Ph.D. in computer engineering in 2001. His
current research interests include XML data management, systems biology data management, web data management, and data
mining. He has published more than 100 papers in major international database and data mining conferences and journals such
as VLDB, IEEE ICDE, ACM WWW, ACM SIGMOD, ACM SIGKDD, ACM CIKM, ER, PAKDD, IEEE TKDE, ACM CS, Information Systems,
and DKE. He is serving as a PC member of various database conferences and workshops and reviewer for various database
journals. He is also serving as a program chair/co-chair of several international workshops in biological and XML data man-
agement. He is a member of the editorial boards of several international journals. He has been tutorial speaker in several
international conferences such as ER 2006, APWeb 2008, and WAIM 2008. He has co-authored a book entitled Web Data
Management: A Warehouse Approach” (Springers Verlag, October 2003). He is a member of ACM and an affiliate member of IEEE.
Wolfgang Nejdl (born 1960) has been full professor of computer science at the University of Hannover since 1995. He received
his M.Sc. (1984) and Ph.D. degree (1988) at the Technical University of Vienna, was assistant professor in Vienna from 1988 to
1992, and associate professor at the RWTH Aachen from 1992 to 1995. He worked as visiting researcher/ professor at Xerox
PARC, Stanford University, University of Illinois at Urbana-Champaign, EPFL Lausanne, and at PUC Rio.
He heads the Distributed Systems Institute/ Knowledge Based Systems (http://www.kbs.uni-hannover.de/) as well as the L3S
Research Center (http://www.l3s.de/), and does research in the areas of technology-enhanced learning, semantic web tech-
nologies, peer-to-peer information systems, search and information retrieval, databases and artificial intelligence. Recent
projects in the L3S context include the PHAROS Integrated Project on audio-visual search, the OKKAM IP focusing on entities on
the Web, and the Digital Library EU project LiWA, coordinated by L3S, which investigates Web archive management and
advanced search in such an archive.
He published more than 180 scientific articles, as listed at DBLP, and has been program chair, program committee and editorial
board member of numerous international conferences and journals, see also http://www.kbs.uni-hannover.de/~nejdl/.

http://www.definethat.com/define/3622.htm
http://www.spatial.maine.edu/~kostas/dev/soft/munkres.htm
http://www.cs.umn.edu/~karypis
http://www.kbs.uni-hannover.de/
http://www.l3s.de/
http://www.kbs.uni-hannover.de/~nejdl/

	COWES: Web user clustering based on evolutionary web sessions
	Introduction
	Motivating example
	Applications
	Overview of COWES
	Contributions

	FRequently And Concurrently muTating substructUREs (FRACTURE)
	Similarity measure
	Types of shared FRACTUREs
	FRACTURE Similarity (FS)
	User Similarity

	Framework of COWES
	Similarity computation
	Cluster generation

	Experimental results
	Experiments on synthetic data
	Synthetic data generator
	Result analysis

	Experiments on real data
	Datasets
	Result analysis


	Related work
	Conclusions
	References


