Visual Graph Querying

Sourav S. Bhowmick! and Byron Choi?
!Nanyang Technological University, Singapore,
Singapore

2Hong Kong Baptist University, Hong Kong,
China

Definitions

Visual querying of graphs: Formulation of a
graph query by drawing it using a visual query
interface.

Overview

Querying graphs has emerged as an important
research problem due to the prevalence of graph-
structured data in many real-world applications
(e.g., social networks, road networks, collabora-
tion networks, cheminformatics, bioinformatics,
computer vision). At the core of many of these
applications lies a common and important query
primitive called subgraph search, which retrieves
one or more matching subgraphs or data graphs
containing exact (Han et al. 2013; Yan et al. 2004)
or approximate (Yan et al. 2005; Tian and Patel
2008) match of a user-specified query graph (aka
subgraph query). Since the last decade, a number
of graph query languages (e.g., SPARQL, Cypher)
have been proposed to facilitate textual formu-

© Springer International Publishing AG 2018

lation of subgraph queries. All these languages
assume that a user has programming and de-
bugging expertise to formulate queries correctly
in these languages. Unfortunately, this assump-
tion makes it harder for nonprogrammers to take
advantage of a subgraph search framework as
it requires significant time and effort to learn
these languages. For example, domain experts
such as chemists cannot be expected to learn
the complex syntax of a graph query language
in order to formulate meaningful queries over a
chemical compound database such as PubChem
(http://pubchem.ncbi.nlm.nih.gov/) or eMolecule
(https://www.emolecules.com/). Hence, it is im-
portant to devise easy and intuitive techniques
that reduce the burden of query formulation and
thus increase the usability of graph databases.

Fortunately, unlike SQL, graph queries are
more intuitive to draw than to compose them
in textual format. Consequently, visual query
interfaces (aka GUI) that can enable an end
user to draw a subgraph query interactively have
gained increasing attention in recent times from
both academia and industry (e.g., PubChem,
eMolecule, DrugBank). This has recently paved
the way for research in a variety of directions
that are driven by visual query interfaces such
as novel visual query processing paradigm
and interactive guidance to users by providing
relevant and timely feedback and suggestions
during query formulation, exploration, and
visualization of graph query results, among
others (Bhowmick et al. 2017a).

S. Sakr, A. Zomaya (eds.), Encyclopedia of Big Data Technologies,

https://doi.org/10.1007/978-3-319-63962-8_78-1

http://pubchem.ncbi.nlm.nih.gov/
https://www.emolecules.com/
https://doi.org/10.1007/978-3-319-63962-8_78-1

This chapter gives an overview to the topic of
visual graph querying, discussing the state of the
art in the industry and in the academic world.
In particular, we emphasize research efforts that
aim to bridge two traditionally disparate topics
in computer science, namely, graph querying and
human-computer interaction (HCI). In the next
section, we present an overview of the key prob-
lems and solutions in the arena of visual graph
querying. Next, in section “An Example” we
present an example to illustrate them. The last
section concludes this chapter by highlighting
future research directions.

Key Research Findings

Our discussion on research findings follows a
top-down approach, starting from visual query
formulation, proceeding to visual query process-
ing, and concluding with exploration of query
results.

Visual Query Formulation

There are mainly three popular approaches for
formulating visual subgraph queries. In the edge-
at-a-time approach (e.g., Jin et al. 2012), a query
is incrementally constructed by adding one edge
at a time. Note that it may be time-consuming to
formulate a query with a large number of edges
using this approach. Hence, in the pattern-at-a-
time approach, one may compose a visual query
by dragging and dropping canned patterns or sub-
graphs (e.g., benzene, chlorobenzene patterns)
that are available on the GUI in addition to single
edge construction. Figure 1 depicts an example
of such an interface. Observe that this approach is
more efficient than the former as it typically takes
lesser time to construct a query. For instance,
instead of drawing six edges incrementally to
construct a benzene ring in a query, we can
construct it with a single click and drag if it is
available as a canned pattern.

Furthermore, the pattern-at-a-time approach
can be either static or dynamic in nature. In
the former case, the set of patterns is fixed and
displayed in the GUI (e.g., Fig.1). In the lat-
ter case, the patterns are dynamically suggested

Visual Graph Querying

during visual query formulation by utilizing the
knowledge of partially formulated query frag-
ments. The AUTOG (Yi et al. 2017) framework
adopts this dynamic strategy. Specifically, it au-
tomatically generates a small list of subgraph as
suggestions by considering potential query result
size as well as structural diversity. Figure 2 shows
an example of subgraph suggestions during query
formulation in AUTOG. Note that it is extremely
difficult to speculate a priori the subgraph struc-
ture that a user wishes to construct during query
formulation.

Lastly, recent frameworks such as VIS-
AGE (Pienta et al. 2016) support query by
example (QBE) for formulating graph queries
using examples.

Recently, there has been another line of work
that provides opportune empty result feedback
during visual query formulation. Specifically,
the goal is to detect during query construction
whether a partially constructed query returns
empty results or alerts users in a timely fashion
so that one can undertake appropriate remedial
action(s). Several recent studies (Bhowmick et al.
2015; Pienta et al. 2016) address this problem by
notifying a user opportunely when a partially
constructed visual query yields an empty result.

Blending Visual Query Formulation and
Processing

In traditional visual query processing paradigm,
query evaluation can be performed in two key
steps. First, the visual query is transformed into
its textual or algebraic form. Second, the trans-
formed query is evaluated using an existing state-
of-the-art graph query processing method (Han
et al. 2013). Observe that although the final query
that a user intends to pose is revealed gradually in
a step-by-step manner during query construction,
it is not exploited by the query processor prior
to clicking of the Run icon to execute the query.
This often results in slower system response time
(SRT), which is the duration between the time a
user presses the Run icon and the time when the
user gets the query results (Jin et al. 2012). This
traditional view of visual graph query processing
is primarily due to the fact that until recently the
data management community has traditionally

Visual Graph Querying

Database Query Help

5 o B[]S =
e — R T Pattern Palette
l{\'lau Gragh Lasels | o 55 56 57
(] w
5 c
Cu
: -
5)
. 3
a] L]
Zn
B

L

C

As

" Pattem 0 (6.5)

-] c

,:" LS

f I

Sb (<)

b |

Hg]

Bi

:: !

::, | Pattern 1 (6.5)

z ‘

[Lv /N
4o _H1 _HP

Visual Graph Querying, Fig. 1 Pattern-at-a-time visual query formulation
Visual Graph Querying, Settings Visual Graph Editor
Fig.2 Subgraph Dataset e | s ;
suggestions during query P feset Showlas

formulation

Load Data and Initialize

Options
Show all labels
Edge =

1 :
considered visual interface-related issues more
relevant to the HCI community and orthogonal to
data processing.

The techniques in Jin et al. (2010, 2012)

and Hung et al. (2014) take a nontraditional
step toward exploring a graph query processing

2 3

.\I\.
paradigm by blending these two orthogonal
areas. Specifically, it interleaves (i.e., blend)
query construction and query processing to prune
false results and prefetch partial query results

in a single-user environment by exploiting the
availability of GUI latency (i.e., the time taken

to construct an edge of a query graph visually)
during visual query formulation. The key benefits
of this paradigm are at least two-fold. First, it
significantly improves the SRT (From an end
user’s perspective, the SRT is crucial as it is
the time a user has to wait before she can view
the results.) as the query processor does not
remain idle during visual query formulation by
processing the potential subgraph query early
based on “hints” received from the user. Second,
as a visual query is iteratively processed during
query formulation, it paves way for realizing
efficient techniques that can enhance usability
of graph databases such as query suggestion and
exploratory search (Huang et al. 2017).

This framework constructs offline and online
indexes based on underlying features of data
graphs. When a user adds a new edge e to a
visual subgraph query ¢, it constructs and main-
tains an adaptive online index for the edge to
facilitate blending of visual query formulation
and processing. If the user is interested in exact
subgraph matches, then it retrieves the candidates
of g (stored in R,) by leveraging the offline and
online indexes. If R, is empty, then it means
that there is no exact match for g after the
addition of e. Consequently, the user can either
modify g or retrieve similar matches to ¢q. If
the user chooses the latter, then ¢ is regarded as
a subgraph similarity query, and corresponding
candidate matches are retrieved by leveraging the
indexes. On the other hand, if the user chooses
the former, then a user-selected edge is removed
and the online index is updated. If the user clicks
the Run button, then the constructed query g is
processed to retrieve result matches . If ¢ is an
exact subgraph query, the exact results will be
returned after conducting candidates verification
(i.e., subgraph isomorphism test), if necessary, on
R,. Otherwise, if it is already a subgraph similar-
ity query, then results that match g approximately
are returned to the user.

Note that in the above framework, the expen-
sive candidate verification step is performed only
after the Run button is clicked and not during
visual construction of the query fragments. Sec-
ond, it allows a user to execute a query frag-
ment anytime during query formulation and not

Visual Graph Querying

wait until the entire query is visually formulated.
This facilitates exploratory search as a user may
formulate a partial query, execute it, browse the
results, and then continue expanding it (Huang
et al. 2017).

Interactive Exploration of Query Results

The preceding subsection highlights frameworks
that exploit human interactions with a visual
graph query interface during query formulation to
process subgraph queries iteratively. Naturally, it
is imperative for such visual subgraph querying
frameworks to enable efficient exploration and
visualization of result matches of such subgraph
queries. This is a challenging problem as it re-
quires effective summarization and visualization
of the content and structure of the matching sub-
graphs involved in a potentially large collection
of query results. In this subsection, we briefly
describe efforts reported in recent literature to
this end.

Despite the fact that exploration of query
results is the first step toward sensemaking for
a user, scant attention has been paid on this
problem by both academic and commercial graph
data management communities. Specifically, we
can categorize visual exploration of graph query
results into two types: (a) visual exploration
of query results in a large collection of small-
and medium-sized graphs (Jin et al. 2010, 2012;
Huang et al. 2017) and (b) visual exploration of
result matches in a large network (Hung et al.
2014; Pienta et al. 2016, 2018). We elaborate on
them in turn.

Exploration in a large collection of small- and
medium-sized graphs. Early efforts for explo-
ration of query results (Jin et al. 2010, 2012)
simply displayed result matches in a list, without
revealing connections among results. A matching
subgraph in each data graph is then highlighted
with different colors to identify the component of
the data graph that matches a visual query. These
results may be further sorted by various mea-
sures such as subgraph distance (for approximate
match). For instance, in Jin et al. (2010, 2012), a
user can only iteratively scroll through each result
data graph to view query results. Clearly, this is

Visual Graph Querying

s Vol

Timestusg: 1 Timestamp:2 Timsestamp:3(Similarity Search)
e - Vol i | ol Y] i ~ T o i - =
| | % &3]
| wo | (o y I'E
| | 5 oo~ 52 'd 3 3]
! : | W3 L e & - g o
] S | \ f =] {
| e S0 | : 7]
L S e a3 = €
| ! | = L
| ™\ - | =] = '
J -
L v \ o
kS
el =
s oo 4000 147 441
— — —
1 i — | =
& o
| w | / | i ek
. B / ’
| o W | s | \ / 4
: I e I CE RN
§ k c
l i | i L |
Query:1 S Query:3
B B B
A n 3
B——=a B——8 f——g
H & H G H
g, | - 5]

Visual Graph Querying, Fig. 3 Parallel search streams in PICASSO

tedious even for modest-sized query results and
cannot easily reveal patterns and relationships
between matching subgraphs.

PICASSO (Huang et al. 2017) is a system that
utilizes the query processing engine described
in the preceding subsection to support visual
exploratory search. It accommodates the results
of the initial and reformulated query graphs to
be juxtaposed in the form of parallel search
streams (i.e., parallel query-results pairs) that
facilitate exploration of the underlying data and
possible identification of new search directions.
Figure 3 depicts an example of three parallel
search streams during exploratory search in PI-
CASSO. Furthermore, it provides a framework to
further search and analyze various features of the
search results during the exploration process to
facilitate understanding of the data.

Exploration of result matches in a large
network. It is well known that visualizing
large graphs containing thousands of vertices and
edges is cognitively challenging. Consequently,
the aforementioned approach of highlighting the
result matches of a visual subgraph query by
color-coding them in the original data graph is
ineffective in the context of large networks as it

is not only challenging to locate query results in
a giant “hair ball” but also it is extremely difficult
to comprehend the structural relationships among
the vertices in a matching subgraph overlaid on a
large network. Despite these challenges, there are
very few works on query results exploration on
large networks. Similar to Jin et al. (2010) and Jin
et al. (2012), early efforts such as VISAGE (Pienta
et al. 2016) simply display the results in form of
a list.

Recently, there has been an increasing
attention to develop advanced techniques for
query results exploration for large networks.
This work can be broadly classified into three
types, namely, region-based, exemplar-based,
and feature-based exploration. Intuitively, a
region-based exploration scheme iteratively
displays a small region of the underlying network
containing a result match of a subgraph query. By
showing only a fragment of the original network
one at a time, it alleviates the cognitive overhead
associated with the visualization of all query
results on the original network. The approach
in Hung et al. (2014) adopts this strategy. In an
exemplar-based exploration scheme, a user can
select a specific query result (i.e., an exemplar)
and relax its constraints to retrieve other similar

VIGOR
Exemplar View

Fusion Graph

W TR a visual explorato
@ Fur v

@ Fchele ¥ Thou

Pumn

@ sreis

@ sing Wang

@ TopicPancrama A full picture. N Mining evolutionary mult

Visual Graph Querying

C

! Embedded Results

Visual Graph Querying, Fig. 4 Visual interface of VIGOR (Pienta et al. 2018)

results. A user can also start the exploration by
specifying only the topology (without constraints
on node values) and iteratively add constraints
to narrow in on specific results. Feature-based
exploration schemes, on the other hand, take a
top-down approach by generating a high-level
overview of all the query results. Specifically, it
groups the query results based on the structural
features and embeds them in a low-dimensional
representation. VIGOR (Pienta et al. 2018)
supports both exemplar-based and feature-based
exploration schemes (Fig. 4).

An Example

Consider a chemical compound repository con-
taining a large collection of small- or medium-
sized graphs such as PubChem. Suppose a user
wishes to formulate the subgraph query shown
in Fig. 1. She may visually formulate it either
using an interface that supports edge-at-a-time
query formulation by adding the five edges it-
eratively or using a static pattern-at-a-time in-
terface (e.g., Fig. 1) to quicken the formulation
by dragging and dropping canned patterns. Al-
ternatively, a dynamic pattern-at-a-time interface
such as Fig. 2 can be leveraged where suggestions
are generated iteratively as the user formulates

her query. Specifically, Fig.2 depicts the three
suggestions generated by AUTOG (Yi et al. 2017)
after the addition of two C-C edges. The query is
shown in the middle of the GUI, whereas relevant
suggestions are presented in the bottom. She
may adopt the second suggestion and continue
with the query formulation task. Next, AUTOG
presents the user’s final query as Suggestion 3
as shown in Fig. 5. Consequently, the selection of
this suggestion completes the query formulation
task.

The techniques proposed in Jin et al. (2010,
2012) can be utilized to interleave aforemen-
tioned query formulation with query processing.
Specifically, the query can be iteratively executed
during formulation, and corresponding results
can be explored to gain insights. Figure 3 depicts
such exploration. The original query is shown in
the bottom left panel. The modifications to this
query with addition and deletion of edges are
shown in the bottom middle and right panels,
respectively. The corresponding search results for
each of these subgraph queries are shown in
the top. A user can compare the search results
and explore the differences between the result
sets and features of the nodes in them using
PICASSO (Huang et al. 2017).

Visual Graph Querying

Visual Graph Querying,
Fig. 5 Query suggestions
of Suggestion 2 of Fig. 2,
where Suggestion 3 is the
completed query

Settings
Dataset

PubChem

Load Data and Initialize

Options
Show all labels

Edge =

Future Directions

While good progress has already been made,
research on visual graph querying opens up
many opportunities for continued research as
highlighted below. Some of these topics were
introduced by recent vision papers (Bhowmick
2014; Bhowmick et al. 2016).

Data-driven construction of visual query in-
terfaces. Most of the real-world GUIs for visual
graph querying are constructed and maintained
manually. That is, details of visual design of
a GUI are manually worked out, and contents
of various components are created manually by
“hard coding” them during GUI implementation.
Unfortunately, such manual effort may create
GUIs that do not provide sufficient features to
aid efficient query formulation, are static in na-
ture when the underlying graph data repository
evolves, and have limited portability (Bhowmick
et al. 2016). To alleviate these limitations, a
recent work introduced the paradigm of data-
driven GUI construction and maintenance (Zhang
et al. 2015), where the goal is to automatically
construct the content of various panels of a GUI
and maintain them as underlying data evolves.
Such a data-driven paradigm has several bene-

Visual Graph Editor

Reset

Submit Query Show Ids
2 3 ®

fits such as superior support for visual subgraph
query construction, significant reduction in the
manual cost of maintaining an interface for any
graph query-based application, and portability
of the interface across diverse variety of graph
querying applications. However, these are very
early efforts, and there are many opportunities to
explore this novel paradigm of GUI construction
further.

Visual querying on massive graphs. All re-
searches related to guidance for visual query for-
mulation, visual action-aware query processing,
and exploration and visualization of query results
have focused either on a large set of small- or
medium-sized data graphs or on networks with
millions of nodes. A natural extension to this
paradigm is to support similar problems on mas-
sive graphs (comprising hundreds to billions of
nodes), which may demand a distributed frame-
work and novel algorithms built on top of it.

Efficient processing of complex graph queries.
Current research demonstrates the viability of
blending visual formulation and processing of
subgraph containment and subgraph similarity
search queries. It is an open problem to en-
hance the expressiveness of such visual querying

framework to handle more complex subgraph
queries such as homomorphism-based subgraph
queries (Fan et al. 2010).

Multifaceted exploration and visualization of
query results. As remarked earlier, techniques
that enable rich, interactive exploration and vi-
sualization of graph query results are still in its
infancy. How can we easily explore and visualize
results of a variety of subgraph queries to gain
better understanding of it? This is especially a
challenging problem when the underlying graph
is massive as the entire graph looks like a giant
hair ball and the subgraphs that are returned as
results to a query are lost in the visual maze.
Furthermore, it is interesting to explore additional
insights that we may attach to the matched results
that may enable end users for further exploration.

Automated performance study. User studies
are sine qua non for evaluating the performance
and effectiveness of the aforementioned visual
action-aware query processing techniques. In
contrast to the traditional query processing
paradigm where the runtime performance of
a large number of subgraph queries can be
easily measured by automatically extracting
a random collection of subgraphs from the
underlying data and executing them (Katsarou
et al. 2015), each visual query graph must be
formulated by a set of users. This is because
in this paradigm the availability of the GUI
latency at each formulation step is exploited to
prefetch and refine candidate matches. To address
this challenge, it is important to automatically
generate many test subgraph queries having
different user-specified characteristics (e.g.,
frequent, infrequent) using indexes and simulate
their formulation based on different query
formulation sequences without requiring human
users. A recent effort (Bhowmick et al.
2017b) addresses this by building an HCI-
based framework for simulating subgraph query
construction on a database containing a large
number of small- or medium-sized graphs. It
can be used to automate exhaustive evaluation
of performances of various visual action-aware

Visual Graph Querying

query processing techniques. However, this area
is still in its infancy with only one notable work.

Cross-References

Graph Exploration and Search
Graph Pattern Matching
Graph Query Languages

References

Bhowmick SS (2014) DB ><t HCI: towards bridging the
chasm between graph data management and HCI. In:
Proceedings of the 25th international conference on
database and expert systems applications (DEXA), Part
I, Munich, 1-4 Sept 2014, pp 1-11

Bhowmick SS, Dyreson CE, Choi B, Ang M (2015)
Interruption-sensitive empty result feedback: rethink-
ing the visual query feedback paradigm for semistruc-
tured data. In: Proceedings of the 24th ACM inter-
national conference on information and knowledge
management (CIKM), Melbourne, 19-23 Oct 2015,
pp 723-732

Bhowmick SS, Choi B, Dyreson CE (2016) Data-
driven visual graph query interface construction and
maintenance: challenges and opportunities. PVLDB
9(12):984-992

Bhowmick SS, Choi B, Li C (2017a) Graph querying
meets HCI: state of the art and future directions. In:
Proceedings of the 2017 ACM international conference
on management of data, SIGMOD conference 2017,
Chicago, 14-19 May 2017, pp 1731-1736

Bhowmick SS, Chua H, Choi B, Dyreson CE (2017b)
VISUAL: simulation of visual subgraph query formu-
lation to enable automated performance benchmarking.
IEEE Trans Knowl Data Eng 29(8):1765-1778

Fan W, Li J, Ma S, Wang H, Wu Y (2010) Graph
homomorphism revisited for graph matching. PVLDB
3(1):1161-1172

Han W, Lee J, Lee J (2013) Turbojg,: towards ultrafast
and robust subgraph isomorphism search in large graph
databases. In: Proceedings of the ACM SIGMOD in-
ternational conference on management of data (SIG-
MOD), New York, 22-27 June 2013, pp 337-348

Huang K, Bhowmick SS, Zhou S, Choi B (2017)
PICASSO: exploratory search of connected sub-
graph substructures in graph databases. PVLDB
10(12):1861-1864

Hung HH, Bhowmick SS, Truong BQ, Choi B, Zhou S
(2014) QUBLE: towards blending interactive visual
subgraph search queries on large networks. VLDB J
23(3):401-426

Jin C, Bhowmick SS, Xiao X, Cheng J, Choi B (2010)
GBLENDER: towards blending visual query formula-
tion and query processing in graph databases. In: Pro-

http://link.springer.com/Graph Exploration and Search
http://link.springer.com/Graph Pattern Matching
http://link.springer.com/Graph Query Languages

Visual Graph Querying

ceedings of the ACM SIGMOD international confer-
ence on management of data, (SIGMOD), Indianapolis,
6-10 June 2010, pp 111-122

Jin C, Bhowmick SS, Choi B, Zhou S (2012) PRAGUE:
towards blending practical visual subgraph query for-
mulation and query processing. In: IEEE 28th interna-
tional conference on data engineering (ICDE), Wash-
ington, DC, 1-5 Apr 2012, pp 222-233

Katsarou F, Ntarmos N, Triantafillou P (2015) Perfor-
mance and scalability of indexed subgraph query pro-
cessing methods. PVLDB 8(12):1566-1577

Pienta R, Tamersoy A, Endert A, Navathe SB, Tong H,
Chau DH (2016) VISAGE: interactive visual graph
querying. In: Proceedings of the international working
conference on advanced visual interfaces (AVI), Bari,
7-10 June 2016, pp 272-279

Pienta R, Hohman F, Endert A, Tamersoy A, Roundy
K, Gates C, Navathe SB, Chau DH (2018) VIGOR:
interactive visual exploration of graph query results.
IEEE Trans Vis Comput Graph 24:215-225

Tian Y, Patel JM (2008) TALE: a tool for approximate
large graph matching. In: Proceedings of the 24th
international conference on data engineering (ICDE),
Canctin, 7-12 Apr 2008, pp 963-972

Yan X, Yu PS, Han J (2004) Graph indexing: a frequent
structure-based approach. In: Proceedings of the ACM
SIGMOD international conference on management of
data, Paris, 13—18 June 2004, pp 335-346

Yan X, Yu PS, Han J (2005) Substructure similarity
search in graph databases. In: Proceedings of the ACM
SIGMOD international conference on management of
data, Baltimore, 14—16 June 2005, pp 766777

Yi P, Choi B, Bhowmick SS, Xu J (2017) Autog: a visual
query autocompletion framework for graph databases.
VLDB J 26(3):347-372

Zhang J, Bhowmick SS, Nguyen HH, Choi B, Zhu F
(2015) Davinci: data-driven visual interface construc-
tion for subgraph search in graph databases. In: 31st
IEEE international conference on data engineering
(ICDE), Seoul, 13-17 Apr 2015, pp 1500-1503

	Visual Graph Querying
	Definitions
	Overview
	Key Research Findings
	Visual Query Formulation
	Blending Visual Query Formulation and Processing
	Interactive Exploration of Query Results

	An Example
	Future Directions
	Cross-References
	References
	References

