OXONE: A Scalable Solution for Detecting Superior
Quiality Deltas on Ordered Large XML Documents

Erwin Leonardi Sourav S. Bhowmick

School of Computer Engineering, Nanyang Technological University, Singapore
{pk909134, assourav }@ntu.edu.sg

Abstract. Recently, a number of relational-based approaches for detecting the
changes to XML data have been proposed to address the scalability problem of
main memory-based approaches (e.g., X-Diff, XyDiff). These approaches store
the XML documents in the relational database and issue SQL queries (whenever
appropriate) to detect the changes. In this paper, we propose a relational-based
ordered XML change detection technique (call&@koNE) that uses achema-
consciouspproach as the underlying storage strategy for XML data. Previous ef-
forts have focused on detecting changes to ordered XML ischema-oblivious
storage environment. Although the schema-oblivious approach produces better
result qualitycompared to XyDiff (a main memory-based ordered XML change
detection approach), its performance degrade with increase in data size and is
slower than XyDiff for smaller data set. We propose a technique to overcome
these limitations. Our experimental results show BADNE is up to 22 times
faster and more scalable than the relational-based schema-oblivious approach.
The performances ddxoNE and XyDiff (C version) are comparable. However,
more importantly, our approach is more scalable compared to XyDiff for larger
datasets and has much superior the result quality of deltas than XyDiff.

1 Introduction

Detecting changes to XML data is an important research problem. Recently, a number
of main memory-based techniques for detecting the changes to XML data has been pro-
posed. XyDiff [1] is an approach for detecting the changesderedXML documents.

In anorderedXML, both the parent-child relationship and the left-to-right order among
siblings are important. Wang et al. proposed X-Diff [8] for computing the changes to
unorderedXML documents. IrunorderedXML, the parent-child relationship is signif-
icant, while the left-to-right order among siblings is not important. All these algorithms
suffer from scalability problem as they fail to detect changes to large XML documents
due to lack of main memory.

In [3, 4], we have addressed this scalability problem in the context of unordered
XML documents by leveraging on the relational technology. In this approach, given
the old and new versions of an XML document, we store both documents in a rela-
tional database. Next, we issue a set of SQL queries (wherever appropriate) to detect
the changes. Efficient and accurate change detection in such a relational environment
is largely determined by the underlying storage structure. Particularly, there are two
major approaches for storing XML documents in a relational database [g¢hiema-
conscious approacha relational schema is created based on the DTD/schema of the

XML documents. In theschema-oblivious approach fixed schema used to store XML
documents is maintained. The basic idea is to capture the tree structure of an XML doc-
ument. This approach does not require existence of an XML schema/DTD. In [2, 3], we
have used schema-oblivious approach to detect changes tordetiedandunordered

XML documents. Whereas, in [4], we proposed a schema-conscious driven approach
for detecting changes tmorderedXML data.

In this paper, we present a relational-based approach, ca@leNe! (schema-
cOnsciousXML-enabledOrdered chhlge detection), for detecting the changesdn
deredXML data using sschema-conscious approat®hared-Inlining [6] in our case).

Our effort is motivated by the following observations. First, a growing body of work
suggests that schema-conscious approaches perform better than majority of the schema-
oblivious approaches as far as XML query processing is concerned [7]. Second, our re-
cent effort for detecting changesuaorderedXML data in [4] using schema-conscious
approach shows encouraging results. In particular, we have shown that the schema-
conscious driven approach is significantly more scalable and faster than not only X-Diff
[8] but also relational-based schema-oblivious approach susaasy [3].

At this point one may question the justification of this work as we have already ex-
plored the feasibility of using schema-conscious storage approach for detecting changes
to XML data. However, the work reported in this paper is important for the following
reasons. First, in [4] we have focused on change detectiandaleredXML whereas
in this paper we focus oarderedXML data. Although some of the SQL queries intro-
duced in [4] can be used for detecting changes to ordered XML with minor modifica-
tions, as we shall see later, the very nature of ordered XML pose new challenges. For
instance, unlike unordered change detection, ordered XML change detection has addi-
tional moveoperation that needs to be detected accurately. Second, the characteristics
of schema-conscious approach raise certain challenges. Unlike schema-oblivious ap-
proaches, the underlying relational schema is DTD-dependent. Consequently, the chal-
lenge is to create a general framework for change detection so that the framework is in-
dependent of the structural heterogeneity of various XML documents. Third, it has been
shown in [8] that XyDiff is significantly faster than X-Diff. However, thesult quality
of XyDiff is significantly poorer compared to X-Diff [8]. In [2, 3], we have shown that
it is possible to generate superior quality deltas for both ordered and unordered XML
change detection problem using relational-based approach. However, due to the under-
lying storage strategy, the relational-based approach in [2] is significantly slower than
XyDiff and does not scale well with large dataonsequently, is it possible to design a
relational-based ordered XML change detection system that is more scalable and gen-
erates superior quality results, yet have response time which is at least comparable to
XyDiff if not better?n this paper, we propoSexoNE to address these challenges.

In our approach, we first store two versions of an XML document, narigly,
andT5, in a relational database whose underlying storage scheme is baseddsn
ified Shared-Inlining approach [6]. The@XONE can be used to detect the changes
to 7y andT5 in a bottom-up fashion. Our approach consists of two phdgeding
best matching subtregihase and thehange detectiophase. The objective of the first
phase is to find the most similar subtree§inandT5. In order to find the most similar
subtrees, we need to match subtrees;irio ones inls. Note that a subtree i} can

! pronounced as “ozone”.

o 1

2
[] Cou Js e 1o o 10
3 9 15 20
= Edun 10 [rame] 22
5 16
6 7 12 13 23 24

Multimedia Data Web Data Indexing Security
Mining Mining Management

Deleted node Inserted node | (a) First Version (T.)
Updated node | _A T Moved node
101
102

Z5ar]

s us

114
115 119 120

(b) Second Version (T>)

123

Fig. 1. Two versions of XML documents.

be matched to more than one subtre€lin and vice versa. In addition, we need to
measure the similarity of each matching by calculatingdtingilarity score The most

similar matching subtrees are calleest matching subtreeb our approach, we issue

SQL queries (whenever appropriate) to find the best matching subtrees. We shall elabo-
rate on this phase in Section 3. Having determined the best matching subtrees between
T1 andT5, in the second phagexoNE issues SQL queries (whenever appropriate) to
detect different types of changes. The types of changes that can be deteCbed oy

are similar to the one in [1]. The detected changes are stored in several relations. We
shall elaborate on this phase in Section 4.

We have implemented the prototype@XONE on top Microsoft SQL Server 2000
using Java. We comparddxoNE to XANDY—O [2], a published schema-oblivious or-
dered XML change detection system, and XyDiff [1]. Our results show@xatNE has
comparable response time with XyDiff for large XML documents. However, it is more
scalable and has superi@sult qualitycompared to XyDiff. Particularly, XyDiff fails
to detect changes to XML documents containing around 356,000 nodes or more. Also,
OxONE outperformsXANDY—O by up to 22 times and is more scalable. In addition,
for larger data set€DXONE is up to 44 times faster than X-Diff [8]. X-Diff is unable
to detect the changes on XML documents that have more than 5000 nodes due to lack
of main memory. We shall elaborate on the experimental results in Section 5. Note that
the framework discussed in this paper is only for XML documents whose schemas do
not contain recursive elements.

i <!ELEMENT univStaff (staffx)>
univstaff <!ELEMENT staff (name,rank, research)> Document (Doc_I b, Doc_Nane)
‘ <!ELEMENT research (interest*)> Univstaff (Doc_ID, 1D
* <!ELEMENT name (#PCDATA)> Staff (Doc ID, 1D, PID, Name, Rank)
‘ <!ELEMENT rank (#PCDATA) > — ! i
staff <IELEMENT interest (#PCDATA)> Research.Interest (Doc_ID 1D PID Val)
(b) DTD (c) Original Schema

name rank research

‘ Docunent (Doc_I D, Doc_Nane)
T UnivStaff (Doc_ID, 1D)
Staff (Doc_ID, 1D, LocalOrder, PID, Nane, Rank, Research)

Interest (Doc_ID, ID, Local Order, PID, Val)

interest

(a) DTD Tree (d) Modified Schema

Fig.2.DTD Tree, DTD, and Relational Schema.

2 Background

In this section, we first define some terms that we shall use subsequently to facilitate
exposition. Then, we discuss how the Shared-Inlining schema is modified to support
ordered XML change detection. We use the two versions of XML document in Figure 1
as running example throughout the paper.

2.1 Terminology

LetT be atree representation of an XML documéniThe root node of " is denoted by
root(T). Let L(T) = {¢1, (2, ..., £, } be a set of leaf nodes in XML treE. The textual
content of a leaf nodéis denoted byalue(?). A set of internal nodes iff’ is denoted
by Z(T'), andi denotes an internal node, where Z. The name and level of node
are denoted by.ame(n) andlevel(n), respectively. Thenpath(n) denotes the path
from root(T') to noden. The parent node, child node, and ancestor node of naite
denoted aparent(n), child(n), andancestor(n), respectively. In ordered XML, the
left-to-right position of a node among its siblings is significant. Hepoe(n) denotes
the left-to-right position of node among its siblings ifD is anordered XML. Note
that we usdl; andT; as depicted in Figures 1(a) and 1(b), respectively, as our running
example in the later discussion.

Letly, € L(T1) andl, € L(T») be two leaf nodes in the first and second versions
of an XML tree respectively. Therf;, and/,, arematching leaf nodegdenoted as
by, < lo,) if namél;,) = namé/ls), leveldy,) = levells,), path(/;,) = path(/s,),
andvalug/;,) = valug/y). For example, leaf node&; and/;;, are matching leaf
nodes(/13 < ¢112) because they satisfy the above conditions. Note that a leaf node in
T: can be matched to more than one leaf nodé&inand vice versa. Leaf nodg;g in
T, can be matched to nodg, ¢y, and/, in T} as they satisfy the above conditions.
Note that if¢; and/s are not matching leaf nodes, then they are denoted k¥ /5.

We classify the matching leaf nodes into two types, nanfelgd matching leaf
nodesand shifted matching leaf node$his classification is important in the context
of ordered change detection as if the left-to-right position among siblings of a node
is changed, then it is possible that this node is moved among its siblings. Formally, let
0y — Uy If pos(¢1) = pos(£3), thent, and/s arefixed matching leaf node®therwise,
they areshifted matching leaf nodeEor example, leaf nodegg and ¢,y are fixed
matching leaf node a&g < {196 andpos(¢1s) = pos(f106). Leaf noded;3 andlyo
are shifted matching leaf node &s < ¢112 andpos({13) # pos(f112).

Next, we define the notion ahatching leaf node groupket G; andg, be two sets
of leaf nodes whose parent nodes areandi., respectively, wher¢, € Z(77) and
io € Z(T). Then,G; andG, arematching leaf node groupslenoted ag; < G,) iff
3¢,3¢, such that, < ¢,, wherel, € G, and/, € G,. For example, supposg; =
{¢18} and G105 = {¢106, {107} are two sets of leaf nodes iy and7T, whose parent
nodes are nodes 17 and 105, respectively. We observgthat Gio5 asf1s < {106,

{18 € Gi7, andlips € Gos.

Next, we definematching subtreesThe root nodes of two matching subtrees are
calledmatching internal node$rom a set of matching subtrees, we determine the most
similar subtrees to bleest matching subtreeSimilar to X-Diff [8] and XyDiff [1], we

only match two subtrees at the same level. Formallypthéching subtreeare defined
as follows. Lett; andt, be two subtrees rooted at nodgse Z(77) andiy € Z(13),
respectively. Thert; andt, arematching subtree@lenoted by, = ¢5) if name(i1) =
name(iz), level(iy) = level(iz), path(i;) = path(iz), and3p Jq such thap < ¢,
wherei; = ancestor(p), ia = ancestor(q), p € L(T1), andg € L(T3). For instance,
the subtrees rooted at noglén 77 and nodd 08 in 75 are matching subtreét = t10g)
as they have three matching leaf nodés<«— (109, ¢10 <> £110, aNdl13 — £112). If t1
andt, are not matching subtrees, then they are denoted byt,. We use the terms of
matching subtreeandmatching internal nodemmiterchangeably.

Having found a set of matching subtrees, we need to measure the degree of similar-
ity between two matching subtrees. We now define a metric caltadarity scoreto
measure how similar two subtrees are. The similarity s&ooé two subtree$, andt,
that are inl; andTy, respectively, is as follow&k(¢,, t5) = zlﬁl‘jl‘tfll wherelt, | and|t,|
are the total numbers of leaf nodeg jrandt,, respectively| A| and| B| are numbers of
nodes of fixed and shifted matching leaf nodes iandt,, respectively andin B = 0.

For example, the similarity score &f in 77 andtygs in T is R(ts, t10s) = 0.714. The
value of similarity score is between 0 and 1. Two subtrees are more similar if the sim-
ilarity score is higher. Based on the similarity score, we classify the subtrees into two
types as follows. I1f) < R(¢1,t2) < 1, then the subtrees aneatching subtreeand they

have at least one matching leaf node. Otherwise, the subtreasmaaching subtrees
and they do not have matching leaf nod®$t(, t2) = 0).

Next, based on the above concepts,lihst matching subtreese formally defined
as follows. Let7; and7; be two sets of subtrees that arelinandTs, respectively. Let
t € 7, be a subtree anf? C 75 be a set of subtrees. Alsaandt; € P are matching
subtree®’ 0 < ¢ < |P|. Then,t andt, arebest matching subtre¢denoted by < t,) iff
(R(t,t;) > R(t,t;)) V0 < j < |P|andi # j. For example, subtreg, can be matched
to Subtreeslog andtlog. Observe thaéR(tM, t102) =0.571 and§R(t14, thS) = 0.333.
Consequently, subtrees, andiyg, are best matching subtreds (< ¢12). Note that
if ¢; andt, are not best matching subtrees, then they are denoted-ty..

2.2 Extension of Shared-Inlining Approach

Recall that theDXONE approach is based on the Shared-Inlining storage strategy. For
instance, given a DTD depicted in Figure 2(b), Shared-Inlining approach generates a
relational schema as depicted in Figure 2(c). In [6], Shared-Inlining approach does not
explicitly store the local order of nodes which is important in ordered XML documents.
As this information is critical for our change detection process, we need to extend the
relational schema generated by Shared-Inlining approach.

Before we discuss the extensions, let us present some notations that will be used in
later discussion. Given a DTD tr@é;, that is tree representation of DTID, the nodes
in Hy are classified aglined andnon-inlinednodes. Aninlined nodeis one that is
not below “%” or “ 4" node. There are two types of inlined nodes, namialined leaf
nodegdenoted byl,) andinlined internal nodegdenoted byi;). For example, consider
a DTD tree as depicted in Figure 2(a). An inlined node will be stored as an attribute
in the relation of its parent nodes. For example, the parent nodes ofnasdeand
researchare nodestaff The information on nodesameandresearchis stored in the

I nput /* --- STEP 2.1 --- */

U : DTD of the XM. docunents 11 fi ndMat chi ngl nt er nal Nodes(t bNane, tenpTh, tenpMChild);
Two versions of an XM. document /* --- STEP 2.2 --- */
stored in RDBVB 12 maxi m zeScore(&) ;
Qut put 13 end for
the Matching table 14 end for
/* --- STEP 1 --- */ I* --- STEP 3 --- */
1 for all / inNygy do 15 root is the root node of U
2 tbNane ¢« I ; tenpTb <~ M ; 16 Queue Q<¢—{root}
3 findmat chi ngLeaf NodesG oups(tbNane, tenpTb); 17 while (Qis not enpty) do
4 end for 18 g =Quget():
/* --- STEP 2 --- */ . 19 Q< the child internal
5 maxLevel = maxinumlevel at which there is I in H?(U) nodes of g in U
/* bottomup matching */ 20 nodeNane < name(q); tenpTb<—ry;
6 for lev = maxLevel down to 1 do 21 parentNode ¢ parent(q);
7 for all i0l;(Y at level lev do 22 parent NodeNane ¢— name(par ent Node) ;
8 chi | dNode <= child(i); 23 attrNane ¢ attribute(q);
9 tenpMchild €= Muidnode; 24 retri eveMat chi ng(nodeNane, tenpTb, parent NodeNane, attrNane);
10 tbNane <= I, ; tenmpTb <M, ; 25 end do

Fig. 3. ThefindBestMatchingSubtredégdgorithm.

Nameattribute in theStaff table (Figure 2(c)). Anon-inlined node is one that is
below “«” or “+" node. There are also two types of non-inlined nodes, hamely;
inlined leaf nodegdenoted byN,) andnon-inlined internal node&enoted byN;). An
non-inlined node will be stored in a separate relation. For example, modesstand

staff are a non-inlined leaf node and a non-inlined internal node whose information are
stored in thdnterest andStaff tables (Figure 2(c)), respectively.

Let us now elaborate on the extensions of relational schema generated by Shared-
Inlining approach. We add thieocalOrder attribute to the corresponding relations of
non-inlined nodes. We store the information on inlined internal nodesB3@LEAN
attribute (e.g.researchattribute) in its parent relation. The extended relational schema
is depicted in Figure 2(d). THeID in the figure refers to the parent node id.

3 Finding Best Matching Subtrees Phase

ThefindBestMatchingSubtreaggorithm is depicted in Figure 3. Note thfparam] ”

in the SQL queries (Figures 4 and 7) used in the later discussion will be replaced the
parameteparamdefined in the algorithm. Also, due to space constraints, in our subse-
quent discussions we will not elaborate on queries and algorithms that are similar to the
ones discussed in [4]. Rather, we shall highlight the differences (if any).

3.1 Finding Matching Leaf Nodes Groups Phase

The findMatchingLeafNodesGrougdgorithm for finding matching leaf nodes groups
works as follows. First, théindMatchingLeafNodesGrouggorithm determines the
fixed matching leaf noddsy using the SQL query in Figure 4(a). Lines 10-11 are used
to ensure that fixed matching leaf nodes have the same values and local orders. Next,
we determine thenatching leaf nodes groupsom a set of fixed matching leaf nodes.
The SQL query in Figure 4(b) is used to determine matching leaf nodes groups from a
set of fixed matching leaf nodes. The idea behind this SQL query is to group the fixed
matching leaf nodes by thelfID1 andPID2 attributes (line 4, Figure 4(b)). Observe
that thePID1 andPID2 attributes store the parent node id of fixed matching leaf nodes
in the old and new versions, respectively. The next step is to detemmanehing leaf
nodes group$rom shifted matching leaf node®ve use the SQL query in Figure 4(c).

1 INSERT INTO FIXMLEAFNODES 1 INSERT INTO FIXMGROUP 1 INSERT INTO SHIFTMGROUP
2 SELECT 2 SELECT A.PID1, A.PID2, 2 SELECT A1.PID, A2.PID, COUNT(*) AS COUNTER
3 AL.ID AS ID1, A2.ID AS ID2, COUNT (*) AS COUNTER 3 FROM [tbName] AS Al, [tbName] AS A2
4 A1.PID AS PIDI, 3 FROM FIXMLEAFNODES AS A 4 WHERE A1.DOC_ID = doc_idl AND
5 A2.PID AS PID2 4 GROUP BY A.PID1, A.PID2 5 A2.DOC_ID = doc_id2 AND
6 FROM [tbName] AS A1, T " 6 A1.VAL = A2.VAL AND
[tbName] AS A2 (b) Finding the_ Matching Group 7 NOT EXISTS
7 WHERE (Fixed) 8 (SELECT B.ID1 FROM FIXMLEAFNODES AS B
8 A1.DOC_ID = doc_idl AND 1 INSERT INTO [tempTb] 9 WHERE B.ID1 = A1.ID) AND
© A2.DOC_ID = doc_id2 AND 2 (SELECT doc_id1, doc_id2 10 NOT EXISTS
10 A1.VAL = A2.VAL AND 3 PID1, PID2 ('] as EOUN"’rER 11 (SELECT B.ID2 FROM FIXMLEAFNODES AS B
11 A1.LOCALORDER = A2.LOCALORDER | |, 0 AS TOTAL. 0 AS SCorE, | |12 WHERE B.ID2 = A2.ID)
’ ’ 13 GROUP BY A1.PID, A2.PID
5 0 AS FLAG
a) Finding Fixed Matching Leaf Nodes |6 FRoM FIXMGROUP i i i
@) 9 9 (c) Finding the Matching Group (Shifted)
7 UNION

1 UPDATE [tempTb] AS M 8 SELECT doc_idi, doc_idz, 1 UPDATE [tempTb] AS M
2 SET TOTAL = 90 iIDév 1;1132, g Az gggNTER' 2 SET COUNTER =
3 (SELECT COUNT (T.ID) : AS TOTAL, 0 A RE, 3 (SELECT VALUE (SUM(COUNTER), 0)*2
4 FROM [tbName] AS T 11 0 AS FLAG 2 FROM FIXMGROUP AS T
5 WHERE M.DID1 = T.DOC_ID AND 12 FROM SHIFTMGROUP) s WHERE T.PID1 - M.PID1 AND
6 T.PID = M.PID1) + 6 T.PID2 = M.PID2)
7 (SELECT COUNT(T.ID) (d) Finding the Matching Groups 7+
8 FROM [tbName] AS T 8 (SELECT VALUE (SUM(COUNTER), 0)
9 WHERE M.DID2 = T.DOC_ID AND 1 UPDATE [tempTb] 9 FROM SHIFTMGROUP AS T
10 T.PID = M.PID2) 2 SET SCORE = COUNTER/TOTAL 10 WHERE T.PID1 = M.PID1 AND
11 WHERE DID1 = doc_idl AND 3 WHERE DID1 = doc_idl AND 11 T.PID2 = M.PTD2)
12 DID2 = doc_id2 4 DID2 = doc_id2 12 WHERE DID1 = doc_idi AND DID2 = doc_id2

(e) Update Attribute “Total” (g) Calculating Similarity Score (f) Update Attribute “Counter”

Fig. 4. SQL Queries for Finding Matching Leaf Nodes.

DID1 DID2 PID1 PID2 Counter Total Score DID1 DID2 ID1 ID2 LO1 LO2 PID1 PID2 Counter Total Score Flag
1 2 2 2 1 3 0.333 1 2 1 1 1 1 null | null 17 29 0.586

1 2 3 1 2 3 0.666
1 2 4 4 4 4 1.000

(c) M_univStaff Table

(2) M_Interest Table DID1 DID2 ID1 D2 LOl1 LO2 PID1 PID2 Score Name

DID1 DID2 ID1 D2 LO1 LO2 PID1 PID2 Counter Total Score Flag 1 2 1 1 1 1 null | null | 0.586 | univStaff
1 2 1 2 1 2 1 1 2 8 0.250 0 1 2 2 2 2 2 1 1 0.714 staff
1 2 2 2 2 2 1 1 5 7 0714 0 1 2 3 1 3 1 1 0571 staff
1 2 3 1 3 1 1 1 4 7 0.571 0 1 2 4 4 4 4 1 1 1.000 staff
1 2 3 2 3 2 1 1 2 6 0333]| 0 1 2 | null | null | null | null | 2 2 | 0.333 | research
1 2 4 3 4 3 1 1 2 7 0286 | 0 1 2 null | null | null | null 3 1 | 0.666 | research
1 2 4 4 4 4 1 1 8 8 1.000 0 1 2 null | null | null | null 4 4 1.000 | research

(b) M_Staff Table (d) Matching Table

Fig. 5. Temporary Matching Tables and the Matching Table.

Line 6 is to ensure that two matching leaf nodes have the same values. Lines 7-9 and
10-12 are used to filter out leaf nodes in the versionandnew versionrespectively,
that already have been matched when the algorithm finds the fixed matching leaf nodes.
Finally, the shifted matching leaf nodes are grouped by XL andPID2 attributes.

At this point of time, we have two sets of matching leaf nodes groups, that is, one
from fixed matching leaf nodes and another from shifted matching leaf nodes. The next
step is to merge these sets of matching leaf nodes groups. Figure 4(d) depicts the SQL
query to merge two sets of matching leaf nodes groups. We only need ttJNSON
operator (line 7) to merge these sets. The final step is to update the information of
matching leaf nodes groups. We update the values offthal, Counter and Score
attributes using the three SQL queries as depicted in Figures 4(e)-4(g). Suppose we
have two set of leaf node§; andG,, whose parent nodes argandi,, respectively,
wheregG; < G». Then, the value of th&otal attribute is equal td|¢1| + |¢t2|), where|t; |
and|t,| are the numbers of leaf nodes whose parent nodeg aedi,, respectively.

That is, lines 3—6 and lines 7-10 in Figure 4(e) are used to calculate the values of
and|t»|, respectively. The value of tH@ounterattribute is equal t62| A| + | B|), where

|A| and |B| are the numbers of fixed and shifted matching leaf node, iand G,,
respectively. Similarly, lines 3—6 and lines 812 in Figure 4(f) are used to calculate the

tempTb1 (DID1, DID2, PID1, PID2, INS_INT (DID1, DID2, ID, LO, PID, UPD_LEAF (DID1, DID2, ID1, ID2, LO1,
Counter, Total, Score) Name) LO2, PID1, PID2, Name, Valuel, Value2)

tempTb2 (DID1, DID2, ID1, ID2, DEL_INT (DID1, DID2, ID, LO, PID, | |MOVE_INT (DID1, DID2, ID1, ID2, LO1,
LO1, LO2, PID1, PID2, Counter, Name) LO2, PID1, PID2, Name)
Total, Score, Flag) INS_LEAF (DID1, DID2, ID, LO, PID, | | MOVE_LEAF (DID1, DID2, ID1, ID2, LO1,

MATCHING (DID1, DID2, ID1, ID2, Name, Value) LO2, PID1, PID2, Name, Value)
LO1, LO2, PID1, PID2, Score, DEL_LEAF (DID1, DID2, ID, LO, MOVE_LIST (DID1, DID2, ID1, ID2, LO1,
Name) PID, Name, Value) LO2, PID1, PID2, Name, Type)

(a) Temporary Matching Tables (b) Delta Tables

Attributes Description Attributes Description Attributes Description

DID1 Document id of the first version PID Parent node id
DID2 Document id of the second version 1D Node id

PID1 Parent node id in the first version Lo Local order Valuea | The new value of a leaf
PID2 Parent node id in the second version Name Node name node

ID1 Node id in the first version Value Leaf node content Flag Status for possible moved
D2 Node id in the second version Counter Number of matching nodes nodes

Lol Local order in the first version Total Total number of nodes Node type of the moved

Type
02 |Local order in the second version Score | Similarity score P nodes among their siblings

Valuel |The old value of a leaf node

(c) Attributes and Descriptions

Fig. 6. Temporary and Delta Table Descriptions.

values of2| A| and|B|, respectively. Finally, the value of ttf&coreattribute is equal to

ﬂﬁ:ltfl‘ as defined in the preceding section.

The results of thdindMatchingLeafNodesGrougdgorithm are a temporary table
M., in which the information of matching groups of non-inlined leaf nodgsare
stored. The schema of the,. table is the same as the one of tkenpTbl table as
depicted in Figure 6(a). The semantics of attributes otengpTbl table are depicted
in Figure 6(c). For instance, in our example, the “interest” node is a non-inlined leaf

nodes. The algorithm will generate thé; ,;....s; table as depicted in Figure 5(a).

3.2 Bottom-up Matching Phase

The next step is to propagate the matchings in bottom-up fashion (lines 5-14, Figure 3).
First, the algorithm determines the highest level of the non-inlined internal nodes in
DTD U (line 5). Then, it starts to find best matching internal nodes in bottom-up fash-
ion. There are two sub steps, that is, finding matching internal nodes (line 11) and
determining best matching subtrees (line 12) by findiegt matching configurations

Finding Matching Internal Nodes. This phase is similar to the one discussed in [4].
Figure 7 depicts the SQL queries used to find matching internal nodes. Observe that
these SQL queries are similar to the ones in [4]. The only difference is tiataNE

we include thd.ocalOrderattribute when we project the result of the SQL queries. The
details on how to replacdrhoreConditions] " (line 11, Figure 7(b)) can be found

in [4]. The matching internal nodg, is stored in a temporary matching tablé; ,
wherei,, € N,. The schema of th&/; table is the same as the one of teenpTh2

table as depicted in Figure 6(a). The semantics of attributes ¢éthpTbh2 table are
depicted in Figure 6(c). For example, the matching “staff’ node will be stored in the
M5y table (Figure 5(b)).

Finding Best Matching Internal Nodes. The task in this step is to findest match-

ing configurationghat facilitate us to find best matching internal nodes. Recall that an
internal node inZ; can be matched to more than one internal nod€k,irand vice
versa. The problem of finding best matching configuration is similar to the problem of
finding maximum weighted bipartite matchirig our implementation, we use the Hun-
garian method [5] that addresses the problem of finding maximum weighted bipartite

1 INSERT INTO [tempTb]

2 SELECT 1 INSERT INTO [tempTb]

3 A1.DOC_ID AS DID1, A2.DOC_ID AS DID2, 2 SELECT

4 Al.ID AS ID1, A2.ID AS ID2, 3 A1.DOC_ID AS DID1, A2.DOC_ID AS DID2,

5 Al.LOCALORDER AS LO1, A2.LOCALORDER AS LO2, 4 A1.ID AS ID1, A2.ID AS ID2,

6 ALl.PID AS PID1, A2.PID AS PID2, 5 A1.LOCALORDER AS LO1, A2.LOCALORDER AS LO2,

7 0 AS COUNTER, O AS TOTAL, O AS SCORE, 0 AS FLAG 6 A1.PID AS PID1, Al1.PID AS PID2,

8 FROM [tempMChild] AS A, [tbName] AS Al, [tbName] AS A2 7 0 AS COUNTER, O AS TOTAL, O AS SCORE, 0 AS FLAG

9 WHERE 8 FROM [tbName] AS Al, [tbName] AS A2

10 A.DID1 = doc _idl AND A.DID2 = doc_id2 AND 9 WHERE

11 A1.DOC_ID = doc_idl AND A2.DOC_ID = doc_id2 AND 10 A1.DOC ID = doc idl AND A2.DOC ID = doc id2 AND

12 A1.ID = A.PID1 AND A2.ID = A.PID2 AND 11 [moreConditions] AND - B

13 NOT EXISTS 12 NOT EXISTS

14 (SELECT ID1, ID2 FROM [tempTb] AS B 13 (SELECT ID1, ID2 FROM [tempTb] AS B

15 WHERE B.DID1 = doc idl AND B.DID2 = doc id2 AND 14 WHERE B.DID1 = doc idl AND

16 B.ID1 = A.ID1 AND B.ID2 = A.ID2) 15 B.DID2 = doc id} AND B.ID1 = A.ID1 AND B.ID2 = A.ID2)
17 GROUP BY A1.DOC_ID, A2.DOC_ID, Al.PID, A2.PID, Al.ID, A2.ID 16 GROUP BY A1.DOC ID 7}-\2.D0C 1D, Al.PID, A2.PID, Al.ID, A2.ID

(a) Finding Matching Internal Nodes (1) (b) Finding Matching Internal Nodes (2)

Fig. 7. SQL Queries for Finding Matching Internal Nodes.

matching. The algorithm for finding best matching configurations is similar to the one
discussed in [4] except for the following differences. After we determine the best match-
ing configurations, the algorithm annotates the matching internal nodes whose parent
nodes are not used in the best matching configuration by settifdabeattribute in the

M, , table to “1”. The annotations mean that these subtrees may be moved to different
parent nodes. Note that in [4] such matching nodes are directly deleted. Observe that we
also need to update the values of @aunter Total, andScoreattributes accordingly as
initially their values are equal to “0”.

3.3 Collecting Best Matching Internal Nodes Phase

The result of the previous step is the best matching internal nodes partitioned in sev-
eral relations. The objectives of this step are to merge/collect the best matching internal
nodes from different relations and to determine the best matching inlined internal nodes.
Observe that the moved subtree candidates are also in the temporary matching tables.
The values of th&lag attribute of moved subtree candidates in the temporary matching
tables are equal to “1”. The algorithm and SQL queries for collecting best matching in-
ternal nodes are similar to the ones presented in [4] except for the following difference.
In OXONE, we need to filter out the moved node candidates from being considered as
best matching internal nodes. They can be filtered out by adding a cond#igkG =

0” in the SQL queries. In addition, we need to include tteealOrder attribute when

we project the result of the SQL queries. The best matching internal nodes are stored in
the MATCHINGable. The semantics of ttidATCHINGable is depicted in Figure 6.

For example, given th{,,;,stqrr and M. s tables (Figures 5(b) and 5(c), respec-
tively) and the relations containing the shredded XML document3VilNECHINGable

is depicted in Figure 5(d). THRdATCHINGable keeps the best matching internal nodes

of two XML documents that will be used to detect the changes (Phase 2).

DID1 DID2 ID LO PID Name DID1 DID2 ID LO PID Name DID1 DID2 ID LO PID Name Value DID1 DID2 ID LO PID Name Value
1 2

2 [3[3] 1] stff 1 [2 [1[1]1] staff i lalalals null | null | 1| name Smith
"2 [2 [nul]nul] 3 [research | [1 [2 |[nui[nui| 1 [research | nterest

(a) INS_INT Table (b) DEL_INT Table

*

Retrieval null | null

1] 1

rank | Assoc Prof
interest | Web Mining

*

null [null| 3 [name Steve | #
null [null| 3 rank Asst Prof | #

1 Multimedia

Mining

Semantic
Web

null [nuil| 1 rank Prof #

DID1 DID2 ID1 ID2 LO1 LO2 PID1 PID2 Name Valuel Value2
2 | null | null [null | null | 3 1 | rank [Assoc Prof | Prof 1

(e) UPD_LEAF Table (c) INS_LEAF Table (d) DEL_LEAF Table

1 2 1
2 1 2 1
2
1 2 2 2 1 interest
LA 3 |inerest 1| 2 | 3| 3| 2 | interest | Data Mining
2 1] 2

null | null| 3 rank | Assoc Prof

®

Fig. 8. Delta Tables.

1 INSERT INTO UPD LEAF

2 SELECT DISTINCT doc id1 AS DID1, doc_id2 AS DID2,

3 NULL AS ID1, NULL AS ID2, NULL AS LO1, NULL AS LO2,

4 I1.ID AS PID1, I2.ID AS PID2, '[nodeName]' AS NAME, I.LO As LO2, D.PID AS PID, I.PID AS PID2,
5

6

7

8

1 INSERT INTO UPD_LEAF

2
3
4

Il.[attrName] AS VALUE1l, I2.[attrName] AS VALUE2 5 D.NAME, D.VALUE AS VALUE1l, I.VALUE AS VALUE2

6
7
8

SELECT DISTINCT doc idl AS DID1, doc id2 AS DID2,
D.ID AS ID1, I.ID AS ID2, D.LO AS LO1,

FROM [parentTbName] AS I1, [parentTbName] AS I2 FROM INS_LEAF AS I, DEL_LEAF AS D, MATCHING AS M
WHERE WHERE
11.D0C_ID = doc_idl AND I2.DOC_ID = doc_id2 AND I.DIDL = doc_idl AND I.DID2 = doc_id2 AND
9 Il.[attrName] IS NOT NULL AND I2.[attrName] IS NOT NULL AND | |9 D.DID1 = doc_idi AND D.DID2 = doc_id2 AND

10 I1.[attrName] != I2.[attrName] AND 10 M.DID1 = doc idl AND M.DID2 = doc_id2 AND
11 EXISTS 11 M.ID1 = D.PID AND M.ID2 = I.PID AND
12 (SELECT * FROM MATCHING AS B 12 M.NAME = '[parentNodeName]' AND
13 WHERE DID1 = doc idl AND DID2 = doc id2 AND 13 I.NAME = '[nodeName]' AND
14 B.NAME = '[parentNodeName]' AND 14 D.NAME = '[nodeName]' AND
15 B.IDL1 = I1.ID AND B.ID2 = I2.ID) 15 I.VALUE != D.VALUE AND I.LO = D.LO
(a) Update of Inlined Leaf Nodes (b) Update of Non-inlined Leaf Nodes

Fig. 9. SQL Queries for Detecting Updated Leaf Nodes.

4 Change Detection Phase

In this section, we discuss how the changes are detect@d by after the best match-

ing subtrees are determined. We detect the insertion, deletion, update, and move oper-
ations as highlighted in [1]. Note that we do not elaborate on the detection of inserted
and deleted nodes (subtrees) here as the SQL queries are similar to the ones presented
in [4]. The only difference is that i©OXONE we include the LocalOrdef attribute in

the projection of the result. The detected inserted and deleted internal nodes are stored
intheINS _INT andDELINT tables, respectively. Similarly, the detected inserted and
deleted leaf nodes are stored in theS L EAF and DEL LEAF relations, respectively.

The semantics of these relations and corresponding examples (based on XML docu-
ments in Figure 1) are given in Figures 6 and 8, respectively. Note that the updated leaf
nodes are also detected during the detection of inserted and deleted nodes as they can
be decomposed into pairs of deleted and inserted leaf nofgesain] " in the SQL

queries (Figures 9 and 10) used in the later discussion will be replaced the parameter
paramthat is similar to the one defined in tiiadBestMatchingSubtre@dgorithm.

4.1 Content Updates of Leaf Nodes

Intuitively, the updated leaf nodes are the leaf nodes that are available in both ver-
sions and have the same node names, but have different values, and their parent nodes
are best matching internal nodes.@xONE, the updated leaf nodes are detected af-

ter the inserted and deleted leaf nodes are detected. We classify the update operations
of non-inlined leaf nodes into thabsolute update operatiorand therelative update
operations In the absolute update operation, only the content value of an updated leaf
node is changed, while its position among siblings remains the same. In relative update
operation, the content value and position among siblings of an updated leaf node are
changed. For inlined leaf nodes, we only have absolute update operations as they occur
once under the same parent nodes.

Inlined Leaf Nodes. The SQL query in Figure 9(a) is used to determine the updated
inlined leaf nodes. Lines 9-10 are used to ensure that the updated inlined leaf nodes are
available in both versions (line 9) and they have different values (line 10). Lines 11-15
are used to guarantee that the parent nodes of the updated inlined leaf nodes are best
matching internal nodes. The result of the SQL query depicted in Figure 9(a) is stored in

1 I NSERT | NTOMOVE_INT 1 I NSERT | NTOMOVE_INT

2 SELECT 2 SELECT

3 doc_idl AS DID1,doc_id2 AS DID2, 3 doc_idl AS DIDL,doc_id2 AS DID2,

4 M.ID1, M.ID2, M.LOL, M.LO2, 4 NULL ASID1, NULL ASID2, NULL ASLO1, NULL AS LO2,
5 M.PID1, M.PID2, nodeName] AS NAME 5 M.ID1, M.ID2, '[nodeName]’ AS NAME

6 FROM INS_INT AS I, DEL_INT AS D, [tempTb] AS M| |6 FROM INS_INT AS I, DEL_INT AS D, [parentTempTb] AS M
7 WHERE 7 VHERE
8 1DID1= doc_idl AND I.DID2= doc_i d2 AND 8 1DID1= doc_idl AND I.DID2= doc_i d2 AND
9 D.DID1= doc_i d1 AND D.DID2= doc_i d2 AND 9 D.DID1= doc_i d1 AND D.DID2= doc_i d2 AND

10 MDID1= doc_idl AND M.DID2= doc_i d2 AND 10 MDID1= doc_idl AND M.DID2= doc_i d2 AND

11 1.NAME = '[nodeName]' AND 11 1.NAME = '[nodeName]' AND
12 D.NAME = '[nodeName]' AND 12 D.NAME = [nodeName]' AND
13 M.ID1=D.ID AND M.ID2 = LID AND 13 M.ID1=D.PID AND M.ID2 = I.PID AND
14 MFLAG=1 AND M.SCORE >= 0.500 14 MFLAG=1 AND M.SCORE >= 0.500

(a) Move To Different Parent Nodes (1) (b) Move To Different Parent Nodes (2)

1 I NSERT | NTOMOVE_LEAF

2 SELECT

3 doc_idl AS DID1, doc_id2 AS DID2,D.ID AS ID1,

4 LID AS ID2,D.LO AS LOL,LLO AS LO2,

5 DPID AS PIDLLPID AS PID2, [nodeName] AS NAME, | |1 | NSERT | NTOMOVE_LEAF

6 D.VALUE AS VALUE 2 SELECT

7 FROM INS_LEAF AS I, DEL_LEAF AS D, MOVE_INT AS M 3 doc_idl AS DID1, doc_id2 AS DID1,

8 VHERE 4 D.ID AS ID1, 1ID AS ID2,

9 1.DID1= doc_idl AND I.DID2= doc_i d2 AND 5 D.LO AS LO1,1LO AS LO2,D.PID AS PID1,
10 D.DID1= doc_idl AND D.DID2= doc_i d2 AND 6 LPID AS PID2, D.NAME, D.VALUE

11 M.DID1= doc_id1 AND M.DID2= doc_i d2 AND 7 FROM DEL_LEAF AS D, INS_LEAF AS |

12 I.NAME = ‘[nodeName] AND D.NAME = '[nodeName]' AND | |8 WHERE

13 1.VALUE = D.VALUE AND 9 D.DID1= doc_i d1 AND D.DID2= doc_i d2 AND
14 M.NAME = [parentNodeName] AND 10 1.DID1= doc_id1 AND I.DID2= doc_i d2 AND
15 M.ID1=D.PID AND M.ID2 = I.PID 11 D.VALUE = I.VALUE AND D.NAME = |.NAME

(c) Leaf Nodes: Move To Different Parent Nodes (1) (d) Leaf Nodes: Move To Different Parent Nodes (2)

Fig. 10. SQL Queries for Detecting Moved Nodes.

theUPDLEAFtable. Its schema and semantics are depicted in Figures 6. Next, we need
to delete the corresponding tuples of the updated inlined leaf nodes DBhé EAF
andINS _LEAF relations. This is because we have detected updated leaf nodes that are
previously detected as pairs of deleted and inserted leaf nodes.

Non-Inlined Leaf Nodes.To detect the absolute updated non-inlined leaf no@ss,

ONE executes the SQL query depicted in Figure 9(b). Observe that we join three tables,
namely, theDEL LEAF, INS _LEAF, and MATCHINGables. Recall that an updated

leaf node can be decomposed as a pair of deleted and inserted leaf nodes. Line 13 is
used to guarantee that the parent nodes of the deleted and inserted leaf nodes are the
best matching internal nodes. The absolute updated leaf nodes must have the same node
name and the same local order, but different values (lines 13—-15). The result of the SQL
query depicted in Figure 9(b) is stored in tH@DLEAF table. We also need to delete

the corresponding tuples of the updated non-inlined leaf nodes iDEweEAF and
INS _LEAF relations.

Next, OXONE determines theelative updated non-inlined leaf nodes by executing
the SQL query depicted in Figure 9(b) after slight modifications as follows. We replace
“I.LO = D.LO "with“I1.LO # D.LO”". Recall that the relative updated leaf nodes
must have the same node name, but different values and local orders. Note that while
detecting relative updated non-inlined leaf nodes, the query may ietomrectresults
in some situations as follows. First, there is more than one relative updated non-inlined
leaf node under the same parent nodes. Second, there are deletion/insertion and update
of non-inlined leaf nodes occurred under the same parent nodes. Therefore, we rectify
the results using the approach as discussed in [4]. The result of the SQL query depicted
in Figure 9(b) (after slight modification) is also stored in theDLEAF table. In our
example, theJPDLEAF table is depicted in Figure 8(e). The highlighted tuples in the
INS _LEAF (Figure 8(c)) anddEL_ LEAF (Figure 8(d)) tables will be deleted as they are
the corresponding tuples of the updated leaf nodes.

4.2 Move Operation

The move operations are classified immve among siblingand move to different
parent nodesThe algorithm for detecting the movement of nodes among their siblings
is similar to the one presented in [2]. Hence, here we focumowe to different parent
nodes

A particular node that is moved to different parent node is detected as a pair of
deletion and insertion. Hence, we are able to determine the nodes that are moved to
different parent nodes by querying tBEL INT andINS _INT tables (for moved in-
ternal nodes), and thBEL_ LEAF andINS _LEAF tables (for moved leaf nodes). The
moved internal nodes (leaf nodes) are best matching internal nodes (matching leaf
nodes) whose parent nodes are not best matching internal nodes.

The SQL queries in Figures 10(a) and 10(b) are used to find the nmmrethlined
andinlined internal nodes that are moved to different parent nodes. Note that we only
consider the moved internal nodes that have similarity scores equal or greater than
“0.500". Note that this “threshold” can be defined by users based on application re-
quirements. Otherwise, they are detected as pairs of deleted and inserted internal nodes.
If an internal nodé is moved to different parents, then, intuitively, the subtree rooted at
nodei is also moved. That is, we need to detect the moved leaf nodes that are the descen-
dants of the moved internal nodes. Figure 10(c) is used to find the mmredhlined
leaf nodes that are the descendants of the moved internal nodes. To fimchéeones,
we used the modified SQL query of the SQL query depicted in Figure 10(c). We replace
“ID1 " and “ID2 " in line 10 with “PID1 " and “PID2 " respectively. Note that we need
to delete the corresponding tuples of the moved nodes that are storedDELH&IT ,
INS_INT, DELLEAF, andINS _LEAF tables. Observe that some leaf hodes can also
be moved to be the child nodes of different parent nodes. These moved leaf nodes are
not the descendants of the moved internal nodes. Figure 10(d) is used to find the moved
leaf nodes that are not the descendants of the moved internal nodes. Note that we also
need to delete the corresponding tuples of the moved leaf nodes that are stored in the
DEL LEAF, andINS _LEAFtables.

5 Performance Study

We have implemente@®xONE entirely in Java. We use Microsoft SQL Server 2000 for
storing XML documents before the changes are detected. The experiments were con-
ducted on a Microsoft Windows XP Professional machine having Pentium 4 1.7 GHz
processor with 512 MB of memory. We used a set of synthetic XML data based on SIG-
MOD DTD (http://www.sigmod.org/record/). The characteristics of the data sets are de-
picted in Figure 11. The second versions of the XML documents are generated by using
our XML change generator. We compared the performané@xafNE to the Java ver-

sion of X-Diff [8] (downloaded from http://www.cs.wisc.eduyuanwang/xdiff.html),
schema-oblivious relational-based approach for ordered XML change detection in [2]
(called XaANDY-O), and C version of XyDiff [1] (downloaded from
http://pauillac.inria.fr/cdrom/www/xydiff/index-eng.htm). Note that despite our best ef-
forts (including contacting the authors), we could not get the Java version of XyDiff.
The C version of XyDiff was run in a Pentium 4 1.7 GHz processor with 512 MB of

SIGMOD-01 73 258 331 13

SIGMOD-02 117 427 554 21 SIGMOD-09 7723| 30,002 | 37,725 1,444
SIGMOD-03 187 703 890 34 SIGMOD-10 18,067 | 71,256| 89,323 3,431
SIGMOD-04 389 1,437 1,826 70 SIGMOD-11 34,845| 137,909 | 172,754 6,635
SIGMOD-05 567 2,151 2,718 104 SIGMOD-12 58,587 | 231,952 | 290,539| 11,167
SIGMOD-06 983 3,734 4,717 180 SIGMOD-13 71,991 | 283,930 355,921| 13,688
SIGMOD-07 1,801 6,993 8,794 337 SIGMOD-14 91,604 | 361,085 | 452,689 | 17,398
SIGMOD-08 3,883| 14,983| 18,866 721 SIGMOD-15 | 125,411 | 494,812 | 620,223 | 23,816

Fig. 11.Data Sets.

memory with Red Hat Linux 9 operating system. Note that as the Java version is in gen-
eral slower than the C version, the execution times of XyDiff will differ by a constant
factor in comparison with X-Diff.

Execution Time vs Number of Nodesn this set of experiments, we analyze the per-
formance ofOxoNE for different number of nodes. The percentages of change is set
to “9%". Figure 12(a) depicts the performance of Phase 1 in our approaches. Ob-
serve that the performances ©kONE and XANDY—O are comparable up to data set
SIGMOD-05. For larger data se©x0ONE outperformsX ANDY—O (up to 20.5 times).

Note that the performance ®ANDY—O is adversely affected with increase in num-
ber of nodes and for datasets larger tEd@MOD-12, X ANDY—O fail to return results

in 100,000 seconds. Hence, we do not plot the resukarfipy—O for data sets larger
thanSIGMOD-12. The performance of Phase 2 is depicted in Figure 12(b). In this case,
OXxONE is faster tharK ANDY—O (up to 81.88 times).

Figure 12(c) depicts the overall performance of our approaches. XyDiff is up to
3.5 times faster tha@xONE for the first three data sets. After that the performance of
XyDiff is comparable to the one dDXONE. However, our approach is more scalable
as XyDiff fails to detect the changes to data sets larger Bi@MOD-12 as its process
was killed by the Linux kernel. In addition, we believe that the Java version of XyDiff
will be much slower and less scalable than the C version and hence will adversely affect
the response time and scalability further. X-Diff, on the other hand, is only able to
detect the changes up&GMOD-06 due to lack of main memory. X-Diff outperforms
OxoNE for the first three data sets (up to 8.15 times). For larger data@ets\E is up
to 43.7 times faster than X-Diff. Note that the performanceX afiDy—O andOXONE
is slower than main memory-based approaches for smaller data sets as the database 1/0
cost is more expensive. Also, over@lKONE is up to 22 times faster thalANDY—-O.

Result Quality Next, we examine the result quality @x0ONE, XANDY—0O, and Xy-

Diff. The result quality is defined as the ratio between the number of edit operations
in the deltas detected by an approach and the one iogtimal deltas. Note that an
optimal delta consists of minimum number of edit operations [8]. Also, we do not show
the result quality of X-Diff as it is not designed for ordered change detection. We use
a small data set with 100 nodes and generate the second version with various percent-
ages of changes (2%-12%). Figure 12(d) depicts the result quality comparison results.
Observe that the result quality @xoNE and of XANDY—O are comparable. Also, the
result qualities oDXONE andX ANDY—O are significantly better than that of XyDiff. In
XyDiff’s deltas, there are some unnecessary move operations, and, in some case, XyD-
iff mismatches the best matching subtrees. For instance, consider the example depicted
in Figure 13. The delta detected KIxONE containsdelete(1) andupdate(10, “Asst

100000 100000 -{ ¢~ OXONE g
—e— XANDY-O|
10000 S oxoNE ! s @ T 10000 L o
o S 1
£ 1000 {—{-=—xANDY-0 g £ 1000 - xyoitf
£ £ £
§ / 5 § o0
H H 3
i
& 1 & ol 1
o1 01 01+
100 1000 10,000 100000 1.000.000 100 1,000 10,000 100000 1,000,000 100 1,000 10000 100000 1000000
Number of Nodes Number of Nodes Number of Nodes
(a) Finding Best Matching Subtrees (9%) (b) Detecting the Changes (9%) (c) Overall Performance (9%)
T 81 665
5 50 30
e £ M :
5 3 [——oxonE | E a0 E 2O L XANDY-O [
<1 ‘ - XANDY-O ‘ 5 s
E i 2 20 g
i’ Lo on] — 3 e 3 10
& g 8
1 § 10 @
0 00 00
o 3 6 9 12 0 5 10 15 20 25 3 3 o 5 0 15 2 2 . 3
Percentage of Changes (%) Percentage of Change (%) Percentage of Change (%)
(d) Result Quality Compared to XyDiff () Phase 1: Finding Best Matching Subtrees (f) Phase 2: Detecting the Changes
——ooNE S 0%
— Sq 80%
z <3
E sE %
s 85 am
g 5%
H 34 2w
& & 0% +
12 3 4 s 6 7 1 2 3 4 5 6 7
0o Data Sets Data Sets
o 5 0 15 2 2 w3
Percentage of Change (%) Ohnserion ~ WDeleton OUpdate @ Move ‘ @ Move ntemal Nodes 8 Move Leat Nodes T Move Among Siblings, ‘
(9) Overall Performance (h) Different Types of Changes (9%) (i) Move Operations (9%)

Fig. 12. Experimental Results.

Prof”, “Assoc Prof”). However, the delta generated by XyDiff containsve(9, 1, 2)
(“move node 9 to the second child node of node #&ete(8), anddelete(2) which is
semantically incorrect.

Execution Time vs Percentages of Changésthis section, we shall observe the effects

of percentage of changes to the performancesafipy—0, OXoNE, and X-Diff. We

use ‘Sigmod-03 " data set. Observe that the percentages of changes are equally dis-
tributed to different types of changes. Figure 12(e) depicts the performance of Phase 1
of XANDY—O and OxoNE for different percentage of changes. The performances of
XANDY—O and OxoONE are affected by percentages of changes. When the percent-
age of changes is increased by 1%, the performancesaaDy—O and OXONE be-

come, on average, 0.95% and 1.43% slower, respectively. The performances of Phase 2
of XANDY—0O and OxoNE for different percentages of changes are depicted in Fig-
ure 12(f). OXONE is up to 1.62 times faster thaXanDy—O. Figure 12(g) shows the
overall performance oKANDY—O and OxONE for different percentages of changes.

We notice that XyDiff is up to 2.59 times faster th@xoONE.

Different Types of Changesin this set of experiments, we study the affect of differ-
ent types of changes on the running time. We used first seven data sets and set the

Data Mining || XML Mining || Indexing

‘ Data Mining H XML Mining H\ndexmg‘

Fig. 13.Result Quality: Example.

percentage of changes to 9%. Figure 12(h) depicts the proportion of execution times
of detecting insertion, deletion, update, and move operations. Observe that detecting
move operation takes up to 67.17% of the execution time of Phase 2. Figure 12(i) de-
picts the affect of different types of move operations on the running time. The execution
time of detecting moves among siblings is significant compared to the one for detecting
moved internal nodes and moved leaf nodes. It takes up to 55.68% of the execution
time of Phase 2. Let us elaborate on this further. In detecting move among siblings, we
compare the local order of each node. However, the local order can be changed due
to the insertions/deletions of sibling nodes. Hence, we need to ensure that such local
order changes are not considered in order to detect move among siblings correctly. The
adjustLocalOrderfunction that is similar to the one in [2] is used to simulate the in-
sertions/deletions of sibling nodes. Observe that an insertion/deletion of a sibling node
can change more than one local orders of its sibling nodes. Hence, when there is an
insertion/deletion of a sibling node, we need to adjust more than one local orders of
its sibling nodes. That is, the cost of thdjustLocalOrderfunction is increased as the
number of insertions/deletions is increased.

6 Conclusions and Future Work

In this paper, we present a relational-based approach (cakea\E) for detecting the
changes on ordered XML documents using a schema-conscious approach. This work
is motivated by the following observations. First, existing main memory-based ordered
XML change detection techniques (XyDiff) produce poorer quality deltas compared to
its unordered counterpart (X-Diff). Second, although existing relational-based ordered
change detection approach suchXasidDy—O can produce superior quality results, its
performance is much slower than XyDiff and degrades significantly with increase in
number of nodes. To the best of our knowled@xONE is the first approach that ad-
dress these two limitations. Our experimental results showQRaiNE is more scalable

than existing state-of-the-art approaches. It has comparable performance with XyDiff
and yet produce superior result quality. As parts of our future work, we would like to
extend our framework so that it can handle recursive DTDs.

References

1. G. COBENA, S. ABITEBOUL, A. MARIAN. Detecting Changes in XML Documents.|CDE, 2002.

2. E. LEONARDI, S. S. BiowMICK. XANDY: A Scalable Change Detection Technique for Ordered XML Documents
Using Relational Databases. To appear in DKE Journal.

3. E. LEONARDI, S. S. BiowMICK, S. MADRIA. XANDY: Detecting Changes on Large Unordered XML Documents
Using Relational Databasds. DASFAA China, 2005.

4. E.LEONARDI, S. S. BiowMick. Detecting Changes on Unordered XML Documents Using Relational Databases: A
Schema-Conscious Approadh.CIKM, 2005.

5. C. mpADIMITRIOU, K. STEIGLITZ. Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, Engle-
wood Cliffs, NJ, 1982.

6. J. SHANMUGASUNDARAM, K. TUFTE, C. ZHANG, G. Hg, D. J. DEWITT, AND J. F. NAUGHTON Relational
Databases for Querying XML Documents: Limitations and Opportunifiee.VLDB Journgl1999.

7. H.Lu, H. JANG, J. X. Xu, G. YU ET AL. What Makes the Differences: Benchmarking XML Database Implemen-
tations.In ACM TOIT, 5(1), 2005.

8. Y. WANG, D. J. DEWITT, J. CaI. X-Diff: An Effective Change Detection Algorithm for XML Document ICDE,
Bangalore, 2003.

