
OXONE: A Scalable Solution for Detecting Superior
Quality Deltas on Ordered Large XML Documents

Erwin Leonardi Sourav S. Bhowmick

School of Computer Engineering, Nanyang Technological University, Singapore
{pk909134, assourav }@ntu.edu.sg

Abstract. Recently, a number of relational-based approaches for detecting the
changes to XML data have been proposed to address the scalability problem of
main memory-based approaches (e.g., X-Diff, XyDiff). These approaches store
the XML documents in the relational database and issue SQL queries (whenever
appropriate) to detect the changes. In this paper, we propose a relational-based
orderedXML change detection technique (calledOXONE) that uses aschema-
consciousapproach as the underlying storage strategy for XML data. Previous ef-
forts have focused on detecting changes to ordered XML in anschema-oblivious
storage environment. Although the schema-oblivious approach produces better
result qualitycompared to XyDiff (a main memory-based ordered XML change
detection approach), its performance degrade with increase in data size and is
slower than XyDiff for smaller data set. We propose a technique to overcome
these limitations. Our experimental results show thatOXONE is up to 22 times
faster and more scalable than the relational-based schema-oblivious approach.
The performances ofOXONE and XyDiff (C version) are comparable. However,
more importantly, our approach is more scalable compared to XyDiff for larger
datasets and has much superior the result quality of deltas than XyDiff.

1 Introduction

Detecting changes to XML data is an important research problem. Recently, a number
of main memory-based techniques for detecting the changes to XML data has been pro-
posed. XyDiff [1] is an approach for detecting the changes toorderedXML documents.
In anorderedXML, both the parent-child relationship and the left-to-right order among
siblings are important. Wang et al. proposed X-Diff [8] for computing the changes to
unorderedXML documents. InunorderedXML, the parent-child relationship is signif-
icant, while the left-to-right order among siblings is not important. All these algorithms
suffer from scalability problem as they fail to detect changes to large XML documents
due to lack of main memory.

In [3, 4], we have addressed this scalability problem in the context of unordered
XML documents by leveraging on the relational technology. In this approach, given
the old and new versions of an XML document, we store both documents in a rela-
tional database. Next, we issue a set of SQL queries (wherever appropriate) to detect
the changes. Efficient and accurate change detection in such a relational environment
is largely determined by the underlying storage structure. Particularly, there are two
major approaches for storing XML documents in a relational database [7]. Inschema-
conscious approach, a relational schema is created based on the DTD/schema of the

XML documents. In theschema-oblivious approach, a fixed schema used to store XML
documents is maintained. The basic idea is to capture the tree structure of an XML doc-
ument. This approach does not require existence of an XML schema/DTD. In [2, 3], we
have used schema-oblivious approach to detect changes to bothorderedandunordered
XML documents. Whereas, in [4], we proposed a schema-conscious driven approach
for detecting changes tounorderedXML data.

In this paper, we present a relational-based approach, calledOXONE1 (schema-
cOnsciousXML-enabledOrdered chaNge dEtection), for detecting the changes toor-
deredXML data using aschema-conscious approach(Shared-Inlining [6] in our case).
Our effort is motivated by the following observations. First, a growing body of work
suggests that schema-conscious approaches perform better than majority of the schema-
oblivious approaches as far as XML query processing is concerned [7]. Second, our re-
cent effort for detecting changes tounorderedXML data in [4] using schema-conscious
approach shows encouraging results. In particular, we have shown that the schema-
conscious driven approach is significantly more scalable and faster than not only X-Diff
[8] but also relational-based schema-oblivious approach such asXANDY [3].

At this point one may question the justification of this work as we have already ex-
plored the feasibility of using schema-conscious storage approach for detecting changes
to XML data. However, the work reported in this paper is important for the following
reasons. First, in [4] we have focused on change detection tounorderedXML whereas
in this paper we focus onorderedXML data. Although some of the SQL queries intro-
duced in [4] can be used for detecting changes to ordered XML with minor modifica-
tions, as we shall see later, the very nature of ordered XML pose new challenges. For
instance, unlike unordered change detection, ordered XML change detection has addi-
tional moveoperation that needs to be detected accurately. Second, the characteristics
of schema-conscious approach raise certain challenges. Unlike schema-oblivious ap-
proaches, the underlying relational schema is DTD-dependent. Consequently, the chal-
lenge is to create a general framework for change detection so that the framework is in-
dependent of the structural heterogeneity of various XML documents. Third, it has been
shown in [8] that XyDiff is significantly faster than X-Diff. However, theresult quality
of XyDiff is significantly poorer compared to X-Diff [8]. In [2, 3], we have shown that
it is possible to generate superior quality deltas for both ordered and unordered XML
change detection problem using relational-based approach. However, due to the under-
lying storage strategy, the relational-based approach in [2] is significantly slower than
XyDiff and does not scale well with large data.Consequently, is it possible to design a
relational-based ordered XML change detection system that is more scalable and gen-
erates superior quality results, yet have response time which is at least comparable to
XyDiff if not better?In this paper, we proposeOXONE to address these challenges.

In our approach, we first store two versions of an XML document, namely,T1

andT2, in a relational database whose underlying storage scheme is based onmod-
ified Shared-Inlining approach [6]. Then,OXONE can be used to detect the changes
to T1 and T2 in a bottom-up fashion. Our approach consists of two phases:finding
best matching subtreesphase and thechange detectionphase. The objective of the first
phase is to find the most similar subtrees inT1 andT2. In order to find the most similar
subtrees, we need to match subtrees inT1 to ones inT2. Note that a subtree inT1 can

1 pronounced as “ozone”.

univStaff

staff

name rank research

interest interest

staff

name rank research

interest

name rank research

interestSmith Assoc Prof

Web
Mining

Multimedia
Mining

Chan Assoc Prof

Web Data
Management

Data
Mining

Mark Assoc Prof

Digital
Libraries

univStaff

staff

name rank research

interest interest

staff

name rank research

interest

staff

name rank research

interestMark Prof

Digital
Libraries

Information
Retrieval

Chan Assoc Prof

Web Data
Management

Steve Asst Prof

Semantic
Web

(a) First Version (T1)

(b) Second Version (T2)

interest

name rank research

interestDon Asst Prof

Indexing

interest

Security

staff

name rank research

interestDon Asst Prof

Security

interest

Indexing

staff staff

A A

A A

Deleted node Inserted node

Updated node Moved node

1

2

3
4

5

6 7

8
9

1011

12 13

14
15

16

17

18

19
20

2122

23 24

101

102

103

104
105

106

107

108

109 110 111

112

113
114

115 116

117

118

119 120
121

122 123

Fig. 1. Two versions of XML documents.

be matched to more than one subtree inT2, and vice versa. In addition, we need to
measure the similarity of each matching by calculating thesimilarity score. The most
similar matching subtrees are calledbest matching subtrees. In our approach, we issue
SQL queries (whenever appropriate) to find the best matching subtrees. We shall elabo-
rate on this phase in Section 3. Having determined the best matching subtrees between
T1 andT2, in the second phaseOXONE issues SQL queries (whenever appropriate) to
detect different types of changes. The types of changes that can be detected byOXONE

are similar to the one in [1]. The detected changes are stored in several relations. We
shall elaborate on this phase in Section 4.

We have implemented the prototype ofOXONE on top Microsoft SQL Server 2000
using Java. We comparedOXONE to XANDY–O [2], a published schema-oblivious or-
dered XML change detection system, and XyDiff [1]. Our results show thatOXONE has
comparable response time with XyDiff for large XML documents. However, it is more
scalable and has superiorresult qualitycompared to XyDiff. Particularly, XyDiff fails
to detect changes to XML documents containing around 356,000 nodes or more. Also,
OXONE outperformsXANDY–O by up to 22 times and is more scalable. In addition,
for larger data sets,OXONE is up to 44 times faster than X-Diff [8]. X-Diff is unable
to detect the changes on XML documents that have more than 5000 nodes due to lack
of main memory. We shall elaborate on the experimental results in Section 5. Note that
the framework discussed in this paper is only for XML documents whose schemas do
not contain recursive elements.

<!ELEMENT univStaff (staff*)>
<!ELEMENT staff (name,rank, research)>
<!ELEMENT research (interest*)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT rank(#PCDATA)>
<!ELEMENT interest(#PCDATA)>

(b) DTD

(a) DTD Tree

Document (Doc_ID, Doc_Name)

UnivStaff (Doc_ID, ID)

Staff (Doc_ID, ID, PID, Name, Rank)

Research.Interest (Doc_ID, ID, PID, Val)

(c) Original Schema

Document (Doc_ID, Doc_Name)

UnivStaff (Doc_ID, ID)

Staff (Doc_ID, ID, LocalOrder, PID, Name, Rank, Research)

Interest (Doc_ID, ID, LocalOrder, PID, Val)

(d) Modified Schema

univStaff

staff

name rank research

interest

*

*

Fig. 2. DTD Tree, DTD, and Relational Schema.

2 Background

In this section, we first define some terms that we shall use subsequently to facilitate
exposition. Then, we discuss how the Shared-Inlining schema is modified to support
ordered XML change detection. We use the two versions of XML document in Figure 1
as running example throughout the paper.

2.1 Terminology

LetT be a tree representation of an XML documentD. The root node ofT is denoted by
root(T). LetL(T) = {`1, `2, ..., `n} be a set of leaf nodes in XML treeT . The textual
content of a leaf nodèis denoted byvalue(`). A set of internal nodes inT is denoted
by I(T), andi denotes an internal node, wherei ∈ I. The name and level of noden
are denoted byname(n) and level(n), respectively. Then,path(n) denotes the path
from root(T) to noden. The parent node, child node, and ancestor node of noden are
denoted asparent(n), child(n), andancestor(n), respectively. In ordered XML, the
left-to-right position of a node among its siblings is significant. Hence,pos(n) denotes
the left-to-right position of noden among its siblings ifD is anorderedXML. Note
that we useT1 andT2 as depicted in Figures 1(a) and 1(b), respectively, as our running
example in the later discussion.

Let `1x ∈ L(T1) and`2y ∈ L(T2) be two leaf nodes in the first and second versions
of an XML tree respectively. Then,̀1x and`2y arematching leaf nodes(denoted as
`1x ↔ `2y) if name(`1x) = name(`2y), level(`1x) = level(`2y), path(`1x) = path(`2y),
andvalue(`1x) = value(`2y). For example, leaf nodes̀13 and`112 are matching leaf
nodes(`13 ↔ `112) because they satisfy the above conditions. Note that a leaf node in
T1 can be matched to more than one leaf node inT2, and vice versa. Leaf nodè110 in
T2 can be matched to nodè4, `10, and`16 in T1 as they satisfy the above conditions.
Note that if`1 and`2 are not matching leaf nodes, then they are denoted by`1 6↔ `2.

We classify the matching leaf nodes into two types, namely,fixed matching leaf
nodesandshifted matching leaf nodes. This classification is important in the context
of ordered change detection as if the left-to-right position among siblings of a node
is changed, then it is possible that this node is moved among its siblings. Formally, let
`1 ↔ `2. If pos(`1) = pos(`2), then`1 and`2 arefixed matching leaf nodes. Otherwise,
they areshifted matching leaf nodes. For example, leaf nodes̀18 and `106 are fixed
matching leaf node as̀18 ↔ `106 andpos(`18) = pos(`106). Leaf nodes̀ 13 and`112
are shifted matching leaf node as`13 ↔ `112 andpos(`13) 6= pos(`112).

Next, we define the notion ofmatching leaf node groups. LetG1 andG2 be two sets
of leaf nodes whose parent nodes arei1 and i2, respectively, wherei1 ∈ I(T1) and
i2 ∈ I(T2). Then,G1 andG2 arematching leaf node groups(denoted asG1 ⇔ G2) iff
∃`x∃`y such that̀ x ↔ `y, where`x ∈ G1 and`y ∈ G2. For example, supposeG17 =
{`18} andG105 = {`106, `107} are two sets of leaf nodes inT1 andT2 whose parent
nodes are nodes 17 and 105, respectively. We observe thatG17 ⇔ G105 as`18 ↔ `106,
`18 ∈ G17, and`106 ∈ G105.

Next, we definematching subtrees. The root nodes of two matching subtrees are
calledmatching internal nodes. From a set of matching subtrees, we determine the most
similar subtrees to bebest matching subtrees. Similar to X-Diff [8] and XyDiff [1], we

only match two subtrees at the same level. Formally, thematching subtreesare defined
as follows. Lett1 andt2 be two subtrees rooted at nodesi1 ∈ I(T1) andi2 ∈ I(T2),
respectively. Then,t1 andt2 arematching subtrees(denoted byt1 l t2) if name(i1) =
name(i2), level(i1) = level(i2), path(i1) = path(i2), and∃p ∃q such thatp ↔ q,
wherei1 = ancestor(p), i2 = ancestor(q), p ∈ L(T1), andq ∈ L(T2). For instance,
the subtrees rooted at node8 in T1 and node108 in T2 are matching subtrees(t8 l t108)
as they have three matching leaf nodes(`9 ↔ `109, `10 ↔ `110, and`13 ↔ `112). If t1
andt2 are not matching subtrees, then they are denoted byt1 6l t2. We use the terms of
matching subtreesandmatching internal nodesinterchangeably.

Having found a set of matching subtrees, we need to measure the degree of similar-
ity between two matching subtrees. We now define a metric calledsimilarity scoreto
measure how similar two subtrees are. The similarity score< of two subtreest1 andt2
that are inT1 andT2, respectively, is as follows:<(t1, t2) = 2|A|+|B|

|t1|+|t2| where|t1| and|t2|
are the total numbers of leaf nodes int1 andt2, respectively,|A| and|B| are numbers of
nodes of fixed and shifted matching leaf nodes int1 andt2, respectively andA∩B = ∅.
For example, the similarity score oft8 in T1 andt108 in T2 is<(t8, t108) = 0.714. The
value of similarity score is between 0 and 1. Two subtrees are more similar if the sim-
ilarity score is higher. Based on the similarity score, we classify the subtrees into two
types as follows. If0 < <(t1, t2) ≤ 1, then the subtrees arematching subtreesand they
have at least one matching leaf node. Otherwise, the subtrees areunmatching subtrees
and they do not have matching leaf nodes (<(t1, t2) = 0).

Next, based on the above concepts, thebest matching subtreesare formally defined
as follows. LetT1 andT2 be two sets of subtrees that are inT1 andT2, respectively. Let
t ∈ T1 be a subtree andP ⊆ T2 be a set of subtrees. Alsot andti ∈ P are matching
subtrees∀ 0 < i ≤ |P |. Then,t andti arebest matching subtrees(denoted byt m ti) iff
(<(t, ti) > <(t, tj)) ∀ 0 < j ≤ |P | andi 6= j. For example, subtreet14 can be matched
to subtreest102 andt108. Observe that<(t14, t102) = 0.571 and<(t14, t108) = 0.333.
Consequently, subtreest14 andt102 are best matching subtrees (t14 m t102). Note that
if t1 andt2 are not best matching subtrees, then they are denoted byt1 6m t2.

2.2 Extension of Shared-Inlining Approach

Recall that theOXONE approach is based on the Shared-Inlining storage strategy. For
instance, given a DTD depicted in Figure 2(b), Shared-Inlining approach generates a
relational schema as depicted in Figure 2(c). In [6], Shared-Inlining approach does not
explicitly store the local order of nodes which is important in ordered XML documents.
As this information is critical for our change detection process, we need to extend the
relational schema generated by Shared-Inlining approach.

Before we discuss the extensions, let us present some notations that will be used in
later discussion. Given a DTD treeHU that is tree representation of DTDU , the nodes
in HU are classified asinlined andnon-inlinednodes. Aninlined nodeis one that is
not below “∗” or “ +” node. There are two types of inlined nodes, namely,inlined leaf
nodes(denoted byI`) andinlined internal nodes(denoted byIi). For example, consider
a DTD tree as depicted in Figure 2(a). An inlined node will be stored as an attribute
in the relation of its parent nodes. For example, the parent nodes of nodenameand
researchare nodestaff. The information on nodesnameandresearchis stored in the

Input
 U : DTD of the XML documents
 Two versions of an XML document
 stored in RDBMS
Output
 the Matching table
 /* --- STEP 1 --- */
1 for all in U (U) do
2 tbName ; tempTb ;
3 findMatchingLeafNodesGroups(tbName, tempTb);
4 end for
 /* --- STEP 2 --- */
5 maxLevel = maximum level at which there is in U (U)
 /* bottom-up matching */
6 for lev = maxLevel down to 1 do
7 for all (U) at level lev do
8 childNode child();
9 tempMChild MchildNode;
10 tbName ; tempTb ;

 /* --- STEP 2.1 --- */
11 findMatchingInternalNodes(tbName, tempTb, tempMChild);
 /* --- STEP 2.2 --- */
12 maximizeScore();
13 end for
14 end for
 /* --- STEP 3 --- */
15 root is the root node of U
16 Queue Q {root}
17 while (Q is not empty) do
18 q = Q.get();
19 Q the child internal
 nodes of q in U;
20 nodeName name(q); tempTb rq;
21 parentNode parent(q);
22 parentNodeName name(parentNode);
23 attrName attribute(q);
24 retrieveMatching(nodeName, tempTb, parentNodeName, attrName);
25 end do

i

lr lM

∈i
i

i
r

i
M

x
ω

l

Fig. 3. ThefindBestMatchingSubtreesAlgorithm.

Nameattribute in theStaff table (Figure 2(c)). Anon-inlinednode is one that is
below “∗” or “ +” node. There are also two types of non-inlined nodes, namely,non-
inlined leaf nodes(denoted byN`) andnon-inlined internal nodes(denoted byNi). An
non-inlined node will be stored in a separate relation. For example, nodesinterestand
staff are a non-inlined leaf node and a non-inlined internal node whose information are
stored in theInterest andStaff tables (Figure 2(c)), respectively.

Let us now elaborate on the extensions of relational schema generated by Shared-
Inlining approach. We add theLocalOrderattribute to the corresponding relations of
non-inlined nodes. We store the information on inlined internal nodes as aBOOLEAN
attribute (e.g.,researchattribute) in its parent relation. The extended relational schema
is depicted in Figure 2(d). ThePID in the figure refers to the parent node id.

3 Finding Best Matching Subtrees Phase

ThefindBestMatchingSubtreesalgorithm is depicted in Figure 3. Note that “[param] ”
in the SQL queries (Figures 4 and 7) used in the later discussion will be replaced the
parameterparamdefined in the algorithm. Also, due to space constraints, in our subse-
quent discussions we will not elaborate on queries and algorithms that are similar to the
ones discussed in [4]. Rather, we shall highlight the differences (if any).

3.1 Finding Matching Leaf Nodes Groups Phase

ThefindMatchingLeafNodesGroupsalgorithm for finding matching leaf nodes groups
works as follows. First, thefindMatchingLeafNodesGroupsalgorithm determines the
fixed matching leaf nodesby using the SQL query in Figure 4(a). Lines 10–11 are used
to ensure that fixed matching leaf nodes have the same values and local orders. Next,
we determine thematching leaf nodes groupsfrom a set of fixed matching leaf nodes.
The SQL query in Figure 4(b) is used to determine matching leaf nodes groups from a
set of fixed matching leaf nodes. The idea behind this SQL query is to group the fixed
matching leaf nodes by theirPID1 andPID2 attributes (line 4, Figure 4(b)). Observe
that thePID1 andPID2 attributes store the parent node id of fixed matching leaf nodes
in the old and new versions, respectively. The next step is to determinematching leaf
nodes groupsfrom shifted matching leaf nodes. We use the SQL query in Figure 4(c).

1 INSERT INTO FIXMLEAFNODES
2 SELECT
3 A1.ID AS ID1, A2.ID AS ID2,
4 A1.PID AS PID1,
5 A2.PID AS PID2
6 FROM [tbName] AS A1,
 [tbName] AS A2
7 WHERE
8 A1.DOC_ID = doc_id1 AND
9 A2.DOC_ID = doc_id2 AND
10 A1.VAL = A2.VAL AND
11 A1.LOCALORDER = A2.LOCALORDER

(a) Finding Fixed Matching Leaf Nodes

1 INSERT INTO FIXMGROUP
2 SELECT A.PID1, A.PID2,
 COUNT(*) AS COUNTER
3 FROM FIXMLEAFNODES AS A
4 GROUP BY A.PID1, A.PID2

(b) Finding the Matching Group
(Fixed)

1 INSERT INTO SHIFTMGROUP
2 SELECT A1.PID, A2.PID, COUNT(*) AS COUNTER
3 FROM [tbName] AS A1, [tbName] AS A2
4 WHERE A1.DOC_ID = doc_id1 AND
5 A2.DOC_ID = doc_id2 AND
6 A1.VAL = A2.VAL AND
7 NOT EXISTS
8 (SELECT B.ID1 FROM FIXMLEAFNODES AS B
9 WHERE B.ID1 = A1.ID) AND
10 NOT EXISTS
11 (SELECT B.ID2 FROM FIXMLEAFNODES AS B
12 WHERE B.ID2 = A2.ID)
13 GROUP BY A1.PID, A2.PID

(c) Finding the Matching Group (Shifted)

1 INSERT INTO [tempTb]
2 (SELECT doc_id1, doc_id2,
3 PID1, PID2, 0 AS COUNTER,
4 0 AS TOTAL, 0 AS SCORE,
5 0 AS FLAG
6 FROM FIXMGROUP
7 UNION
8 SELECT doc_id1, doc_id2,
9 PID1, PID2, 0 AS COUNTER,
10 0 AS TOTAL, 0 AS SCORE,
11 0 AS FLAG
12 FROM SHIFTMGROUP)

(d) Finding the Matching Groups

1 UPDATE [tempTb]
2 SET SCORE = COUNTER/TOTAL
3 WHERE DID1 = doc_id1 AND
4 DID2 = doc_id2

(g) Calculating Similarity Score

1 UPDATE [tempTb] AS M
2 SET TOTAL =
3 (SELECT COUNT(T.ID)
4 FROM [tbName] AS T
5 WHERE M.DID1 = T.DOC_ID AND
6 T.PID = M.PID1) +
7 (SELECT COUNT(T.ID)
8 FROM [tbName] AS T
9 WHERE M.DID2 = T.DOC_ID AND
10 T.PID = M.PID2)
11 WHERE DID1 = doc_id1 AND
12 DID2 = doc_id2

(e) Update Attribute “Total”

1 UPDATE [tempTb] AS M
2 SET COUNTER =
3 (SELECT VALUE(SUM(COUNTER), 0)*2
4 FROM FIXMGROUP AS T
5 WHERE T.PID1 = M.PID1 AND
6 T.PID2 = M.PID2)
7 +
8 (SELECT VALUE(SUM(COUNTER), 0)
9 FROM SHIFTMGROUP AS T
10 WHERE T.PID1 = M.PID1 AND
11 T.PID2 = M.PID2)
12 WHERE DID1 = doc_id1 AND DID2 = doc_id2

(f) Update Attribute “Counter”

Fig. 4. SQL Queries for Finding Matching Leaf Nodes.

DID1 DID2

1 2

PID1 PID2 Counter Total Score

22 1 3 0.333

1 2 13 2 3 0.666

1 2 44 4 4 1.000

(a) M_Interest Table

DID1 DID2 PID1 PID2 Counter Total ScoreLO1 LO2ID1 ID2 Flag

0

0

0

1 2 11 2 8 0.250

1 2 11 5 7 0.714

1 2 11 4 7 0.571

1 2 21

2 2 22

3 1 13

01 2 11 2 6 0.3333 2 23

01 2 11 2 7 0.2864 3 34

01 2 11 8 8 1.0004 4 44

(b) M_Staff Table

DID1 DID2 PID1 PID2 Counter Total ScoreLO1 LO2ID1 ID2 Flag

01 2 nullnull 17 29 0.5861 1 11

(c) M_univStaff Table

DID1 DID2 PID1 PID2 ScoreLO1 LO2ID1 ID2

1 2 nullnull 0.5861 1 11

1 2 11 1.0004 4 44

1 2 11 0.714

1 2 11 0.571

2 2 22

3 1 13

Name

univStaff

staff

staff

staff

1 2 44 1.000null null nullnull

1 2 22 0.333

1 2 13 0.666

null null nullnull

null null nullnull

research

research

research

(d) Matching Table

Fig. 5. Temporary Matching Tables and the Matching Table.

Line 6 is to ensure that two matching leaf nodes have the same values. Lines 7–9 and
10–12 are used to filter out leaf nodes in theold versionandnew version, respectively,
that already have been matched when the algorithm finds the fixed matching leaf nodes.
Finally, the shifted matching leaf nodes are grouped by theirPID1 andPID2 attributes.

At this point of time, we have two sets of matching leaf nodes groups, that is, one
from fixed matching leaf nodes and another from shifted matching leaf nodes. The next
step is to merge these sets of matching leaf nodes groups. Figure 4(d) depicts the SQL
query to merge two sets of matching leaf nodes groups. We only need to use “UNION”
operator (line 7) to merge these sets. The final step is to update the information of
matching leaf nodes groups. We update the values of theTotal, Counter, andScore
attributes using the three SQL queries as depicted in Figures 4(e)–4(g). Suppose we
have two set of leaf nodes,G1 andG2, whose parent nodes arei1 andi2, respectively,
whereG1 ⇔ G2. Then, the value of theTotalattribute is equal to(|t1|+ |t2|), where|t1|
and|t2| are the numbers of leaf nodes whose parent nodes arei1 andi2, respectively.
That is, lines 3–6 and lines 7–10 in Figure 4(e) are used to calculate the values of|t1|
and|t2|, respectively. The value of theCounterattribute is equal to(2|A|+ |B|), where
|A| and |B| are the numbers of fixed and shifted matching leaf nodes inG1 andG2,
respectively. Similarly, lines 3–6 and lines 8–12 in Figure 4(f) are used to calculate the

tempTb1 (DID1, DID2, PID1, PID2,
 Counter, Total, Score)

tempTb2 (DID1, DID2, ID1, ID2,
 LO1, LO2, PID1, PID2, Counter,
 Total, Score, Flag)

MATCHING (DID1, DID2, ID1, ID2,
 LO1, LO2, PID1, PID2, Score,
 Name)

(a) Temporary Matching Tables

(c) Attributes and Descriptions

Score Similarity score

Total Total number of nodes

Counter Number of matching nodes
Flag

Status for possible moved
nodes

Attributes Description

INS_INT (DID1, DID2, ID, LO, PID,
 Name)

DEL_INT (DID1, DID2, ID, LO, PID,
 Name)

INS_LEAF (DID1, DID2, ID, LO, PID,
 Name, Value)

DEL_LEAF (DID1, DID2, ID, LO,
 PID, Name, Value)

UPD_LEAF (DID1, DID2, ID1, ID2, LO1,
 LO2, PID1, PID2, Name, Value1, Value2)

(b) Delta Tables

MOVE_INT (DID1, DID2, ID1, ID2, LO1,
 LO2, PID1, PID2, Name)

MOVE_LEAF (DID1, DID2, ID1, ID2, LO1,
 LO2, PID1, PID2, Name, Value)

MOVE_LIST (DID1, DID2, ID1, ID2, LO1,
 LO2, PID1, PID2, Name, Type)

Attributes Description

DID1 Document id of the first version

DID2 Document id of the second version

PID Parent node id

PID1 Parent node id in the first version

PID2 Parent node id in the second version

ID Node id

ID1 Node id in the first version

ID2 Node id in the second version

Name Node name

Value Leaf node content

Value1 The old value of a leaf node

Value2
The new value of a leaf
node

LO Local order

LO1 Local order in the first version

LO2 Local order in the second version
Type

Node type of the moved
nodes among their siblings

Attributes Description

Fig. 6. Temporary and Delta Table Descriptions.

values of2|A| and|B|, respectively. Finally, the value of theScoreattribute is equal to
2|A|+|B|
|t1|+|t2| as defined in the preceding section.

The results of thefindMatchingLeafNodesGroupsalgorithm are a temporary table
Mcx in which the information of matching groups of non-inlined leaf nodescx are
stored. The schema of theMcx table is the same as the one of thetempTb1 table as
depicted in Figure 6(a). The semantics of attributes of thetempTb1 table are depicted
in Figure 6(c). For instance, in our example, the “interest” node is a non-inlined leaf
nodes. The algorithm will generate theMinterest table as depicted in Figure 5(a).

3.2 Bottom-up Matching Phase

The next step is to propagate the matchings in bottom-up fashion (lines 5–14, Figure 3).
First, the algorithm determines the highest level of the non-inlined internal nodes in
DTD U (line 5). Then, it starts to find best matching internal nodes in bottom-up fash-
ion. There are two sub steps, that is, finding matching internal nodes (line 11) and
determining best matching subtrees (line 12) by findingbest matching configurations.

Finding Matching Internal Nodes. This phase is similar to the one discussed in [4].
Figure 7 depicts the SQL queries used to find matching internal nodes. Observe that
these SQL queries are similar to the ones in [4]. The only difference is that inOXONE

we include theLocalOrderattribute when we project the result of the SQL queries. The
details on how to replace “[moreConditions] ” (line 11, Figure 7(b)) can be found
in [4]. The matching internal nodeiw is stored in a temporary matching tableMiw ,
whereiw ∈ Ni. The schema of theMiw table is the same as the one of thetempTb2
table as depicted in Figure 6(a). The semantics of attributes of thetempTb2 table are
depicted in Figure 6(c). For example, the matching “staff” node will be stored in the
Mstaff table (Figure 5(b)).

Finding Best Matching Internal Nodes.The task in this step is to findbest match-
ing configurationsthat facilitate us to find best matching internal nodes. Recall that an
internal node inT1 can be matched to more than one internal nodes inT2, and vice
versa. The problem of finding best matching configuration is similar to the problem of
findingmaximum weighted bipartite matching. In our implementation, we use the Hun-
garian method [5] that addresses the problem of finding maximum weighted bipartite

(a) Finding Matching Internal Nodes (1)

1 INSERT INTO [tempTb]
2 SELECT
3 A1.DOC_ID AS DID1, A2.DOC_ID AS DID2,
4 A1.ID AS ID1, A2.ID AS ID2,
5 A1.LOCALORDER AS LO1, A2.LOCALORDER AS LO2,
6 A1.PID AS PID1, A1.PID AS PID2,
7 0 AS COUNTER, 0 AS TOTAL, 0 AS SCORE, 0 AS FLAG
8 FROM [tbName] AS A1, [tbName] AS A2
9 WHERE
10 A1.DOC_ID = doc_id1 AND A2.DOC_ID = doc_id2 AND
11 [moreConditions] AND
12 NOT EXISTS
13 (SELECT ID1, ID2 FROM [tempTb] AS B
14 WHERE B.DID1 = doc_id1 AND
15 B.DID2 = doc_id2 AND B.ID1 = A.ID1 AND B.ID2 = A.ID2)
16 GROUP BY A1.DOC_ID, A2.DOC_ID, A1.PID, A2.PID, A1.ID, A2.ID

(b) Finding Matching Internal Nodes (2)

1 INSERT INTO [tempTb]
2 SELECT
3 A1.DOC_ID AS DID1, A2.DOC_ID AS DID2,
4 A1.ID AS ID1, A2.ID AS ID2,
5 A1.LOCALORDER AS LO1, A2.LOCALORDER AS LO2,
6 A1.PID AS PID1, A2.PID AS PID2,
7 0 AS COUNTER, 0 AS TOTAL, 0 AS SCORE, 0 AS FLAG
8 FROM [tempMChild] AS A, [tbName] AS A1, [tbName] AS A2
9 WHERE
10 A.DID1 = doc_id1 AND A.DID2 = doc_id2 AND
11 A1.DOC_ID = doc_id1 AND A2.DOC_ID = doc_id2 AND
12 A1.ID = A.PID1 AND A2.ID = A.PID2 AND
13 NOT EXISTS
14 (SELECT ID1, ID2 FROM [tempTb] AS B
15 WHERE B.DID1 = doc_id1 AND B.DID2 = doc_id2 AND
16 B.ID1 = A.ID1 AND B.ID2 = A.ID2)
17 GROUP BY A1.DOC_ID, A2.DOC_ID, A1.PID, A2.PID, A1.ID, A2.ID

Fig. 7. SQL Queries for Finding Matching Internal Nodes.

matching. The algorithm for finding best matching configurations is similar to the one
discussed in [4] except for the following differences. After we determine the best match-
ing configurations, the algorithm annotates the matching internal nodes whose parent
nodes are not used in the best matching configuration by setting theFlag attribute in the
Miw

table to “1”. The annotations mean that these subtrees may be moved to different
parent nodes. Note that in [4] such matching nodes are directly deleted. Observe that we
also need to update the values of theCounter, Total, andScoreattributes accordingly as
initially their values are equal to “0”.

3.3 Collecting Best Matching Internal Nodes Phase

The result of the previous step is the best matching internal nodes partitioned in sev-
eral relations. The objectives of this step are to merge/collect the best matching internal
nodes from different relations and to determine the best matching inlined internal nodes.
Observe that the moved subtree candidates are also in the temporary matching tables.
The values of theFlag attribute of moved subtree candidates in the temporary matching
tables are equal to “1”. The algorithm and SQL queries for collecting best matching in-
ternal nodes are similar to the ones presented in [4] except for the following difference.
In OXONE, we need to filter out the moved node candidates from being considered as
best matching internal nodes. They can be filtered out by adding a condition “FLAG =
0” in the SQL queries. In addition, we need to include theLocalOrderattribute when
we project the result of the SQL queries. The best matching internal nodes are stored in
the MATCHINGtable. The semantics of theMATCHINGtable is depicted in Figure 6.
For example, given theMunivStaff andMstaff tables (Figures 5(b) and 5(c), respec-
tively) and the relations containing the shredded XML documents, theMATCHINGtable
is depicted in Figure 5(d). TheMATCHINGtable keeps the best matching internal nodes
of two XML documents that will be used to detect the changes (Phase 2).

DID1 DID2 PIDLOID Name

1 2 3 3 1

research

staff

1 2 null null 3

(a) INS_INT Table

DID1 DID2 PIDLOID Name

1 2 1 1 1

research

staff

1 2 null null 1

(b) DEL_INT Table

DID1 DID2 PIDLOID Name

1 2 null null 1

rank

name

1 2 null null 1

(d) DEL_LEAF Table

Value

Assoc Prof

Smith

1 2 1 1 1

interest

interest

1 2 2 2 1
Multimedia

Mining

Web Mining

1 2 3 3 2 interest Data Mining

DID1 DID2 PIDLOID Name

1 2 2 2 1

name

interest

1 2 null null 3

(c) INS_LEAF Table

Value

Steve

Information
Retrieval

1 2 null null 3

interest

rank

1 2 4 1 3
Semantic

Web

Asst Prof

DID1 DID2 PID1 PID2 Value1LO1 LO2ID1 ID2

1 2 13 Assoc Profnull null nullnull

Name

rank

Value2

Prof

(e) UPD_LEAF Table

#

#

#

#

rank1 2 null null 1 Prof 1 2 null null 3 rank Assoc Prof# #

Fig. 8. Delta Tables.

1 INSERT INTO UPD_LEAF
2 SELECT DISTINCT doc_id1 AS DID1, doc_id2 AS DID2,
3 NULL AS ID1, NULL AS ID2, NULL AS LO1, NULL AS LO2,
4 I1.ID AS PID1, I2.ID AS PID2, '[nodeName]' AS NAME,
5 I1.[attrName] AS VALUE1, I2.[attrName] AS VALUE2
6 FROM [parentTbName] AS I1, [parentTbName] AS I2
7 WHERE
8 I1.DOC_ID = doc_id1 AND I2.DOC_ID = doc_id2 AND
9 I1.[attrName] IS NOT NULL AND I2.[attrName] IS NOT NULL AND
10 I1.[attrName] != I2.[attrName] AND
11 EXISTS
12 (SELECT * FROM MATCHING AS B
13 WHERE DID1 = doc_id1 AND DID2 = doc_id2 AND
14 B.NAME = '[parentNodeName]' AND
15 B.ID1 = I1.ID AND B.ID2 = I2.ID)

(a) Update of Inlined Leaf Nodes

1 INSERT INTO UPD_LEAF
2 SELECT DISTINCT doc_id1 AS DID1, doc_id2 AS DID2,
3 D.ID AS ID1, I.ID AS ID2, D.LO AS LO1,
4 I.LO AS LO2, D.PID AS PID, I.PID AS PID2,
5 D.NAME, D.VALUE AS VALUE1, I.VALUE AS VALUE2
6 FROM INS_LEAF AS I, DEL_LEAF AS D, MATCHING AS M
7 WHERE
8 I.DID1 = doc_id1 AND I.DID2 = doc_id2 AND
9 D.DID1 = doc_id1 AND D.DID2 = doc_id2 AND
10 M.DID1 = doc_id1 AND M.DID2 = doc_id2 AND
11 M.ID1 = D.PID AND M.ID2 = I.PID AND
12 M.NAME = '[parentNodeName]' AND
13 I.NAME = '[nodeName]' AND
14 D.NAME = '[nodeName]' AND
15 I.VALUE != D.VALUE AND I.LO = D.LO

(b) Update of Non-inlined Leaf Nodes

Fig. 9. SQL Queries for Detecting Updated Leaf Nodes.

4 Change Detection Phase

In this section, we discuss how the changes are detected byOXONE after the best match-
ing subtrees are determined. We detect the insertion, deletion, update, and move oper-
ations as highlighted in [1]. Note that we do not elaborate on the detection of inserted
and deleted nodes (subtrees) here as the SQL queries are similar to the ones presented
in [4]. The only difference is that inOXONE we include the “LocalOrder” attribute in
the projection of the result. The detected inserted and deleted internal nodes are stored
in theINS INT andDEL INT tables, respectively. Similarly, the detected inserted and
deleted leaf nodes are stored in theINS LEAF andDEL LEAF relations, respectively.
The semantics of these relations and corresponding examples (based on XML docu-
ments in Figure 1) are given in Figures 6 and 8, respectively. Note that the updated leaf
nodes are also detected during the detection of inserted and deleted nodes as they can
be decomposed into pairs of deleted and inserted leaf nodes. “[param] ” in the SQL
queries (Figures 9 and 10) used in the later discussion will be replaced the parameter
paramthat is similar to the one defined in thefindBestMatchingSubtreesalgorithm.

4.1 Content Updates of Leaf Nodes

Intuitively, the updated leaf nodes are the leaf nodes that are available in both ver-
sions and have the same node names, but have different values, and their parent nodes
are best matching internal nodes. InOXONE, the updated leaf nodes are detected af-
ter the inserted and deleted leaf nodes are detected. We classify the update operations
of non-inlined leaf nodes into theabsolute update operationsand therelative update
operations. In the absolute update operation, only the content value of an updated leaf
node is changed, while its position among siblings remains the same. In relative update
operation, the content value and position among siblings of an updated leaf node are
changed. For inlined leaf nodes, we only have absolute update operations as they occur
once under the same parent nodes.

Inlined Leaf Nodes.The SQL query in Figure 9(a) is used to determine the updated
inlined leaf nodes. Lines 9–10 are used to ensure that the updated inlined leaf nodes are
available in both versions (line 9) and they have different values (line 10). Lines 11–15
are used to guarantee that the parent nodes of the updated inlined leaf nodes are best
matching internal nodes. The result of the SQL query depicted in Figure 9(a) is stored in

1 INSERT INTO MOVE_INT
2 SELECT
3 doc_id1 AS DID1, doc_id2 AS DID2,
4 M.ID1, M.ID2, M.LO1, M.LO2,
5 M.PID1, M.PID2, '[nodeName]' AS NAME
6 FROM INS_INT AS I, DEL_INT AS D, [tempTb] AS M
7 WHERE
8 I.DID1 = doc_id1 AND I.DID2 = doc_id2 AND
9 D.DID1 = doc_id1 AND D.DID2 = doc_id2 AND
10 M.DID1 = doc_id1 AND M.DID2 = doc_id2 AND
11 I.NAME = '[nodeName]' AND
12 D.NAME = '[nodeName]' AND
13 M.ID1 = D.ID AND M.ID2 = I.ID AND
14 M.FLAG = 1 AND M.SCORE >= 0.500

(a) Move To Different Parent Nodes (1)

1 INSERT INTO MOVE_INT
2 SELECT
3 doc_id1 AS DID1, doc_id2 AS DID2,
4 NULL AS ID1, NULL AS ID2, NULL AS LO1, NULL AS LO2,
5 M.ID1, M.ID2, '[nodeName]' AS NAME
6 FROM INS_INT AS I, DEL_INT AS D, [parentTempTb] AS M
7 WHERE
8 I.DID1 = doc_id1 AND I.DID2 = doc_id2 AND
9 D.DID1 = doc_id1 AND D.DID2 = doc_id2 AND
10 M.DID1 = doc_id1 AND M.DID2 = doc_id2 AND
11 I.NAME = '[nodeName]' AND
12 D.NAME = '[nodeName]' AND
13 M.ID1 = D.PID AND M.ID2 = I.PID AND
14 M.FLAG = 1 AND M.SCORE >= 0.500

(b) Move To Different Parent Nodes (2)

1 INSERT INTO MOVE_LEAF
2 SELECT
3 doc_id1 AS DID1, doc_id2 AS DID2, D.ID AS ID1,
4 I.ID AS ID2, D.LO AS LO1, I.LO AS LO2,
5 D.PID AS PID1, I.PID AS PID2, '[nodeName]' AS NAME,
6 D.VALUE AS VALUE
7 FROM INS_LEAF AS I, DEL_LEAF AS D, MOVE_INT AS M
8 WHERE
9 I.DID1 = doc_id1 AND I.DID2 = doc_id2 AND
10 D.DID1 = doc_id1 AND D.DID2 = doc_id2 AND
11 M.DID1 = doc_id1 AND M.DID2 = doc_id2 AND
12 I.NAME = '[nodeName]' AND D.NAME = '[nodeName]' AND
13 I.VALUE = D.VALUE AND
14 M.NAME = '[parentNodeName]' AND
15 M.ID1 = D.PID AND M.ID2 = I.PID

1 INSERT INTO MOVE_LEAF
2 SELECT
3 doc_id1 AS DID1, doc_id2 AS DID1,
4 D.ID AS ID1, I.ID AS ID2,
5 D.LO AS LO1, I.LO AS LO2, D.PID AS PID1,
6 I.PID AS PID2, D.NAME, D.VALUE
7 FROM DEL_LEAF AS D, INS_LEAF AS I
8 WHERE
9 D.DID1 = doc_id1 AND D.DID2 = doc_id2 AND
10 I.DID1 = doc_id1 AND I.DID2 = doc_id2 AND
11 D.VALUE = I.VALUE AND D.NAME = I.NAME

(d) Leaf Nodes: Move To Different Parent Nodes (2)(c) Leaf Nodes: Move To Different Parent Nodes (1)

Fig. 10.SQL Queries for Detecting Moved Nodes.

theUPDLEAF table. Its schema and semantics are depicted in Figures 6. Next, we need
to delete the corresponding tuples of the updated inlined leaf nodes in theDEL LEAF
andINS LEAF relations. This is because we have detected updated leaf nodes that are
previously detected as pairs of deleted and inserted leaf nodes.

Non-Inlined Leaf Nodes.To detect the absolute updated non-inlined leaf nodes,OX-
ONE executes the SQL query depicted in Figure 9(b). Observe that we join three tables,
namely, theDEL LEAF, INS LEAF, andMATCHINGtables. Recall that an updated
leaf node can be decomposed as a pair of deleted and inserted leaf nodes. Line 13 is
used to guarantee that the parent nodes of the deleted and inserted leaf nodes are the
best matching internal nodes. The absolute updated leaf nodes must have the same node
name and the same local order, but different values (lines 13–15). The result of the SQL
query depicted in Figure 9(b) is stored in theUPDLEAF table. We also need to delete
the corresponding tuples of the updated non-inlined leaf nodes in theDEL LEAF and
INS LEAF relations.

Next, OXONE determines therelativeupdated non-inlined leaf nodes by executing
the SQL query depicted in Figure 9(b) after slight modifications as follows. We replace
“ I.LO = D.LO ” with “ I.LO 6= D.LO”. Recall that the relative updated leaf nodes
must have the same node name, but different values and local orders. Note that while
detecting relative updated non-inlined leaf nodes, the query may returnincorrectresults
in some situations as follows. First, there is more than one relative updated non-inlined
leaf node under the same parent nodes. Second, there are deletion/insertion and update
of non-inlined leaf nodes occurred under the same parent nodes. Therefore, we rectify
the results using the approach as discussed in [4]. The result of the SQL query depicted
in Figure 9(b) (after slight modification) is also stored in theUPDLEAF table. In our
example, theUPDLEAF table is depicted in Figure 8(e). The highlighted tuples in the
INS LEAF (Figure 8(c)) andDEL LEAF (Figure 8(d)) tables will be deleted as they are
the corresponding tuples of the updated leaf nodes.

4.2 Move Operation

The move operations are classified intomove among siblingsand move to different
parent nodes. The algorithm for detecting the movement of nodes among their siblings
is similar to the one presented in [2]. Hence, here we focus onmove to different parent
nodes.

A particular node that is moved to different parent node is detected as a pair of
deletion and insertion. Hence, we are able to determine the nodes that are moved to
different parent nodes by querying theDEL INT and INS INT tables (for moved in-
ternal nodes), and theDEL LEAF and INS LEAF tables (for moved leaf nodes). The
moved internal nodes (leaf nodes) are best matching internal nodes (matching leaf
nodes) whose parent nodes are not best matching internal nodes.

The SQL queries in Figures 10(a) and 10(b) are used to find the movednon-inlined
andinlined internal nodes that are moved to different parent nodes. Note that we only
consider the moved internal nodes that have similarity scores equal or greater than
“0.500”. Note that this “threshold” can be defined by users based on application re-
quirements. Otherwise, they are detected as pairs of deleted and inserted internal nodes.
If an internal nodei is moved to different parents, then, intuitively, the subtree rooted at
nodei is also moved. That is, we need to detect the moved leaf nodes that are the descen-
dants of the moved internal nodes. Figure 10(c) is used to find the movednon-inlined
leaf nodes that are the descendants of the moved internal nodes. To find theinlinedones,
we used the modified SQL query of the SQL query depicted in Figure 10(c). We replace
“ ID1 ” and “ID2 ” in line 10 with “PID1 ” and “PID2 ” respectively. Note that we need
to delete the corresponding tuples of the moved nodes that are stored in theDEL INT ,
INS INT , DEL LEAF, andINS LEAF tables. Observe that some leaf nodes can also
be moved to be the child nodes of different parent nodes. These moved leaf nodes are
not the descendants of the moved internal nodes. Figure 10(d) is used to find the moved
leaf nodes that are not the descendants of the moved internal nodes. Note that we also
need to delete the corresponding tuples of the moved leaf nodes that are stored in the
DEL LEAF, andINS LEAF tables.

5 Performance Study

We have implementedOXONE entirely in Java. We use Microsoft SQL Server 2000 for
storing XML documents before the changes are detected. The experiments were con-
ducted on a Microsoft Windows XP Professional machine having Pentium 4 1.7 GHz
processor with 512 MB of memory. We used a set of synthetic XML data based on SIG-
MOD DTD (http://www.sigmod.org/record/). The characteristics of the data sets are de-
picted in Figure 11. The second versions of the XML documents are generated by using
our XML change generator. We compared the performance ofOXONE to the Java ver-
sion of X-Diff [8] (downloaded from http://www.cs.wisc.edu/∼yuanwang/xdiff.html),
schema-oblivious relational-based approach for ordered XML change detection in [2]
(called XANDY–O), and C version of XyDiff [1] (downloaded from
http://pauillac.inria.fr/cdrom/www/xydiff/index-eng.htm). Note that despite our best ef-
forts (including contacting the authors), we could not get the Java version of XyDiff.
The C version of XyDiff was run in a Pentium 4 1.7 GHz processor with 512 MB of

Dataset
Code

SIGMOD-01 331

Filesize
(KB)

13

SIGMOD-02 554 21

SIGMOD-03 890 34

SIGMOD-04 1,826 70

SIGMOD-05 2,718 104

SIGMOD-06 4,717 180

SIGMOD-07 8,794 337

SIGMOD-08 18,866 721

SIGMOD-09 37,725 1,444

SIGMOD-10 89,323 3,431

Dataset
Code Total

Filesize
(KB)

SIGMOD-11 172,754 6,635

SIGMOD-12 290,539 11,167

SIGMOD-13 355,921 13,688

SIGMOD-14 452,689 17,398

SIGMOD-15 620,223 23,816

73

117

187

389

567

983

1,801

3,883

7723

18,067

34,845

58,587

71,991

91,604

125,411

Internal258

427

703

1,437

2,151

3,734

6,993

14,983

30,002

71,256

137,909

231,952

283,930

361,085

494,812

Leaf

Number of NodesTotalInternal Leaf

Number of Nodes

Fig. 11.Data Sets.

memory with Red Hat Linux 9 operating system. Note that as the Java version is in gen-
eral slower than the C version, the execution times of XyDiff will differ by a constant
factor in comparison with X-Diff.

Execution Time vs Number of Nodes. In this set of experiments, we analyze the per-
formance ofOXONE for different number of nodes. The percentages of change is set
to “9%”. Figure 12(a) depicts the performance of Phase 1 in our approaches. Ob-
serve that the performances ofOXONE andXANDY–O are comparable up to data set
SIGMOD-05. For larger data set,OXONE outperformsXANDY–O (up to 20.5 times).
Note that the performance ofXANDY–O is adversely affected with increase in num-
ber of nodes and for datasets larger thanSIGMOD-12, XANDY–O fail to return results
in 100,000 seconds. Hence, we do not plot the result ofXANDY–O for data sets larger
thanSIGMOD-12. The performance of Phase 2 is depicted in Figure 12(b). In this case,
OXONE is faster thanXANDY–O (up to 81.88 times).

Figure 12(c) depicts the overall performance of our approaches. XyDiff is up to
3.5 times faster thanOXONE for the first three data sets. After that the performance of
XyDiff is comparable to the one ofOXONE. However, our approach is more scalable
as XyDiff fails to detect the changes to data sets larger thanSIGMOD-12as its process
was killed by the Linux kernel. In addition, we believe that the Java version of XyDiff
will be much slower and less scalable than the C version and hence will adversely affect
the response time and scalability further. X-Diff, on the other hand, is only able to
detect the changes up toSIGMOD-06due to lack of main memory. X-Diff outperforms
OXONE for the first three data sets (up to 8.15 times). For larger data sets,OXONE is up
to 43.7 times faster than X-Diff. Note that the performances ofXANDY–O andOXONE

is slower than main memory-based approaches for smaller data sets as the database I/O
cost is more expensive. Also, overallOXONE is up to 22 times faster thanXANDY–O.

Result Quality. Next, we examine the result quality ofOXONE, XANDY–O, and Xy-
Diff. The result quality is defined as the ratio between the number of edit operations
in the deltas detected by an approach and the one in theoptimal deltas. Note that an
optimal delta consists of minimum number of edit operations [8]. Also, we do not show
the result quality of X-Diff as it is not designed for ordered change detection. We use
a small data set with 100 nodes and generate the second version with various percent-
ages of changes (2%–12%). Figure 12(d) depicts the result quality comparison results.
Observe that the result quality ofOXONE and ofXANDY–O are comparable. Also, the
result qualities ofOXONE andXANDY–Oare significantly better than that of XyDiff. In
XyDiff’s deltas, there are some unnecessary move operations, and, in some case, XyD-
iff mismatches the best matching subtrees. For instance, consider the example depicted
in Figure 13. The delta detected byOXONE containsdelete(1) andupdate(10, “Asst

(d) Result Quality Compared to XyDiff

0

1

2

3

4

5

0 3 6 9 12

Percentage of Changes (%)

R
es

ul
t

Q
ua

lit
y

OXONE
XANDY-O
XyDiff

11.25 8.17 6.625

0.0

1.0

2.0

3.0

4.0

5.0

0 5 10 15 20 25 30 35

Percentage of Change (%)

E
xe

cu
tio

n
 T

im
e

(s
)

OXONE XANDY-O
0.0

1.0

2.0

3.0

0 5 10 15 20 25 30 35

Percentage of Change (%)

E
xe

cu
ti

o
n

Ti
m

e
(s

)

OXONE

XANDY-O

0.0

2.0

4.0

6.0

8.0

0 5 10 15 20 25 30 35

Percentage of Change (%)

E
xe

cu
ti

on
 T

im
e

(s
)

OXONE
XANDY-O
X-Diff
XyDiff

(f) Phase 2: Detecting the Changes(e) Phase 1: Finding Best Matching Subtrees

(g) Overall Performance

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7

Data Sets

P
er

ce
ta

ng
e

o
f O

ve
ra

ll
P

er
fo

rm
an

ce

Insertion Deletion Update Move

(h) Different Types of Changes (9%)

0

20

40

60

80

1 2 3 4 5 6 7

Data Sets

P
er

ce
nt

ag
e

o
f

O
ve

ra
ll

P
er

fo
rm

an
ce

 (
%

)

Move Internal Nodes Move Leaf Nodes Move Among Siblings

(i) Move Operations (9%)

0.1

1

10

100

1000

10000

100000

100 1,000 10,000 100,000 1,000,000

Number of Nodes

E
xe

cu
ti

on
 T

im
e

(s
)

OXONE

XANDY-O

(a) Finding Best Matching Subtrees (9%)

0.1

1

10

100

1000

10000

100 1,000 10,000 100,000 1,000,000

Number of Nodes

E
xe

cu
tio

n
 T

im
e

(s
) OXONE

XANDY-O

(b) Detecting the Changes (9%) (c) Overall Performance (9%)

0.1

1

10

100

1000

10000

100000

100 1,000 10,000 100,000 1,000,000

Number of Nodes

E
xe

cu
tio

n
 T

im
e

(s
)

OXONE

XANDY-O

X-Diff

XyDiff

Fig. 12.Experimental Results.

Prof”, “Assoc Prof”). However, the delta generated by XyDiff containsmove(9, 1, 2)
(“move node 9 to the second child node of node 1”),delete(8), anddelete(2) which is
semantically incorrect.

Execution Time vs Percentages of Changes. In this section, we shall observe the effects
of percentage of changes to the performances ofXANDY–O, OXONE, and X-Diff. We
use “Sigmod-03 ” data set. Observe that the percentages of changes are equally dis-
tributed to different types of changes. Figure 12(e) depicts the performance of Phase 1
of XANDY–O and OXONE for different percentage of changes. The performances of
XANDY–O and OXONE are affected by percentages of changes. When the percent-
age of changes is increased by 1%, the performances ofXANDY–O and OXONE be-
come, on average, 0.95% and 1.43% slower, respectively. The performances of Phase 2
of XANDY–O and OXONE for different percentages of changes are depicted in Fig-
ure 12(f).OXONE is up to 1.62 times faster thanXANDY–O. Figure 12(g) shows the
overall performance ofXANDY–O and OXONE for different percentages of changes.
We notice that XyDiff is up to 2.59 times faster thanOXONE.

Different Types of Changes. In this set of experiments, we study the affect of differ-
ent types of changes on the running time. We used first seven data sets and set the

univStaff

staff

name rank research

interestTom Assoc
Prof

Data Mining XML Mining Indexing

interestinterest

staff

name rank research

interestJane Asst
Prof

Data Mining XML Mining Indexing

interest

univStaffT2T1
0

1

2 3

4

5 6 7

8

9

10

11

12 13 14

0

interest

staff

name rank research

interestJane Assoc
Prof

Data Mining XML Mining Indexing

interest

1

2

3

4

5 6 7

interest

Fig. 13.Result Quality: Example.

percentage of changes to 9%. Figure 12(h) depicts the proportion of execution times
of detecting insertion, deletion, update, and move operations. Observe that detecting
move operation takes up to 67.17% of the execution time of Phase 2. Figure 12(i) de-
picts the affect of different types of move operations on the running time. The execution
time of detecting moves among siblings is significant compared to the one for detecting
moved internal nodes and moved leaf nodes. It takes up to 55.68% of the execution
time of Phase 2. Let us elaborate on this further. In detecting move among siblings, we
compare the local order of each node. However, the local order can be changed due
to the insertions/deletions of sibling nodes. Hence, we need to ensure that such local
order changes are not considered in order to detect move among siblings correctly. The
adjustLocalOrderfunction that is similar to the one in [2] is used to simulate the in-
sertions/deletions of sibling nodes. Observe that an insertion/deletion of a sibling node
can change more than one local orders of its sibling nodes. Hence, when there is an
insertion/deletion of a sibling node, we need to adjust more than one local orders of
its sibling nodes. That is, the cost of theadjustLocalOrderfunction is increased as the
number of insertions/deletions is increased.

6 Conclusions and Future Work

In this paper, we present a relational-based approach (calledOXONE) for detecting the
changes on ordered XML documents using a schema-conscious approach. This work
is motivated by the following observations. First, existing main memory-based ordered
XML change detection techniques (XyDiff) produce poorer quality deltas compared to
its unordered counterpart (X-Diff). Second, although existing relational-based ordered
change detection approach such asXANDY–O can produce superior quality results, its
performance is much slower than XyDiff and degrades significantly with increase in
number of nodes. To the best of our knowledge,OXONE is the first approach that ad-
dress these two limitations. Our experimental results show thatOXONE is more scalable
than existing state-of-the-art approaches. It has comparable performance with XyDiff
and yet produce superior result quality. As parts of our future work, we would like to
extend our framework so that it can handle recursive DTDs.

References

1. G. COBENA, S. ABITEBOUL, A. MARIAN . Detecting Changes in XML Documents.In ICDE, 2002.
2. E. LEONARDI, S. S. BHOWMICK . XANDY : A Scalable Change Detection Technique for Ordered XML Documents

Using Relational Databases. To appear in DKE Journal.
3. E. LEONARDI, S. S. BHOWMICK , S. MADRIA . XANDY : Detecting Changes on Large Unordered XML Documents

Using Relational Databases.In DASFAA, China, 2005.
4. E. LEONARDI, S. S. BHOWMICK . Detecting Changes on Unordered XML Documents Using Relational Databases: A

Schema-Conscious Approach.In CIKM, 2005.
5. C. PAPADIMITRIOU , K. STEIGLITZ . Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, Engle-

wood Cliffs, NJ, 1982.
6. J. SHANMUGASUNDARAM , K. TUFTE, C. ZHANG, G. HE, D. J. DEWITT, AND J. F. NAUGHTON Relational

Databases for Querying XML Documents: Limitations and Opportunities.The VLDB Journal, 1999.
7. H. LU, H. JIANG , J. X. XU, G. YU ET AL . What Makes the Differences: Benchmarking XML Database Implemen-

tations.In ACM TOIT, 5(1), 2005.
8. Y. WANG, D. J. DEWITT, J. CAI . X-Diff: An Effective Change Detection Algorithm for XML Documents.In ICDE,

Bangalore, 2003.

