
Every Click You Make, I Will Be Fetching It:
Efficient XML Query Processing in RDMS Using GUI-driven Prefetching

Sourav S Bhowmick Sandeep Prakash
Nanyang Technological University, School of Computer Engineering, Singapore

assourav@ntu.edu.sg

1 Introduction

Querying XML data involves two key steps:query for-
mulationandefficient processingof the formulated query.
However, due to the nature of XML data, formulating an
XML query using an XML query language such as XQuery
requires considerable effort. A user must be completely fa-
miliar with the syntax of the query language, and must be
able to express his/her needs accurately in a syntactically
correct form. In many real life applications it is not real-
istic to assume that users are proficient in expressing such
textual queries. Hence, there is a need for a user-friendly
visual querying schemes to replace data retrieval aspects
of XQuery. In this paper, we address the problem of effi-
cient processing of XQueries in the relational environment
where the queries are formulated using a user-friendly GUI.
We take a novel and non-traditional approach to improving
query performance byprefetching data during the formula-
tion of a query in a single-user environment. The latency
offered by the GUI-based query formulation is utilized to
prefetch portions of the query results. The basic idea we
employ for prefetching is that we prefetch constituent path
expressions, store the intermediary results, reuse them when
connective is added or “Run” is pressed.

To the best of our knowledge, this is the first work
that makes a strong connection between prefetching-based
XML query processing and GUI-based query formulation.
The key advantages of our approach are as follows. First,
our optimization technique is buildoutsidethe relational
optimizer and is orthogonal to any other existing optimiza-
tion techniques. Hence, our approach provides us with the
flexibility to “plug” it on top of any existing optimization
technique for processing XML data in relational environ-
ment. Second, our approach is not restricted by the under-
lying schema of the database. As a result, it can easily be
integrated with any relational storage approaches. Third,
the prefetching-based query processing is transparent from
the user. Consequently, there does not exist any additional
cognitive overhead to the users while they formulate their
queries using the GUI. Finally, our non-traditional approach

noticeably improve the performance of XML query execu-
tion by 7% to 96%. Moreover, we also show that errors
committed by users while formulating queriesdo notsig-
nificantly affect the query performance.

2 Computing Query Formulation Time

In order to determine the time available for prefetching
and to measure the improvement provided by prefetching,
the time required to formulate a query visually needs to be
measured. This is referred to as thequery formulation time
(QFT). It is the duration between the time the first predi-
cate is added and the execution of the “Run” command as
prefetching can start only when the first predicate is known.
In the remaining part of the paper, we use the GUI described
in [1] as framework for modeling query formulation time.

We have used the Keystroke-Level Model (KLM)[2] to
calculate QFT. The KLM is a simple but accurate means to
produce quantitative,a priori predictions of task execution
time. These times are has been estimated from experimen-
tal data [2]. The basic idea of KLM is to list the sequence
of keystroke-level actions that the user must perform to ac-
complish a task, and sum the time required by each action.
The KLM has been applied to many different tasks such as
text editing, spreadsheets, graphics applications, handheld
devices, and highly interactive tasks.

We use the list of average task times for a subset ofphys-
ical operators(K (key-stroking),P (pointing),H (homing),
and D (drawing)) as defined by KLM [2]. Using this list
of physical operators, we compute the estimated times for
a set ofatomic actionsfor visual query formulation. The
list of tasks the user needs to perform in order to formu-
late a query using our GUI is basically consists of a set of
these atomic actions. The estimated time taken to perform
each task is simply the sum of average times of the atomic
actions.Note that QFT does not include higher level men-
tal tasks for formulating a query such as planning a query
formulation strategy.These tasks depend on what cognitive
processes are involved, and is highly variable from situation
to situation or person to person. We assume that the user has
already planned the set of actions he/she is going to take to

formulate his/her query and any other mental tasks. This
assumption enables us to investigate the impact of prefetch-
ing for minimumQFT for a particular query. Addition of
mental operatorswhile formulating a query will only in-
crease the QFT and consequently increase the performance
gain achieved due to prefetching. Note that our model for
calculating the QFT can as well be used for other types of
visual XML query formulation systems.

Error-oblivious QFT (EO QFT): We first compute
QFT in the absence of any query formulation error com-
mitted by the user. We call such QFT aserror-oblivious
query formulation time(EO QFT). The EOQFT (denoted
as Tf) for a query can be calculated as follows:Tf =
9.9(xnj − 1)+3.6xj +3.8b+1.3 wherexnj is the number
of non-join predicates,xj is the number of join predicates,
b is the number of boolean operators in the query, and 1.3s
is the time taken to click on the “Run” icon. Observe that
(xnj−1) is used as prefetching can start only when the first
query formulation step is complete in theQuery Editor.

Error-conscious QFT (EC QFT): The errors commit-
ted by the user while formulating a query are referred to as
query formulation errors(QFE). Note that QFEs may im-
pact our prefetching approach. Hence, it is necessary to
quantify the effect of QFEs by extending EOQFT with the
time lost due to QFEs (error-consciousQFT (EC QFT)).
If the user clicks onUNDO n times and corrects a set
of mistakes each time thenerror-conscious query formu-
lation time (denoted asTfe) is given by the following
equation: Tfe = 9.9(mnj − 1) + 3.6mj + 3.8mb +∑n

s=1 (2.6 + 1.3is + 1.3ks + Tus) + 1.3 whereks,is and
Tus are the number of actions to be modified, the number
of times “Insert” button is selected for inserting new predi-
cates, and the total time taken to correct the mistakes respec-
tively, for thesth instance of theUNDO operation. The vari-
ablesmnj , mj , andmb are the number of non-join predi-
cates, number of join predicates, and the number of boolean
operatorscorrectlyadded during query formulation respec-
tively. Note thatmnj , mj , andmb do not include those
predicates and boolean operators that contain mistakes or
inserted/deleted duringUNDO operation. The detailed com-
putation for the above equation is given in [1].

3 GUI-Based Prefetching

In order to expedite XML query processing using such
GUI-based prefetching, two key tasks must be addressed.
First, given a user-friendly visual query interface, GUI ac-
tions that can be used as indicators to perform prefetching
need to be identified. These actions are: (1) the addition of
a path expression predicate and (2) combining two or more
predicates using AND/OR operator to create another com-
plex expression. Second, each GUI action can possibly lead
to more than one prefetching operation. Therefore,a cost-
based algorithm that selects the “best” materialization is

Input: Actions from the query interface.
Output: Intermediate materializations.
1: State S = getGUIState()
 /*prefetch till user executes query*/
2: while S != “Execute Query” do
 /*Call materialization selection algorithm*/
3: selectMaterialization()
 /*Call materialization replacement algorithm */
4: replaceMaterialization()
5: S1 = getGUIState()
6: while S1 == S do /*wait till GUI state changes*/
7: S1 = getGUIState()
8: end while
9: end while

Figure 1. Prefetching algorithm.

required. We use two heuristics for this algorithm. First,
we consider only disjunctions of predicates as candidates
for temporary materializations. This is because evaluating
all possible materializations, though guaranteed to generate
a useful materialization, is not feasible. Second, given a ma-
terialization space limitLM , we include themaximum pos-
siblenumber of expressionsκi in the materialization. This
is because the greater the number of expressions included
in the current materialization the greater the usefulness of
the intermediate result towards evaluating the final result.
Finally, since each prefetching operation is useful for the
next,existing materializations need to be replaced with new
materializations preferably using the previous materializa-
tions. Figure 1 shows the overall prefetching algorithm.
The process continues till the user clicks on “Run” to ex-
ecute the query (line 2). The process waits for changes in
the user interface (lines 5 to 8) before selecting new materi-
alizations (line 3). Once new materializations are selected,
existing ones are replaced (line 4). Details of the algorithm
is given in [1].

4 Performance Study

The prototype system of GUI-driven prefetching tech-
nique was implemented using JDK1.5. The visual in-
terface was built as a plug-in for the Eclipse platform
(www.eclipse.org). The RDBMS used was SQL Server
2000 running on a P4 1.4GHz machine with 256MB RAM.
In this paper, we have adopted our schema-oblivious XML
storage system calledSUCXENT++ (SchemaUnConcious
XML ENabled SysTem) [3]. The experiments were carried
out with tdata sets of size 300MB and 1200MB [1]. Ten
queries were used to test the system [1]. These queries vary
in the number of predicates, cojunctions/disjunctions and
result size.

We define the followings for the experiments. The re-
sponse time as perceived by the user when prefetching is not
employed is called thenormal execution time(NET). The
perceived response time(PRT) is the query response time
when prefetching is employed. In the absence of QFEs, we
refer to the PRT aserror-obliviousperceived response time
(EO PRT). If QFEs are present then we refer to the PRT as
error-consciousperceived response time (EC PRT).
NET vs EO PRT: This comparison is done as a percent-
age of improvement over normal execution. It is measured

0
10
20
30
40
50
60
70
80
90

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
Queries

Imp
rov
eme
nt
(%)

(a) 300 MB

0
10
20
30
40
50
60
70
80
90

100

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
Queries

Imp
rov
eme
nt
(%)

(b) 1200 MB

0

10

20

30

40

50

60

70

80

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
Queries

Imp
rov
eme
nt
(%)

(c) 300 MB

Figure 2. NET vs EO PRT and EC PRT vs NET(1).

0

20

40

60

80

100

120

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10
Queries

Im
pr
ov
em
en
t
(%
)

(a) 1200 MB

-5
0
5
10
15
20
25
30
35
40

Q2 Q3 Q6 Q7 Q9
Queries

Pe
na
lt
y
(%
)

Step 3
Step 2
Step 1

(b) 300MB - Three formulation steps

-5

45

95

145

195

245

295

345

Q4 Q8 Q10
Queries

Pe
na
lt
y
(%
)

Step 1
Step 2
Step 3
Step 4
Step 5

(c) 1200MB - Five formulation steps

Figure 3. EC PRT vs NET(2) and EC PRT vs EO PRT.

asimprovement = (1 - EO PRT
NET)×100. Figures 2(a) and

(b) show the results for the two data sets. There are two
main observations. First, the improvement in performance
is more for larger data sets. For the 300MB data set the
improvement range is 7-76%. This range increases to 47-
96% for the 1200MB data set. The second observation is
that simple queries (Q1, Q5 and Q9) with one predicate
and small result sets benefit the least. Queries with mul-
tiple predicates and large result sets benefit the most. This
is indeed encouraging as query response time is more criti-
cal for large data set. Also queries with disjunctions benefit
more than the queries with conjunctions. This is expected as
the materialization selection algorithm selects disjunctions
as the intermediate results.
NET vs EC PRT: This comparison is done as a percentage
of improvement over normal execution. It is measured as
improvement = (1 - EC PRT

NET)×100. In this experiment
we present the worst-case value forEC PRT as discussed
in [1]. This will give us an estimate of the upper-bound
of the effect QFE can have on prefetching. The results are
presented in Figures 2(c) and 3(a). The main observation
is thatEC PRT is still significantly better thanNET for
most queries. Also observe that similar toEO PRT , there
is larger improvement for larger data size.
EC PRT vs EO PRT: This comparison is done to measure
the penalty on PRT due to QFE. It is measured aspenalty=
EC PRT−EO PRT

EO PRT × 100. Again, the worst case value of
EC PRT is used for comparison. Particularly, we mea-
sure EC PRT for q = n − 1 (UNDO operation is in-
voked just before clicking “Run”) wheren is the number
of query formulation steps and the user clicks on “Run” at
nth step. We vary theerror realization distancewhich is de-
fined as follows. Suppose that the error is committed atpth

step and theUNDO operation is invoked atqth step where
0 < p < q ≤ n − 1. Then, theerror realization distance
is defined asq − p. Figures 3(b) and 3(c) show the results
for the 300MB and 1200MB data sets. Figure 3(b) shows
the results for queries that have three formulation steps (two
predicates and a conjunction/disjunction) other than click-
ing on “Run”. The three values shown for each query mea-
sure the penalty when the error was committed at the first
step, the second step and the third step respectively. The
penalty axis starts at−5 to allow the display of cases where
penalty = 0. Figure 3(c) shows the results for queries with
five formulation steps.

The results shown highlight two main points. First, QFE
generally has a greater effect with the increase in error re-
alization distance. This is expected as an early mistake will
lead to more materializations being recalculated. However,
there are some exceptions. The query Q4 for the 1200MB
data set shows an increase as the evaluation of the second
predicate is more expensive than the first. Second, the im-
pact of QFE increases with data set size. The 1200MB data
set shows a maximum increase of 316%. This can be at-
tributed to the higher cost of reevaluating materializations
for the larger data set.

References
[1] S. S. BHOWMICK AND S. PRAKASH. Efficient XML

Query Processing in RDBMS Using GUI-driven Prefetching
in a Single-User Environment. Tech. Report, School of
Comp. Engg, NTU, 2005 (Available atwww.ntu.edu.sg
/home/assourav/papers/cais-03-2005-TR.pdf).

[2] S. K. CARD, T. P. MORAN, AND A. NEWELL. The Keystroke-
level Model for User Performance Time with Interactive Systems.
Commun. ACM, 23(7):396–410, 1980.

[3] S. PRAKASH AND S. S. BHOWMICK . Efficient Recursive XML
Query Processing in Relational Databases.In ER, 2004.

