
XBLEND: Visual XML Query Formulation Meets
Query Processing

Zhou Yong Sourav S. Bhowmick Erwin Leonardi K. G. Widjanarko

Singapore-MIT Alliance, Nanyang Technological University, Singapore
School of Computer Engineering, Nanyang Technological University, Singapore

{zhouyong, assourav, lerwin, klarinda}@ntu.edu.sg

Abstract— Due to the complexity of XML query languages, the
need for visual query interfaces that can reduce the burden
of query formulation is fundamental to the spreading of XML
to wider community. We present a RDBMS-based XML query
evaluation system, called XBLEND, that takes a novel and non-
traditional approach to improving query performance by blend-
ing visual query formulation and query processing. It exploits the
latency offered by GUI-based visual query formulation to prefetch
portions of the query results. The basic idea is that we prefetch
constituent path expressions, store the synopsis of intermediary
results, reuse them when connective is added or “Run” is pressed.
In our demonstration we show that our system exhibits promising
performance in evaluating XML queries and show its usefulness
in life sciences domain.

I. INTRODUCTION

XML has emerged as the leading textual language for
representing and exchanging data over the Web in a wide
variety of domains. For instance, increasingly, data in life
sciences are being represented in XML format (e.g., SBML,
MAGE-ML). The aftermath of this growing acceptance of XML
by a wide spectrum of applications is that they are generating
huge volumes of data as well as “consumers” (users). This
has generated tremendous interest in the mainstream database
community to propose innovative solutions for storage and
query processing of large volumes of XML data.

Querying XML data involves two key steps: query formula-
tion and efficient processing of the formulated query. An XML
query language, such as XPath or XQuery, can be used to
formulate a query in textual form. Unfortunately, formulating
such query often demands considerable cognitive effort from
the end user (consumer) and requires “programming” skills
that is at least comparable to SQL. However, in many real life
applications it is not realistic to assume that users are proficient
in expressing such textual queries. This issue has been aptly
summarized by Abiteboul et al. [1]:

“Thirty years of research on query languages can be
summarized by: we have moved from SQL to XQuery.
At best we have moved from one declarative lan-
guage to a second declarative language with roughly
the same level of expressiveness. It has been well
documented that end users will not learn SQL; rather
SQL is notation for professional programmers.”

Hence, the need for easy and intuitive techniques that can
reduce the burden of query formulation is fundamental to the
spreading of XML to wider community. Consequently, there

1

2

3

4

5

Fig. 1. Visual interface of XBLEND.

has been long stream of research in visual query languages
in the context of XML databases [3]. Majority of these efforts
have focused on providing different degree of query expres-
siveness claiming that the proposed interfaces are user-friendly
and speed up query construction.

The database community has invested significant effort in
devising innovative and powerful storage structures and query
optimization mechanisms on top of relational as well as native
framework to support efficient evaluation of XML queries
[5]. Typically, these efforts are independent of any query
formulation strategy. In particular, the relational approach has
gained popularity due to its stability, efficiency, expressiveness,
and its wide spread usage in the commercial world. In spite
of significant progress in efficient processing of XML queries
in relational environment, as we shall see in Section 4,
fast evaluation of complex XML queries involving joins and
AND/OR connectives is still a challenging problem.

This demonstration features a novel XML query evaluation
system, called XBLEND, that for the first time blends the two
orthogonal areas of visual XML query formulation and query
processing in order to improve query performance. We take
a novel and non-traditional approach to improving query per-
formance by exploiting the latency offered by the GUI-based
query formulation to prefetch portions of the query results
in a single-user environment [2], [7]. The key advantages of

(b) Prefetching Algorithm

1. Specify ‘/catalog/book’ as the result subtree
2. Specify C1: (retail_price > 10 and retail_price < 30)
3. Specify C2: (retail_price > 40 and retail_price < 50)
4. Change operator connecting C1 and C2 to OR
5. Specify C3: publish_year = ‘2007’
6. Specify C4: retail_price < recommend_price]
7. Click ‘Run’ button

(c) Sequence of Actions(a) System Architecture

Visual Interface

Prefetcher

SQL
Mapper

Result
Retriever

Result Constructor

Actions

GUI state

XPath

SQL

Relational
Tuples

SQL

Table view/
Tree View/
XML document

Result

User

getGUIState
select

Materialization

maintain
Materialization

Condition
Ci

Prefetch Identifier

Maintain Table T

‘Execute
Query’

Relational
Tuples

XML
Database

Input: Actions from the query interface.
Output: Table T.

 1: Initialize T = {}
 2: State S = getGUIState()
 3: while (S != “Execute Query”) or
 (prefetching task list is not empty) do
 /* Materialize identity paths */
 4: Ci = Next condition in task list
 5: Mi = selectMaterialization(Ci)
 6: T = maintainMaterialization(T, Mi)
 7: S1 = getGUIState()

 /* wait till GUI state changes */
 8: while S1 == S and prefetching task list empty do
 9: S1 = getGUIState()
 10: end while
 11: end while

Fig. 2. System architecture of XBLEND and prefetching process.

XBLEND are as follows. Firstly, our optimization technique is
built outside the relational optimizer and is orthogonal to any
other existing optimization techniques. Secondly, our approach
is not restricted by the underlying schema of the database. As
a result, it can easily be integrated with any relational storage
approaches. Thirdly, the prefetching-based query processing is
transparent from the user.

II. MOTIVATING EXAMPLE

Querying biological data across multiple sources is a key
activity for many biologists. If these sources represent data
in XML format (e.g., INTERPRO (www.ebi.ac.uk/interpro/),
SWISSPROT (www.expasy.ch/sprot/), PDB (www.pdb.org))
then biologists need to be familiar with XML query languages
to be able to formulate meaningful queries over these data
sources. For instance, suppose a biologist has retrieved XML
representation of INTERPRO, SWISSPROT, and PDB, and stored
them using XML support provided by MSSQL Server 2005. He
would now like to find the list of genes from the SWISSPROT
entries that have the keyword “3D-structure” and have a
publication in the journal “Cell” or “Cancer Cell” and has
a database reference to the cell category of PDB database.
This query requires a join between the three downloaded
data sources. The textual form of the query is shown in
Figure 6 (Query Q6). However, formulation of this textual
query by a biologist can be both time-consuming and error-
prone. Importantly, it is not reasonable to expect him to
learn the complex syntax of XQuery. Hence to ease query
formulation, a visual interface (such as Figure 1) can be built
on top of MSSQL Server.

Although query formulation now becomes significantly eas-
ier, evaluation of “multiple-sources” queries is a challenging
problem as it may not be supported by relational-based XML
database systems or it is expensive to evaluate. In fact, in
this case, MSSQL Server is not able to evaluate this query
as it does not support join across different data sources. On
the other hand, IBM DB2 v9.5 takes more than 5 minutes to
evaluate this query. In this demonstration, we present XBLEND
that can return results of the above query in less than 35s by
exploiting the latency offered by visual query formulation.

III. SYSTEM OVERVIEW

Figure 2(a) shows the system architecture of XBLEND and
consists of the following modules. We use our own RDBMS-
based XML query processor [8] as the underlying database.
Visual Interface Module: Figure 1 depicts the screen dump
of the current version of the visual interface. It consists of five
panels. The left panel (Panel 1) displays structure/schema of
different XML data sources that are stored in our system. The
user chooses one or more (in case of join) of the target sources
over which queries are formulated. To formulate a query, the
user first selects the nodes (subtrees) in Panel 1 that should
be present in the query results and drags it to Panel 2. For
instance, in Figure 1, the subtree selected is gene indicating
that the user only wants to view information related to genes in
the result. The Visual Query Designer panel (Panel 3) depicts
the area for formulating XPath queries. The user drags the
node to be queried from Panel 1 and drops it in this panel. A
Condition Dialog appears and the user is expected to fill in the
condition (if any) that should be satisfied by the selected node.
The user can combine two or more conditions using AND/OR
(default is AND) connectives. To provide more user-friendly
navigation in Panel 3, a satellite view (Panel 4) is provided
with zooming functionality. The user can execute the query by
clicking on the “Run” icon in the Query Toolbar. The Results
View (Panel 5) displays the query results.
Prefetcher Module: This module implements the prefetching
algorithm (Figure 2(b)) [2], [7]. In brief, the algorithm works
as follows. Each action made by the user through GUI is
monitored by the getGUIState function. Once the user
specifies the first condition, the prefetching process begins
and will terminate when all prefetching steps are completed.
Suppose a user formulates a condition C (e.g., related to genes
in Figure 1) in Panel 3. The selectMaterialization
function retrieves and materializes the identifiers of the gene
subtrees in the XML document(s) that satisfy C. It returns a
table M that contains these identifiers only. In our system,
we use the DeweyOrderSum [8] of the left-most descendant
leaf node of a gene subtree as an identifier. Note that the
subtree identifier is not tightly coupled to any specific system
as any numbering scheme that can uniquely identify subtrees

catalog

book

title

author

retail_price

recomend_price

publish_year

XML Query

Matthew

20.95

34.95

2007

title

author

retail_price

recomend_price

publish_year

Midnight
Rain

Kim

32.50

42.75

2007

title

author

retail_price

recomend_price

publish_year

Maeve Ascendant

Eva

8.50

9.90

2000

book book

1

2

3

4

5

6

7

8

9

9

10

11

12

13

14

Fig. 3. Example of XML document.

in an XML tree can be used as an identifier. For instance, the
preorder and dewey order values of nodes can be used for
region encoding and dewey number-based labeling schemes,
respectively [5]. Also, note that we materialize the identifiers
instead of the entire subtrees because it is more efficient in
terms of execution time and storage requirement (the size of
materialized identifier table is always smaller than or equal to
the table containing entire materialized subtrees). Finally, the
selectMaterialization function also determines if C
will return any results and notify users accordingly.

Next, the algorithm invokes maintain
Materialization function. Since each prefetching
operation is useful for the next, this function helps to replace
existing materializations with new materializations preferably
using the previous materializations. It maintains the set of
identifiers (in table T) that satisfy the query conditions
formulated by the user at a given timepoint. Finally, after the
user clicks “Run” button, the Prefetcher module passes the
table T containing the identifiers of final matching subtrees
to the Result Retriever module.

Let us now illustrate the Prefetcher module with an ex-
ample. Consider the XML document in Figure 3 and the
XPath query /catalog/book[((retail price>10 and retail price
< 30) or (retail price >40 and retail price <50)) and pub-
lish year=‘2007’ and retail price < recommend price]. The
sequence of GUI actions undertaken by a user to formu-
late this query is shown in Figure 2(c). Particularly, the
condition C1 will initiate the prefetching process. Our sys-
tem retrieves all the identifiers of book subtrees that sat-
isfy C1 and stores them in the table M1 (Figure 4(a)1).
Then, the table T (initially empty) will be maintained by
maintainMaterialization function as shown in Fig-
ure 4(a). Next, the user specifies the condition C2. The
Prefetcher retrieves the identifiers of book subtrees that
satisfy C2, stores them in M2, and maintains table T . M2

and T are depicted in Figure 4(b). Observe that M2 is
empty (no subtree satisfies C2). Consequently, T remains
unchanged. At this point of time, our system realizes that
C2 is not going to contribute to the final results and as a
result action 4 specified by the user will not be processed.
Similarly, M3 in Figure 4(c) results from condition C3 and
T = M1 ∩ M3. Next, the last condition C4 is formulated
and M4 is materialized (Figure 4(d)) by the Prefetcher.
The maintainMaterialization function determines
that M4 ⊃ M1 and M4 ⊃ M3. Consequently, it will not

1Note that the identifier of the left-most descendant leaf node (denoted as ni) of a
book subtree is used as the identifier of the subtree.

n1

n10

M1

n1

n10

T

n1

n10

M1

n1

n10

TM2

n1

n10

M1

n1

TM2

n1

n6

M3

n1

n10

M1

n1

T

M2

n1

n6

M3 n1

n6

M3

n10

(a) After Action 2

(b) After Action 3

(c) After Action 5

(d) After Action 6

Fig. 4. The Mi and T tables during prefetching.

Source Size No. of Files No. of Attributes No. of Internal ElementsNo. of Leaf Elements Depth

XBench

SwissProt

PDB

InterPro

1 GB

500 MB

287 MB

50 MB

1

1

30

1

1,500,000

13,606,352

22,980

944,564

6,760,348

7,795,349

20,670

268,714

15,682,264

2,373,031

175,264

485,890

8

6

4

5

Fig. 5. Datasets.

update table T . Finally, the user clicks on “Run” icon and the
Prefetcher module sends T containing the identifier of the first
book subtree to the Result Retriever module.
SQL Mapper Module: This module translates the XPath
expressions generated from the formulated conditions to cor-
responding SQL queries over the underlying database. It is
invoked by the selectMaterialization function.
Result Retriever Module: This module is invoked after the
user clicks “Run”. It retrieves the relevant subtrees from the
database whose identifiers matches with those in table T . This
can be done by joining table T with the table(s) in the database
containing the shredded XML document(s). In our system, T is
joined with the PathValue table [8] containing root-to-leaf
paths, their corresponding data values, and order encodings.
Reconsidering the above example, this module will return the
first book subtree of Figure 3 as query results.
The Result Constructor Module: Upon successful execution
of the above retrieval, the result can be either displayed as an
XML tree or document.

IV. PERFORMANCE SUMMARY

XBLEND prototype is developed in Java JDK 1.6 and the
visual interface is implemented using Java Swing platform
and Netbeans visual library. The underlying XML database
system is XCALIBUR [8] running on top of Microsoft SQL
Server 2005 Developer Edition on an Intel Pentium 4 3.0 GHz
system with 3GB RAM. We used 1GB XBench DCSD [9] as syn-
thetic dataset and XML representations of SWISSPROT, PDB,
INTERPRO, and HinvDB (hinvdb.ddbj.nig.sc.jp) as
real datasets. The features of these datasets are given in
Figure 5. We chose seven queries as shown in Figure 6.
Q1 − Q3 are XPath expressions on the synthetic dataset
whereas Q4 −Q7 are XQueries on the real-life datasets. We
compare the performance of XBLEND with the XML supports
of SQL Server 2005 (denoted as XMSSQL) and IBM DB2 v9.5
(denoted as XDB2).

Six unpaid volunteers having moderate knowledge about
XML participated in this study. They were briefed on the
purpose of the experiment. The task was demonstrated and
a sequence of warm-up trials was given prior to testing. Each
query was formulated six times by each participant. Note that
the faster the user formulates a query, the lesser time we
have for prefetching (“worst” case scenario). Consequently, the
users were trained to formulate the queries as fast as possible.

ID Query Result Size

/catalog/item[title=”Value1" and description=”Value 2"]/attributes

/catalog/item[description=”Value2"]/title

/catalog/item[authors/author/contact_information/ma iling_address/name_of_country =
publisher/contact_information/mailing_address/count ry/name or
(attributes/number_of_pages > 100 and date_of_relea se = '%2006%' and
subject = '%SCIENCE%' and authors/author/date_of_bi rth = '%-01-%')]

for $entry in doc("swissprot")/uniprot/entry
where $entry/@created = “%2005%" and $entry/gene/na me = “%aroD%”
return $entry

for $entry in doc("swissprot")/uniprot/entry,
 $interpro in doc("interpro")/interprodb/inter pro[@id = $entry/dbReference/@id]
where $entry/@created = "2005" and $interpro/pub_li st/publication/journal = "Bioinformatics"
return $entry/keyword

for $entry in doc("swissprot")/uniprot/entry,
 $interpro in doc("interpro")/interprodb/inter pro[@id = $entry/dbReference/@id],
 $cellcategory in doc("pdb")/PDBx:datablock/PD Bx:cellCategory[PDBx:cell/@entry_id =
 $entry/dbReference/@id]
where $entry/keyword = "3D-structure" and ($interpr o/pub_list/publication/journal = "Cell"
 or $interpro/pub_list/ publication/journ al = "Cancer Cell")
return $entry/gene

for $entry in doc("swissprot")/uniprot/entry,
 $interpro in doc("interpro")/interprodb/inter pro[@id = $entry/dbReference/@id]
let $cellcategory := doc("pdb")/PDBx:datablock/PD Bx:cellCategory[PDBx:cell/@entry_id =
 $entry/dbReference/@id]
let $hinv := doc("HInvDB")/H-inv/LOCUSXML[CLUSTERI D = $entry/dbReference/@id]
where $entry/gene/name = "aroD" and (count($cellcat egory) > 0 or count($hinv) > 0) and
 $interpro/pub_list/publication/journal = "Bioinformatics"
return $entry/organism

Q2

Q1

Q3

Q4

Q5

Q6

Q7

50

97,803

6818

1

34

2

0

Fig. 6. Query set.

The reading of the first formulation of each query is ignored.
Figure 7 shows the average query formulation time (QFT) of
each query in XBLEND. The QFT is the duration between
the time the first condition is added and the execution of the
“Run” command.

The experimental results, shown in Figure 7, confirm the
strengths of XBLEND. The symbol “DNF” denotes that the
query did not finish execution in one hour and “NS” indicates
that the particular query is not supported by XMSSQL. Tw

refers to the duration between the time a user presses the
“Run” icon to the time when the user gets the query results.
Observe that although XDB2 performs better than XMSSQL in
most cases, it is slower than XBLEND in most cases. A user
can get the query results in XBLEND within 70s after he/she
presses the “Run”.

Figure 8 shows the execution cost of SQL queries to retrieve
partial results. Each section of the stacked columns represents
the running time associated with the SQL query. For example,
for Q2 three SQL queries, including the final join query
(denoted as Tj in the figure) were issued during prefetching.
Therefore, we have three sections in the stacked column. Note
that Q7 does not execute the join query as it does not have any
results that satisfies the query. Observe that the cumulative cost
is significantly lesser (except for Q3) than the cost of executing
the entire query in normal mode (without prefetching).

V. RELATED SYSTEMS

Closest to our system is the effort by Polyzotis et al. [6] in
speculative query processing in the context of relational data
where the final query (or sub-queries that will be present in the
final query) is predicted based on the user’s usage profile. In
comparison, our approach employs deterministic prefetching
without speculating on the final form of the query. Speculation
can lead to execution time penalties when the prediction is
incorrect. In our case, this problem does not arise as we do
not predict a user’s actions. Furthermore, we do not need to
keep track of user’s usage profile.

XML caching techniques [4] operate on the final query
and do not take into account the individual steps in query

Query QFT Tw XMSSQL XDB2

Q3

14,549.67 41,945.00 160,488.42 60,096.04Q2

10,121.60 90,639.34 230,256.12Q1

58,458.00 70,237.33 DNF 19,332.68

Q4 17,860.00 21,766.00 DNF 81,272.21

Q5 34,620.70 34,761.00 NS 81,898.35

Q6 70,674.00 32,646.70 NS 307,906.45

Q7 71,361.30 10,485.00 NS 115,847.87

15,847.00

Fig. 7. Performance (in msec).

0

20

40

60

80

100

120

Q1 Q2 Q3 Q4 Q5 Q6 Q7

Query

Ex
ec

ut
io

n
Ti

m
e

(s
ec

) Tj

Fig. 8. Cost of partial query fragments.

formulation. On contrary, our approach materializes partial
queries at each formulation step by utilizing the latency offered
by GUI-driven query formulation. Hence, in our approach
every query benefits whereas in caching only queries whose
results have been cached improve in performance.

VI. DEMONSTRATION

We demonstrate the power of XBLEND by presenting actual
scenarios in which prefetching-based query evaluation is used.
Specifically, we will show the followings.
Features and usefulness of XBLEND: We will show specific
examples to illustrate user-friendliness in formulating XML
queries and show how prefetching-based query processing
significantly improves evaluation of complex XML queries
compared to normal query evaluation (without prefetching).
Users can also state their own ad-hoc queries.
Application of XBLEND in life sciences: Querying multiple
biological data sources has been a subject of much research
in the field of life sciences. We show how XBLEND can be
used to easily construct such queries and how it substantially
improves query response time.
Robustness of XBLEND: We shall show that XBLEND is
beneficial even when errors are committed by users during
query formulation [2], [7]. We will demonstrate with specific
examples that such errors do not have significant adverse
impact on the query response time.

REFERENCES
[1] S. ABITEBOUL, R. AGRAWAL, P. BERNSTEIN ET AL. The Lowell Database

Research Self-Assessment. In CACM, 48(5), 2005.
[2] S. S. BHOWMICK, S. PRAKASH. Every Click You Make, I Will be Fetching It:

Efficient XML Query Processing in RDBMS Using GUI-driven Prefetching. In
ICDE, 2006.

[3] D. BRAGA, A. CAMPI, S. CERI. XQBE (XQuery By Example): A Visual Interface
to the Standard XML Query Language. In ACM TODS, 30(2):398—443, 2005.

[4] L. CHEN AND E. RUNDENSTEINER. ACE-XQ: A Cache-aware XQuery Answering
System. In WebDB, 2002.

[5] G. GOU, R. CHIRKOVA. Efficiently Querying Large XML Data Repositories: A
Survey. In IEEE TKDE, 19(10), 2007.

[6] N. POLYZOTIS, Y. IOANNIDIS. Speculative Query Processing. In CIDR, 2003.
[7] S. PRAKASH, S. S. BHOWMICK, K. G. WIDJANARKO ET AL. Efficient XML

Query Processing in RDBMS Using GUI-driven Prefetching in A Single-User
Environment. In DASFAA, 2007.

[8] B.-S SEAH, K. G. WIDJANARKO, ET AL. Efficient Support for Ordered XPath
Processing in Tree-Unaware Commercial Relational Databases. In DASFAA, 2007.

[9] B. YAO, M. TAMER ÖZSU, N. KHANDELWAL. XBench: Benchmark and Perfor-
mance Testing of XML DBMSs. In ICDE, 2004.

