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Abstract— A limitation of XQuery is that a programmer has
to be familiar with the shape of the data to query it effectively.
And if that shape changes, or if the shape is other than what
the programmer expects, the query may fail. One way to avoid
this limitation is to transform the data into a desired shape. A
data transformation is a rearrangement of data into a new shape.
In this paper, we present the semantics and implementation of
XMORPH 2.0, a shape-polymorphic data transformation language
for XML. An XMORPH program can act as a query guard. The
guard both transforms data to the shape needed by the query and
determines whether and how the transformation potentially loses
information; a transformation that loses information may lead
to a query yielding an inaccurate result. This paper describes
how to use XMORPH as a query guard, gives a formal semantics
for shape-to-shape transformations, documents how XMORPH
determines how a transformation potentially loses information,
and describes the XMORPH implementation.

I. INTRODUCTION

In recent times, the database community has made consid-
erable progress in devising efficient strategies to query large
XML databases. XML data has a tree-like data model. Data
in the tree is arranged in a particular shape as described by,
for instance, a data guide [16]. About 40 years ago, E. F.
Codd observed that this kind of data model has a problem.
Queries in tree-like data models utilize path expressions that
are necessarily tightly coupled to the shape of the data [7].
For example, assume that we want to extract the book titles
written by an author using the following XQuery query.

<data> {
for $a in doc("x.xml")//author,
Sn in $a/name
let $t := Sa/book/title
return <name>{Sn/text ()} {St}</name>
} </data>

The query is to be independently applied to each of the
three XML data instances depicted in Figure 1. Intuitively, each
of the instances has the same data about books, authors, and
publishers. But the shape of each instance is different. The
query will only succeed for instance (c), it will fail to produce
any XML for instances (a) and (b) because the shape of the
data is different from what the query needs.

Codd astutely observed that there are myriad natural shapes
to any tree-like data collection and that tightly coupling path
expressions to just one shape (or even a subset of the potential
shapes) prevents queries from being ported to new collections
that have similar data but differ in shape, and also increases

the cognitive burden on query writers since they have to know
the data’s shape to write queries.

Inspired by Codd’s observation that the same data may be
shaped very differently, in this paper we propose a shape-
polymorphic data transformation language called XMORPH
2.0 for XML that enables a user to query XML data as she
likes it rather than how it is initially shaped. Specifically, we
investigate the issue of whether data with the wrong shape can
be transformed to a shape needed by a query. This extends
how we currently query data by making it possible to query
more data collections with the same query. We propose that
each query have two components: 1) a query guard, which is
a lightweight, reusable specification of the shape needed by
the query, and 2) an XQuery query.

The query guard protects the query by testing whether the
data can be transformed (without losing information) to the
shape specified in the guard, and transforms the data as needed.
The guard is not fixed to a single query, rather we assume
that the same guard will be reused for many queries. For the
example query, the needed shape is one in which <book>
and <name> are children of an <author>, and <title>
is a child of <book>. A guard is expressed in XMORPH as
follows. (The syntax for XMORPH is reviewed in Section III.)

MORPH author [ name book [ title ] ]

The guard specifies that each <author> has <name> and
<book> children, and that <title> is a child of <book>.
The keyword MORPH indicates that the desired shape is only
composed of the specified types.

In query evaluation, the guard is evaluated first, then the
query. The evaluation of the guard has two purposes. First, it
checks whether the data is in the needed shape. If so, query
evaluation can proceed. If not, the second aspect of the guard
comes to life. The guard transforms the data to the needed
shape as described in more detail later.

Figure 2 shows the result of evaluating the example guard
on each instance in Figure 1. Data instances (a) and (b) in
Figure 1 are (logically) transformed to the same instance,
while instance (c¢) differs, but only in the grouping of authors
by name (the grouping is in the source data).

Observe that using a query guard reduces the cognitive
burden of writing XQuery queries. Instead of learning the
shape of the data and crafting a query for it, a query writer
can simply declare a desired shape with a guard and write
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a query expecting to use that shape. They can then take that
query and guard and apply it to any XML data collection. The
guard will determine if the query can be correctly evaluated.

It is worth mentioning that query guards have compelling
practical significance as XML document structures evolve over
time in the real world. Specifically, database administrators
may revise the design over time to address issues such as
redundancy, space overhead, performance, and usability [10],
[26]. For instance, path author/name is repeated under
every subtree of element book in the database fragment in
Figure 1(a). The database administrator may normalize the
schema of the document to remove redundancy (Figure 1(c)
shows an instance of the normalized schema) [2].

A key challenge in designing a query guard is that some
transformations potentially lose information. Consequently,
it is important for the guard to identify and report lossy
transformations. Notice that it is not readily apparent in the
aforementioned example whether the guard is good in the
sense that it protects the query by neither manufacturing nor
discarding data. This issue is vital to a user. If the transforma-
tion specified by a guard is lossy then the subsequent query
evaluation will be similarly lossy and inaccurate.

Let’s introduce terminology to more precisely describe what
we mean by a good guard. This terminology is adapted from
the vocabulary of type systems in programming languages
since a guard plays a role similar to a data type in a pro-
gramming language, i.e., it defines how the data is structured
or encoded. A guard is narrowing if it ensures that data is not
created, widening if it ensures that no data is lost, strongly-
typed if it both narrowing and widening, weakly-typed if it
neither narrowing nor widening, or has a type mismatch if the
guard mentions a type that is absent from the source.

The guard given above turns out to be strongly-typed (see
Section V for more details), but consider the following, slightly
different guard.

MORPH author [ title name publisher [name] ]

This guard transforms each instance to that shown in Figure 3.
The transformation for instance (¢) is widening. Observe that
in the result both titles, X and Y, are closest to the first
publisher, W, which adds data, i.e., closest relationships, not

programmer can use this feedback to add syntax to a query
guard to indicate that the loss is acceptable, e.g., most narrow-
ing transformations will be fine, just as a C++ programmer
might add a cast () to transform the result of an expression
to a suitable type when permissible.

This paper builds on previous XMORPH research [11], [13].
In [11] we presented the advantages of a shape-polymorphic
(shape adapting) data transformation language, gave the syntax
of XMORPH 1.0 (which extend to XMORPH 2.0 in this paper),
illustrated several program examples, and informally sketched
the notion of closeness, which we developed elsewhere [12],
[28]. In [13], we described the user interface for the query tool.
In contrast, this paper makes the following new contributions.

o We develop the notion of a query guard. To the best of
our knowledge, this is the first work that introduces query
guards for database query languages.

e We develop a formal data model and give a formal se-
mantics for XMORPH. This semantics is the first such de-
scription for a shape-to-shape transformation language.

« We show exactly how XMORPH determines potential
information loss in a data transformation, which is a key
part of how XMORPH works.

e We present an algorithm for rendering a transformed
shape. Though the “read” cost of the transformation
is linear in the size of output regardless of the size
or complexity of a query guard; the “write” cost of
the algorithm is quadratic since the transformation may
duplicate snippets of source data.

o We describe the implementation of XMORPH and present
the results of several experiments that empirically mea-
sure the cost of a transformation.

This paper is organized as follows. The next section reviews
related work. Section IV develops a novel data model for query
guards. Section V describes how a query guard transforms the
data by preserving closeness relationships and protects a query
by detecting whether the transformation is potentially lossy. A
denotational semantics for query guard constructs is given in
Section VI, followed by an algorithm to render a guard to
XML. Section VIII presents the architecture for an XMORPH
implementation. The cost of transforming data is quantified in
Section IX, and the paper concludes in Section X.
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II. RELATED WORK

One way to loosen the tight coupling of path expressions to
the shape of data is to relax the path expressions or approxi-
mately match them to the data by exploring a space of shapes
that are within a given edit distance [1], [3], [18]. Though such
techniques work well for small variations in shape or values,
there is a very large edit distance among every pair of instances
in Figure 1, which we would like to consider as the same
data. Relaxing a query to explore all shapes within a large
edit distance is overly permissive, and includes many shapes
which do not have the same data. Query correction [8] and
refinement [4] approaches are also best at exploring only small
changes to the shape. Another approach would be to use XML
search to find the data, regardless of the shape [9], [21], [25].
Search engines are also overly permissive in finding data of
all different shapes. Moreover, once found, search engines do
not transform data to a shape needed by a query, or report on
potential information loss in a transformation. The data could
be transformed with a program in an XML transformation
language [19], [22]. However, each transformation depends on
the shape of the input and would have to be re-programmed for
a different shape (i.e., two separate transformation programs
would be needed for the example, one from instance (a) to
(¢) and one from (b) to (¢)). It would be more desirable if
a programmer could simply declare the desired shape in a
single guard. Another alternative is to specify query constructs,
usually involving the least common ancestor of pairs of nodes,
to query data independent of its shape (c.f., [20], [27]). But
none of these approaches identifies the potential information
loss in explicitly transforming and mutating the shape of data.
Moreover, query guards also need to transform XML values
since the values play an important role in for instance the
distinct-values function and the return clause of an XQuery
query; it is the values in the target shape rather than the source
shape on which the query should be evaluated.

Data integration is another area of related research [5]. Data
is integrated from one or more source schemas to a target
schema by specifying a mapping to carry out a specific, fixed
transformation of the data. Once the data is in the target
schema, there is still the problem of queries that need data in
a shape other than the target schema. In some sense schema
mediators integrate data to a fixed schema, which is the starting
point for what query guards are designed for. The different
problem leads to a difference in techniques used to map or
transform the data. For instance tuple-generating dependencies
(TGDs) are a popular technique [14], [17]. Part of a TGD is
a specification of the source shape from which to extract the
data. Specifying the source shape will not work for a query

guard, a query guard must be agnostic about the source. A
second concern for query guards is that the transformation
must be fully automatic. A third difference is the need to
determine potential information loss, which is an important
part of a query guard, but absent from such mappings for data
integration. For schema mediation if a programmer programs
a data transformation that loses information, that information
is gone and subsequent queries on the transformed data will
never know about the information loss.

Recently, research has explored preserving information in
data integration, namely by describing schema embeddings
that ensure invertibile mappings that are query preserving [15].
Such embedding and mappings are too restrictive for query
guards since any mapping that permutes ancestor/descendent
relationships—which are useful in query guards—are poten-
tially not invertible (since duplicates are potentially created for
each of many descendents in the mapping).

IIT. XMORH 2.0 SYNTAX

A query guard specifies the shape of the output. A pro-
grammer can use the following constructs to specify a guard
(we capitalize the keywords for emphasis, guards are case- and
whitespace-insensitive). While these constructs do not increase
the theoretical power of query guards, since any shape can be
specified by simply nesting labels (i.e., by giving a data guide),
they help to make guards easier to program and more concise.

e MORPH shape - The shape is the desired shape, it uses

only the types specified in the shape. The shape of a
MORPH can contain the following.

— CHILDREN label (alternatively label [+]) - Include
the type matching the label, together with its children
from the source shape.

— DESCENDANTS label (alternatively label [+x]) -
Include the type matching the label and all descen-
dants from the source shape.

As an example consider the following query guard.
MORPH data [author
[+ book [x111]
It specifies that the desired shape has data as the root. At
the next level down is author (its children are included
with *). Below author is book (and its descendants,
included with = ). Finally, below book is publisher
(and its children). This guard specifies a range of shapes
that includes the shape of data instance (¢) in Figure 1.
e MUTATE shape - Modify the entire shape of the input,
rearranging those parts specified in the shape. The shape
of a MUTATE can contain the following.

— DROP shape - Remove the types from in shape.

[**x publisher
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— CLONE shape - Duplicate the types in shape.

As an example consider a guard to MUTATE Figure 1(b)
to (a).
MUTATE book [ publisher [ name ] ]

The mutation moves publisher below book leaving
the rest of the shape unchanged.

e TRANSLATE label — label - Rename the types matching
the label to the label.

Additional constructs can apply within any shape.

e RESTRICT shape - The type of the root is restricted by
the shape, but only the root type in the shape appears in
the output.

e NEW label - Introduce a new label into the shape.

Query guards can also be composed.

o COMPOSE guardy guards (alternatively guardy | guards)
- Pipe the output of the first guard into the second guard.
Below is an example of composing a MORPH and a
MUTATE using the abbreviation for composition, |.

MORPH author [name] | MUTATE (DROP name)

The final shape consists only of author (closest to a
name).

Finally, the behavior of the type-checking can be controlled.
By default only strongly-typed guards are allowed.

e CAST-NARROWING guard - Allow narrowing guards.

e CAST-WIDENING guard - Allow widening guards.

e CAST guard - Allow weakly-typed guards.

e TYPE-FILL guard - Generate new labels for missing
types.

The following guard fills in missing types and checks to ensure
that the guard is not narrowing.

CAST-WIDENING (TYPE-FILL
MUTATE author [ title 1)

As we noted above XMORPH can express any shape de-
scribed by a data guide, but XMORPH cannot express an
ordering among siblings as part of a transformation, i.e.,
the shape is unordered. Nor value-based transformations be
expressed, for example to transform the <author> “Codd”
differently than other <author>s. We plan to explore such
transformations in future. It should also be noted than since
XQuery is Turing-complete, clearly query guards do not
increase the expressiveness of XQuery.

IV. DATA MODEL

The data model for a query guard has two components:
a closest graph and a shape. The closest graph captures
relationships among the XML data, while the shape describes
the structure of the types in the data.

Definition 1: (Closest Graph) The closest graph, G =
(V, E¢), for an XML data collection, D, is a graph, where

e V is a set of vertices, one vertex for each element or
attribute in D, and
e Ec = {(v,w) | v,w € VA (v,w) € closest(D)} is a
set of (undirected) closest edges (the closest relation is
defined below). [ |
Figure 4 depicts the closest graph for the data instances
of Figure 1. In the figure, a solid line represents a closest
edge. A closest edge represents a closest relationship (which
is described in detail below) between a pair of vertices. Text
content is not displayed.
We assume that the following auxiliary functions, which are
used later in the paper, are available for vertices, v € V.

« value(v)- The text content of an element or attribute v.

« name(v) - The name of the attribute or element.

o typeOf(v) - The type of an element or attribute. Each
vertex has a well-defined type. We are agnostic about
how a vertex is typed, e.g., the type could be derived
from a schema. By default we assume that the type is
specified as a concatenation of the names of the elements
on the path from the data root to the vertex, v, e.g.,
name(vp ).name(vy ). .name(vy) where v; is the
vertex at level i.

Closeness depends on two kinds of distance as defined
below. The first kind of distance is the familiar graph distance:
for all v, w in an XML data model instance, D, the distance
from v to w, denoted distance(D,v,w), is the number of
edges on the path from v to w (or in the case of an XML
graph, the shortest path). The closest relation also needs the
distance between types: The type distance, typeDistance, is
the minimal distance between every pair of vertices with the
given types.

typeDistance(D, ¢1, t2) = min({distance(D, v, w) |
v,w € D A typeOf(v) =t; A typeOf(w) =t2})

The closest relation relates vertices that have a distance
equal to the type distance.
Definition 2: (Closest Relation) For an XML instance, D,
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Fig. 5. Adorned shapes for the data of Figure 1.

closest(D) = {(v, w) |
v,w € D A typeDistance(typeOf(v), typeOf(w))
= distance(D, v, w)}. ]
The other part of the data model is a shape. The shape
describes the parent/child relationships among the types in a
data collection, i.e., it is a DataGuide [16]. We adorn the shape
with a cardinality (the adornment is used in Section V-A).
Definition 3: (Adorned Shape) An adorned shape is a
forest, S, where
o S={(t,u,p) | t,ueT A pe{n.m|n,méeN}}is
a set of labeled, directed type edges; an edge from ¢t to
u represents that a node of type ¢ is a parent of a node
of type u in the data, and p is an edge label indicating a
cardinality range such that n is the minimum (m is the
maximum) number of children of type u for any parent
of type t, and
o T is a set of data types and o (a symbol used to indicate
the forest leaf boundary).

Every leaf, ¢, will be represented by a leaf edge (¢, 0,0..0)) in
S. S obeys the normal conditions of a forest, e.g., every type
has at most one parent. |

We assume that the following helper functions are defined
for a shape, S.

o types(S) ={t | (¢,-) € S} is the set of types in S.

e roots(S) = {t | (¢t,-) € S A—-Tv((t,v) € S)} is the set

of types in S that have no incoming edges.

o rootEdges(S) = {(¢,-) | (t,-) € S A t € roots(S)} is

the set of edges emanating from the roots.

Figure 5 displays the adorned shapes for the data instances
of Figure 1. As the data instances are small, the shapes are
essentially the same size, but in general a shape for a data
collection will be much smaller than the data. Almost every
edge has a cardinality of 1..1, though some are 1..2 indicating
that each parent node has at least one child and at most two
children of the given type. To further exemplify the cardinality,
assume that in data instance (a) of Figure 1, the leftmost
author does not have a name. In that case the edge from
author to name would be labeled 0..1 to indicate that some
authors do not have a name.

V. DATA TRANSFORMATIONS

Data is transformed by a query guard to a desired shape.
The transformation is performed by a closeness-preserving
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Fig. 6. Data of Figure 4(a) xformed using the shape of Figure 5(c).

transform function, xform(G, R), which constructs an XML

data instance in the shape of R with data chosen from G.
Definition 4: (Closeness-preserving Transform) The

closeness-preserving transformation function,

xform(G, R) = (W, E),

takes as input a closest graph, G = (V, E¢), with shape S,
and transforms it to an instance, (W, E), with shape R, where

e W C V is the subset of vertices in G,

o E={(v,w) |v,w € WA (v,w) € Ec A(t,u) € RA
typeOf(v) = ¢ A typeOf(w) = u} is a set of parent/child
edges. [ |

As an example consider the rearrangement of the data of Fig-
ure 4(a) using the shape of Figure 5(c). The xform produces
the XML data instance shown in Figure 6.

A. Relating Closest Graphs

Before discussing potential information loss, we give a
definition that helps to relate two closest graphs.

Definition 5: (Closest Graph Subset)Closest graph H =
(W, Ep) is said to be a subset of closest graph G = (V, E¢),
which we will denote as H C¢ G, if and only if Eyg C
EaANW CV. [ |

Each transformation has some information loss property.
Let G = closest(D) and H = closest(xform(G, R)), then
xform(G, R) is said to be

o non-additive iff H C G, and additive otherwise,

o inclusive iff G Co H, and non-inclusive otherwise, or

o reversible iff H Co G and G C¢ H, otherwise
irreversible.

Ideally, a transformation will be reversible and neither lose nor
create a closest edge. At the least a good transformation should
be non-additive, otherwise some edges may be introduced. As
an example, consider the transformations of Figures 2 and 3.
Do any of these transformations lose information, or are they
all reversible? We answer this question below.

B. Potential Information Loss

Although we could transform the data and compare the
resulting closest graphs to determine reversibility, it would be
faster, especially for large data collections, to determine, prior
to transforming data, whether a transformation is reversible
by reasoning about the shape of the data and the shape of the
result. Determining reversibility depends on the cardinality of
the relationships between types in a shape.



TABLE 1
CARDINALITY FOR PAIRS OF TYPES IN FIGURE 5(C)

data author author book title pub pub

” name ‘ name

data 1..1 1..1 1.1 1.2 1.2 1.2 1.2
author 1..1 1..1 1.1 1.2 1.2 1.2 1.2
name 1..1 1..1 1.1 1.2 1.2 1.2 1.2
book 1..1 1..1 1..1 1..1 1..1 1..1 1..1
title 1..1 1..1 1..1 1..1 1..1 1..1 1..1
pub 1..1 1..1 1.1 1.1 1..1 1.1 1.1
name 1..1 1..1 1.1 1.1 1..1 1.1 1.1

An adorned shape has the bare minimum of cardinality
information. Since any types can be related, we are interested
in computing the cardinality along the path connecting two
types.

Definition 6: (Path cardinality) Let S be an adorned
shape. For any pair of types, ¢,s € S, let the path from the
least common ancestor, v, of ¢ and s to s be

(v,x1,m1.Mm1), ..., (8, T, Ng.. ).
Then the path cardinality from ¢ to s,
pathCard(S,¢,s) = 1xny % ...k ng .. Lkmy *...%mg.

The cardinality from ¢ to v (up the shape) is always 1..1. m

Table I shows the path cardinality for every pair of types in
adorned shape (c¢) of Figure 5. We will use the path cardinality
to determine potential information loss by predicting the
cardinality on each edge in the transformed shape.

Definition 7: (Predicted adorned shape) Let S be an
adorned shape for G = closest(D). Then the predicted
adorned shape, R, for xform(G, R) is

R, ={(t,s,n..m) | (¢t,s) € R An..m = pathCard(S,t,s)}.

|

In reasoning about information loss we are only interested
in type-complete transformations, that is, transformations that
transform all of the types in the source, since it is trivial to
choose any subset of a closest graph, G, as the source.

Definition 8: (Type-complete xform) Let XML data in-
stance, D, have shape S and closest(D) = ). Then a
transformation, xform(G, R), is type-complete iff there is a
1-to-1 correspondence between types(S) and types(R). m

The definition captures the idea that the desired shape, R,
is a rearrangement of all and only the types in S.

An xform is inclusive if it can be ensured that no closest
relationships are lost. Since an xform is a closeness-preserving
transformation, it only loses relationships if there are one or
more vertices that are discarded in the transformation.

Theorem 1: Let S be the adorned shape of data instance
D, G = closest(D), xform(G, R) is type-complete, and R,
be the predicted adorned shape for R. Then xform(G, R) is
inclusive if for every pair of types t,s € S the minimum path
cardinality does not increase from zero to non-zero in R,

Proof: We need to show that G C closest(xform(G, R))
under the given conditions. Let closest(xform(G, R)) =
(W, F.) and G = (V, E.). Assume that V' C W, i.e., assume

that xform(G, R) does not lose any vertices. Then it must
be the case that E. C F. since xform(G, R) is closeness-
preserving, i.e.,

Yo, w € W(v,w) € E. = (v,w) € F].

If not, the xform did not preserve a closest relationship
between v and w. So to ensure inclusiveness, we must ensure
that V' C W. The only way for a vertex, w, to be discarded
from the transformation is if w is not close to any vertex of
type t in G, but R requires that every node of type typeOf(w)
be a descendant of some vertex of type ¢. But w cannot have
such an ancestor with the given cardinality condition, hence
the condition ensures that the transformation is inclusive. H

As an example, any type-complete transformation of data
instance (c¢) of Figure 5 is inclusive because no path has a
minimum path cardinality of zero. However, suppose that the
name of an author is optional, i.e., the cardinality of that
edge in Figure 5(c) is 0..1. Then the following query guard
is (potentially) non-inclusive (a MUTATE transforms the entire
shape as described in Section VI and the Appendix).

MUTATE name [ author ]

The query guard is non-inclusive because the minimum path
cardinality from author to name increases from O to 1. Each
name is required to have a closest author in the transformed
data, but not in the source. Said differently, any author that
does not originally have a name will be omitted from the
result. The following transformation will however be inclusive.

MUTATE data [ name author ]

No path with a min. cardinality of zero becomes non-zero.
Some transformations can also be shown to be non-additive.
Theorem 2: Let S be the adorned shape of data instance

D, G = closest(D), xform(G, R) be type-complete, and R,,

be the predicted adorned shape for R. Then xform(G, R) is

non-additive if for every pair of types t,s € S the maximum

path cardinality does not increase in R

Proof: We need to show that closest(xform(G, R)) C¢

G under the given conditions. Let closest(xform(G, R)) =

(W, F.) and G = (V, E.). We know that W C V, so we only

need to show that F, C E, that is, that no new closest edges

are created. Since xform(G, R) is closeness-preserving, i.e.,

Yo, w € W[(v,w) € E. = (v,w) € F]

all the closest edges for which there are vertices in W that are
in E, belong to F,. Since the condition states that there can be
no in the maximum cardinality, no more edges can be added
to F, and the transformation is ensured to be non-additive. H

As an example, the following type-complete transformation
of data instance (c) of Figure 5 is non-additive.

MUTATE name [ author ]

Since name to author is 1..1, swapping their position does
not change the predicted maximum path cardinality of any pair
of types in the shape. However, reconsider the example from
Section I:



MORPH author [ title name publisher [name] ]

applied to instance (c¢) in Figure 1. Observe the corresponding
adorned shape for (c¢) in Figure 5. It is easy to see why the
transformation is additive. The predicted maximum cardinality
for title to publisher increases from 1 to 2, which
implies that each title in the source data has a single
closest publisher but in the result has (potentially) two
closest publishers. The transformation might add closest
relationships that are not present in the source.

Both inclusiveness and non-additiveness can be computed
during translation of a query guard at little additional cost
(assuming the size of the data to transform is much larger
than the number of distinct types).

VI. XMORPH 2.0 TRANSFORMATION SEMANTICS

The single most important thing to understand about a query
guard is that it specifies a shape. So each component of the
guard is a function that maps a shape to a shape; the shape can
subsequently be rendered as XML but a query guard is only a
specification of a desired shape. In this section we present a
denotational semantics for the evaluation of query guard, P,
on a data instance, (G, S). Let

U : Guard — ((Graph x Shape) — (Graph x Shape))

be a semantic function that takes a guard and produces a
function that maps one data instance to another, and let

¢ : Guard — (Shape — Shape)

be a semantic function that takes a guard and produces a
function that maps a shape to a shape. Then the meaning of
a guard is

U[P(G, S) = render(G, £[P](S)).

The semantics states that a guard constructs a shape. The shape
is subsequently used to render the data extracted from the
closest graph (e.g., as XML).

A denotational semantics for the shape transformation, &, is
given below.

o &[MORPH PJ(S) = &£[P](S). A MORPH constructs the
shape corresponding to the pattern specified by its child,
P

e €[po (1 p2 .. pa) 1(S) = extend([po](S), R) where
R=¢[pm](S) U €lpa](S) U...U €[pal(S)

and
extend( X,R)=X U R U T.

T is the set of closest type pairs, which is computed as
follows. Let

A={(z,r) | x €roots(X) A r € roots(R)}
and

m = min(typeDistance(z,r) | (z,7) € A),

then
T ={(z,r) | (z,7) € A typeDistance(z,r) = m}.

This construct builds a shape by connecting parent to
child types in the shape, but only those parents and
children that are closest.

&[label](S) = L x {o}. The set of types corresponding
to a label is

L ={t|tec types(S) A label € name(t)}.

A new shape is created which is a set of leaves. There
are three possible outcomes to using a label to select a
set of types.

1) The label does not match any type in S, in which
case a semantic type error is generated.

2) The label matches a single type, in which case it is
said to be unambiguous.

3) The label matches more than one type, e.g., there
may be several types for a label such as author.
When a label is ambiguous, a user can disambiguate
it by more fully specifying the desired type, e.g.,
book.author vs. journal.author.

&[CHILDREN P](S) =¢[P](S) U C, where C is a set
of edges to children,

C ={(t,s) | t € roots(([P](S)) A (t,8) € S}.

This adds to the shape all of the children of the roots of
P. Below is an example MORPH that includes all of the
children of an author and adds the closest title(s) as
children. We also give the example using the abbreviated
syntax for children, =.

MORPH (CHILDREN author) [ title |

MORPH author [ * title ]
¢[DESCENDANTS PJ(S) = £[P](S) U {(v,w) | v,w €
T}, where T is a subtree of S rooted at t €
roots(£[P](S)). This adds to the shape all of edges in the
subtrees in .S rooted at a root in the meaning of P. Below
is an example MORPH that includes all of the descendants
of a book and adds the closest name(s) as children. We
also give the example using the abbreviated syntax for
descendants, *x.

MORPH (DESCENDANTS book) [ name ]

MORPH book [ ** name ]
E(MUTATE PJ(S) = mutate(([P](S)) = F. The
mutate operator merges the input shape with the shape
corresponding to its child, P, constructing the new shape,
F=¢[P](S) U (S—T), where

T ={(tu) | (t,u) € S Au € types(S[P](S))}-

The constructed shape consists of all the edges in the
child’s shape, plus all the edges in the original shape,
except edges to types that appear in the child’s shape.
Below is an example MUTATE that moves books (and
descendants) below author and its children.

MUTATE author [ x book [ #** ] ]



If author is originally a descendant of book it is moved
to being a parent along with its immediate children. The
rest of the shape is unchanged.

e &DROP PJ(S) = S —{(¢,-) | t € £[P](S)}. This
removes from the shape all of the edges in the meaning
of P. The example below removes titles from book.

MUTATE (DROP title [ book 1)

o ¢[CLONE PJ(S) = {(clone(t),clone(s)) | t,u €
E[P](S)}. The clone(?) function creates a clone, i.e., a
copy which is a distinct type, of type t. The example be-
low copies title(s) and places each below an author.

MUTATE author [ (CLONE title) ]

o E[NEW label](S) = new(label x {circ}. The new opera-
tor is used to construct a brand new type with the name
label. The following example wraps each author in a
scribe element.

MUTATE (NEW scribe) [ author ]

e £[RESTRICT PJ(S) = roots(,[P](S)) x {o}. This can
be used to select specific types in a shape independent
way. The following example chooses the names closest
to an author.

MORPH (RESTRICT name [author]) [title]

e £[cOMPOSE P QJ(S) = &[Q](E[P](S)). COMPOSE
pipes the shape constructed by P into Q.

o &[TRANSLATE DJ(S) = Z. TRANSLATE modifies the
name of the type for each type in the dictionary, D,
which is a total function mapping Type — String, creating
the set Z = {(tnew; Snew) | (t,8) € S} where tpey =
setName(t, D(baseType(t))) and

Snew = setName(s, D(baseType(s))).

The translation changes the names of all of the cloned
and restricted types that share the same base type. Below
is an example of applying a translation to a MORPH to
change author to writer.

MORPH author [name]
| TRANSLATE author -> writer

VII. RENDERING A TRANSFORMED SHAPE

If the type enforcement permits the guard to transform the
data, the target shape is used to render the data. This section
presents a rendering algorithm for transforming data stored
as XML in the source shape to the target shape. The Render
algorithm is shown in Figure 7. The input to Render is a
target shape, S, an XML data model instance (a Forest), In,
an edge in S, a set of nodes, N, and the output forest, Out.
The algorithm is called for each root edge in S with the
set of nodes, N, corresponding to the nodes of that type
chosen from In. The algorithm recursively descends S from
the starting edge and builds the output forest. For each edge
in S the algorithm adds edges from parents already in the
output to their closest children chosen from the source. The
sourceTypeOf(w) function returns the type in the source for
the corresponding type in the target w.

The key step in the algorithm is the “closest join,” repre-
sented as <o, 0sE, Which pairs up closest nodes. If the closest

Render(Shape S, Forest In, Edge (v, w), Nodes N, Forest Out)
/I Fetch nodes from the input forest for the child
Let U « {z | z € In A typeOf(z) = sourceTypeOf(w)}
// Figure out the new, closest pairs
Let P — N xicrose U
/I Add closest pairs to the output forest
Let Out «— Out U P

/I Recursively, visit the children

for each (w,t) € S
/I Extend the output forest from closest nodes : o (P)
Render(S, In, (w, t), mo(P), Out)

end //Render

Fig. 7. Render algorithm

graph is stored the operation can simply select the desired
edges from the graph. But since the closest graph has a size
of O(n?) for a source of size n, it is not practical to store
the graph. And in fact the closest relationships can be cheaply
computed when needed in a join by reasoning about node
numbers in a stored XML tree. Each node is given a prefix-
based number (i.e., Dynamic or Dewey level number [6]).
Since the type distance between two nodes that are closest
is known a priori, the two nodes must have a least common
ancestor at a known level in the tree, i.e., the join predicate
is distance(n,LCA) + distance(u,LCA) = typeDistance(v,w),
wheren € N, u € U, and LCA is their least common ancestor.
For example, suppose that for the data in Figure 1(a) we
want to determine whether the first (leftmost) <publisher>
(node number 1.1.3) is closest to the first <title> (node
number 1.1.1), the second <title> (node number 1.2.1),
or both. The (minimal) type distance from <publisher> to
<title> is two. So closest pairs must be at distance two.
Comparing 1.1.3 to 1.1.1, the shared prefix is 1.1, hence
the nodes are at distance two and therefore the first <title>
is closest to the first <publisher>. The second <title>
is not closest since the shared prefix of 1.1.3 and 1.2.1 is
1, hence the nodes are at distance four which is more than the
type distance required to be closest. So by reasoning about the
pair of node numbers to join a standard database join can be
performed to pair up closest nodes.

As an example consider the rendering of the graph in
Figure 4(a) using the following guard.

MORPH author [ name book [ title ] ]

Initially, the algorithm is called with the root <author>

nodes: {1.1.2, 1.2.2}. Next the following joins occur.
1) Add <name> children to <author> nodes

{1.1.2,1.2.2} ™<cLosE {1.1.2.1,1.2.2.1} =
{1.1.2,1.1.2.1),(1.2.2,1.2.2.1)}
2) Add <book> children to <author> nodes
{1.1.2,1.2.2} XcLosE {1.1, 1.2} =
{(1.1.2,1.1),(1.2.2,1.2)}
3) Extend <book> with <title> children
{1.1,1.2} Mcrosg {1.1.1,1.2.1} =
{1.1,1.1.1), (1.2, 1.2.1)}

The Render algorithm can efficiently implemented by using



sort-merge join and pipelining the joins. First, observe that
closest joins happen only between nodes of a specific (source)
type. If a sorted list of each type of node is available then
closest pairs can be found by merging two sorted lists (e.g.,
merge the <author> list with the <name> list since the
LCAs for closest pairs must also be in sorted order). Using
sort-merge reduces the cost of a closest join to O(n) and orders
the output forest in the source’s document order. Second, a
closest join can start immediately upon receiving a node from
a parent (it does not have to wait for entire list of nodes). So
a transformation can immediately produce output, and stream
the output node by node (in document order).

VIII. ARCHITECTURE

An XMORPH transformation has to transform the XML
values within a data instance. There are (at least) three possible
architectures for using XMORPH to support query guards.

1) Physically transform the data. This is the architecture for the
current XMORPH implementation. It is the only architecture
currently capable of coupling with XQuery evaluation engines
and it is the most general insofar as a stand-alone transfor-
mation tool can be used in other applications. Unfortunately,
this approach also has the highest cost since it involves a
complete data transformation. The experiments described in
Section IX compare the cost of transforming the data using
the rendering of Section VII vs. a native XML DBMS. The high
cost can be mitigated in several ways, e.g., by materializing the
transformation and mapping XUpdate operations to updates of
the transformation or by streaming the transformed data into
a streaming XQuery evaluation engine.

2) Render the query guard as an XQuery view and use XQuery
view rewriting to answer the query, c.f., [23]. Rendering to
XQuery often creates a long, complex XQuery program since
the value of a variable is (the text of) the entire subtree
rooted at a node in the shape of the source rather than the
desired target, so the source values must be teased apart
and reconstructed to the target shape in the return clause
piece-by-piece. Since the data must in any case be physically
transformed, while there will be some speed-up over the
previous approach for some queries, the worst-case cost is
the same as the previous approach.

3) Logically transform the data. The first two approaches treat
the XQuery evaluation engine as a black box. The alternative
is to re-engineer an evaluation engine in a system to logically
transform the data in situ. This alternative is the focus of
our near-term development of XMORPH but for the present
remains future work.

The architecture for XMORPH’s stand-alone implementation
is sketched in Figure 8. In the left of the figure, the XMORPH
data shredder takes XML documents and shreds them to several
database tables. The AdornedShapes table stores information
about the adorned shape of each stored document. The Nodes
table maps a node identifier to all of the information about
the node (node type, value, name, etc.). The table is used to
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Fig. 8.

XMORPH implementation architecture.

construct XML for output. The TypeToSequence and Grouped-
Sequence tables are similar. Each maps a type to a sequence of
nodes. The XMORPH Interpreter takes an XMORPH program
and evaluates it, producing XML output, and two information
reports. The interpreter has several steps. First the program is
parsed and a tree-like, algebraic representation of the program
is generated (the algebra is described below). Next the algebra
tree is analyzed to prune extraneous types and operations
(also described below). Type analysis generates the label to
type report which specifies how XMORPH resolves ambiguous
labels (e.g., if there are multiple <name> types in the data, the
report describes to which type(s) the label name in a program
maps). The type analyzed tree is then checked to determine
potential information loss in a transformation as discussed in
Section V-B, and the information loss report is produced. The
algebra tree is then passed to shape generation which generates
a target shape that, together with the stored data in the tables,
is rendered by evaluating to XML. Prior to rendering, only the
adorned shapes, which are typically tiny relative to the size
of the data, are needed. Hence rendering will be almost the
entire cost of evaluating an XMORPH program.

XMORPH programs are translated to an algebra consisting
of the following operators, which are formally described in
Section VI and informally described below.

« compose(Operator ), Operator R) - Sequence the eval-
uation of () then R, piping the output of @) into R.

« morph(Operator Pattern) - XMORPH using the Pattern.

« mutate(Operator Pattern) - Mutate using the Pattern.

« translate(Dictionary D) - Translate using the dictionary.

o type(String label) - Select the type(s) named by label.

o drop(String label) - Remove the type(s) named by label.

o closest(Operator Parent, Operator C'hild) - Build edges
between the Parent and Child.

o clone(Operator Child) - Clone the Child.

o new(String label, Operator Child) - Wrap a new label
around the Child.



Fig. 9. XMORPH algebra for the example query.

o restrict(Operator C'hild) - Hide the Child in the result.

Translating an XMORPH query to the algebra is straightfor-
ward. An attribute grammar constructs an XMORPH algebra
expression while parsing an XMORPH query. Each keyword
maps to an algebraic operator. As an example, the following
query is translated to the algebra shown in Figure 9.

MORPH author [name

[publisher name book [title price]ll]]

After the algebra tree is constructed a type analysis is used
to optimize it. The analysis infers the types used in every
operation, potentially reducing the cost of query evaluation.
The type analysis has two stages. In the first stage, type
information flows up the algebra tree. In the second stage the
type information is refined and pushed down to the leaves.
Initially, each leaf that is a type operator reports that its type
is the set of all possible types for a given label. These sets
are then passed up the tree. When the sets reach a closest
operation, two things happen. First, a closest operation chooses
only pairs of types that are closest from among all of the
possible pairs of parent and child types. For instance, in the
query of Figure 9, if author and name are ambiguous,
then the author type that is closest to some name type is
selected. If more than one type is closest both types are used.
But if some paring of author and name types is farther (in
distance) than some other pairing, then it is not used. Second
the type of the closest operation, which is the set of types
of chosen parents, is passed up the tree, and type analysis
continues. Once all types have been inferred, the type sets are
pushed down the tree to the leaves (to avoid generating data
for types which are unused higher in the tree).

IX. EXPERIMENTS

We implemented XMORPH 2.0 in Java'. The implementa-
tion uses ANTLR for the parser, a Xerces SAX parser for data
shredding, and BerkeleyDB Java Edition for the data store.
To quantify the cost of a data transformation we performed
several experiments. The experiments were run on a dual
processor Linux machine, with two Intel 686 2.66GHZ chips,
3.5GB of RAM, and mirrored 500 GB disks (RAID level 1).
In each experiment we isolated the testing machine. We ran

IXMORPH is open source and is available at http://www.cs.usu.
edu/~cdyreson/pub/XMorph.

each experiment five times and chose the median cost. The
cache was cleared for each run so the timings are “cold cache”
numbers in every experiment.

Cost of transformation vs data size. The first experiment
measures the impact of increasing data size on a data trans-
formation. The experiment uses the XMark benchmark. We
generated five documents, benchmark factors .1 through .5,
representing document size of 11MB to 55SMB. Internally, each
document has 471 distinct types. We evaluated the cost mu-
tating the entire document using the transformation MUTATE
site (the mutated shape has all 471 types). For comparison
we also evaluated the cost of performing a lessor task in eXist,
version 1.4.0. eXist is a native XML DBMS implemented in
Java. We tested using eXist’s local xmldb API (i.e., we did
not use the client-server setup in eXist which is slower). For
eXist rather than using an XQuery query equivalent to the
XMORPH mutation (which would have one variable for every
type or 471 variable bindings in for/let clauses!) we used the
following query, which simply dumps the entire document.

for $b in doc("xmark.xml")/site
return <data>{S$b}</data>

The results are plotted in Figure 10. The ‘XMORPH render’
plotline represents the cost of rendering the data as XML. The
‘XMORPH compile’ plotline is the cost of the XMORPH inter-
preter prior to rendering, which includes the cost of checking
for information loss. Finally, the ‘eXist plotline’ represents the
cost of evaluating the above XQuery program in eXist. The
‘eXist plotline’ is the “best case” scenario for eXist. eXist
internally stores an XML document in document order on disk
pages, so the timing is essentially that of reading the document
from disk to a String object. XMORPH on the other hand,
constructs the result during evaluation. Observe that the cost of
the XMORPH render increases linearly with the document size,
and that the cost of compiling an XMORPH transformation
(checking for potential information loss) is a tiny fraction of
the transformation’s overall cost. At a benchmark factor of
0.1, the compilation cost is 0.002% of the overall cost, and
the percentage decreases as the data size increases. The raw
cost of the compilation is 20 milliseconds for each factor. The
cost of shredding the data to XMORPH’s data store is not
included in the figure. The shredding is done once and then
multiple transformations can be applied to the stored data. The
documents took 20, 43, 67, 85, and 115 seconds to shred as
the benchmark factor increased.

To measure the impact of XMORPH on system resources
we collected statistics using the Linux tool vmstat on disk
use (block I/0), CPU utilization, and memory use as the
experiment ran. Figure 11 plots the cumulative block I/O for
each document factor in the experiment. The cumulative I/O
is all blocks sent to and received from both disks (the disks
are mirrored). The block I/O is steady throughout the experi-
ment, with no sudden increases. This shows that XMORPH is
gradually processing the disk tables and generating output as
the experiment runs. Figure 12 plots the wait percentage. The
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wait percentage is the percentage of the time that the CPU
was idle because it was blocked waiting on I/O. The graphs
show that roughly 40% of the CPU time is spent waiting,
i.e., the block I/O drives the cost of a transformation. Lastly,
Figure 13 plots available memory. As XMORPH executes on
the JVM, Java grabs all available memory within the first
30% of an experiment. Overall, the experiment exercised
the system sufficiently to obtain “good” timings that are not
dependent on caching effects (for XMark factors above 0.1
since the cumulative disk I/O and caching graphs show caching
effects for the 0.1 dataset, observe that memory is available,
cumulative block I/O is tiny, and wait percentage is close to
zero, which is difficult to discern in the graph) and scale to
larger datasets.

We decided to get a more accurate comparison and
exercise XMORPH on larger datasets in a second ex-
periment. We used slices of DBLP.xml, which roughly
has the shape shown in Figure 1. The tested docu-
ment sizes were 134MB, 268MB, 402MB, and 518MB.
We tested three transformation sizes for each document
size: small (MORPH author), medium (MORPH author
[title [year]]), and large (MORPH dblp [author
[title [year [pages] url]]]). The results are plot-
ted in Figure 14. Though as the transformations become larger
XMORPH outperforms eXist, both systems play different,
complementary roles.

Effect of target shape. In this experiment we measure whether
the kind of target shape matters in a transformation. Since
XMORPH constructs the target in a single pass from lists
of elements created when the data was parsed, the shape
of the input and output should be irrelevant to the speed
a transformation, rather only the size of the output should
matter. In this experiment we used three datasets: 1) 23MB of
astronomy data from NASA, 2) 112MB of conference papers
from DBLP, and 3) 55MB of XMark data (benchmark factor
of 0.5). We wrote XMORPH transformations to transform the
input to different shapes ranging from a deep (skinny) tree to a
bushy tree. We tested each kind of shape with two shape sizes:

the small shape has four to six labels, while the large has ten
to twelve labels. The results are plotted in Figure 15. Since the
output size in each transformation is different, the y-axis in the
graph plots the throughput (number of elements processed per
second). The measurement shows that the throughput remains
steady across each dataset. Variations between the datasets are
due to differences in the size of element content (larger text
content leads to slower times).

Cost of XMORPH operations. We now study the cost of each
kind of operation in XMORPH. A transformation could have a
number of different operations, such as MUTATE, TRANSLATE,
etc. As discussed in Section VI these operations are compiled
into a new shape, which is subsequently used to render the
data. So their impact, in general, on transformation evaluation
should be small. Figure 16 plots the result of evaluating
different transformations coMPOSEd with a single MORPH on
the XMark dataset (the same MORPH was used in each test
to ensure that the size of the output is the same). The figure
shows that the cost of each operation is effectively the same,
and that operations like translating a label or adding a new
label add little to the run-time cost.

X. CONCLUSIONS AND FUTURE WORK

XQuery is precise but brittle. An XQuery programmer
can use path expressions that precisely locate data. But a
programmer has to be familiar with the shape of the data to
query it effectively. And if that shape changes, or if the shape
is other than what the programmer expects, then the query may
fail. We propose using a query guard to both transform the data
to the shape expected by the query and to protect the query by
determining whether and how the transformation potentially
loses information; a transformation that loses information
may lead to a query yielding an inaccurate result. We make
three primary contributions. First we formally describe the
semantics of query guards for XML as a way to both protect
a query and automatically transform data to the shape needed
by a query. The key contribution of the semantics is that it
separates data from its shape. A query guard uses, mutates,
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and extends the shape into a shape desired by the user. The
constructed shape is subsequently used to render the data.
Second we develop a framework in which a guard can be
used as a type specification, i.e., we can formally determine
whether and how a transformation will potentially lose data.
Third we show how to transform the data in a single pass over
the source data.

There are several related problems that we plan to explore
in future. The first problem is that a query guard is simple to
specify, but the simplicity masks a semantically challenging
problem: how to best match the labels in the guard to the
element types in the data. The labels could be ambiguous,
e.g., does “name,” in MORPH author [ name ] refer to
an author’s name or a publisher’s name? We resolve the
ambiguity by matching each author type to the closest name
type, and the evaluation of a query guard generates a detailed
report of how labels in the guard are matched to types. So
the query guards presented in this paper employ a syntactic
match, addressing semantic mismatch is orthogonal to the
research presented here. The second orthogonal problem is
guard inference, that is, whether a guard can be automatically
generated from a query [24]. The third orthogonal problem is
how to quantify the amount of potential information loss. We
articulated four “coarse” kinds of information loss, but these
could be refined, e.g., the transformation manufactures 30%
new information.
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