
ViSual: An HCI-inspired Simulator for Blending
Visual Subgraph Query Construction and Processing

Sourav S Bhowmick§ Huey Eng Chua§ Benji Thian§ Byron Choi†

§School of Computer Engineering, Nanyang Technological University, Singapore
†Department of Computer Science, Hong Kong Baptist University, Hong Kong

assourav@ntu.edu.sg, choi@hkbu.edu.hk

Abstract—In [3], we laid out the vision of a novel graph query
processing paradigm, where visual subgraph query formulation
is interleaved (or “blended”) with query processing by exploiting
the latency offered by the gui. Our recent attempts at implement-
ing this vision [6], [7] do not provide any robust framework to
systematically investigate the performance of this novel paradigm.
This is because it is prohibitively expensive to engage a large
number of users to formulate a large number of visual queries in
order to measure the performance of blending query formulation
with query processing. In this demonstration, we present a novel
synthetic visual subgraph query simulator called ViSual that can
evaluate the performance of this paradigm for a large number
of visual subgraph queries without requiring a large number of
users to formulate them. Specifically, it leverages principles from
hci to quantify the gui latency that is necessary to realistically
simulate blending of query formulation and query processing.

I. Introduction

Querying graph databases has emerged as an important re-
search problem for many real-world applications that are based
on graph-structured data. A number of graph query languages
(e.g., sparql) have been proposed that can be used to formulate
graph queries. While most of these languages can express a
wide variety of graph queries, the complexity of the syntax of
a graph query language makes it unsuitable for ordinary users
in a variety of domains (e.g., cheminformatics). A popular
approach to address this query formulation challenge is to
build a user-friendly visual querying framework on top of a
state-of-the-art graph query processing technique (e.g., [9]).

In [3], [6], [7], we laid out the vision of a novel visual
graph query processing paradigm where instead of processing
a query graph after its construction, it interleaves the two tra-
ditionally orthogonal steps, namely visual query construction
and processing, bringing in at least two key benefits. First, it
significantly improves the system response time (srt), which
is the duration between the time a user presses the Run icon to
the time when the user gets the query results. Second, as a side
effect of this paradigm, it is possible to enhance usability of
a graph querying system by providing relevant guidance and
feedback during query formulation. For instance, whenever a
newly constructed edge makes a graph query fragment yield
empty answers, it can be immediately detected by processing
the prefetched results and notified to the user in a timely
fashion. Note that such immediate feedback opportunity is
lost in traditional paradigm where any kind of processing of
a query only occurs after it has been completely formulated.

�����

���	�
��

���

�����

��
�����

������
��

������
 ������

��
��	
��

����

���
��	
��

���	��

������

�����

�����
��

������
��

�����
�

��� ��

�����

������
��

Fig. 1. Architecture of ViSual.

The aforementioned framework, however, lacks of adequate
support to undertake comprehensive empirical study to eval-
uate the performance of this new paradigm. In contrast to
traditional query processing paradigm, where the runtime per-
formance of a large number of subgraph queries can be easily
measured by automatically extracting a random collection of
subgraphs from the underlying data and executing them, each
visual query in [7] must be formulated by a set of real users.
This is because in this paradigm the availability of the gui
latency at each formulation step is exploited to prefetch and
refine candidate matches. Note that each query may follow
many different query formulation sequences (qfs) and the gui
latency at each step may vary across different users. Conse-
quently, it is important to realistically simulate each visual
query construction step to investigate the performance of a
query. Unfortunately, it is prohibitively expensive to engage a
large number of users to formulate a large number of visual
queries with different qfs. In fact, our experience suggests
that such aspiration strongly deters users to participate in the
empirical study.

In this demonstration, we advocate that a different and more
palatable approach to address the aforementioned problem is
to create a novel synthetic visual subgraph query simulator
that realistically simulates visual subgraph query construction
to support the paradigm of blending query formulation and
query processing. Specifically, we present ViSual (VIsual
Subgraph QUery FormulAtion SimuLator), which is build
on top of prague [7] and focuses on simulating subgraph
query construction on a database containing a large number
of small or medium-sized graphs. Using ViSual, one can
automatically generate a large number of test subgraph queries
having different user-specified characteristics, simulate their
formulation based on different qfs without requiring real users,

PREPRESS PROOF FILE CAUSAL PRODUCTIONS1

and generate a multi-level interactive graphical view of their
performances in [7]. A key feature of this simulator is that
it leverages principles from hci on visual task completion to
quantitatively model the gui latency that arises during visual
query formulation. This model is leveraged to realistically
simulate the visual query formulation task by estimating the
time required to construct an edge in a query graph (i.e., gui
latency) without requiring any real users.

II. System Overview

Figure 1 shows the system architecture of ViSual and
mainly comprises of the following modules.

The GUI module: Figure 2 depicts the screenshot of the
visual interface of ViSual. A user begins by choosing a
target database using Panel 1 on which visual construction of
subgraph queries and their processing will be simulated. Panel
2 displays the unique labels of nodes that appear in the dataset
in lexicographic order. Note that during the query formulation
process, these labels are chosen for creating the nodes in the
query graph. Panel 3 depicts the area that seeks input to the
Visual Query Generator module. Specifically, a user provides
details of the number, size, and types of subgraph queries for
simulation. Panel 4 displays the simulation of the proposed
paradigm in real time when a user clicks on the Simulate
button in Panel 5. Specifically, it estimates the gui latency
available at each formulation step and blends it with query
processing. Note that a user may select a set of queries or a
specific query for simulation. Panel 5 enables us to change
various settings related to simulation (see discussion related
to the Query Simulator module) as well as to view simulation
results (see Simulation Results Viewer module) by clicking
appropriate buttons.

The Frequent Fragment Extractor module: This module
mines the frequent fragments from the graph database D
using an existing frequent graph mining technique (the current
version uses gSpan [8]). Informally, we use the term fragment
(resp. query fragment) to refer to a small subgraph existing
in graph databases (resp. query graphs). Given a fragment g
which is a subgraph of G (denoted as g ⊆ G) and G ∈ D, we
refer to G as the fragment support graph (fsg) of g. Since each
data graph in D is denoted by an unique identifier, f sgIds(g)
denotes the set of identifiers of fsgs of g. A fragment g
is frequent in D if its support is no less than α |D| where
0 < α < 1 is the minimum support threshold. Otherwise, g is
an infrequent fragment.

The Index Constructor module: This module constructs
two indexes to facilitate generation of synthetic visual sub-
graph queries. Note that these indexes are also used in [6], [7]
for query processing. The frequent index is used to generate
frequent query graphs and comprises of a memory-based
frequent index (mf-index) and a disk-based frequent index
(df-index). The df-index is an array of fragment clusters. A
fragment cluster is a directed graph C = (VC,EC) where each
node v ∈ VC is a frequent fragment f where the size of f
(denoted as | f |) is greater than the fragment size threshold β
(i.e., | f | > β). There is an edge (v′, v) ∈ EC iff f ′ is a proper

�

�

�

�	
��

�

Fig. 2. [Best viewed in color] The ViSual gui.

subgraph of f (denoted as f ′ ⊂ f) and | f | = | f ′| + 1. Each
fragment f of v is represented by its cam code. Each node
with fragment f in C points to f sgIds(f). mf-index, on the
other hand, indexes all frequent fragments having size less
than or equal to β and has a similar structure as the df-index.

The infrequent index indexes infrequent fragments to sup-
port generation of infrequent subgraph queries. We index
only the discriminative infrequent fragments (difs), which are
infrequent fragments whose subgraphs are all frequent [7].
Intuitively, it consists of an array of difs arranged in ascending
order of their sizes. Each entry in the index stores the cam
code of a dif g and f sgIds(g). For distinction, we refer to an
infrequent fragment that is not a dif as a non-dif infrequent
fragment (nif).

The Visual Query Generator module: Given the query
size s, the total number of size-s query graphs that needs
to be generated, and the distributions of query types (Panel
3), this module generates appropriate number of frequent
and infrequent (both dif and nif) queries by leveraging the
aforementioned indexes. Specifically, a frequent query is con-
structed as follows. If s < β then the mf-index is traversed
to the level containing frequent subgraphs of size s and an
appropriate number of cam codes are randomly selected and
transformed to frequent queries. Otherwise, the df-index is
invoked to randomly select cam codes of size-s subgraphs to
generate the queries. Similarly, the infrequent index is scanned
to randomly select a specified number of cam codes of size-
s difs, which are then transformed to dif queries. Lastly, the
generation of nif queries is relatively more involved as this
type of infrequent subgraphs are not indexed. However, a nif
contains at least one dif [7]. Hence, the infrequent index is
scanned first to randomly choose the cam code of a dif f whose
size is less than s. Then the f sgIds(f) is used to retrieve a set
of graphs in D containing f where the size of each graph G
is at least s. The subgraph f in each G is expanded to f ′ by
traversing it until | f ′| = s. Then f ′ is returned as a candidate
nif query. The above steps are repeated iteratively until the
specified number of nif queries are generated.

The Query Simulator module: This module simulates the
blending of visual query formulation and query processing by
estimating the gui latency available at each formulation step,

2

which is leveraged by the Query Execution module to retrieve
candidate matches. Most visual interfaces for graph query
formulation [5], [6] comprise of at least three key panels: (a)
A Label Panel to display the set of labels of nodes or edges of
the underlying data graphs; (b) A Query Panel for constructing
a subgraph query graphically by adding a fragment iteratively;
(c) A Results Panel that displays the query results.

Specifically, a user may take the following steps to formu-
late a query graph1. (1) Move the mouse cursor to the Label
Panel. (2) Scan and select a label (e.g., label C). (3) Drag the
selected item to the Query Panel and drop it. Each such action
represents formulation of a query node (denoted by u) with the
specified label. (4) Repeat Steps 1–3 for constructing another
node v. (5) Construct an edge between u and v by clicking on
them, respectively. (6) Repeat Steps 4 and 5 until the complete
query is formulated.

Observe that the key challenge to simulate the aforemen-
tioned steps is that different users may take different time to
complete each step. As mentioned earlier, it is important to
accurately estimate the time taken by a user for each step as
this latency is exploited by the query processing paradigm to
prefetch candidate matches [3], [7]. Hence, instead of assum-
ing any arbitrary time to finish each of the aforementioned
steps, we need a systematic approach to estimate them. Here
we drew upon the literature in hci to quantitatively model the
time available to perform each step.

Let us now refer to the times taken to complete Steps 1, 2,
3, and 5 as movement time (denoted by Tm), selection time (Ts),
drag time (Td), and edge construction time (Te), respectively.
We can quantify these times as follows.

Estimating movement time Tm. Reconsider Step 1. It in-
volves acquisition of a target in the Label Panel at a distance
D from the mouse cursor which is in the Query Panel. Note
that typically the Label Panel is a rectangular two-dimensional
target. Hence, we adopt the model in [1] that focuses on
acquiring targets having rectangular, square, or circular shapes.
The movement time Tm is quantified as follows.

Tm = a + b log2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
√(D

W

)2
+ η
(D
H

)2
+ 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ (1)

where D is the Label Panel’s distance to the cursor, H and
W denote the Panel’s height and width, respectively. The
parameter a varies in the range of [-50, 200], b in [100, 170],
and η in [1/7, 1/3]. We set η = 0.33 according to [1].

Estimating selection time Ts. The above model for comput-
ing Tm can only be applied if the mouse movement is one-
directional and involves a single target which is rectangular,
square, or circular in shape. Consequently, selection of a
label item cannot be modeled using it. Observe that searching
for a label involves moving the cursor over multiple targets
to select an item. In fact, the Label Panel is similar to a
hierarchical menu and one needs to select an item during query

1In this demonstration, we assume “edge-at-a-time” visual query formulation strategy.
Hence usage of built-in canned patterns (e.g., benzene ring) for composing queries is
beyond the scope of this work.

formulation by navigating the cursor through the hierarchy
using predominately vertical movements to select the desired
label.

Note that we assume the labels are organized vertically
and hence ignore horizontal movements in this panel as the
horizontal width is negligible here2. Furthermore, we assume
that the items in this panel are organized in a specific order
(e.g., lexicographically ordered). Hence, a user can move to
the direction of the target item rapidly using an “open loop”
movement. Consequently, we adopt the following logarithmic
model proposed by Ahlström [2] for modeling selection time
of an item, which integrates both the time to find the item and
the time to move to the target.

Ts = m + n × (log2(p + 1)) (2)

where p is the position number of the target label, and m and
n are empirically-determined constants.

Estimating drag time Td. The drag time can be modeled
using Equation 1 as the cursor is now moving from the Label
Panel to the Query Panel. Specifically, in this case D is the
Query Panel’s distance to the cursor (we assume that the label
is dropped in mid region of the panel), H and W denote Query
Panel’s height and width, respectively.

Estimating edge construction time Te. Lastly, Te models the
Step 5 of the query formulation process comprising of (a)
clicking on the node v (assuming the last node dropped on the
panel is v); (b) moving the cursor from v to u; (c) clicking
on the node u. Let tc be the time to click a node, nc be the
number of clicks on a node (in our case nc = 1), and Tm be
the movement time from v to u. Then,

Te = 2nc × tc + Tm (3)

We assume tc = 80ms [4]. Note that Tm can be computed using
Equation 1 where H and W now denote the height and width
of a node (constant for all nodes in a given gui)3, respectively,
and D is the shortest distance between u and v.

This module implements the above model to simulate the
visual query construction process. Given a query (generated by
the Visual Query Generator module), we traverse it in a depth-
first manner to construct it iteratively in Panel 4 (Figure 2). For
each step in the aforementioned query construction process,
the algorithm waits for an appropriate amount of time (as
quantified above) to simulate the execution of the task by
a user before moving to the next step. Each node that has
been traversed is colored red in the query indicating it has
been formulated. Observe that a query graph can be drawn
by following different sequence of edge construction. Hence,
ViSual allows automatic simulation of all possible query
formulation sequences iteratively for a given query.

The Query Execution module: This module implements
the visual subgraph query processing paradigm described
in [3], [7] where the gui latency (created by the wait times

2The model in [2] can support horizontal movement as well in the case that the labels
are displayed as a “matrix”-like structure.

3 [1] can model square, rectangular, or circular-shaped query nodes.

3

in the above simulation process) is leveraged to prefetch
candidate data graphs. We do not focus on this module in
detail here as it is already demonstrated in [6].

The Simulation Results Viewer module: This module
is invoked (by clicking on the Display Chart button) to
provide a real-time three-level graphical view of the simulation
results. At the query collection level, it enables visualization
of results of an entire collection of subgraph queries. For
example, Figure 3(a) plots the average user latency time
(corresponds to the wait times in the Visual Query Simulator
module) that is available for drawing each edge (shown by
black dotted line) and corresponding average prefetching time
(shown by red dotted line) of candidate data graphs for a
collection of 100 size-5 queries. Figure 3(b) plots the average
srts of each query (averaged over all query formulation
sequences) in a collection of 20 queries. At the query level,
the viewer depicts the performance of all query formulation
sequences (qfs) of a specific query. Figures 3(c)-(d) depict the
performance of a size-5 query for a set of qfs. At the qfs level,
the results of a specific qfs of a query graph can be visualized.
For instance, Figure 3(e) depicts the query evaluation process
of a specific qfs at every step. The bottom part of the screen
displays the sizes of candidate data graphs at different steps.
The top part of the display plots the time taken by the Query
Execution module to compute and maintain the candidate data
graphs at every step along with the user latency time.

III. Related Systems and Novelty

There has been considerable research in querying graph
data. There has also been research in visual query languages
for graph databases [5], [9]. However unlike ViSual, none
of these efforts focus on building an hci-inspired visual query
simulator to evaluate query performance as these efforts follow
the conventional query formulation and processing paradigm
(visual or textual).

More germane to this work is our previous research in [3],
[6], [7] where we propose a novel paradigm of blending graph
query processing with visual query formulation. Specifically,
these work focus on the Index Constructor and Query Execu-
tion modules in Figure 1. In contrast, ViSual is built on top
of them to realistically simulate the visual query construction
process in this query processing paradigm. That is, it focuses
on the Visual Query Generator, Query Simulator, and the
Simulation Results Viewer modules.

IV. Demonstration Objectives

ViSual is implemented in Java JDK 1.7. Our demonstration
will be loaded with synthetic datasets and a few real datasets
(e.g., aids Antiviral dataset containing 43k graphs) with differ-
ent sizes. The key objective of the demonstration is to enable
the audience to interactively experience the following modules
through the ViSual gui. A video of ViSual is available at
http://www.youtube.com/watch?v=TzDmIxTylew.

Interactive experience with the Visual Query Generator
module. Through the gui (Figure 2), one will be able to select
the relevant data source (Panels 1 and 2), specify the details
of subgraph queries she would like to generate (Panel 3),

!�" !�"

!�"

!	"

!�"

Fig. 3. [Best viewed in color] Visualization of simulation results.

and (optionally) view the generated visual queries in Panel 4.
Specifically, she will be able to automatically generate a large
number of subgraph queries having different characteristics
without constructing them manually.

Interactive experience with the Query Simulator mod-
ule. After generating the visual queries, one will be able to
simulate the proposed paradigm without manually constructing
any query. In particular, once she clicks on the Simulate
button in Panel 5, she will be able to observe the construction
process of a query as well as the wait times (gui latency) during
each query formulation step (Panel 4). Also, by modifying
various settings of the model parameters (Panel 5), she will
be able to experience the impact of these parameters on the
simulation process.

Interactive experience with the Simulation Results
Viewer module. Once the simulation of the proposed
paradigm is completed for the chosen query set, one will
be able to visualize detailed performance of the queries at
different levels of granularity (Figure 3) and appreciate the
fact that the simulated gui latency at each step is leveraged for
the prefetching candidate matches. Importantly, as discussed
earlier the user will be able to observe multi-faceted perfor-
mance results of a large number of synthetic subgraph queries
without manually constructing them.

References
[1] J. Accot, S. Zhai. Refining Fitts’ Law Models for Bivariate Pointing. In ACM

SIGCHI, 2003.
[2] D. Ahlstrom. Modeling and Improving Selection in Cascading Pull-Down Menus

Using Fitt’s Law, the Steering Law, and Force Fields. In CHI, 2005.
[3] S. S. Bhowmick et al. vogue: Towards A Visual Interaction-aware Graph Query

Processing Framework. In CIDR, 2013.
[4] S. Card et al. The Keystroke-level Model for User Performance Time with

Interactive Systems. CACM, 23(7), 1980.
[5] D. H. Chau et al. GRAPHITE: A Visual Query System for Large Graphs. ICDM

Workshop , 2008.
[6] C. Jin et al. Gblender: Visual Subgraph Query Formulation Meets Query Process-

ing. In SIGMOD, 2011.
[7] C. Jin et al. prague: A Practical Framework for Blending Visual Subgraph Query

Formulation and Query Processing. In ICDE, 2012.
[8] X. Yan et al. gSpan: Graph-based Substructure Pattern Mining. In ICDM, 2002.
[9] S. Yang et al. SLQ: A User-friendly Graph Querying System. In SIGMOD, 2014.

ACKNOWLEDGMENT

Sourav S Bhowmick was supported by the Singapore-MOE
AcRF Tier-1 Grant RG24/12. Byron Choi was partially
supported by the HKBU grant FRG2/12-13/079.

4

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Links to Other Manuscripts by the Authors

	**** PREPRESS PROOF FILE
	**** NOT FOR DISTRIBUTION
	**** BOOKMARKS ARE INACTIVE
