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Abstract—Composing queries is evidently a tedious task. This
is particularly true of graph queries as they are typically
complex and prone to errors. This is compounded by the fact
that graph schemas can be missing or too loose to be helpful
for query formulation. Graph Query AutoCompletion (GQAC)
alleviates users from the potentially painstaking task of graph
query formulation. This demonstration presents an interactive
visual Focused GRaph quEry AutocompleTion framework, called
FGREAT. Its novelty relies on the user focus for GQAC, which
is a subgraph of the current query that a user is focusing
on. FGREAT automatically computes a focus and completes the
query at the focus, as opposed to an arbitrary query subgraph.
This demonstration presents two complementary approaches to
compute the user focus for different circumstances. It computes
the focus from either (i) the sequence of edges that a user recently
added to his/her query, or (ii) the position of the mouse cursor, if
it is available. We demonstrate that the user focus enhances both
the effectiveness and efficiency of graph query autocompletion.

Index Terms—Subgraph Query, graph autocompletion, graphs,
database usability

I. INTRODUCTION

Recently, there has been an explosive growth of graph-
structured data in a variety of domains such as bioinformatics,
collaboration networks, and co-purchase networks. Conse-
quently, it is paramount to develop user-friendly and efficient
tools to construct queries for the underlying graph data. Being
a proficient query writer is essential for formulating graph
queries. Learning a graph query language, however, can be
a difficult task. Hence, visual tools are proposed to provide
users with a handy way to interactively formulate the queries.
Nonetheless, query formulation under a visual environment
still requires significant human efforts. As a result, graph query
autocompletion framework (GQAC) is proposed to alleviate
the burdens of graph query formulation. For illustration, this
demonstration considers subgraph queries (i.e., the query
formalism is subgraph isomorphism), but other queries that
are of graph structures (such as subgraph homomorphism and
simulation queries) can be seamlessly supported.

GQAC takes the user’s current query (a.k.a. initial query) as
input and adds subgraph increments to the query graph to form
query suggestions. The query suggestions are ranked according
to the user preferences. The user may adopt one of the returned
query suggestions and iteratively invoke GQAC to complete
their queries. Despite the initial progress of GQAC, according
to the research on human-computer interaction (HCI), humans
can only focus on several recent software artifacts in hand
[1]. That is, users may only work on certain portions of
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Fig. 1. An example of suggestions from GQAC

the query graph. It implies that many suggestions generated
by extending the query at its arbitrary subgraphs could be
irrelevant. Returning such suggestions may adversely affect
the effectiveness of query autocompletion and even distract
users. We illustrate this in Example 1.1.

Example 1.1: Consider a publicly available chemical
database (e.g., PUBCHEM,1 AIDS2, and EMOL3). Suppose a
user wishes to search for compounds containing the Penta-
dienylamine4 substructure. The partial subgraph query con-
structed by him/her is q0 in Figure 1. The top-4 suggestions
returned from GQAC are q0 + ∆q1 to q0 + ∆q4. Observe
that each suggestion is composed by adding small increments
(highlighted in blue with gray background) to the query graph.
He/she may select a useful suggestion (if present) by clicking
on it, thus saving mouse clicks to manually formulate the new
nodes and edges. Suppose the user formulates q0 in the order
of e1, e2, and e3. The user may focus on the most recent
edges (i.e., e2 and e3). Only q0 +∆q2 (extended from e3) is
a relevant suggestion as it is a subgraph of pentadienylamine.
The user can simply click on the suggestion to adopt it instead
of drawing ∆q2 manually.

This paper demonstrates, for the first time, a novel and in-
teractive Focused GRaph quEry AutocompleTion framework,
called FGREAT. A user focus is a subgraph of the query
that has the highest user attention, and FGREAT attempts to
automatically complete the query at the user focus. FGREAT
realizes the concept of user focus by two approaches, namely
GFOCUS [6] and MFOCUS, which take different information
as input and could be applied in different circumstances.
GFOCUS requires user’s implicit information, i.e., it does not
assume any specific input devices (e.g., touch screens), while
MFOCUS assumes users move the mouse cursor to their focus.

• The GFOCUS approach is the first work that leverages on
the temporal and structural locality principles inspired by
HCI research to derive the user focus. Intuitively, when users

1https://pubchem.ncbi.nlm.nih.gov/search/
2https://dtp.cancer.gov/databases_tools/bulk_data.htm
3https://www.emolecules.com/
4https://pubchem.ncbi.nlm.nih.gov/compound/59750537
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Fig. 2. Architecture of FGREAT

formulate queries by adding edges and nodes, or adopting
query suggestions, their attention localizes in those few re-
cent edges/subgraphs. GFOCUS takes user’s query formulation
sequence (i.e., the user actions in constructing the query) as
input and computes the user focus according to such locality
principles. The user focus is automatically computed and
maintained in the background.
• The second approach MFOCUS determines the user focus
using the mouse cursor position in the visual environment. It
takes the position of both query graph and mouse cursor as
input, calculates the distances between the cursor and each
query node, then predicts the possible user focus. By using
this approach, FGREAT can easily detect arbitrary shifts of
user focus or even no focus.

After FGREAT obtained the user focus using either GFOCUS
or MFOCUS, it computes candidate query suggestions (by
adding subgraph increments to the focus). FGREAT presents a
new greedy suggestion ranking algorithm that is aware of both
user focus and user preferences [6]. The top-k suggestions are
returned to users. This demonstration is the first to illustrate
that the user focus can enhance not only the effectiveness but
also the efficiency of GQAC.

Related work. There have been three recent research studies
on GQAC [3]–[5]. Pienta et al. [4] and Li et al. [3] have
demonstrated interactive methods to produce edge or node
suggestions. In contrast, only FGREAT and AUTOG [5] offer
subgraph suggestions. However, only FGREAT exploits user
focus. Some GUIs of publicly available databases (e.g., PUB-
CHEM and EMOL) have hard-coded subgraph query templates.
However, they lack GQAC functionalities.

II. SYSTEM ARCHITECTURE

The FGREAT demonstration adopts a simple client-server
architecture. Figure 2 shows the major modules of the archi-
tecture. The modules at the client-side are online, whereas
the modules at the server-side can be further divided into the
online and offline ones.

1. The user interface (UI) on the client-side. The client-
side modules mainly provide a user interface of FGREAT.
Figure 3 depicts the screenshot of the UI of FGREAT. Panel 1
provides various target graph databases for users to choose. It
lists a set of node labels and edge labels for users to construct
their graph queries. The Visual Graph Editor (Panel 2) is a
canvas for constructing query graphs. Users may click on an

Fig. 3. The UI of FGREAT, where the user focus is highlighted in red in the
Visual Graph Editor (Panel 2)

empty space of the editor to add a new node or drag from
one node to another to form a new edge. During the query
graph formulation process, one may obtain query suggestions
by clicking the Autocomplete button to invoke GFOCUS, or
moving the cursor to the part that he/she wishes to extend
and invoke MFOCUS.5 Information such as the coordinates of
the mouse cursor and the query graph are sent to the server-
side for query autocompletion. In Panel 3, users may use the
slides to indicate their preferences on query suggestions. After
the suggestions are ranked, the Suggestion Visualizer (Panel 4)
displays the top-k suggestions in real time. To show different
components of the suggestions, the visualizer highlights the
user focus in red and the subgraph increments in blue. The
existing query is colored in light grey. If a suggestion is useful,
users may adopt it by simply clicking on it. When the Submit
Query button in Panel 2 is clicked, the query is evaluated.
The Subgraph Query Results are retrieved from the server,
then displayed in the visual interface.

2. Online modules on the server-side. The Autocomplete
Query Processor on the server-side takes the current query,
user’s information (e.g., user’s past actions and the cursor
position) from the client-side as input and produces query
suggestions as output. It includes the following four modules.

A1. User focus determination. This module determines the
user focus of the query graph.

The MFOCUS approach: The main idea is that users may
manually move the mouse cursor to the part that he/she wants
to extend. The server simply calculates the distance between
the cursor and each query node and sets the node (denoted as
vf ) with the smallest distance as a part of the user focus.

The GFOCUS approach: Users construct their queries step by
step. GFOCUS uses a set of operators that aim at capturing
generic, fundamental actions during the construction for de-
termining the focus. The set of fundamental query formulation
operators of this demonstration is OP = {add, adopt, rollback,

5In practice, the suggestions can be regularly and automatically
generated without any user input. However, for the ease of user
study, FGREAT requires users to click the Autocomplete button for
suggestions or press ENTER to capture the mouse location. Hence,
users are aware of the query autocompletion step to provide their
qualitative evaluations on FGREAT.
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click}. For better readability, we skip the definitions of these
operators.

A query formulation sequence is a sequence of query
formulation operators. A query formulation sequence St at
the t-th step is denoted as follows:

qt = opt(. . . opk(. . . op1(q0))),where op ∈ OP. (1)

To model the users’ attention during query formulations,
GFOCUS proposes to assign an attention weight to each query
edge. When an edge is added to q, it has a weight 1. GFOCUS
brings two major results from HCI research to the weight
maintenance:

1) Temporal locality. Berman et al. [2] observed that mem-
ory fades due to the mere passage of time. In query for-
mulation, GFOCUS adopts the exponential decay function
as the forgetting function of the weights. Users’ attention
localizes on the small number of newly operated edges.

2) Structural locality. When humans are working on a
software artifact, their attention is naturally localized on,
and then propagated to, a small number of neighboring
artifacts [1]. Hence, when formulating queries, the edges
that are close to the newly operated edges receive higher
users’ attention and are more likely to be a part of the
user focus. In GFOCUS, each neighboring edge of the
last operated edges receives a portion of weight that is
positively proportional to their structural proximity.

We propose a parameter τ to model user’s memory strength.
Figure 5 shows the formulation of q3. The larger the value of τ ,
the larger the focus. Intuitively, the user focus is the subgraph
having the maximal attention density that the user remembers
(see [6] for definitions).

Example 2.1: Suppose a user is composing a query graph
q3 manually from q1, shown in Figure 4. He/she may obtain
the query q3 via the query formulation sequence below:

q3 = add(add(e1, “-”, e2), “=”, e3),

where e1, e2, and e3 are edges in the query. The labels of the
nodes are marked in the circles (i.e., “C”), and the labels of
the edges are signified by “=” and “-” connecting the circles.
The user’s focuses of different τ values are highlighted in red.
A2. Feature analysis. Features are generally known to be
subgraphs that carry important characteristics of the graph
database. Without prior information, we assume queries may
carry such characteristics. FGREAT indexes features that are
connected to form large subgraphs and hence, larger queries
that are formed from smaller ones, for efficient online query
autocompletion [5]. Some feature examples of a real-world
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Fig. 6. Some features (e.g., frequent subgraphs) of a publicly available
chemical database
graph (chemical) database is shown in Figure 6. This module
decomposes the user’s query into a set of features and their
embeddings (i.e., the locations) in the query. Once the query is
represented as such, GFOCUS uses the subgraph sf with the
maximal normalized density of user attention weights as the
user focus. On the other hand, MFOCUS selects the smallest
feature that contains vf as the user focus.
A3. Suggestion candidate generation. The input of the
Candidate Generation module is the decomposed query q
and a user focus. This module outputs a set of candidate
query suggestions. Intuitively, a candidate query suggestion
is formed by adding a subgraph increment (which is a feature
mined offline) to the user focus of q. Different from [5],
query increments are only added to the focus, but not arbitrary
places of q. We adopt a technique of our previous work [5]
to efficiently prune automorphic suggestions and suggestions
that will not retrieve any data graphs.
A4. Suggestion ranking. The number of candidate query sug-
gestions is exponential to the query graph size. Furthermore,
the size of the suggestion panel is limited, and users may only
interpret a small set of the query suggestions. Hence, FGREAT
returns only top-k suggestions. Without any prior knowledge,
such as user’s behavioral profile, we propose the following
generic ranking function util. It should be remarked that util
is only for illustration purposes (i.e., other functions can be
readily plugged into the FGREAT framework).

Given a suggestion set Q′: {q′1, q′2, . . . , q′k} and user pref-
erence α and β, the user intent value of Q′ (util) is defined
as follows:

util(Q′
) =

α

k

∑
q′∈Q′

sel(q′) +
β

k

∑
q′∈Q′

δinc(q
′
) + (1 − α − β)coverage(Q′

),

where α ∈ [0, 1], β ∈ [0, 1] and (1− α− β) ∈ [0, 1].
• The sel function is the total result count of q′ ∈ Q′. α
specifies how much a user prefers to obtain query suggestions
that have high result counts.
• The δinc(q

′) function is defined as 1
|∆(q′)| . β refers to the

preference on the suggestions constructed from small subgraph
increments. It is noted from experiments that small suggestions
can be easier to predict than those from large subgraph
increments, while large correct suggestions save more manual
formulation effort.
• The diversity of a suggestion set Q′ is determined by
coverage. A union graph of all possible suggestions can be
considered as the universe of all possible suggestions [6]. The
coverage function coverage(Q′) counts the number of edges
of the universe that are covered by Q′.

Example 2.2: Figure 7 shows a current query q and can-
didate suggestions q′1, q′2, and q′3. Assume the dashed area is
the user focus. The right-hand side of Figure 7 is the union
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graph of q′1, q′2, and q′3. In addition to the edges of the focus,
{q′1, q′2} covers 7 edges of the union and {q′1, q′3} covers only
5 edges. Hence, {q′1, q′2} has a higher coverage value.

III. EXPERIMENTAL RESULTS

We have performed a user study and an experiment to in-
vestigate the performance of FGREAT. Our results reflect that
identifying user focus can improve not only the effectiveness
but also the efficiency of the previous system AUTOG [5].
Suggestion quality via user study. We conducted a user study
on FGREAT to survey whether the computed user focus was
accurate and if FGREAT helped the users or not. We mimicked
the GUI (Figure 3) and followed the settings of AUTOG. We
conducted the test with 21 volunteers with computer science
background. Each volunteer was given size 8-edge target
queries and was asked to formulate them with FGREAT, which
highlights the computed user focus in red, and the volunteers
were not aware of the details. After formulating each query,
they reported their levels of agreement to the following two
statements:

1) “The red colored edges capture the portion that I am
working on.”; and

2) “The suggestions are useful when I draw my query.”
The average user satisfaction of the determined user focus was
consistently high (4.4 of 5). Consistent with [5], we verified
that the total profit metric (TPM) value is an indicator of
suggestions qualities (the correlation coefficient with the user’s
satisfaction score is 0.93 and the p-value is 0.007). For queries
of hi, mid and low TPM values of AUTOG, FGREAT obtained
3.85, 3.30 and 2.10 user satisfactions, whereas AUTOG ob-
tained 4.55, 2.95 and 1.65 only. AUTOG has 4.55 for hi TPM
queries because they are their best queries [5].

We have also invited 3 chemists to use FGREAT. They
generally agree with the first statement above. Moreover, TPM
still indicates the suggestion qualities.
Simulated query formulation steps. We investigated the
qualities of the suggestions of FGREAT through large-scale
simulations under a variety of settings. In a nutshell, we
simulate the process of a user using FGREAT to construct a
graph query from scratch. We adopted several popular metrics
for evaluating suggestion qualities [3], [5]. The experimental
results show that the suggestions of FGREAT often have higher
TPMs than those of AUTOG. Furthermore, FGREAT is 35 times
more efficient than AUTOG on average. For further details,
please refer to the technical report [6].

IV. DEMONSTRATION OVERVIEW

The key objective of the demonstration is to let the attendees
interactively experience the focused graph query autocom-
pletion. In our demonstration, one will be able to formulate
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his/her queries manually or by adopting query suggestions. We
describe two scenarios with a chemical compound “2-Butan-
2-ylcyclopropan-1-ol”, i.e., the target query q8 (Figure 8). The
graph with dashed lines under the target query illustrates the
formulation order that the user plans. It is natural that a user
first draws the long chain (marked as 1), and then the short
branches (marked as 2 and 3).
Scenario 1. Query autocompletion at user focus without
any explicit user feedback. When the current query is q3,
GFOCUS returns two useful suggestions (i.e., q4 and q5,
suggested increments are highlighted in blue). The user focus
computed by GFOCUS using the query formulation sequence
is highlighted in red. All suggestions enlarge q3 at the user
focus. The attendees can get a feel for the usefulness of user
focus. In contrast, no suggestions returned by AUTOG are
useful as suggestions are generated at arbitrary places of q3.
The demonstration shows faster response times of GFOCUS
because fewer candidates are generated at the focus.
Scenario 2. Query autocompletion at mouse cursor. We
present this scenario with a current query q7. The user focus
determined by GFOCUS is highlighted in red in q7. The
user focus is inaccurate since the user did a “random” focus
shift to draw branch 3 after formulating branch 2, which is
predicted by GFOCUS. Hence, GFOCUS does not return useful
suggestions. In this case, the user can switch to MFOCUS.
The focus is highlighted in red in q8. One may verify that
MFOCUS correctly determined the user focus and it returns a
useful suggestion (i.e., the target query q8).

Finally, the attendees can observe the suggestion character-
istics by tuning system parameters (e.g., α, β and k). A demon-
stration video is publicly available at https://goo.gl/gX6LSn.
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