
A Generic Ontology Framework for Indexing
Keyword Search on Massive Graphs (Extended

Abstract)
Jiaxin Jiang⇤, Byron Choi⇤, Jianliang Xu⇤, Sourav S Bhowmick†

*Department of Computer Science, Hong Kong Baptist University, Hong Kong
† School of Computer Science and Engineering, Nanyang Technological University, Singapore

⇤{jxjian,bchoi,xujl}@comp.hkbu.edu.hk, †assourav@ntu.edu.sg

Abstract—Due to the unstructuredness and the lack of schema
information of knowledge graphs, social networks and RDF
graphs, keyword search has been proposed for querying such
graphs/networks. Recently, various keyword search semantics
have been designed. In this work, we propose a generic ontology-
based indexing framework for keyword search, called Bisimu-
lation of Generalized Graph Index (BiG-index), to enhance the
search performance. Novelties of BiG-index reside in using an
ontology graph GOnt to summarize and index a data graph G
iteratively, to form a hierarchical index structure G. BiG-index is
generic since it is applicable to keyword search algorithms that
have two properties. BiG-index reduced the runtimes of popular
keyword search work Blinks by 50.5% and r-clique by 29.5%.

I. INTRODUCTION

Keyword search has been proposed to make it easier for
users to query data from such networks/graphs. In a nutshell,
a user specifies a set of keywords Q on a data graph G as
his/her query. Depending on the search semantics, the answer
of Q is the compact subgraphs that either contain the keywords
and/or are ranked as top-k subgraphs. Ontology information,
such as information of properties, classes, and their super
classes, is typically encoded in an ontology graph, and often
accompanied with knowledge graphs. This paper proposes a
generic framework, the Bisimulation of Generalized Graph

Index (BiG-index), that exploits ontology information to index

the graphs themselves for keyword search.

Example I.1: We present a simplified knowledge graph G in
Fig. 1 and its (partial) ontology graph GOnt in Fig. 2.1 We
generalize some labels of G, according to GOnt, to obtain a
generalized graph Gc1 , as shown in Fig. 3. There are more sim-
ilar subgraphs after generalization (e.g., the Univ. subgraphs).
We then summarize Gc1 and yield a small summary graph G0,
as shown in Fig. 4. Consider the keyword query semantics [1]
for example. It finds a subtree that contains the query keyword
and whose paths are smaller than a user-specified threshold
dmax. Suppose the query keywords Q1 are {Massachusetts,
Ivy League, California} and dmax = 3. A possible answer is
the (red bold) subtree whose root r is P. Graham and whose
leaf vertices contain Q1. The query semantics might involve
numerous graph traversals. Such traversals can be significantly

1Due to space limitation, we omit the specific keywords, such as person’s
and state names, but show the types in Fig. 2

B. Gates

Microsoft

Washington

W. Buffett

Berkshire Hathaway

Nebraska

P. Graham

Y Combinator

California

Cornell Univ.

New York Univ.

L. GagaS. Russell
. . .

A. Rodger

100 Persons

Bruce Lee
. . .

I. Thomas

Massachusetts New York

S. Idreos

Harvard Univ. Columbia Univ.

UC BerkeleyUW

Ivy League

Q1 ={Massachusetts,
Ivy League, California}

P. Graham is an answer
root

Fig. 1: A data graph G, a keyword query Q1 and its answer

more efficient in the summary graph G0. For example, the 100
persons (in dashed rectangle of Fig. 1) which are traversed in
data graph G starting from California while only Person in G0

are traversed (Fig. 4).

Definition I.1: (Problem statement) Given a graph G, its
ontology graph GOnt, a keyword query Q, and a keyword
search algorithm f , this paper studies the index function �

and answer graph generation function ��1 s.t.
1) eval(G,Q, f) = evalOnt(G,Q, f) =

eval(��1(eval(�(G),�(Q), f), Q)); and
2) the query time of evalOnt is minimized,

where eval and evalOnt are query evaluations with f on graphs
and BiG-index, respectively.

This paper proposes graph generalization and summariza-

tion for an index function �, which takes a data graph and an
ontology graph as input and produces an index structure as out-
put, for many keyword search semantics. Moreover, it proposes
its reverse function ��1 to support efficient answer generation.
The keyword search algorithm fs only assume � possesses
label- and path-preserving properties. Hence, popular keyword
search algorithms [3], [5] can be readily implemented when
this assumption holds with minor modifications.

II. THE BiG-index FRAMEWORK

Both index construction and query processing are presented
in Fig. 5. 1 The index construction contains two phases: graph
generalization and graph summarization. The query process-
ing contains three phases: 2 query generalization, 3 query
evaluation on summary graph, and 4 answer specialization.
A. Bisimulation of Generalized Graph Index (BiG-index)

The main ideas of BiG-index are that (i) the labels of a
graph are generalized on the basis of the ontology, (ii) the

Person

Entrepreneur Investor

Thing

IT Co.

Co.

Startup

Western Eastern

USOrganization

Univ.

Edu.

Academics

ProfessorA.P. Investment Co.
Partial ontology graph

Fig. 2: Ontology graph GOnt of Fig. 1

Entrepreneur

IT Co.

Eastern

Investor

Investment Co.

Western

Academics

Startup

WesternEastern Eastern

Univ. Univ.

OrganizationUniv.

Univ.

Person
. . .

Person

Univ.

Person
. . .

Person

Univ.

Person

Academics

100 Persons

Fig. 3: Generalized graph GC1 of G in Fig. 1

Academics

Startup

Eastern

Investor

Person Person

Univ.

Investment Co.

Western

Univ.

Univ.

Organization

AcademicsEntrepreneur

IT Co.

Summarized node of
100 Persons

not connected

Fig. 4: Summary graph G0 of Fig. 3

Q = fq1; : : : ; qng
G0

G1

G2Q0 = fq01; : : : ; q
0

n
g

χ

χ

χ

χ

eval

eval

The summary graph hierarchy of BiG-index

query Gen

keyword query

summary graph

answers A2

generalized

query answers A0

summary graph

data graph

Opt Spec

12

4

3

Bisim(Gen(G0; C0))

Bisim(Gen(G1; C1))

answers A1

generalized

: subgraph

: node set
−1

χ−1

Fig. 5: Schematic of the evaluation evalOnt of Q for the answer
A0 in BiG-index of the data graph G0

generalized graph is summarized, and (iii) these two steps are
repeated alternately to form a hierarchical index structure. We
use bisimulation as a summarization function [2] since it is
path-preserving. The index function � is defined as follows.
Definition II.1: (BiG-index) The BiG-index of a graph G
and its ontology graph GOnt are defined to be a binary
tuple (G, C), where G is a set of graphs {G0, . . . , Gh}, C is
a sequence of label-preserving generalization configurations
[C1, . . . , Ch], and

Gi =

⇢
G, if i = 0,
�(Gi�1, Ci), otherwise, (1)

where Ci is the configuration at (i� 1)-th layer.

(i) Graph generalization (Gen). A generalization Gen(G0, C1)
simultaneously replaces the labels of the vertices with gener-
alized ones, as specified in C1 = {(`1!`01),. . . , (`m!`0

m
)}.

C1 denotes that `i 2 ⌃ is generalized to `0
i
, where `0

i
is one

of the supertypes of `i in GOnt for 1 i m.
(ii) Graph summarization (Bisim). Bisimulation of a graph G
is regarded as another graph. An equivalent relation of vertices
U , where U ✓ VG (e.g., U = {u1,u2,. . .,un}), is represented
by a supernode s (e.g., s = [u1]equiv = . . . = [un]equiv). We
denote the summary graph of a graph G as Bisim(G) by
applying the maximal bisimulation relation B on G.

B. Query processing with BiG-index

We generalize the query keywords (LHS of Fig. 5) to the
m-th layer of BiG-index by introducing a cost model. The
query cost is affected by two factors. First, query evaluation
in the higher layer reduces the query time since the summary
graphs are small and reduce redundant computation. However,
generating the final answer graphs from a generalized layer
requires time to specialize the summary graphs and to prune
irrelevant graphs. We formulate the cost model of query
evaluation at the m-th layer denoted by costq(m) by these
major factors (Formula 3 in [4]). The optimal query layer is
the one with minimal costq(m).

On the top RHS of Fig. 5, the generalized query answer
Am at the m-th layer is determined by applying existing query

Fig. 6: Blinks on YAGO3 Fig. 7: r-clique on YAGO3

sementics, e.g., Blinks [3] or r-clique [5]; its vertex sets are
specialized to the 1st layer by applying specialization function
Am�1 = Spec(Am) recursively and a vertex is pruned if its
label is not a supertype of qk 2 Q; and the final answer
graphs A0 are generated from A1 with the guidance of the
topological structure of the generalized answer graphs, shown
in the bottom RHS of Fig 5. To enlarge the partial answer
graphs, we define a vertex qualification function to verify if a
vertex could be used to enlarge the partial answers.

III. HIGHLIGHTS OF EXPERIMENTAL RESULTS

Experimental Setup. We implemented BiG-index, Blinks and
r-clique in Java. We used real-life datasets in our experiments,
including YAGO3, DBpedia, and IMDB. On YAGO3 and
DBpedia, we selected 2-6 keywords from the ontology graph
which had semantic relationships: for example, the query “The
player who works in an England club ” could be expressed by
Q3={Club, Player, England}.
Experiment results. Fig. 6 shows the query performance
of Blinks with BiG-index on the YAGO3. Fig. 7 shows the
query performance of r-clique with BiG-index on the YAGO3.
Our extensive experiments show that BiG-index reduced the
runtimes of popular keyword search work Blinks by 50.5% and
r-clique by 29.5% (detailed in [4]). Our cost model of query
generalization accurately predicts the optimal query layers of
the queries with 75% accuracy.

REFERENCES

[1] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan.
Keyword searching and browsing in databases using banks. In Proceed-

ings of the 18th International Conference on Data Engineering, pages
431–440, 2002.

[2] P. Buneman, M. Grohe, and C. Koch. Path queries on compressed xml. In
Proceedings of 29th International Conference on Very Large Data Bases,
volume 29, pages 141–152, 2003.

[3] H. He, H. Wang, J. Yang, and P. S. Yu. Blinks: ranked keyword searches
on graphs. In Proceedings of the ACM SIGMOD International Conference

on Management of Data, pages 305–316, 2007.
[4] J. Jiang, B. Choi, J. Xu, and S. S. Bhowmick. A generic ontology

framework for indexing keyword search on massive graphs. IEEE

Transactions on Knowledge and Data Engineering, 2019.
[5] M. Kargar and A. An. Keyword search in graphs: Finding r-cliques.

Proceedings of the Very Large Data Bases Endowment, 4(10):681–692,
2011.

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2956535, IEEE
Transactions on Knowledge and Data Engineering

1

A Generic Ontology Framework for Indexing
Keyword Search on Massive Graphs

Jiaxin Jiang, Byron Choi, Jianliang Xu and Sourav S Bhowmick

Abstract—Due to the unstructuredness and the lack of schema information of knowledge graphs, social networks and RDF graphs,
keyword search has been proposed for querying such graphs/networks. Recently, various keyword search semantics have been
designed. In this paper, we propose a generic ontology-based indexing framework for keyword search, called Bisimulation of
Generalized Graph Index (BiG-index), to enhance the search performance. The novelties of BiG-index reside in using an ontology
graph GOnt to summarize and index a data graph G iteratively, to form a hierarchical index structure G. BiG-index is generic since it
only requires keyword search algorithms to generate query answers from summary graphs having two simple properties. Regarding
query evaluation, we transform a keyword search q into Q according to GOnt in runtime. The transformed query is searched on the
summary graphs in G. The efficiency is due to the small sizes of the summary graphs and the early pruning of semantically irrelevant
subgraphs. To illustrate BiG-index’s applicability, we show popular indexing techniques for keyword search (e.g., Blinks and r-clique)
can be easily implemented on top of BiG-index. Our extensive experiments show that BiG-index reduced the runtimes of popular
keyword search work Blinks by 50.5% and r-clique by 29.5%.

F

1 INTRODUCTION

KNOWLEDGE graphs, social networks and RDF graphs have
a wide variety of emerging applications, including semantic

query processing [33], information summarization [28], commu-
nity search [11], collaboration and activities organization [26] and
user-friendly query facilities [31]. Such networks often lack useful
schema information for users to formulate their queries. Keyword
search has been proposed to make it easier for users to query data
from such networks/graphs. In a nutshell, a user specifies a set of
keywords Q on a data graph G as his/her query. Depending on
the search semantics, the answer of Q is the subgraphs that either
contain the keywords and/or are ranked as top-k subgraphs. For
instance, Google’s knowledge graph search API1 helps users to
find the answer in their knowledge database. The query answers
are returned in the form of subgraphs. The subgraph answers (a)
make it easy for users to explore some relevant keywords and
(b) are connected and present the relationships among the query
keywords.

Recently, there has been a stream of works proposing various
interesting keyword search semantics on massive networks/graphs,
as well as various relevant techniques for optimizing their query
performance (e.g., [12], [15]). Furthermore, the knowledge graphs
are large in size. For instance, the latest version of one semantic
knowledge base, YAGO, contains 4.5 million entities and 24 mil-
lion facts. Some previous approaches face scalability challenges.
This warrants a revisit to the research on keyword search.

Ontology information, such as information of properties,
classes, and their super classes, is typically encoded in an on-
tology graph and often accompanied with knowledge graphs.
Some existing techniques exploit it to aid users to formulate their
queries. In comparison, this paper proposes a generic framework,

• Jiaxin Jiang, Byron Choi and Jianliang Xu are with the Department of
Computer Science, Hong Kong Baptist University, Hong Kong.
E-mail: {jxjian, bchoi, xujl}@comp.hkbu.edu.hk

• Sourav.S. Bhowmick is with School of Computer Engineering, Nanyang
Technological University, Singapore.
E-mail: assourav@ntu.edu.sg

1. https://developers.google.com/knowledge-graph/

B. Gates

Microsoft

Washington

W. Buffett

Berkshire Hathaway

Nebraska

P. Graham

Y Combinator

California

Cornell Univ.

New York Univ.

L. GagaS. Russell
. . .

A. Rodger

100 Persons

Bruce Lee
. . .

I. Thomas

Massachusetts New York

S. Idreos

Harvard Univ. Columbia Univ.

UC BerkeleyUW

Ivy League

Q1 ={Massachusetts,
Ivy League, California}

P. Graham is an answer
root

Fig. 1: An example data graph G, a keyword search Q1 and its
answer (bold subtree)

the Bisimulation of Generalized Graph Index (BiG-index), that
exploits ontology information to index the graphs themselves.
Moreover, this paper illustrates how existing research on keyword
search can be implemented on top of BiG-index with minor
modifications.

More specifically, given an ontology graph GOnt, we index a
data graph G into a hierarchy of summary graphs G as follows.
Some node labels of a graph G are generalized with respect to
GOnt to yield a generalized graph that has a high potential for
compression/summarization. It is then summarized by using clas-
sical graph summarization methods2 to obtain a summary graph.
The benefits of deriving summary graphs are threefold. First, a
summary graph can often be iteratively generalized and sum-
marized further until it cannot be further summarized efficiently.
Second, queries are evaluated over the summarized graphs so as
to avoid duplicated computation and save I/O costs. The query
results at the generalized layers are decompressed only when they
are qualified to form query answers. Third, the summary graphs
are yet another set of graphs. Existing indexing techniques for
keyword search can be readily applied to them.

2. As a proof of concept, we adopt bisimulation for graph summarization.
In a nutshell, bisimulation is a path-preserving formalism. Since some repre-
sentative keyword search semantics are defined with paths, the support of their
query algorithms requires little modifications.

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2956535, IEEE
Transactions on Knowledge and Data Engineering

2

Person

Entrepreneur Investor

Thing

IT Co.

Co.

Startup

Western Eastern

USOrganization

Univ.

Edu.

Academics

ProfessorA.P. Investment Co.
Partial ontology graph

Fig. 2: Ontology graph GOnt of Fig. 1

Entrepreneur

IT Co.

Eastern

Investor

Investment Co.

Western

Academics

Startup

WesternEastern Eastern

Univ. Univ.

OrganizationUniv.

Univ.

Person
. . .

Person

Univ.

Person
. . .

Person

Univ.

Person

Academics

100 Persons

Fig. 3: Generalized graph GC1 of G in Fig. 1

Academics

Startup

Eastern

Investor

Person Person

Univ.

Investment Co.

Western

Univ.

Univ.

Organization

AcademicsEntrepreneur

IT Co.

Summarized node of
100 Persons

not connected

Fig. 4: Summary graph G
0 of Fig. 3

Example 1.1: We present a simplified knowledge graph G in
Fig. 1 and its (partial) ontology graph GOnt in Fig. 2.3 We
generalize some labels of G, according to GOnt, to obtain a
generalized graph Gc1 , as shown in Fig. 3. Note that there
are more similar subgraphs after generalization (e.g., the Univ.
subgraphs). We then summarize Gc1 (detailed in Sec. 2) and yield
a small summary graph G

0, as shown in Fig. 4.
Consider the keyword query semantics [1] for example. It finds

a subtree that contains the query keyword and whose paths are
smaller than a user-specified threshold dmax. Suppose the query
keywords Q1 are {Massachusetts, Ivy League, California} and
the threshold dmax = 3. A possible answer is the (red bold)
subtree whose root r is P. Graham and whose leaf vertices contain
Q1.

The example query above reveals a few efficiency issues of
keyword search. First, some processing would not eventually yield
answers. The vertices {S. Russell , . . . , A. Rodger} are candidate
answers and are pruned after some verification. Then, suppose
these vertices are generalized to Person vertices, which have the
same structure, as shown in Gc1 . Hence, they can be summarized,
as shown in G

0. As a result, we can verify whether or not the
summarized Person can form an answer once, rather than doing
this 100 times as in Fig. 4 and Fig. 3.

Consider another query Q2 ={California, P. Graham} if the
same dmax of Q1. One possible evaluation is to traverse the graph
G in a breadth first manner bidirectionally, to check distances
between these nodes. Such traversals can be more efficient in the
summary graph G

0. In the example, California (resp., P. Graham)
is generalized as Western (resp., Academics). When searching
forward from P.Graham in G, Harvard Univ. and Cornel Univ. are
pruned one by one since they cannot reach California within dmax

hops. In contrast, the subgraph rooted at Univ. does not connect to
the keyword Western within dmax hops. Hence, it is pruned from
G

0 and both Harvard Univ. and Cornel Univ. are pruned together.
We also remark that ontology information naturally helps

users, who often lack detailed knowledge of the data graph, to
formulate their queries. Consider a query Q3 = {Person, Univ.,
Startup}. The keywords are the generalized ones. By the original
search semantics, the answer of Q3 is an empty set. However, in
this example, the subtree rooted at P. Graham is a possible answer
generated from the summary graph.

To the best of our knowledge, ontology information has not
been used to index graphs before. A naı̈ve method is to generalize
all the labels of nodes a layer at a time until the generalization
is not possible anymore and the queries are evaluated from the
topmost layer to the data graph layer. However, this method can
be inefficient for two reasons. The index hierarchy can be as deep
as the ontology graph. When keyword queries are evaluated deep
in the hierarchy, the answers at the data graph layer require many

3. Due to space limitation, we omit the specific keywords, such as person’s
and state names , but show the types in Fig. 2

Q = fq1; : : : ; qng
G0

G1

G2Q0 = fq01; : : : ; q
0

n
g

χ

χ

χ

χ

eval

eval

The summary graph hierarchy of BiG-index

query Gen

keyword query

summary graph

answers A2

generalized

query answers A0

summary graph

data graph

Opt Spec

12

4

3

Bisim(Gen(G0; C0))

Bisim(Gen(G1; C1))

answers A1

generalized

: subgraph

: node set
−1

χ−1

Fig. 5: Schematic of the evaluation evalOnt of Q for the answer
A0 in BiG-index of the data graph G0

steps to recover. Second, as the summary graphs are iteratively
generalized, the “compression” potentials diminish. The saving in
I/O from evaluating queries with summary graphs reduces.

Contributions. This paper proposes a generic hierarchical index
of summary graphs by exploiting an ontology graph, called
BiG-index. The overall framework of BiG-index is visualized in
Fig. 5. Specifically, this paper makes these contributions:

• We formalize 1 the hierarchical graph summaries BiG-index
and the core operations of BiG-index. We propose a cost
model to determine a space- and query-efficient BiG-index.

• We introduce 2 a cost-based generalization of query key-
words. We then propose 3 a query evaluation algorithm on
BiG-index. We propose 4 various optimizations for query
answer generation such that the subgraphs that are irrelevant
to the keyword search and intermediate query results are
minimized.

• We illustrate how the existing algorithms for keyword search
can be implemented on top of the BiG-index framework by
taking Blinks [12] and r-clique [15] as examples which con-
tain the fundamental operations including backward traversal,
ranked keyword search and shortest path evaluation. There-
fore, the proposed framework is fundamental and aims to be
orthogonal to specific query semantics.

• We conduct extensive experiments on BiG-index and the
results show that BiG-index can reduce the runtimes of some
popular keyword search work such as Blinks on average by
50.5% and r-clique on average by 29.5%.

Organization. The rest of the paper is organized as follows: Sec. 2
presents the background, and problem statement. Sec. 3 presents
BiG-index and its cost model for efficient index construction.
Sec. 4 presents how to implement keyword search on the top of
BiG-index. Sec. 6 presents the experimental evaluation. Sec. 7
discusses the related work. Sec. 8 concludes the paper.

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2956535, IEEE
Transactions on Knowledge and Data Engineering

3

TABLE 1: Frequently used notations

Notations Meaning
a / A An answer graph / an answer graph set
GOnt=(VOnt,EOnt) An ontology graph, where ` 2 VOnt is a type

and (`0, `) 2 EOnt denotes `0 is a supertype of
`.

Gen/Spec Generalization/Specialization function
Bisim / Bisim�1 The summarization function and its reverse. We

adopt the bisimulation formalism
equiv(v) / [v]equiv An equivalent relation of v
� The indexing function for generalizing and sum-

marizing a graph G with a configuration C:
�(G,C) = Bisim(Gen(G,C))

��1 The function for recovering the graph G:
��1(G,C) = Spec(Bisim�1(G), C))

2 BACKGROUND AND PROBLEM STATEMENT
This section presents the background for the technical discussions.
Some notations needed are summarized in Tab 1. It then presents
the problem statement of the paper.
Knowledge base. We discuss our technical development with
knowledge graphs as they are often associated with an ontology
graph. The support of general graphs (by associating types to
nodes using existing ontology graphs or tools) is discussed in
Appendix A.2. A knowledge base consists a set of entities VE

and a set of attributes VA. Each entity e 2 VE has some attributes
A ⇢ VA.There might be some relationships among the entities.
Hence, it is natural to construct the knowledge base as a graph.

Knowledge graphs. This paper considers a directed and labeled
graph G = (V,E, L,⌃), where (a) V is a set of vertices, such
that VE ✓ V and VA ✓ V ; (b) E (✓ V ⇥ V) is a set of edges;
(c) ⌃ is a set of labels; and (d) L is a mapping function defined
on V such that for each vertex v 2 V , L(v) maps v to a label in
⌃. We use labels to model the values of entities or attributes and
may use types or keywords to refer to them when they are more
intuitive to the discussions. This paper uses the number of nodes
and edges as the graph size, denoted as |G| = |V |+ |E|.

Graph bisimulation. This paper adopts a classical graph formal-
ism [18], namely backward bisimulation (or simply bisimulation),
to summarize graph structures. A binary relation B ✓ V ⇥ V is
a bisimulation relation of a graph G. For each (ui, uj) 2 B, the
following hold:

• L(ui) = L(uj);
• for each (ui, vi) 2 E, there is an edge (uj , vj) 2 E and
(vi, vj) 2 B; and

• for each (uj , vj) 2 E, there is an edge (ui, vi) 2 E and
(vi, vj) 2 B.

We remark that due to different applications, there have been
various bisimulation definitions, such as backward and/or forward
bisimulations. This paper adopts backward bisimulation since it
seamlessly aligns with the graph traversals of popular keyword
search algorithms (e.g., [12], [15]).

Given a graph G, there is a unique maximal bisimulation
relation B. B is an equivalent relation of nodes [18], i.e., B is
reflexive, symmetric and transitive. Hence, a vertex is bisimilar
to itself. We denote the equivalent class containing vertex v as
follows: equiv(v) = {u 2 V |(u, v) 2 B} or simply [v]equiv.

Bisimulation can also be intuitively considered as a graph
Bisim(G) in which the nodes of an equivalence class of G

are represented by a supernode. We use Bisim(v) to denote the
supernode of v, where v 2 V . A graph G has a Bisim(G) of the
smallest size by applying the maximal bisimulation relation.

Many index schemes, e.g., [3], [4], [16], [19], have been
derived from such a bisimulation graph. When Bisim(G) is used
as an index, an efficient “reverse” method (denoted as Bisim

�1)
is needed for answer generation. In this paper, Bisim�1 is imple-
mented by hash tables.

Graph summarization Bisim(G).4 Given a graph G =
(V,E, L,⌃). Based on the equivalent relation B of G, we define
the summary graph Bisim(G) = (V 0

, E
0
, L

0
,⌃0) which can be

regarded as yet another graph, where
1) V

0 = {[v]equiv | v 2 V };
2) E

0 = {([u]equiv, [v]equiv) | (u, v) 2 E};
3) L

0([v]equiv) = L(v); and ⌃0 = ⌃.
Intuitively, each vertex [v]equiv 2 V

0 stands for a set of
equivalent vertices U , where U ✓ V (e.g., U={u1, u2, . . . , un})
and (ui, uj) 2 B. Specifically, for each v 2 V , there is a vertex
[v]equiv 2 V

0, denoted as Bisim(v) = [v]equiv. Similarly, for each
edge (u, v) 2 E, there is an edge ([u]equiv, [v]equiv) 2 E

0.

Definition 2.1: A summarization method S of a graph G is
path-preserving if a path (u1, u2, . . . , ui) exists in G (dentoed
as S(G)) implies (S(u1), S(u2), . . . , S(ui)) is a path in S(G),
where S(uj) are nodes of S(G), j 2 [1,. . .,i].

It is straightforward to verify that bisimulation Bisim has
the path-preserving property. This is a key reason why Bisim is
adopted since popular keyword search algorithms involve numer-
ous traversals of graphs, e.g., [12], [15].
Ontology for label generalization. Next, ontology information
is modeled by a directed acyclic graph called an ontology graph,
denoted as GOnt = (VOnt, EOnt), where (a) VOnt is a set of
vertices, where ` is a label (which models types, etc), ` 2 VOnt;
and (b) each edge (`0, `) 2 EOnt is labeled with SubClassOf

or SubTypeOf s.t. `
0
, ` 2 VOnt. `

0 is also referred to as a
direct supertype of `. Next, we present some definitions for using
ontology to generalize graphs.
Generalization configuration (C). Given a knowledge graph G =
(V,E, L,⌃) and its ontology graph GOnt, a generalization con-
figuration (or simply, configuration) C is a set of mappings, and
each mapping is denoted as (` ! `

0), where `, `
0 2 ⌃ and `

0 is
either (i) a supertype of ` s.t. `, `0 2 VOnt and (`0, `) 2 EOnt, or
(ii) ` = `

0 when ` has no supertype.
Graph generalization (Gen) and specialization (Spec). A gener-
alization Gen of a graph G w.r.t. an ontology graph GOnt and
a configuration C , denoted as Gen(G,C), is to simultaneously
apply all mappings of C to the labels of the vertices of G

to obtain a generalized graph GC . Specialization is the reverse
process of generalization to recover the original graph G from
GC . Given a generalized graph GC and a configuration C ,
Spec(GC , C) simultaneously replaces the supertypes with their
subtypes according to C . For simple exposition, we may skip C

when it is clear from the context.

Definition 2.2: A generalized graph GC = Gen(G,C) is label-
preserving under C only if for each v 2 VGC either (i) (` ! `

0)
2 C , where ` and `

0 are the labels of v in G and GC , respectively,
or (ii) the label of v in G and GC are the same.

Example 2.1: Consider the data graph G in Fig. 1 and the
ontology graph GOnt in Fig. 2. Suppose S. Russell , . . ., A.

4. Since the summary graph is smaller than the original graph, we often use
the terms compression and summarization interchangeably.

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2956535, IEEE
Transactions on Knowledge and Data Engineering

4

Rodger are generalized to Person (in the dotted rectangle of
Fig. 3). UC Berkeley (resp. California) is generalized to Univ.
(resp. Western). The 100 Persons are bisimilar because 1) they
have the same label Person, and 2) their child node (Univ.) is
bisimilar since the bisimulation is a reflexive relation, i.e., the Univ
node is bisimilar to itself. The 100 Persons can be summarized
with one supernode (as shown in the dotted box in Fig. 4), due
to bisimulation. It can be observed that G

0 in Fig. 4 is path-
preserving, e.g., the path (S. Russell , UC Berkeley , California) is
summarized into (Person, Univ., Western), and label-preserving.

Exact keyword search. Several keyword query semantics have
been proposed. For instance, He et al. [12] proposes that a keyword
query is a 2-ary tuple (Q, dmax) which contains a set of keywords
Q = {q1, . . . , qn} and a distance bound dmax. Given a graph G

= (V,E, L,⌃), a match of Q in G is a subtree of G, denoted as
T = {r, p1, . . . , pn}, such that

1) T is a tree rooted at r;
2) pi is a leaf vertex of T and L(pi) = qi; and
3) dist(r, pi) dmax.

To find the top-k answers, He et al. [12] modified the above
query semantic that computes the tree which has the smallestP

i2[1,n] dist(r, pi), i.e., any tree T
0 = {r0, p01, . . . , p0n} that

satisfies Conditions (1)-(3) implies the following:
X

i2[1,n]

dist(r0, p0i) �
X

i2[1,n]

dist(r, pi) (1)

Some existing works propose top-k keyword search seman-
tics [9], [12], [23] that rank the answer graphs on the basis ofP

i2[1,n] dist(r, pi) and its variations [8].

Intuitively, this paper proposes graph generalization and sum-
marization for an index function � (Sec. 3), which takes a data
graph and an ontology graph as input and produces an index
structure as output (Def. 3.1), for many keyword search semantics.
Moreover, it proposes its reverse function ��1 (Sec. 4.2) to
support efficient answer generation. Next, we present the problem
statement. Condition 1 of Def. 2.3 is the correctness and approach;
and Condition 2 is its efficiency.

Definition 2.3: (Problem statement) Given a graph G, its on-
tology graph GOnt, a keyword query Q, and a keyword search
algorithm f , this paper studies the index function � and answer
graph generation function ��1 s.t.

1) eval(G,Q, f) = evalOnt(G,Q, f) =
eval(��1(eval(�(G),�(Q), f), Q)); and

2) the query time of evalOnt is minimized,

where eval and evalOnt are query evaluations with f on graphs
and BiG-index, respectively.

As the first effort to address the problem, we temper the claim
of supporting arbitrary fs. The technical discussions of fs only
assume � possesses label- and path-preserving properties. The two
properties are simple. Popular keyword search algorithms [12],
[15] can be readily implemented when this assumption holds.5

5. For illustration, we present the keyword search algorithms that have high
citation counts. According to Google Scholar, in Apr. 2019, the numbers of
citations of [12] and [15] were 570 and 118, respectively.

3 BISIMULATION OF GENERALIZED GRAPH INDEX
BIG-INDEX
In this section, we propose the Bisimulation of Generalized Graph
Index (BiG-index) and its cost model for index construction. The
main ideas of BiG-index are that (i) the labels of a graph are
generalized on the basis of the ontology, (ii) the generalized graph
is summarized, and (iii) these two steps are repeated alternately to
form a hierarchical index structure.

3.1 Index Definition
In this paper, we use bisimulation as a summarization function
since it is path-preserving (see Sec. 2). The index function � is
defined as follows.

Definition 3.1: (BiG-index) The BiG-index of a graph G and
its ontology graph GOnt are defined to be a binary tuple (G, C),
where G is a set of graphs {G0

, . . . , G
h}, C is a sequence of

label-preserving generalization configurations [C1
, . . . , C

h], and

G
i =

⇢
G, if i = 0,
�(Gi�1

, C
i), otherwise, (2)

where C
i is the configuration at (i� 1)-th layer.

To illustrate the details of Def. 3.1, we discuss the simple case
of h = 1. Given a data graph G

0, we construct the index by graph
generalization Gen and graph summarization Bisim. The index is
denoted as G1 = Bisim(Gen(G0

, C
1)).

(i) Graph generalization (Gen). As described in Sec. 2, a gener-
alization Gen(G0

, C
1) simultaneously replaces the labels of the

vertices with generalized ones, as specified in C
1 = {(`1!`

0
1),. . . ,

(`m!`
0
m

)}. C1 denotes that `i 2 ⌃ is generalized to `
0
i
, where `0

i

is one of the supertypes of `i in GOnt for 1 i m.
(ii) Graph summarization (Bisim). Bisimulation of a graph G can
be regarded as yet another graph. An equivalent relation of vertices
U , where U ✓ VG (e.g., U = {u1,u2,. . .,un}), can be represented
by a supernode s (e.g., s = [u1]equiv = . . . = [un]equiv). Then, we
denote the summary graph of a graph G as Bisim(G) by applying
the maximal bisimulation relation B on G as elaborated in Sec 2.

Since the generalized summary graph (G1) is yet another
graph, we can apply the abovementioned process recursively to
construct a hierarchy of graphs. We denote the original graph G as
G

0. In a recursive call, we have G
i+1 = �(Gi

, C
i), where i � 0.

We omit Ci, but use G
i+1 = �(Gi), when C

i is not relevant to
the discussion. We shall present the termination condition of the
construction procedure after the elaborations of the cost model for
BiG-index in Sec. 3.2.
Discussions. The main difference between BiG-index and previ-
ous studies that exploit bisimulation for query processing (e.g.,
[3], [10]) is that previous work exploits only the graph topologies,
whereas BiG-index indexes graphs by exploiting both the graph
topologies and ontology information.

3.2 Cost Model for BiG-index Construction
BiG-index affects query performance in non-trivial ways. The
intuitions are that, firstly, since BiG-index is an index, it should be
small in size for efficient query processing. Secondly, generating
answer graphs from the data graph requires specializing gener-
alized candidate answers. As generalizations in indexing cause
semantic distortion, querying them leads to false answers, in the
candidate answers. Hence, the distortion should be small to reduce

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2956535, IEEE
Transactions on Knowledge and Data Engineering

5

checking of false answers. These two objectives however are com-
peting. We propose a cost model for modeling the performance of
� of a given graph G and a configuration C as follows.

cost(G,C) = ↵⇥ compress(G,C) + (1�↵)⇥ distort(G,C), (3)

where ↵ (0 ↵ 1) is the weight of compress and distort. Next,
we elaborate the two components of cost.
(i) Compression ratio (compress). Given a data graph, a summa-
rization function Bisim, and the corresponding summary graph,
we define the compression ratio by the ratio of the size of the
summary graph to the data graph. The details of estimating
compress are given at the end of this section.
(ii) Semantic distortion (distort). Generalizations introduce se-
mantic distortion because they replace specific labels with gener-
alized ones. Intuitively, the less the distortion, the less the chance a
query requires filtering out irrelevant specialized summary graphs.
Consider a configuration C={`1!`

0
1, `2!`

0
2, . . . , `n!`

0
n
}. De-

note the domain of C as X={`i | (`i!`
0
i
) 2 C} and the image

as Y ={`0
i
| (`i!`

0
i
) 2 C}. The term distortion of `i due to C ,

where (`i!`
0
i
) 2 C , is defined as distort(`i) = 1� 1

|X`i
| , where

|X`i | is the number of the labels that are also generalized to the
supertype `0

i
(i.e., X`i=|{` | (`!`

0
i
) 2 C}|). It quantifies the cost

to distinguish `i from the other labels that are generalized to the
same supertype `0

i
. Then, the basic distortion of a configuration C

is the normalized semantic distortion of labels, as follows:

distort(G,C) =
�X

`i2X

distort(`i)
�
/|X|.

Note that small distortions of the frequent labels of the data
graph could lead to high distortion. Hence, we take the support of
the label `i, sup(`i) = |V`i |/|V |, where V`i = {v | v 2 V and
L(v) = `i}. The proposed distort(G,C) function is as follows:

distort(G,C) =
�X

`i2X

distort(`i)⇥ sup(`i)
�
/
�
|X|⇥

X

`i2X

sup(`i)
�
.

Example 3.1: Consider the data graph G in Fig. 1 and the
ontology graph GOnt in Fig. 2 again. Suppose C ={(P. Gra-
ham!Investor),(W. Buffett!Investor)}. Hence, distort(P. Gra-
ham) = distort(W. Buffett) = 1/2. Further, suppose there are
n1 labels, such as I. Thomas, . . ., Bruce Lee, that are gener-
alized to Person. Then, distort(I. Thomas)=. . . =distort(Bruce
Lee)=1� 1/n1.

It is not surprising that the general problem of optimal in-
dex construction is NP-hard. The proof is a reduction from the
maxSAT problem. The details are presented in [13].

Theorem 3.1. [OptGen] Given a graph, computing a configura-
tion s.t. cost (Formula 3) is minimum is NP-hard.

Estimating the cost of � of G using C . The construction of
BiG-index involves the search of a configuration that yields a
small cost. The number of the possible generalizations is O(2|⌃|).
In addition, it is computationally costly to compute compress of
cost, because it involves the data graph.
Graph sampling. A simple fact is that we do not need to explore
the whole graph because most keyword search semantics are
bounded by r hops. We sample some subgraphs from the data

Algorithm 1: One-step heuristic for determining a maximal
configuration

Input: A data graph G, an ontology graph GOnt, a cost
threshold ✓ and max. number of generalizations ⇧

Output: A configuration C
1 initialize the configuration C = ;
2 initialize a priority query Cgrdy in the ascending order of the

estimated cost
3 for ci = (`i ! `0i) 2 Eont and ` 2 ⌃ do
4 Cgrdy.insert(<ci, cost(G, {ci})>)
5 while Cgrdy.isNotEmpty or |C| < ⇧ do
6 <ci, cost(G, {ci})> = Cgrdy.removeTop()
7 if cost(G,C [{ci}) ✓ then
8 C.insert(ci)
9 else

10 return C
11 return C

graph, such that their radii are r. The average compress values
of sample subgraphs due to a configuration gives an indication
of compress. We verified by experiments that the estimates accu-
rately indicate the relative compress values of the generalizations.

To sample a subgraph, we randomly select a vertex v from
the graph. We determine the vertices which are reachable from v

within r hops to form a vertex set, denoted as Vv . The sample
graph is the node-induced subgraph of Vv . The sampled graphs
are obtained by sampling such node-induced subgraphs n times.

Assume that the differences in the compress values of the sam-
pled graphs follow a Gaussian distribution and have a zero mean.
The sample size can be determined by estimation of proportion.
Given a specific error bounded E, we determine the sample size n
by the formula n = 0.5⇥0.5(z

E
)2, where z is the standard normal

value corresponding to a desired level of confidence. For example,
when the maximum allowable error E = 5% and z = 1.96, the
sample size n = 400.

As either the number of hops r or the number of sample
graphs increases, the possibilities of compressing the nodes are
closer to the accurate compress value. However, the estimated
cost increases as well. Hence, we determine the parameters by
experiments to efficiently determine the compress cost.
Index construction. Due to the hardness of computing the op-
timum configuration, we propose a heuristic algorithm, shown in
Algo. 1. to construct the index layer by layer. Initially, the configu-
ration C is empty. Given a generalization ci = (`i ! `

0
i
) 2 Eont,

w.r.t the data graph G and its ontology GOnt, we estimate the
cost of ci as cost(G, {ci}) (Formula 3). compress and distort of
Formula 3 are computed as discussed in this subsection. We then
maintain a priority queue, in the ascending order of the estimated
costs. We then check the generalization ci from the front of the
queue iteratively. If the cost of C [{ci} is smaller than a user-
defined threshold ✓, we set C to C [{ci}. Otherwise, we simply
return C . This procedure terminates when the queue is empty or
the size of C is larger than a user-defined budget ⇧. We then use
C returned by Algo. 1 to generalize and summarize G to obtain
G

0. Users may increase the value of ✓ and apply Algo. 1 on G
0

and GOnt again to obtain another layer of the index.
Maintenance of BiG-index. When the data graph is updated,
the summary graph hierarchy G must be maintained. We adopt
the efficient maintenance of the Bisim of G as the practical
incremental maintenance algorithm of Bisim, (e.g., [7]).

While ontologies are often static, in the case of their updates,
BiG-index is maintained as follows: (i) new ontologies do not

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2956535, IEEE
Transactions on Knowledge and Data Engineering

6

make a BiG-index incorrect, and BiG-index can be reconstructed
periodically to maintain its efficiency; (ii) when a subtype-
supertype relationship is removed, BiG-index determines the con-
figurations that are affected by the removal and specializes the
summary graphs so that the affected relationships are not involved
in any configurations in the updated BiG-index. To minimize the
index size, BiG-index can be recomputed occasionally.

4 QUERY PROCESSING WITH BiG-index
This section presents the major query processing steps of
BiG-index (Fig. 5). In a nutshell, we exploit the ontology in-
formation to generalize the keyword queries (Sec. 4.1), process
the queries on the summary graphs and generates the candidate
and then final answers (Sec. 4.2). Further, we propose a few
optimizations for improving efficiency (Sec. 4.3).

4.1 Query Generalization
In the first step, we generalize the query keywords to the m-
th layer of BiG-index. The query answer at the m-th layer is
determined; its node sets are specialized to the 1st layer; and
the final answer graphs are generated using the data graph (the
0th layer). The query cost is affected by two major factors. First,
query evaluation in the higher layer reduces the query time since
the summary graphs are small and reduce redundant computation.
However, generating the final answer graphs from a generalized
layer requires time to specialize the summary graphs and to prune
irrelevant graphs.
Notations for query processing. We introduce some notations
for modeling the query cost. Given a graph G and a se-
quence of configurations C=[C1,C2,. . .,Ch], we use the symbol
�m(G, Cm) to denote the index at the m-th layer by applying
� on G with Cm, i.e., �m=�(. . .�(�(G,C

1), C2), . . . , Cm),
where Cm=[C1,C2,. . .,Cm] is a subsequence of C. Again, we
omit C when C is not relevant to the discussion. We use �m(u)
to denote the summarized vertex of u in �m(G). Given a
set of query keywords, Q={q1, q2, . . . , qn}, and a subsequence
of configurations, Cm=[C1,. . .,Cm], BiG-index generalizes Q

to the m-th layer by applying � on Q with Cm, denoted
as Gen

m(Q, Cm)=Gen(. . .Gen(Gen(Q,C
1), C2), . . . , Cm).6

Similarly, we use Gen
m(Q) when Cm is irrelevant.

Then, we formulate the cost model of query evaluation at the
m-th layer: costq(m,�(G, Cm)) =

�(1� |�m(G, Cm)|
|G|) + (1� �)

P
i=1..n sup(Genm(qi, Cm), Gm)P

i=1..n sup(qi, G)
,

(4)

where sup(qi, G) is the percentage of the number of occurrences
of qi in V (G), | · | is the graph size and � 2 [0, 1] is a weight.
The first term is the compression ratio of the summary graph at
the m-th layer. The smaller the summary graph, the more efficient
the query processing. The second term is the support of the query
keywords in the summary graph. It increases as m increases and
more computation is needed to specialize labels to those of the
answer graphs at layer 0. We then present the query generalization
problem in Def. 4.1.

6. Since Q is a set of query keyword nodes and does not have non-trivial
paths, it is more intuitive to present the query generalization using Genm(Q).
This is slightly different from the �(Q) symbol of the problem statement.

Algorithm 2: Hierarchical query processing (evalOnt)
Input: Query Q, BiG-index: (G, C), 1 < m |C|
Output: Query answer A

1 Am = eval(Gm, Qm, f), where Qm = Genm(Q, Cm), the
generalization of Q to the layer m using Cm (Def. 4.1)

2 Am�1 = Spec(Am)
3 Am�1 = filter(Am�1,Genm�1(Q, C))
4 while A1 is not obtained (i.e., m 6= 1), do repeat Step 2 with

m=m� 1
5 return

S
a2A1 ans graph gen(am, a) where am = �(a)

Generalized Answer am(Subgraph of Fig. 4/ Example for ans graph gen)

A!fS. Idreosg

U!fHarvard Univ., Cornell Univ., Columbia Univ.g

E!fMassachusetts, New Yorkg

O!fIvy Leaguegp2

Academics

Univ.

Eastern Organization

p1

p3

Joint Vertex
Vertex Specialization(Spec)

Fig. 6: A generalized answer graph and vertex specialization

Definition 4.1: Optimal query generalization. Given a set of
query keywords Q : {q1, q2, . . . , qn}, and the configurations of C
of a BiG-index, the optimal query layer m of Q for the BiG-index
satisfies the following:

1) |Genm(Q, Cm)| = |Q|; and
2) for all k, k is a layer of BiG-index and m 6= k, costq(m)

costq(k) (Formula 4)

Condition 1 specifies that the generalized query cannot gen-
eralize multiple query keywords into one. Otherwise, this re-
quires the modifications to existing keyword search algorithms
for resolving query keywords. Condition 2 simply ensures optimal
efficiency. Since the number of layers of BiG-index is often not
large and Formula 4 can be efficiently computed, the optimal layer
is obtained by exhaustive search.

4.2 Query Processing on Summary Graph Hierarchy
The major steps of the hierarchical query processing evalOnt(G,
Q, f) are summarized in Algo. 2. The user-defined keyword
search algorithm is f (as discussed in Sec 2), and the BiG-index
is denoted as (G, C).
Step 1. Initially, eval evaluates Qm at the m-th layer. We obtain
the generalized answer set at the m-th layer, denoted as A

m =
{am0 , . . . , a

m
n
}, e.g., the solid ovals in G2 of Fig. 5.

Step 2. We specialize each generalized answer am
i

of Am to the
(m-1)-th layer to form A

m�1, denoted as Spec(am
i
) (as discussed

in Sec. 2). For each vertex u
m

j
in a

m

i
, BiG-index specializes um

j
to

the (m-1)-th layer by Spec(um

j
). Then, Am�1 = Spec(Am) =

{Spec(am
i
) | am

i
2 A

m} (Line 2 of Algo. 2).
Step 3. A vertex of am

i
that is matched to a keyword qk can be

specialized to a set of generalized answer vertices at the (m-1)-th
layer, e.g., the dotted ovals in Fig 5. A vertex is pruned if its label
is not a supertype of qk, as stated in Prop. 4.1.

Proposition 4.1: [Candidate filtering] Consider a vertex u
m

j
of

a generalized answer a
m

i
that matches a query keyword qk, at

the m-th layer G
m. Denote that the set of vertices U

m�1
j

is
obtained by specializing u

m

j
. v 2 U

m�1
j

is pruned if Lm�1(v) 6=
Gen

m�1(qk, Cm�1).

For concise presentation, we skip the verbose details of filter
that implements the pruning. The set of vertices after filter forms
a generalized answer a

m�1
i

= (V m�1
a

, E
m�1
a

) at the (m-1)-th

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2956535, IEEE
Transactions on Knowledge and Data Engineering

7

Algorithm 3: Answer graph generation (Step 5 of Algo-
rithm 2: ans graph gen)

Input: A generalized answer graph a
m = (V m

a
, E

m
a
), its

specialized node set a = (V 1
a
, E

1
a
) where E

1
a
= ;

Output: A set of specialized answer graphs A0

1 initialize intermediate partial ans. graph Gpar = ;
2 initialize A

0 = {Gpar}
3 build a specialization order O for a with a

m

4 for ai 2 O do
// Enlarge the partial answers

5 A
0 = enlarge(ai, a, A0)

6 return A
0

7 Function enlarge(ai, a, A0)
8 initialize A

0
next

= ;
// v is a specailized node of ai

9 for v 2 Spec(ai) do
10 for Gpar 2 A

0 do
11 if v is qualified to enlarge Gpar by Def. 4.2 then
12 A

0
next

= A
0
next

[{Gpar.add(v)}
13 return A

0
next

layer. It is worth noting that Em�1
a

= ; when m 6= 1, to avoid
costly intermediate answer graph generation. Therefore, a

m�1

when m 6= 1 is described as a node set.
Step 4. If m does not equal 1, the algorithm repeats Step 2.
Otherwise, Algo. 2 generates the answer graphs A

0 from A
1.

Lemma 4.1 states that Steps 1–4 of Algo. 2 determine a set of
candidate answers of the query.

Lemma 4.1. Given a 2 eval(G,Q, f) and v is a vertex of a
implies 9a1

i
s.t. �1(v) 2 a

1
i
, a1

i
is a vertex of A1 and A

1 is
obtained from Steps 1–4 of evalOnt.

Proof: (Sketch) The lemma is established by a proof of
contradiction. Suppose there is an answer node v that is returned
by eval(G,Q, f) but �1(v) is not returned by Steps 1-4 of
evalOnt, (i) since v is an answer node, �m(v) must be in
eval(Gm

, Q
m
, f), by definition; (ii) the specializations of �m(v)

do not satisfy the candidate filtering condition and hence are not
pruned. Hence, a contradiction is established.
Step 5. We generate the answer graphs A

0 from A
1 (the solid

ovals in G0 of Fig. 5). Note that Lemma 4.1 implies that the node
set returned by Steps 1–4 is not necessarily an answer node set. We
present a basic algorithm (Algo. 3) for generating answer graphs.

Algo. 3 constructs A
0 by enlarging a set of partial answer

graphs Gpar . Initially, Gpar is empty. Given a generalized answer
graph a, we fix an order to traverse its vertices Va (Line 2, to be
detailed in Sec. 4.3.2). We obtain the specialized vertices of ai

(Line 9) and check if they are qualified (see Def. 4.2 for details)
to form larger (partial) answer graphs in (Lines 10-12).
Definition 4.2: (Vertex qualification) Given a generalized answer
graph a

m = (V m
a
, E

m
a
), a partial answer Gpar (which is a

subgraph of G
0 = (V 0

, E
0)), a vertex v 2 V

0, and a query
keyword q, v is qualified to enlarge Gpar w.r.t q iff

• �(v) 2 V
m
a

, L(�(v)) = Gen(q), L(v) = q; and
• 8u 2 VGpar , (�(u),�(v)) 2 E

m
a

) (u, v) 2 E
0.

Example 4.1: Consider a query Q={Eastern,Organization}.
The subgraph in the dashed region of Fig. 4 is one possible gener-
alized answer am. Suppose the specialization order is O1=[Univ.,
Eastern, Academics, Organization]. Spec(Univ.)={Harvard

Univ.,Cornel Univ.,Columbia Univ.}, where each vertex in
Spec(Univ.) forms a partial answer Gpar . Without loss of gen-
erality, we take Gpar = {Harvard Univ.} as an example. Sup-
pose Eastern is specialized to Spec(Eastern)={Massachusetts,
New York}.Massachusetts is qualified to enlarge Gpar since
(Univ.,Eastern) 2 E

m
a

and (Harvard Univ.,Massachusetts)
2 E

0. However, New York is not qualified to enlarge
Gpar since there is no edge between Massachusetts and
Columbia Univ. in E

0. Hence BiG-index enlarges Gpar as
{Harvard Univ.,Massachusetts} as shown in Fig. 7

Theorem 4.2. evalOnt(G, Q, f) = eval(G, Q, f).

Proof: (Sketch) By Lemma 4.1, Algo. 2 correctly computes
A

0. The remaining argument is to establish that eval(G, Q, f)
=

S
a2A1

ans graph gen(am,a). ()) Suppose there is an answer

graph a in eval(G, Q, f) but not returned by Algo. 2. This implies:
i) 9v 2 Va, �(v) 62 A

1; or ii) 9(u, v) 2 Ea, (�(u), �(v))
62 EAm . The former contradicts Lemma 4.1, whereas the latter
contradicts the path-preserving property and Prop. 4.2. (() The
answer graphs generated by Step 5 from A

1 are in eval(G, Q, f).
This is established by analyzing all execution paths of Algo. 3.

4.3 Optimizations for Hierarchical Query Processing
The performance of BiG-index is significantly affected by the
answer graph generation. Hence, Algo. 2 localizes the logic of
answer graph generation at the last layer, in Step 5. The answer
graphs at the higher layers {Am�1,. . ., A1} are node sets. Next,
we present a few optimizations to prune useless nodes from
candidate node sets and optimize the generation.

4.3.1 Early specialization of keyword nodes
To distinguish the nodes containing the query keywords from the
others, we refer the keyword nodes to be those whose labels are
either the query keywords or their generalizations.

Some query keywords are selective and lead to small node
sets. However, the generalized keywords are often not as selective.
Hence, we propose to introduce an attribute isKey to the nodes of
generalized answer graphs. The isKey of a node is true iff it is
matched to a generalized query keyword. isKey helps to prune
candidate nodes in two ways.

First, given a generalized answer node a
m

i
in a

m (a general-
ized answer in A

m) and its isKey is true, we specialize a
m

i
and

keep it only if one of the nodes in Spec(am
i

) satisfies the keyword
of the query. Second, for any keyword node am

i
in the m-th layer,

we specialize a
m

i
in the (m-1)-th layer (Line 2 of Algo. 2). For

any vertex a
m�1
j

from the specialization of am
i

, isKey of am�1
j

is
true iff L(am�1

j
) is a supertype of the query keyword.

4.3.2 Specialization order
Since ans graph gen involves nodes of the data graph G

0,
we propose the specialization order of answer nodes used in
Line 2 of Algo. 3 to minimize the number of partial graphs
being constructed. Suppose a = {a1, a2, . . . , as} is the set of
candidate answer nodes. We order the nodes on the basis of the
numbers of nodes they are specialized to, as determined from the
implementation of ��1. Specifically, the specialization order of
a is a permutation of a, denoted as O = (a01, a

0
2, . . . , a

0
s
), s.t.,

for any a
0
i
, a

0
j
2 O, a0

i
, a

0
j
2 a and |��1(a0

i
)| |��1(a0

j
)| iff

a
0
i
� a

0
j
.

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2956535, IEEE
Transactions on Knowledge and Data Engineering

8

ans graph gen : \not qualified"

Using Order O1=[U, E, A, O]

Spec(E) Spec(A) Spec(O)

Using Order O2=[A, U, E, O]

Spec(A) Spec(U) Spec(E) Spec(O)

S

1 intermediate ans.

Examples of

S C1

S C2

S H
H

M

S

H

N

S

H

M

S

I

final ans.

Spec(U)

3 intermediate ans.

H

M

S

I

final ans.
C1 N

C2 N

H M

C1 M

H N

H

M

S

M

C1

S

M

C2

SC2 M

execution on a
m

: \edge being verified"
: \edge verified"

C1

C2

H

1

2

(i) (ii) (iii) (iv)

(i) (ii) (iii) (iv)

Fig. 7: Answer graph generation

p ans graph gen execution on a
m

Spec(p1)

Spec(p2)

Spec(p3)

S H

H M C1 N C2 N

H I C1 I C2 I

H

M

S

I

p01

p03 p003

Step 1 Path decomposition

Example of

a
m

! fp1; p2; p3g

Step 2 Path answer generation

Step 3 Answer graph generation by path join

Joint Vertex

H

S

NN

C1 C2

I

C1

I

C2

final ans.

, ,

,,

means \not qualified"

Keyword Abbr.
Academics A
Univ. U
Eastern E
Organization O
S. Idreos S
Ivy League I
Harvard Univ. H
Cornell Univ. C1
Columbia Univ. C2
Massachusetts M
New York N

keywords in examples
Abbreviation of

Fig. 8: Path-based answer generation

Example 4.2: We follow the query Q and the generalized answer

a
m in Example 4.1. There are 4! = 24 different specialization

orders. We show that specialization ordering will affect the number
of intermediate partial answers with Figs. 6 and 7. If we specialize
a subgraph using the order O1=[Univ.,Eastern, Academics, Or-
ganization], there are three partial answers generated including
{Harvard Univ., Massachusetts}, {Cornell Univ., New York},
{Columbia Univ., New York} for generating the answer subgraphs
after the first two vertices are specialized. Consider another spe-
cialization order O2=[Academics, Univ., Eastern, Organization],
there is only one intermediate partial answer generated.

4.3.3 Path-based answer generation
It is worth noting that ans graph gen specializes one vertex at
a time. A generalized vertex may be checked many times for
enlarging different partial answers. Therefore, we specialize one
path at a time to avoid such duplicated computation. Moreover,
the paths that contain keyword nodes, which are often more
selective than other nodes and lead to small candidate answer sets.
Enlarging the partial answers with them maintain small candidate
sets.

We then elaborate some crucial details of the path-based
answer generation algorithm p ans graph gen (Algo. 4), which
replaces ans graph gen of Step 5 of the (Algo 2).
Joint vertices. A joint vertex (of a summary graph) is a vertex
of a degree larger than 2. The isJoint is an attribute of a node v

such that v.isJoint is true iff v is a joint vertex. Intuitively, we can
decompose a graph into a set of paths at joint vertices.

Step 1. Path decomposition of a generalized answer (Lines 2,
8–16). Given a generalized answer graph a

m, we decompose it
into a canonical path set P at its joint vertices. We denote a path
p 2 P as (s, . . . , t), where s (resp. t) is the source vertex (resp.
target vertex) of p. s is a joint vertex and t is a joint vertex or a
leaf vertex.

Step 2. Path answer generation (Lines 3–6). We special-
ize one path at a time using Algo. 3: Given a path pi =
(si, . . . , ti) 2 P , we specialize pi into a path set Api , such that
8p0

i
= (s0

i
, . . . , t

0
i
) 2 Api , s0

i
2 ��1(si),. . . and t

0
i
2 ��1(ti).

Step 3. Construction of answer graph by path join (Lines 5,
17–26). We construct the answer graph by joining the paths at joint

vertices, which has been recorded in Step 1. Specifically, given a
partial answer graph Gpar and a path pj 2 Api , if pj is qualified
to Gpar (Def. 4.3), we enlarge Gpar with pj .

Definition 4.3: (Path qualification) Given a set of generalized
paths P , a partial answer Gpar and a path p = (s, . . . , t) in G

0,
p is qualified to enlarge Gpar iff

• 8p0 = (s0, . . . , t0), p0 is a path of Gpar , �(s) = �(s0), and
�(s).isJoint is true) s = s

0.

Example 4.3: Consider the generalized answer graph a
m in

Example 4.1. Univ. is a joint vertex, since its degree is larger than
2. We decompose a

m into 3 paths p1 = (Academics,Univ.),
p2 = (Univ.,Eastern) and p3 = (Univ.,Organization). Con-
sider p1 and p3. The main difference between the path qual-
ification and vertex qualification is that the path qualifica-
tion verifies on the joint vertex and is more selective. More-
over, Algo 4 often maintains small intermediate partial an-
swers. After answer generation, p1 is specialized into a path
p
0
1 = (S. Idreos,Harvard Univ.), and p3 is specialized into

two paths, p
0
3 = (Harvard Univ., Ivy League) and p

00
3 =

(Cornel Univ., Ivy League). We assume the current partial answer
is Gpar = p

0
1. p03 is qualified to enlarge Gpar since p01 and p

0
3 have

the same joint vertex Harvard Univ.. However, p003 is not qualified
since the specialized joint vertices are different (see Fig. 8).

4.3.4 Early termination after the first k answers
Finally, in applications where users retrieve the first k answers,
BiG-index can be readily modified to return them and stops
retrieving the rest. The idea is to specialize the candidate answer
nodes only when there are not yet k answers. Specifically, assume
that the generalized answer set is Am = {am1 , a

m
2 , . . . , a

m
s
} in the

m-th layer. BiG-index specializes one am
i

at a time, by Spec(am
i
)

from 1 to i to the data graph layer, and construct its answer graphs,
instead of specializing the entire Am set. The algorithm terminates
when the number of answer graphs is k.

5 BOOST KEYWORD SEARCH WITH THE BiG-index
FRAMEWORK

In this section, we present how BiG-index speeds up some
algorithms for popular keyword search semantics (e.g., Blinks

and r-clique). In particular, we take backward traversal, ranked

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2956535, IEEE
Transactions on Knowledge and Data Engineering

9

Algorithm 4: Path-based answer graph generation (Step 5
of Algorithm 2: p ans graph gen)

Input: A generalized answer graph a
m = (V m

a
, E

m
a
), its

specialized node set A1 = (V 1
, E

1) where V
1 = ;

Output: A set of specialized answer graphs A0

1 initialize Vjoint = ;, A0 = {Gpar}
// decompose the generalized answer graph

2 P = answer decomposition(am)
3 for pi 2 P do

// specialized the generalized path
4 Api = ans graph gen(pi, A1)
5 A

0 = enlarge(Api , A
0) // enlarge the partial answers

6 return A
0

7 Function answer decomposition(am)
8 initialize P = ;
9 for v 2 V

m
a

do
10 if v.isJoint then
11 Vjoint.add(v)
12 decompose a at the joint vertex set to generate P

13 return P

14 Function enlarge(Api , A0)
15 initialize A

0
next

= ;
16 for p 2 Api // p is a specialized path of pi do
17 for Gpar 2 A

0 do
18 if p is qualified to enlarge Gpar by Def. 4.3

then
19 A

0
next

= A
0
next

[{Gpar.add(p)}
20 return A

0
next

keyword search, and shortest path as examples in Secs. 5.1 to
5.3, respectively. Each algorithm is plugged into the evaluation
framework (eval) of BiG-index, where specialization, pruning,
and answer generation are adopted. Our framework can be also
applied to optimize the algorithms that contain these operations
with minor modifications, e.g., [12], [15], [1], [14], [32].

5.1 Backward Keyword Search
We start with the backward search in a graph, which ensures
the answer graph is connected. In the data graph without any
connectivity index, a common algorithm to answer the query is
to explore the graph starting at the vertices that contain the query
keywords. For example, Bhalotia et al. [1] presented the first
backward keyword search algorithm. He et al. [12] have proposed
a search strategy on the backward expansion.
Backward keyword search (bkws). We next summarize the
major steps of the backward keyword search [1].
Initialization. Consider a query keyword set Q =
{q1, q2, . . . , qn}. We denote the set of vertices that contain
the keyword qi as Vqi . We denote the set of vertices that could
reach one of the vertices in Vqi as Vi.

Backward expansion. In each search step, the vertex set Vi with
the minimal size is processed as follows. The vertex v 2 Vi that
has the shortest distance to Vqi is chosen for backward expansion.
In the expansion, u is added to Vi, where (u, v) is an incoming
edge of v, and u is checked whether it can be an answer root.
If yes, the answer whose root is u is recorded. Otherwise, the
backward expansion continues.
Answer discovery. It discovers an answer root r such that r can
reach a node from each Vqi , for all qi in Q.

We next show boost-bkws, which is the bkws version on top
of BiG-index.

(1) Plugin and evaluation (eval). Given a set of query keywords,
we generalize the query keywords to the optimal query layer, m.
BiG-index loads the m-th layer from the disk and takes bkws

as f to compute eval(�m(G),Genm(Q), bkws). The answer
are a set of pairs of answer subtrees and their roots, denoted
as A

m = {(am1 , r1), (am2 , r2), . . . , (amn , rn)}. The backward
search of bkws requires the connectivity of the answer graph. By
Prop. 5.1 (below), Am contains all generalized answers.

To present Prop. 5.1, we overload slightly the notation �m(u)
to denote the summarized vertex of u in �m(G), where u 2 G.
Prop. 5.1 is derived from the path-preserving property of Bisim.

Proposition 5.1: Given a graph G and its m-th layer index G
m, if

reach(u, v G)) reach(�m(u),�m(v),�m(G)), where u and v

are the vertices of G, and reach(u, v,G) denotes the reachability
from u to v in G.

(2) Specialization and pruning (Spec). For each subtree a
m =

(V m
a
, E

m
a
) 2 A

m, we denote the keyword node set Km ✓ V
m
a

(Km

i
= {ui} ✓ K

m, where ui has the label Gen
m(qi))

of bkws. BiG-index specializes K
m and V

m
a
\Km layer by

layer. For each keyword node u
m

j
(um

j
2 K

m

i
), BiG-index

specializes u
m

j
into a set of vertices in the (m�1)-th layer by

Spec(um

j
), denoted as U

m�1
i,j

. The node v 2 U
m�1
i,j

is pruned
if L

m�1(v) 6= Gen
m�1(qi). Then, BiG-index specializes K

m

by K
m�1
i

=
S

um
j 2Km

i

U
m�1
i,j

and K
m�1 =

S
qi2Q

K
m�1
i

. Then,

BiG-index simply specializes V
m
a
\Km, but it does not prune

these nodes by their labels, since they are kept just for the
connectivity of each a

m. This procedure terminates when m=1.

(3) Answer generation and verification. BiG-index performs a
depth first traversal to generate the final answers, i.e., at layer
0. Each keyword node u in U

0
j

is initialized as a candidate
partial answer graph, denoted as Gpar . To reduce the number
of candidate answers, BiG-index specializes the set U0

j
, among

U
0
1 , . . . , U

0
n

, that has the fewest keyword nodes. According to this
specialization order, BiG-index specializes each vertex ai 2 Vam .
If the vertex v 2 Spec(ai) is qualified to enlarge Gpar , Gpar

is enlarged with v. BiG-index continues to enlarge Gpars. Other-
wise, if a Gpar cannot be enlarged and is not yet an final answer,
it is pruned. This procedure terminates when all the vertices in a

m

are specialized or there are no candidate partial answers.

5.2 Distance-based Keyword Search
Next, we present the shortest distance computation that is crucial
in a representative keyword search r-clique. We recall that r-clique
[15] determines the subgraph that all pairs of the vertices that
contain the keywords are reachable to each other within r hops,
where r is a user-specified parameter. [15] proposes an approxi-
mate algorithm to compute the top-k answers in PTIME. We use
our notations to present the major steps of distance-based keyword
search (dkws), as follows:

Initialization. Initially, the keywords qis are matched to a set of
keyword nodes, denoted as Vqis. The search space of the query
answers is denoted as SP=(Vq1 , . . . , Vqn). r-clique inserts a
pair of the search space SP and an approximate best answer
a={u1, . . . , un} of SP into a priority queue S in ascending
order according to the weight of a, which is the total distance

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2956535, IEEE
Transactions on Knowledge and Data Engineering

10

between keyword nodes. Given an SP , to find the best answer
a, r-clique computes the shortest distances between ui 2 Vqi

and Vqj s, where i 6=j and j 2 [1, n]. In particular, it com-
putes a0={u0

1, . . . u
0
i
, . . . , u

0
n
} as a candidate best answer, where

u
0
j
=arg min

8uj2Vqj

dist(ui, uj). The best answer is the best a among

all candidate answers obtained from the abovementioned method.
Search space decomposition. r-clique decomposes the search
space recursively. In each iteration, the pair (SP, a) in the front
of S is removed and a={u1, . . . , un} is added into the answer
set. r-clique decomposes the search space SP into n subspaces as
follows: SPi=(Vq1 ,. . ., Vqi\{ui},. . .,Vqn), i 2 [1, n]. r-clique
inserts the search subspaces SPi into S together with their
respective best answers.
Termination. The search procedure terminates when S is empty or
the top-k answers are found.

Next, we present boost-dkws, the dkws version on top of
BiG-index.
(1) Plugin and evaluation (eval). Kargar et al. [15] index the
distance information in a neighbor list [15]. In BiG-index, we
adopt the neighbor list and build it on the m-th layer. Then,
we take dkws as f to compute eval(�m(G),Genm(Q), dkws).
When an answer pattern a

m in a search space SB is generated,
we specialize a

m (to be detailed next) and decompose the search
space, which is consistent with [15]. The correctness of boost-
dkws is established by applying Prop. 5.2.

Proposition 5.2: Given a graph G and its m-th layer index G
m,

dist(�m(u), �m(v), Gm) dist(u, v, G), where u and v 2 V ,
and dist(u, v, G) denotes the shortest distance from u to v in G.

Proof: We denote the shortest path between u and v as
p = (u, v0, v1, . . . , v) in G. For any edge e = (s, t) 2 p, there
is an edge e

0 = (s0, t0) in G
i where s

0 = �m(s) and t
0 = �m(t)

based on the definition of BiG-index (Sec 3.1). Therefore, there is
a path p

0 = (�m(u),�m(v0),�m(v1) . . . ,�m(v)) in G
m. The

shortest path between �m(u) and �m(v), dist(�m(u), �m(v),
G

m) |p0|= dist(u, v, G).
(2) Specialization and pruning (Spec). This step is identical to
specialization and pruning discussed in Sec. 5.1.
(3) Answer generation and verification. This step is identical to
answer generation and verification discussed in Sec. 5.1.

5.3 Ranked Keyword Search
Another common algorithm is keyword search ranking. We take
Blinks [12] as an example to show how BiG-index speeds up
the search procedure and preserves the ranking property. Blinks
proposes a single-level index and bi-level index for the distinct
root keyword search semantic query. As presented in [12], the
single-level index is infeasible for large graphs, since the index
requires O(|V |2) space. Therefore, we only demonstrate how to
adopt the bi-level index. We present the major steps of ranked
keyword search (rkws) as follows:
Index construction. Each keyword ` 2 ⌃ is associated with a
keyword-node list containing the vertices which can reach `,
ordered by their shortest distances to `. Each pair of a vertex
v and a keyword ` is associated with a node-keyword map that
stores the shortest distance from v to the vertex containing `.
Expanding backward and forward. Given a keyword query
{q1, . . . , qn}, we initialize the set of vertices Vqi containing

keyword qi. We expand each keyword in a round-robin manner
by traversing the vertex v backward in the keyword-node list.
Then, we look up v from the node-keyword map and check if
v is an answer root. If the root is not yet found, we continue
the expansion above. This procedure terminates when the top-k
answers are found.
Ranking function. A ranking function is defined for the top-k
answers. In this work, we offer an API to input the ranking
function as rank(a, Q, G, scr), where a =(Va, Ea) is the
matching answer, Q is the keyword query, G is the data graph, and
scr is a score function. We illustrate scr with the distance-based
score function of [12]: scr(a) =

P
u,v2Va

dist(u, v). Given two
matching answers a and b, scr(a) scr(b) iff rank(a,Q,G,scr)
rank(b,Q,G,scr).

Proposition 5.3: Given a graph G, its summary graph G
m at the

m-th layer, a and b as two elements of the answer set A, and a
distance-bsed score function scr(a) =

P
u,v2Va

dist(u, v),
if rank(a,Q,G

m
, scr) rank(b,Q,G

m
, scr), then

rank(a0, Q,G
0
, scr) rank(b0, Q,G

0
, scr), where

a
0 2 ��1(a) and b

0 2 ��1(b).

Proof: (1) Given any two nodes u and v of an answer
graph a

0 where u, v 2 Va0 dist(�m(u), �m(v)) dist(u, v) (by
Prop. 5.2). (2) We next prove that dist(�m(u), �m(v)) � dist(u,
v). The proof is similar to Prop 5.2. Denote the path between
�m(u) and �m(v) as p = (�m(u), . . . ,�m(v)). After answer
generation, the vertices in a

0 are qualified to form a. Given any
edge (xi, xi+1) in p, there is an edge (��1(xi),��1(xi+1)) in
a
0 (by Def 4.2). Thus, dist(�m(u), �m(v)) � dist(u,v).

Putting (1) and (2) together, we have dist(�m(u),�m(v))=
dist(u, v). scr(a0) =

P
dist(u, v) =

P
dist(�(u),�(v)) =

scr(a).
Since rank(a,Q,G

m
, scr) rank(b,Q,G

m
, scr), we have

scr(a) scr(b). And then we have scr(a0) = scr(a)
scr(b) = scr(b0). Therefore, we deduce that rank(a0, Q,G

0
, scr)

 rank(b0, Q,G
0
, scr).

Finally, we present boost-rkws, the rkws version on top of
BiG-index.
(1) Plugin and evaluation (eval). He et al. define a ranking func-
tion based on distance. The pattern answer which has the smaller
distance gets a higher ranking. As an example, we take the rkws

as f to compute eval(�m(G),Genm(Q), rkws). The correctness
of the ranking function is due to a direct application of Prop. 5.3.
We specialize the answer graph once it is found in the query layer.
(2) Specialization and pruning (Spec). For each answer graph
a
m = (Va, Ea) 2 A

m, the specialization and pruning techniques
are the same as those in boost-bkws.
(3) Answer generation and verification. The answer generation
and verification function are similar to those of boost-bkws. As
in Prop. 5.3, given two generalized answer graphs a and b in
the query layer, and the ranking function scr is a distance-based
function, if the ranking of a is higher than that of b, then the
ranking of a0 is higher than that of b0 where a

0 2 ��1(a) and
b
0 2 ��1(b), respectively. The generalized answer graph with

higher ranking returned in query layer can be specialized first.

6 EXPERIMENTAL EVALUATION
This section presents a detailed experimental evaluation to inves-
tigate the efficiency of BiG-index and the effectiveness of the
optimization techniques.

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2956535, IEEE
Transactions on Knowledge and Data Engineering

11

TABLE 2: Statistics of real-world and synthetic datasets
Datasets |V | |E| |Vont| |Eont|
YAGO3 2,635,317 5,260,573 5,699,253 17,497,481
Dbpedia 5,795,123 15,752,299 5,699,253 17,497,481
IMDB 1,673,076 6,074,782 5,699,253 17,497,481

synt-1M 1,000,000 3,000,000 5,000 10,000
synt-2M 2,000,000 6,000,000 5,000 10,000
synt-4M 4,000,000 8,000,000 5,000 10,000
synt-8M 8,000,000 16,000,000 5,000 10,000

TABLE 3: Index size of the 1 layer of BiG-index
Datasets Layer 1 size (|V |+|E|) Size ratio
YAGO3 0.39M + 1.80M 0.2785
Dbpedia 1.74M + 11.3M 0.6052
IMDB 0.46M + 2.38M 0.3666

synt-1M 0.53M + 2.98M 0.8775
synt-2M 1.02M + 5.93M 0.8687
synt-4M 1.61M + 7.67M 0.7730
synt-8M 3.18M + 15.01M 0.7579

6.1 Experimental Setup
6.1.1 Software and hardware
We implemented BiG-index, Blinks and r-clique in Java. Our
experiments were run on a machine with a 2.93GHz CPU and
64GB memory running CentOS 7.4. The implementation was
made memory-resident.

6.1.2 Datasets and default indexes
We used both real-life and synthetic datasets in our experiments.
Tab. 2 summarizes some characteristics of the datasets and their
ontology graphs. The sizes of layer 1 of the BiG-indexes are
presented in Tab. 3. Those of other layers are smaller than layer
1’s. The sizes of all the layers are reported in Fig. 9.

YAGO3.7 YAGO3 [17] is a large semantic knowledge base, derived
from Wikipedia, WordNet and GeoNames. YAGO3 combines
the cleaned taxonomy of WordNet with the Wikipedia category
system,8 assigning entities to more than 350K classes. YAGO3
separates the ontology information as TAXONOMY. We generated
an ontology graph by combining the tables yagoTaxonomy and
yagoTypes.

Dbpedia.9 Dbpedia (v3.9) is a knowledge graph with 5.8M ver-
tices and 15.8M edges. It extracts structured content from the
information created in various Wikimedia projects. Since there
are 783 entities in the ontology graph and more than 80% of the
entities in a data graph cannot match the ontology graph, we used
the ontology graph of YAGO3 for Dbpedia. We noted that 73.2%
of the entities can be matched to some types in the ontology graph,
whereas the rest can be simply matched to the topmost type.10

IMDB.11 We conducted our experiment on a benchmark of key-
word search [5] on IMDB graph. IMDB is a movie dataset. We
downloaded the dataset and the queries from the their website.12

However, since IMDB does not accompany with an ontology
graph, we simply applied YAGO3’s ontology graph.

Synthetic datasets. We included some synthetic datasets in the
experiments. We generated the ontology graphs by setting an

7. http://www.mpi-inf.mpg.de/yago
8. https://en.wikipedia.org/wiki/Category:Systems
9. http://dbpedia.org
10. We remark that for the general graphs, similar to Dbpeida, we can first

map the entities to those of an ontology graph of YAGO3. For the entities
which are untyped, we can employ some existing techniques to type them,
such as PEARL [20] and Patty [21].

11. http://www.imdb.com
12. https://joel-coffman.github.io/resources.html

Fig. 9: Summary graph sizes (|V |+ |E|) at different layers
TABLE 4: Benchmarked queries

ID Queries Counts in the data graph
Q1 (Actresses, Films) (3364, 20119)
Q2 (Administrative, Player) (111629, 20318)
Q3 (Club, Player, England) (8336, 20318, 37269)
Q4 (Feature, Managers, Films) (17635, 1571, 20119)
Q5 (Season, Mountain, Actors) (19689, 5030, 13809)
Q6 (Computer, People, Food, Films) (1687, 32638, 1241, 20119)
Q7 (Administrative, Player, Season,

Mountain, Actors)
(111629, 20318, 19689, 5030,
13809)

Q8 (Season, Mountain, Actors, Feature,
Managers, Films)

(19689, 5030, 13809, 17635,
1571, 20119)

average degree of 5 and a height of 7. This is consistent with
the heights and average degrees of the real ontology graphs.
Default indexes. By default, we constructed BiG-index by setting
a large values of ✓ and ⇧ of Algo. 1 so that the labels of the graphs
were generalized once when a layer was constructed. This setting
helps us to reason the performances of BiG-index.

6.1.3 Queries

YAGO3 and Dbpedia. We generated synthetic keyword queries for
the experiments. For each query, we selected 2-6 keywords from
the ontology graph which had semantic relationships: for example,
the query “The player who works in an England club ” could be
expressed by Q3={Club, Player, England} listed in Tab. 4. The
count of each keyword in the data graph was more than 3000. Due
to space limits, we report the results of 8 queries. The reported
runtimes are the average of 10 runs.
IMDB. The queries of an existing benchmark [5] are often about
topics e.g., “Relevant results identify relationships between Har-
rison Ford and George Lucas”. We generate keyword queries
from the topics by an existing natural language processing tool 13,
for example, Q = {Harrison Ford,George Lucas}. Also, some
existing benchmark queries involve text matching and are not
adopted because the textual search has not been the focus of this
paper.

6.2 Experimental Results

Exp-1: Query performance. To evaluate the efficiency of
BiG-index, we have tested the performance of Blinks and r-clique
with and without BiG-index.
Blinks. We used the same setting as [12]. We adopted METIS

for partitioning. The average blocks size was 1000. We set the
pruning threshold dmax (a.k.a ⌧prune in [12]) to 5 to ensure
keyword nodes were reachable from the root vertex within 5
hops. The results on YAGO3 and Dbpedia are reported in Figs. 10
and 11. The results show that BiG-index consistently reduced the
query times by 61.8% (resp. 57.3% and 32.5%) on YAGO3 (resp.
Dbpedia and IMDB) on average.
r-clique. For r-clique, we built the neighbors index, as in [15],
with R = 4. The results are presented in Figs. 13 and 14. Again,
BiG-index consistently reduced the query times by 39.4% (resp.
19.6%) on YAGO3 (resp. Dbpedia) on average. Our experiment

13. http://nlp.stanford.edu:8080/corenlp/process

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2956535, IEEE
Transactions on Knowledge and Data Engineering

12

Fig. 10: Query times of Blinks

on YAGO3
Fig. 11: Query times of Blinks

on Dbpedia

Fig. 12: Query performance of Blinks on IMDB (TX is the X-th
topic in [5])

shows that r-clique can not handle the IMDB dataset since it keeps
an O(mn) neighbor list where n = |V | and m is the average
number of vertices in the neighborhood [15]. On IMDB, m is
closed to 105K . Our experiment estimated that the neighbor list
could take 16TB.

Query performance breakdown. Figs. 10 to 14 show the major
steps of query processing. They show that (a) BiG-index takes
a large fraction of time to explore the summary graphs in the
hierarchy, (b) the pruning time is negligible, and (c) the time
for answer generation (at the data graph layer) contributes to a
small part of query time. From the figures, we can observe that
BiG-index reduced the query times by up to 61.8%.
Exp-2: Performance on synthetic datasets. We evaluated the
performances of BiG-index over large synthetic graphs. We set
|Q| = 4. We evaluated the queries on the datasets listed in Tab. 2.
The compression ratio and runtime of BiG-index increase linearly
with the graph sizes. Fig. 15 shows that BiG-index reduced the
query times of existing keyword algorithms by at least 20%.
Exp-3: Characteristics of BiG-index. We further studied the size
and construction time of the summary graphs in BiG-index. We
computed 7 layers of summary graphs.

Index sizes. Tab. 2 and Fig. 9 report the sizes of the summary
graphs in BiG-index. For real-life knowledge graphs, the first
layer of summary graph of YAGO3 (resp. Dbpedia and IMDB)
reduced to its 27.9% (resp. 60.5% and 36.7%). The synthetic
datasets can be reduced at least 12%. Figs. 9 shows that in YAGO3,
Dbpedia and the IMDB, the sizes of the summary graphs at the
higher layers are smaller than those at the lower layers. The
compression ratio due to summarization decreases as the layer
number increases. The BiG-index size is simply the sum of the
summary graphs in the index.

Construction time. We report the construction times here.
BiG-index takes 20 minutes (resp. 6.4 hours and 6.6 hours) to
construct the indexes (all layers) for YAGO3 (resp. Dbpedia and
IMDB). For the largest synthetic graph, BiG-index constructed the
index in 3 hours.
Exp-4: Effectiveness of the cost model. This experiment investi-
gates the cost model for determining efficient index.

Graph sampling. To study the effectiveness of the configurations,

Fig. 13: Query times of r-clique
on YAGO3

Fig. 14: Query times of r-clique
on Dbpedia

Fig. 15: Query times of Blinks (RHS) and r-clique (LHS)

we sampled some subgraphs in each layer. As depicted in the
Fig. 16, we found that when the number of samples n was larger
than 400, the estimate of the average compression ratio was stable.
Meanwhile, we fixed the sample subgraphs and generated 100
different configurations. We adopted Spearman Rank Correlation
Coefficient to measure the generalization accuracy between the
relative performance of configurations of the sample graphs and
the whole graph. We obtained rs = 0.541 which is larger than
the critical value 0.326 with ↵ = 0.001. Hence, the estimate is an
indication of the relative compression ratio of the original graph.

Optimal query layer m. We present the performance of the queries
on each layer in Fig. 19. We varied the � of the query general-
ization model from 0.1 to 0.9. We observed that � can be set to a
range of 0.3 to 0.7 for efficient BiG-index. We set � to 0.5. The
model accurately predicts the optimal query layers of 6 queries,
except for Q3 and Q6 (i.e., 75% accuracy).

Exp-5: Effectiveness of optimization. We performed a set of
experiments to investigate the effectiveness of the proposed op-
timization. First, we turned the specialization order optimization
on and off and ran the query sets of YAGO3. The results are
reported in Fig. 17. The specialization order optimization offers
14.8% performance improvement on average.

We also investigated the effectiveness of p ans graph gen.
We evaluated the query sets with and without the
p ans graph gen on YAGO3. The results are reported in
Fig. 18. The p ans graph gen offers 21.7% performance
improvement on average.

We then evaluated the query sets at different layers. The results
are presented in Fig. 19. The performance was the best when some
queries (Q1,2,6–8) were evaluated at the highest layer; a possible
reason is that it is more efficient to evaluate queries on small graph
summaries than the data graph itself. The early pruning is useful
for answer generation.

Exp-6. Comparison with [10]. [10] summarizes graphs using
Bisim once. We first generalized the keywords to their types once,
so that Bisim could summarize the graphs. The queries of [10]
are different from keyword search. Then, we adopted our query
evaluation for [10]. Hence, the query performance of [10] is that
of the second layer. Fig. 19 shows that evaluating queries at the
second layer is always suboptimal.

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2956535, IEEE
Transactions on Knowledge and Data Engineering

13

Fig. 16: The estimated compress vs sample sizes

Fig. 17: Specialization order
optimization

Fig. 18: Path-based answer gen-
eration optimization

7 RELATED WORK
Keyword search semantics. Recently, keyword search has at-
tracted a lot of interests from both industry and research commu-
nities (e.g., [12], [15], [1], [14]). Bhalotia et al. [1] proposed for
keyword search on relational databases. He et al. [12] proposed
an index and search strategies to reduce the keyword search
time. Kargar et al. [15] proposed distance restrictions on the
keyword nodes, (i.e., the shortest distance between each pair of
keywords nodes is smaller than r). Shi et al. [25] proposed a top-
k relevant semantic place retrieval (kSP) which finds the tightest
semantics places ranked by the distance to the query location and
the semantics looseness to the query keywords. In contrast, we
propose a generic framework for keyword search. These keyword
search semantics could be built on top of our framework without
rewriting the entire algorithms. Due to space restriction, we omit
the implementations of some of these semantics in the paper.
Ye et al. [32] proposed a search strategy based on a compressed
signature to avoid the flooding search strategy which may lead to
massive communication cost for the keyword search on distributed
graphs. Given a set of query keywords, Yang et al. [30] proposed
path-based indexes to find the tree pattern over knowledge graph
with an approximate algorithm based on a sampling approach.
These studies optimize a specific keyword search semantic. In
contrast, our work optimizes the efficiency of different existing
keyword search semantics. Since our indexes are yet another set
of smaller graphs, their algorithms can be also implemented on
top of our framework to reduce the searching cost.
Graph summarization. Graph summarizations can be roughly
divided into three categories. (a) Some graph summarizations
(e.g., [22]) aim to save the storage space. These general methods
preserve the information of the entire graph. Our work differs
from these studies in the following ways: we summarize the
graph to enable efficient keyword search such that queries are
evaluated on the summary graphs and final query answers are

Fig. 19: Query performance by varying m (layer)

reconstructed. (b) Some other graph summarizations are designed
for path expressions by vertices similarity (e.g., [2], [3], [4],
[16], [19]). However, they only consider the structural relation. In
contrast, BiG-index exploits both the semantic information from
ontologies and the structural information of a data graph. (c) There
are graph summarizations, e.g., [26], [28], designed for helping
users to understand keyword queries. It is worth noting that these
studies are driven by keywords. In contrast, our work aims to offer
a platform to optimize keyword search performance.
Query-preserving query. Fan et al. [10] proposes a query-
preserving framework for a reachability query and a simulation
query. Queries are evaluated in the compressed graph without
decompression. To the best of our knowledge, query-preserving
compression for keyword search has not been studied. The most
recent work is that of Ren et al. [24], which exploits vertex
relationships for the subgraph isomorphism query. Their work
transforms the original data graph into an adapted hypergraph.
In contrast, we exploit the semantic relationships over the vertices
on the knowledge graphs for indexing. We organize the summary
graphs in a hierarchy to speed up query processing.
Queries by exploiting the ontology relations. Wu et al. [29]
proposed an ontology-based filtering-and-verification framework
for subgraph querying. Zheng et al. [33] used the ontology
information to speed up the SPARQL similarity search over RDF
knowledge graphs. Tran et al. [27] took advantage of the type
to build an augmented summary graph to index the original
graph. Corby et al. [6] proposed an approximate method based
on ontologies for SPARQL query. Our work differs from these
works in the following: (a) BiG-index is generic to speed up
the existing keyword search semantics which is label- and path-
preserving rather than a specific query. (b) BiG-index is built on
the basis of both ontology information and graph structures.

8 CONCLUSIONS

In this paper, we have proposed BiG-index. The main idea is to
exploit ontology information associated with a knowledge graph,
to semantically index the graph for efficient keyword search.
The major feature of BiG-index is that it is generic enough
to optimize existing algorithms for keyword search. This paper
proposes efficient algorithms to construct and query BiG-index.
Our experiments have shown that BiG-index can reduce the
runtimes of existing keyword search work Blinks on average by
50.5% and r-clique on average by 29.5%.

For future work, we plan to implement BiG-index with more
keyword query semantics, e.g., similarity search. We plan to
implement other summarization formalisms for BiG-index.
Acknowledgements. This work is partly supported by HKRGC
GRF HKBU12201119, HKBU12232716, HKBU12201518 and
HKBU12200817, and NSFC 61602395.

REFERENCES

[1] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan.
Keyword searching and browsing in databases using banks. In Proceed-
ings of the 18th International Conference on Data Engineering, pages
431–440, 2002.

[2] P. Buneman, B. Choi, W. Fan, R. Hutchison, R. Mann, and S. D. Viglas.
Vectorizing and querying large xml repositories. In Proceedings of the
21st International Conference on Data Engineering, pages 261–272.
IEEE, 2005.

[3] P. Buneman, M. Grohe, and C. Koch. Path queries on compressed xml. In
Proceedings of 29th International Conference on Very Large Data Bases,
volume 29, pages 141–152, 2003.

1041-4347 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2019.2956535, IEEE
Transactions on Knowledge and Data Engineering

14

[4] Q. Chen, A. Lim, and K. W. Ong. D(k)-index: An adaptive structural
summary for graph-structured data. In Proceedings of the 2003 ACM
SIGMOD International Conference on Management of Data, pages 134–
144, 2003.

[5] J. Coffman and A. C. Weaver. A framework for evaluating database
keyword search strategies. In Proceedings of the 19th ACM international
conference on Information and knowledge management, pages 729–738.
ACM, 2010.

[6] O. Corby, R. Dieng-Kuntz, F. Gandon, and C. Faron-Zucker. Searching
the semantic web: Approximate query processing based on ontologies.
IEEE Intelligent Systems, 21(1):20–27, 2006.

[7] J. Deng, B. Choi, J. Xu, H. Hu, and S. S. Bhowmick. Incremental
maintenance of the minimum bisimulation of cyclic graphs. IEEE
Transactions on Knowledge and Data Engineering, 25(11):2536–2550,
2013.

[8] B. Ding, J. X. Yu, S. Wang, L. Qin, X. Zhang, and X. Lin. Finding
top-k min-cost connected trees in databases. In Proceedings of the
23rd International Conference on Data Engineering, ICDE 2007, The
Marmara Hotel, Istanbul, Turkey, April 15-20, 2007, pages 836–845,
2007.

[9] W. Fan, C. Hu, and C. Tian. Incremental graph computations: Doable
and undoable. In Proceedings of the 2017 ACM International Conference
on Management of Data, SIGMOD Conference 2017, Chicago, IL, USA,
May 14-19, 2017, pages 155–169, 2017.

[10] W. Fan, J. Li, X. Wang, and Y. Wu. Query preserving graph compression.
In Proceedings of the ACM SIGMOD International Conference on
Management of Data, pages 157–168, 2012.

[11] Y. Fang, R. Cheng, S. Luo, and J. Hu. Effective community search
for large attributed graphs. Proceedings of the Very Large Data Bases
Endowment, 9(12):1233–1244, 2016.

[12] H. He, H. Wang, J. Yang, and P. S. Yu. Blinks: ranked keyword
searches on graphs. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 305–316, 2007.

[13] J. Jiang, B. Choi, J. Xu, and S. S. Bhowmick. A generic on-
tology framework for indexing keyword search on massive graphs.
https://www.comp.hkbu.edu.hk/⇠jxjian/tr2018.pdf, 2018.

[14] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desai, and
H. Karambelkar. Bidirectional expansion for keyword search on graph
databases. In VLDB, pages 505–516, 2005.

[15] M. Kargar and A. An. Keyword search in graphs: Finding r-cliques.
Proceedings of the Very Large Data Bases Endowment, 4(10):681–692,
2011.

[16] R. Kaushik, P. Shenoy, P. Bohannon, and E. Gudes. Exploiting local
similarity for indexing paths in graph-structured data. In Proceedings of
the 18th International Conference on Data Engineering, pages 129–140,
2002.

[17] F. Mahdisoltani, J. Biega, and F. Suchanek. Yago3: A knowledge
base from multilingual wikipedias. In Seventh Biennial Conference on
Innovative Data Systems Research, 2014.

[18] R. Milner. Communication and concurrency, volume 84. Prentice hall
New York etc., 1989.

[19] T. Milo and D. Suciu. Index structures for path expressions. In Database
Theory - ICDT ’99, 7th International Conference, pages 277–295, 1999.

[20] N. Nakashole, T. Tylenda, and G. Weikum. Fine-grained semantic typing
of emerging entities. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers),
volume 1, pages 1488–1497, 2013.

[21] N. Nakashole, G. Weikum, and F. Suchanek. Patty: a taxonomy of
relational patterns with semantic types. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning, pages 1135–1145. Associa-
tion for Computational Linguistics, 2012.

[22] S. Navlakha, R. Rastogi, and N. Shrivastava. Graph summarization
with bounded error. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 419–432, 2008.

[23] L. Qin, J. X. Yu, L. Chang, H. Cheng, C. Zhang, and X. Lin. Scalable big
graph processing in mapreduce. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 827–838, 2014.

[24] X. Ren and J. Wang. Exploiting vertex relationships in speeding up
subgraph isomorphism over large graphs. Proceedings of the Very Large
Data Bases Endowment, 8(5):617–628, 2015.

[25] J. Shi, D. Wu, and N. Mamoulis. Top-k relevant semantic place
retrieval on spatial RDF data. In Proceedings of the 2016 International
Conference on Management of Data, SIGMOD Conference 2016, San
Francisco, CA, USA, June 26 - July 01, 2016, pages 1977–1990, 2016.

[26] Y. Tian, R. A. Hankins, and J. M. Patel. Efficient aggregation for graph
summarization. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 567–580, 2008.

[27] T. Tran, H. Wang, S. Rudolph, and P. Cimiano. Top-k exploration of
query candidates for efficient keyword search on graph-shaped (rdf) data.
In ICDE, pages 405–416, 2009.

[28] Y. Wu, S. Yang, M. Srivatsa, A. Iyengar, and X. Yan. Summarizing
answer graphs induced by keyword queries. Proceedings of the Very
Large Data Bases Endowment, 6(14):1774–1785, 2013.

[29] Y. Wu, S. Yang, and X. Yan. Ontology-based subgraph querying. In
2013 IEEE 29th International Conference on Data Engineering (ICDE),
pages 697–708. IEEE, 2013.

[30] M. Yang, B. Ding, S. Chaudhuri, and K. Chakrabarti. Finding patterns in
a knowledge base using keywords to compose table answers. Proceedings
of the Very Large Data Bases Endowment, 7(14):1809–1820, 2014.

[31] P. Yi, B. Choi, S. S. Bhowmick, and J. Xu. Autog: A visual query
autocompletion framework for graph databases. Proceedings of the Very
Large Data Bases Endowment, 9(13):1505–1508, 2016.

[32] Y. Yuan, X. Lian, L. Chen, J. X. Yu, G. Wang, and Y. Sun. Keyword
search over distributed graphs with compressed signature. IEEE Trans.
Knowl. Data Eng., 29(6):1212–1225, 2017.

[33] W. Zheng, L. Zou, W. Peng, X. Yan, S. Song, and D. Zhao. Semantic
sparql similarity search over rdf knowledge graphs. Proceedings of the
Very Large Data Bases Endowment, 9(11):840–851, 2016.

Jiaxin Jiang is a PhD student in the Depart-
ment of Computer Science, Hong Kong Bap-
tist University. He received his BEng degree in
computer science and engineering from Shan-
dong University in 2015. His research interests
include graph-structured databases, distributed
graph computation. He is a member of the
Database Group at Hong Kong Baptist Univer-
sity (http://www.comp.hkbu.edu.hk/⇠db/).

Byron Choi is an Associate Professor in the
Department of Computer Science at the Hong
Kong Baptist University. He received the bache-
lor of engineering degree in computer engineer-
ing from the Hong Kong University of Science
and Technology (HKUST) in 1999 and the MSE
and PhD degrees in computer and information
science from the University of Pennsylvania in
2002 and 2006, respectively.

Jianliang Xu is a Professor in the Department of
Computer Science, Hong Kong Baptist Univer-
sity (HKBU). He held visiting positions at Penn-
sylvania State University and Fudan University.
He has published more than 150 technical pa-
pers in these areas, most of which appeared in
leading journals and conferences including SIG-
MOD, VLDB, ICDE, TODS, TKDE, and VLDBJ.

Sourav S Bhowmick is an Associate Profes-
sor in the School of Computer Science and
Engineering, Nanyang Technological University.
Sourav’s current research interests include data
management, data analytics, computational so-
cial science, and computational systems biology.
He has published many papers in major venues
in these areas such as SIGMOD, VLDB, ICDE,
SIGKDD, MM, TKDE, VLDB Journal, and Bioin-
formatics.

2020/12/16 ӥ6:30܌IEEE Author Gateway: Article Completed

ᶭᎱғ1/1https://authorgateway.ieee.org/ag/dc/ArticleCompleted?doi=10.1109/TKDE.2019.2956535

Go to IEEE Xplore® | Help | Log Out

A Generic Ontology Framework for Indexing Keyword
Search on Massive Graphs
Due to the unstructuredness and the lack of schema information of knowledge graphs, social networks and RDF
graphs, keyword search has been proposed for querying such graphs/networks. Recently, various keyword search
semantics have been designed. In this paper, we propose a generic ontology-based indexing framework for
keyword search, called Bisimulation of Generalized Graph Index (${\mathsf BiG\hbox{-}index}$), to enhance the
search performance. The novelties of ${\mathsf BiG\hbox{-}index}$ reside in using an ontology graph
G_{Ont} to summarize and index a data graph G iteratively, to form a hierarchical index structure $\mathbb
{G}$. ${\mathsf BiG\hbox{-}index}$ is generic since it only requires keyword search algorithms to generate
query answers from summary graphs having two simple properties. Regarding query evaluation, we transform a
keyword search q into $\mathbb {Q}$ according to G_{Ont} in runtime. The transformed query is searched
on the summary graphs in $\mathbb {G}$. The efficiency is due to the small sizes of the summary graphs and the
early pruning of semantically irrelevant subgraphs. To illustrate ${\mathsf BiG\hbox{-}index}$’s
applicability, we show popular indexing techniques for keyword search (e.g., ${\mathsf Blinks}$ and ${\mathsf
r\hbox{-}clique}$) can be easily implemented on top of ${\mathsf BiG\hbox{-}index}$. Our extensive
experiments show that ${\mathsf BiG\hbox{-}index}$ reduced the runtimes of popular keyword search work
${\mathsf Blinks}$ by 50.5 percent and ${\mathsf r\hbox{-}clique}$ by 29.5 percent.

Hello, Jiaxin Jiang

Help | Contact Us | Privacy & Security | IEEE.org | IEEE Xplore® Digital Library | Nondiscrimination Policy
© Copyright 2020 IEEE - All Rights Reserved

Article Details

Periodical Title: IEEE Transactions on Knowledge and Data Engineering

Volume/Issue: Volume 33 , Issue 6

Digital Object Identifier: 10.1109/TKDE.2019.2956535

Manuscript Number: TKDE-2018-10-0987

Color Print Graphics: no

Multimedia: yes

Open Access: no

Published to IEEE Xplore®: Nov 28 2019

Go to article abstract page on IEEE Xplore®

Metrics

Total Downloads: 44

IEEE Citation Count : 0

Non IEEE Citation Count : 0

Citation Count Patent: 0

Go to article metrics page on IEEE Xplore®

Dashboard Completed Articles
1

Proofing
Instructions

FAQ

http://ieeexplore.ieee.org/
mailto:authorgatewayhelp@ieee.org
https://authorgateway.ieee.org/ag/hc/Logout
mailto:authorgatewayhelp@ieee.org
http://www.ieee.org/about/contact_center/index.html?WT.mc_id=hpf_contact
http://www.ieee.org/security_privacy.html?WT.mc_id=hpf_priv
http://ieee.org/
http://ieeexplore.ieee.org/
http://www.ieee.org/web/aboutus/whatis/policies/p9-26.html
http://dx.doi.org/10.1109/TKDE.2019.2956535
https://ieeexplore.ieee.org/document/8917697/metrics
https://authorgateway.ieee.org/ag/dc/Dashboard
https://authorgateway.ieee.org/ag/dc/Published
https://authorgateway.ieee.org/ag/hc/AuthorProofingInstruction
https://authorgateway.ieee.org/ag/hc/FAQ

IEEE COPYRIGHT FORM

To ensure uniformity of treatment among all contributors, other forms may not be substituted for this form, nor may any wording
of the form be changed. This form is intended for original material submitted to the IEEE and must accompany any such material
in order to be published by the IEEE. Please read the form carefully and keep a copy for your files.

A Generic Ontology Framework for Indexing Keyword Search on Massive Graphs
Jiaxin Jiang , Byron Choi, Jianliang Xu , Sourav S. Bhowmick
Transactions on Knowledge and Data Engineering

COPYRIGHT TRANSFER
The undersigned hereby assigns to The Institute of Electrical and Electronics Engineers, Incorporated (the "IEEE") all rights
under copyright that may exist in and to: (a) the Work, including any revised or expanded derivative works submitted to the IEEE
by the undersigned based on the Work; and (b) any associated written or multimedia components or other enhancements
accompanying the Work.

GENERAL TERMS
1. The undersigned represents that he/she has the power and authority to make and execute this form.
2. The undersigned agrees to indemnify and hold harmless the IEEE from any damage or expense that may arise in the event of
a breach of any of the warranties set forth above.
3. The undersigned agrees that publication with IEEE is subject to the policies and procedures of the IEEE PSPB Operations
Manual.
4. In the event the above work is not accepted and published by the IEEE or is withdrawn by the author(s) before acceptance by
the IEEE, the foregoing copyright transfer shall be null and void. In this case, IEEE will retain a copy of the manuscript for internal
administrative/record-keeping purposes.
5. For jointly authored Works, all joint authors should sign, or one of the authors should sign as authorized agent for the others.
6. The author hereby warrants that the Work and Presentation (collectively, the "Materials") are original and that he/she is the
author of the Materials. To the extent the Materials incorporate text passages, figures, data or other material from the works of
others, the author has obtained any necessary permissions. Where necessary, the author has obtained all third party permissions
and consents to grant the license above and has provided copies of such permissions and consents to IEEE

BY TYPING IN YOUR FULL NAME BELOW AND CLICKING THE SUBMIT BUTTON, YOU CERTIFY THAT SUCH ACTION
CONSTITUTES YOUR ELECTRONIC SIGNATURE TO THIS FORM IN ACCORDANCE WITH UNITED STATES LAW, WHICH
AUTHORIZES ELECTRONIC SIGNATURE BY AUTHENTICATED REQUEST FROM A USER OVER THE INTERNET AS A
VALID SUBSTITUTE FOR A WRITTEN SIGNATURE.

Information for Authors

AUTHOR RESPONSIBILITIES

The IEEE distributes its technical publications throughout the world and wants to ensure that the material submitted to its
publications is properly available to the readership of those publications. Authors must ensure that their Work meets the
requirements as stated in section 8.2.1 of the IEEE PSPB Operations Manual, including provisions covering originality,

 Jiang Jiaxin 26-11-2019

Signature

Date (dd-mm-yyyy)

http://www.ieee.org/documents/opsmanual.pdf
http://www.ieee.org/documents/opsmanual.pdf

-
-

-

-

-

-

-

authorship, author responsibilities and author misconduct. More information on IEEE's publishing policies may be found at
http://www.ieee.org/publications_standards/publications/rights/authorrightsresponsibilities.html Authors are advised especially of
IEEE PSPB Operations Manual section 8.2.1.B12: "It is the responsibility of the authors, not the IEEE, to determine whether
disclosure of their material requires the prior consent of other parties and, if so, to obtain it." Authors are also advised of IEEE
PSPB Operations Manual section 8.1.1B: "Statements and opinions given in work published by the IEEE are the expression of
the authors."

RETAINED RIGHTS/TERMS AND CONDITIONS

Authors/employers retain all proprietary rights in any process, procedure, or article of manufacture described in the Work.
Authors/employers may reproduce or authorize others to reproduce the Work, material extracted verbatim from the Work, or
derivative works for the author's personal use or for company use, provided that the source and the IEEE copyright notice are
indicated, the copies are not used in any way that implies IEEE endorsement of a product or service of any employer, and the
copies themselves are not offered for sale.
Although authors are permitted to re-use all or portions of the Work in other works, this does not include granting third-party
requests for reprinting, republishing, or other types of re-use.The IEEE Intellectual Property Rights office must handle all such
third-party requests.
Authors whose work was performed under a grant from a government funding agency are free to fulfill any deposit mandates
from that funding agency.

AUTHOR ONLINE USE
Personal Servers. Authors and/or their employers shall have the right to post the accepted version of IEEE-copyrighted
articles on their own personal servers or the servers of their institutions or employers without permission from IEEE, provided
that the posted version includes a prominently displayed IEEE copyright notice and, when published, a full citation to the
original IEEE publication, including a link to the article abstract in IEEE Xplore. Authors shall not post the final, published
versions of their papers.
Classroom or Internal Training Use. An author is expressly permitted to post any portion of the accepted version of his/her
own IEEE-copyrighted articles on the author's personal web site or the servers of the author's institution or company in
connection with the author's teaching, training, or work responsibilities, provided that the appropriate copyright, credit, and
reuse notices appear prominently with the posted material. Examples of permitted uses are lecture materials, course packs, e-
reserves, conference presentations, or in-house training courses.
Electronic Preprints. Before submitting an article to an IEEE publication, authors frequently post their manuscripts to their
own web site, their employer's site, or to another server that invites constructive comment from colleagues. Upon submission
of an article to IEEE, an author is required to transfer copyright in the article to IEEE, and the author must update any
previously posted version of the article with a prominently displayed IEEE copyright notice. Upon publication of an article by
the IEEE, the author must replace any previously posted electronic versions of the article with either (1) the full citation to the
IEEE work with a Digital Object Identifier (DOI) or link to the article abstract in IEEE Xplore, or (2) the accepted version only
(not the IEEE-published version), including the IEEE copyright notice and full citation, with a link to the final, published article
in IEEE Xplore.

Questions about the submission of the form or manuscript must be sent to the publication's editor.
Please direct all questions about IEEE copyright policy to:
IEEE Intellectual Property Rights Office, copyrights@ieee.org, +1-732-562-3966

http://www.ieee.org/publications_standards/publications/rights/authorrightsresponsibilities.html

