
Privacy Preserving Strong Simulation Queries on
Large Graphs

Lyu Xu1 Jiaxin Jiang1 Byron Choi1 Jianliang Xu1 Sourav S Bhowmick2

1Department of Computer Science 2School of Computer Science and Engineering
Hong Kong Baptist University, Hong Kong Nanyang Technological University, Singapore

{cslyuxu, jxjian, bchoi, xujl}@comp.hkbu.edu.hk assourav@ntu.edu.sg

Abstract—This paper studies privacy preserving query ser-
vices for strong simulation queries in the database outsourcing
paradigm. In such a paradigm, clients send their queries to a
third-party service provider (SP), who has the outsourced large
graph data, and the SP computes the query answers. However,
as SP may not always be trusted, the sensitive information of
the clients’ queries, importantly, the query structures, should
be protected. Moreover, graph pattern queries often have high
complexities, whereas data graphs can be large. This paper
adopts strong simulation as a practical query semantic for
this paradigm. Under this semantic, queries are matched with
a notion of balls, which are subgraphs related to the query
diameter. We transform the core of the existing strong simulation
algorithm using data-oblivious operations (ObSSA) and propose
its secure version. We show that the algorithm may encounter an
overflow problem even partially homomorphic encryption (PHE)
has been used. We then propose an efficient inexact algorithm
EncSSA, which is secure under chosen plaintext attack (CPA).
The results of privacy analysis are presented. We have conducted
experiments on Twitter and Citeseer datasets, and the results
show that EncSSA is both efficient and effective.

Index Terms—Graph queries, strong simulation, large graphs,
data outsourcing, privacy preservation

I. INTRODUCTION

Graph pattern queries are increasingly found in emerging
applications, including social networks, biology analysis, and
communication networks [1]–[3]. However, some query for-
malisms are computationally costly, for example, the subgraph
isomorphism query (sub-iso) is an NP-complete problem [4].
Subgraph homomorphism, used in the SPARQL query on the
RDF data [5] with the same definition as sub-iso except that
sub-iso has a bijective restriction on the matching, whereas
homomorphism has an injective restriction [6]. These queries,
however, can be too restricted for some applications. Graph
simulation query [7] has been proposed, which can be com-
puted in quadratic time but only support topology constraints
on the children of each vertex. Similarly, dual simulation
query [8], [9] preserves topological constraints on both the
children and parents. Strong simulation query [9] has been then
proposed to strike a balance between computation complexity
and the capability to capture topological constraints.

In social search, strong simulation queries can be used to
find an entity with specific types of connections or attributes.
In recommender systems, such queries help individuals form
collaboration networks with people having specific skills [9]–
[11]. However, queries can be sensitive, as described below.

Steve Princeton

Jack

(a) User pattern

Alice Bob

Jose

White
 HouseObama

Rahm Brian

Cherie

Emma

Maria

Dick Pierre

Jin

Jeff

Ana

Fritz

Ville

Bjorn

White House's ball with diamter 2Match of Fig. 1(a) for strong simulation query

(b) A small subset of Twitter

Fig. 1: A strong simulation query on a simplified Twit-
ter1 (Flags are labels. Text is for discussions but not queried.)

Example 1. (Privacy preserving query processing in data
outsourcing) Take the social network Twitter as an example,
where vertices are (virtual) entities, labels are nationalities,
and edges are interactions. Fig. 1(a) is a user pattern of user
Jack. Jack finds whether there exist similar labeled patterns in
Twitter. In this scenario, outsourcing the searches to an SP has
a number of advantages, including elasticity, high availability
and cost savings, when compared to on-premise solutions.
However, SP may not always be trusted. Jack does not want to
expose the interactions of nationalities (flags) he searches (i.e.,
to protect his query structure) from the SP. Similar scenarios
can be found, e.g., in collaboration networks.

Matching queries on the data graph at a large scale, es-
pecially with privacy preservation, is challenging. This paper
adopts strong simulation as the query semantic because the
queries are evaluated on the balls of the graph [9], which are
the subgraphs being defined by their centers and radius (see
details in Sec. II). Our experiments on benchmarked queries
and real datasets show that balls contain several hundred
vertices (Tab. IV). This opens up an opportunity for private
query processing at the SP. Consider Example 1 and take
“White House” as the ball center with a radius 2. Strong
simulation searches the pattern in Fig. 1(a) within the ball
of “White House” in Fig. 1(b), where privacy preserving
computation is achievable in a ciphertext domain. In this paper,
we investigate privacy preserving strong simulation query.

There have been a variety of research works on querying
with privacy preservation in graph databases (see Sec. VII for
details). To the best of our knowledge, strong simulation query
that protects the structure information of the query in the data

1D. Andrew, and V. Bertacco. ”Electronic design automation for social
networks.” Proceedings of the 47th Design Automation Conference. 2010.

outsourcing paradigm has not been studied yet. This problem
has the following two main technical challenges.

1) First, how to design an algorithm for strong simulation
queries using data-oblivious computation [12] consisting of
data access patterns that do not depend on the input?
2) Second, how to design algorithms that strike the balance
between efficiency and privacy?

For the first challenge, our idea is to represent the query
and each ball in the data graph using the adjacency matrix.
Then, we replace the strong simulation algorithm with a series
of matrix operations, which are data-oblivious. We propose
an ObSSA algorithm based on the state-of-the-art [9] with
only these operations. Given a query, ObSSA must carry out
the same operations for each element in the result matrix
iteratively until a fixed point, where the number of iterations
is bounded by the ball size.

To tackle the second challenge, we derive an encoding
and adopt an encryption for the matrices. Fully homomorphic
encryption (FHE) [13] cannot be adopted due to its known
poor performance. Most of the existing partially homomorphic
encryption (PHE) schemes (e.g., EIGamal, Paillier and Boneh-
Goh-Missm) [14], [15] cannot support both additions and mul-
tiplications simultaneously more than once, which are needed
by ObSSA. We adopt the encryption method, namely cyclic
group based encryption scheme (CGBE), which is proposed
by Fan et al. [16]. CGBE supports both the additions and
multiplications simultaneously but does not allow the plaintext
value of each ciphertext exceeding a public value. Using
CGBE, we propose an encrypted version of ObSSA.

There is a further technical challenge from the encrypted
ObSSA. Checking the definition of strong simulation requires
multiple iterations that involve multiplications. Consequently,
there will be an overflow in the computed ciphertext that the
corresponding plaintext is larger than the given public value,
e.g., a prime with 2048 bits used in [16].

To strike the balance between privacy and a practical algo-
rithm, we propose an inexact algorithm EncSSA that consists
of three efficient optimizations. (The inexact algorithm can
have false positives but no false negatives.) The first idea is
to exploit localized algorithms for 2-hop neighbors so that the
encryption algorithm does not encounter ciphertext overflow.
The second idea is to check strong simulation using a subset
of possible paths derived from the query’s labels with a length
k larger than 2. The last idea is to check the set of labels of
h-hop neighbors where h is larger than k. These optimizations
avoid excessive multiplications in the ciphertext domain, prune
true negatives of the query results and achieve good efficiency.
Contributions. The contributions of this paper are as follows.

• We proposed the ObSSA algorithm to answer the strong
simulation query under the plaintext setting, which transforms
the key operations of the existing strong simulation algorithm
with only data-oblivious mathematical operations.
• Based on the CGBE encryption scheme, we propose a
practical and secure inexact algorithm EncSSA that comprises
three privacy preserving pruning techniques.

• We present privacy analysis results of our proposed EncSSA.
• Our experiments verified the performance of EncSSA.

Organization. The preliminaries and the problem statement
are introduced in Sec. II. We present the ObSSA algorithm in
Sec. III and then the EncSSA algorithm in Sec. IV. The privacy
analysis results are presented in Sec. V. Sec. VI presents the
experimental results and Sec. VII discusses the recent related
work. We conclude this paper with future work in Sec. VIII.

II. PRELIMINARIES AND PROBLEM FORMULATION

In this section, we first provide preliminaries related to
strong simulation and system models for technical discussions.
It then presents the problem statement of the paper.

A. Graph Data and Pattern Query Semantics

Graph. A graph is denoted by G = (VG, EG,ΣG, LG), where
VG, EG, ΣG, LG are the sets of vertices, directed edges, labels
and the function for matching the vertices with their labels.
(u,v) denotes the directed edge from vertex u to v and LG(u)
denotes the label value of u. For a connected graph G, the
distance between any two vertices u and v in G, denoted by
dis(u,v), is the length of the shortest undirected paths from
u to v in G while the diameter of G, denoted by dG, is the
largest shortest distance between all pairs of vertices in G.

Ball. A ball B = (VB , EB ,ΣB , LB , u, r), denoted by G[u, r],
is a connected subgraph of G which takes vertex u as center,
r as radius, such that, (a) VB = {v|v ∈ VG, dis(u, v) ≤ r},
and (b) EB has the edges that appear in G over the same
vertices in VB [9]. The size of ball, |VB |, is restricted by r.
The strong simulation query searches for matches within balls,
as opposed to the whole data graph.

Adjacency matrix. The adjacency matrix of graph G, denoted
by MG, is a |VG|×|VG| matrix. MG’s transport matrix is
denoted by MT

G . The ith row vector of MG is denoted by
MG(i) and the jth element in MG(i) is denoted by MG(i,j).

We remove the subscript G when it is clear from the context.
To make the definition of query semantic consistent with this
paper’s notations, we introduce the vertex mapping matrix and
rewrite the definition of strong simulation query.

Vertex mapping matrix. The vertex mapping matrix from a
query Q to a graph G, denoted by P , is a |VQ|×|VG| matrix.
P (i, j)=1 if LQ(vi)=LG(vj), vi∈VQ and vj∈VG. Otherwise,
P (i, j)=0. The ith row vector of P is denoted by P (i).

The vertex mapping matrix uses a 1 (a possible mapping)
to denote that a vertex of the query and a vertex of the graph
have the same label, and 0 otherwise. For any vertex u in Q,
if vertex v in G satisfies LQ(u) = LG(v), v is denoted as a
candidate match of u.

Strong simulation query [9]. We can then rewrite the seman-
tics of strong simulation using matrices in Def. 1.

Definition 1. A graph G is a strong simulation of a connected
graph Q, denoted as Q ≺S G, if G has a ball B = G[vs, dQ],
where vs ∈ VG, such that there exists a binary relation S ⊆
VQ×VB , denoted by 〈·, ·〉, satisfying the following conditions.

�

� �

u1

u2 u3

C1

A1 B1 A3 B3

B2 A2 C2 C3

Q G = (V;E)

v1

v2 v3 v4 v5

v6 v7 v8 v9

P =

0

B

@

0 1 0 1 0 1 0
0 0 1 0 1 0 0
1 0 0 0 0 0 1

1

C

A

B0

1
s Ball :

v1 v2 v3 v4 v6 v7 v8G :

: Q
u1

u2

u3

������ 	
���
� 	
���� � ���� Q �� B1�� �
��

����
� �����
���
 ��

�� 	
����� ��� B1�� �
��

��� ����� Q �	
 ����
 G ��� �������� �� ����	� ���������	

Strong Simulation :

��� ������� �� P

VQ ��

�� �
����� �
 VQ � VB1

u1 hu1; v2i� hu1; v7i
u2 hu2; v3i� hu2; v6i
u3 hu3; v1i� hu3; v8i

Fig. 2: A query, graph, and strong simulation

1) ∀u ∈ VQ, ∃v ∈ VB such that 〈u, v〉 ∈ S
2) ∃u ∈ VQ such that 〈u, vs〉 ∈ S
3) ∀〈u, v〉 ∈ S,

(a) LQ(u) = LB(v), i.e., P (u, v) = 1.
(b) for all u′ ∈ VQ where MQ(u, u

′) = 1, there exists v′ in VB

such that MB(v, v
′) = 1 and 〈u′, v′〉 ∈ S.

(c) for all u′′ ∈ VQ where MQ(u
′′, u) = 1, there exists v′′ in

VB such that MB(v
′′, v) = 1 and 〈u′′, v′′〉 ∈ S.

A strong simulation query Q = (VQ, EQ,ΣQ, LQ) on a
graph G = (VG, EG,ΣG, LG) computes whether there exists
an S s.t. Q ≺S G. Intuitively, S can be considered as a match
from Q to B that preserves the topology of both children (3(b)
of Def. 1) and parents (3(c) of Def. 1).

There have been related query semantics. Dual simulation
[9] and graph simulation [7] do not restrict the matching in a
ball. In addition, graph simulation only requires 3(b) of Def. 1.
Matching queries of the whole graph in a ciphertext domain
is computationally costly.

Example 2. Fig. 2(a) are examples for query Q and graph
G, whereas Fig. 2(b) is the vertex mapping matrix P from Q
to ball G[B1, 2]. Fig. 2(c) shows a binary match from Q to G
such that Q ≺S G.

B. Models and Problem Statement

System model. We follow the system model that is well-
received in the database outsourcing literature shown in Fig. 3.
We assume that the service provider (SP) is equipped with
powerful computing utilities such as a cluster. The SP hosts
a query service for publicly known graph data. The SP
receives encrypted queries from a client, evaluates them in
the encrypted domain, and returns the encrypted answers to
the client. The client generates the encrypted queries, submits
them to the SP, and decrypts the answers (the IDs of the balls
that contain matchings). A storage server is specially intro-
duced. If the client needs to determine the query matchings, the
relevant encrypted balls are sent from the server. We assume
that the server and the SP do not collude. Otherwise, the SP
can infer the queries from the balls requested by the client.

The sequence of whole query processing is as follows:
i→ 1→ ii→ 2→ 3→ 4→ iii→ iv . The key steps of privacy
preserving query processing are 1 , 2 , 3 , and 4 , i.e., the top
half of Fig. 3. 1 The client generates the encrypted messages
of query graph and submits them to the SP. 2 The SP evaluates
a client’s encrypted query on the graph data and 3 returns the
encrypted results to the client. 4 The client decrypts these
results to obtain the final answer.

There are steps of i building and encrypting balls offline,
storing them in a semi-honest storage server, and ii generating

Client Service Provider (SP)Query Q

1 encrypted messages of Q

i

key for and answers

offline B:

w.r.t PQ, (aPQ(1), . . . , aPQ(n))

EncSSA

ii (a) generate one-time

2 run EncSSA to get

(a) decrypt the balls

(b) trim the balls with Q

(c) run SSA on the balls

4 decrypt and compute the IDs of
positive answers PQ(r1, . . . , rm)

(a) request PQ(r1, . . . , rm)

Graph database G

Enc(b1) Enc(b2). . .

Storage Server
(b) retrieve balls’ id by

(c) pick encrypted balls

ii (b) obtain P−1
Q from SP

permutation PQ of B’s

encrypted answers

{different diameters

iii
{br1 , . . . , brm}

permute the ID for ai,

P−1
Q PQ(r1, . . . , rm)

3

iii

iii

iv

iv

{a1, . . . , an}, and

ID and its inverse P−1
Q

i ∈ (1, n) using PQ

Fig. 3: The system model

the one-time permutation to be sent to the storage server for
iii the client to retrieve some encrypted balls from the storage
server for iv verification of exact results. ii - iii are introduced
for a special case that the client could not know whether it has
the whole graph. i - iv are standard techniques, and omitted.

Attack model. Assume the well known semi-honest adversary
model [14], [17]–[19], where the attackers are honest but
curious. For presentation simplicity, we consider the SP as the
attackers. Also, we assume the attackers are the eavesdroppers
and adopt the chosen plaintext attack (CPA) [14], i.e., the
adversaries can choose arbitrary plaintexts to obtain their
ciphertexts to gain information to reduce the security.

Privacy target. To facilitate technical discussions, we assume
that the privacy target is to protect the structures of the query
graph Q from the SP under the attack model defined above.
The structural information of Q is considered the adjacency
matrices of Q. More specifically, the probability that the SP
correctly determines the values of the adjacency matrix of the
query graph Q is guaranteed to be lower than a threshold with
reference to that of random guess.

Problem statement. Given a strong simulation query Q and
a large graph G, the system and attack model, we compute
whether Q ≺S G by matching each ball of G to Q, while
preserving the privacy target.

III. OBLIVIOUS STRONG SIMULATION ALGORITHM

In this section, we first present a transformed strong simu-
lation algorithm TSSA based on the state-of-the-art and then
propose an oblivious strong simulation algorithm ObSSA under
the plaintext setting. We analyze the limitation of the encrypted
version of ObSSA.

A. Transformed Strong Simulation Algorithm TSSA

The current state-of-the-art for determining strong simula-
tion [9], SSA, starts with (candidate) matching query vertices
to data vertices that have the same label and iteratively prunes
such matchings that have violations.

Violation. Consider a binary match 〈u, v〉 ∈ VQ × VG such
that LQ(u) = LG(v). There is a violation for 〈u, v〉 in a ball
B if the topological constraints derived from 3(b) or 3(c) of
Def. 1 (in Sec. II-A) cannot be satisfied.
1) For all u′ ∈ VQ where MQ(u, u′) = 1, there exists v′ in

VG such that MG(v, v′) = 1 and 〈u′, v′〉 ∈ S.
2) For all u′′ ∈ VQ where MQ(u′′, u) = 1, there exists v′′ in

VG such that MG(v′′, v) = 1 and 〈u′′, v′′〉 ∈ S.

Algorithm 1: Transformed Strong Simulation Algorithm (TSSA)

Input : The adjacency matrix MQ for the query Q, and the data graph G
Output: The strong simulation query result

1 result ← 0; // 0: no valid matches
2 foreach vertex v in G with LG(v) ∈ ΣQ do
3 retrieve the ball B = G[v, dQ] and represent it as an adjacency matrix

MB ;
4 generate the vertex mapping matrix P from Q to B;
5 ViolationPruning (MQ, MB , P);
6 result ← result + CheckSS(P);
7 return result;

8 Procedure ViolationPruning(MQ, MB , P)
9 toDetect ← true; // more violations to detect

10 while toDetect do
11 toDetect ← false;
12 foreach (i, j) where P (i, j) = 1 do
13 foreach (i, k) where MQ(i, k) = 1 do
14 if MB(j) · PT(k) = 0 then
15 P (i, j)← 0, toDetect ← true // Violation 1),

SecIII-A
16 foreach (l, i) where MQ(l, i) = 1 do
17 if P (l) ·MT

B(j) = 0 then
18 P (i, j)← 0, toDetect ← true // Violation 2),

SecIII-A

19 Procedure CheckSS(P)
20 foreach row i in P do
21 if all the elements in P (i) equal to zero then
22 return 0; // not a match
23 if all the elements in the column of the ball center v equal to zero then
24 return 0; // not a match
25 return 1; // a match

The violation for 〈u, v〉 results in pruning of 〈u, v〉. When
no more violations can be detected, SSA found a valid strong
simulation iff (i) there is at least one match for each vertex in
Q and (ii) B’s center is matched to at least one vertex in Q.
Pseudo-code for TSSA (Alg. 1). The transformed strong
simulation algorithm (TSSA) is presented in Alg. 1.2 Alg. 1
returns a positive integer to show that Q ≺S G, and it
returns 0, otherwise. The details of Alg. 1 can be described as
follows. For each vertex v in G with LG(v) ∈ ΣQ required by
Constraint 2 of Def. 1, Alg. 1 retrieves the adjacency matrix
MB that represents the ball3 B = G[v, dQ] and constructs the
vertex mapping matrix P from Q to B (Lines 3-4). For any
vertex vi in Q and any vertex vj in B with the same label,
P (i, j) = 1, i.e., 〈vi, vj〉 is initially considered as a valid
match. Fig. 2(b) shows an example for P . P (3, 1) = 1, since
LQ(v3) = LG(v1) = C as shown in Fig. 2(a).

In Line 5, ViolationPruning tests and prunes the invalid
matches in P . In particular, for any element P (i, j) in P (Line
12), if P (i, j) = 1 and there is a violation of the constraint
3(b) (resp. 3(c)) because of the children (resp. parents) as Line
14 (resp. Line 17), then Line 15 (Line 18) revises P (i, j) to
0. Take Fig. 2(a) as an example. When matching u1 in Q to
v4 in ball B1, P (1, 4) in Fig. 2(b) equals to 1 initially, and
then, is revised to 0 since P (2)·MT

B (4) = 0 for MQ(2, 1) = 1
(Line 17), i.e., no parents of v4 in B1 can satisfy Constraint
3(c), and thus, v4 cannot be matched to u1.

The algorithm repeats the above steps (Line 12) until no
more violations can be detected and removed (Line 10). Then,
CheckSS in Line 6 checks (i) whether the revised matrix P

2To facilitate the discussion on obliviousness, Alg. 1 focuses on the core
logic of SSA, i.e., we omitted some optimizations that exploit query structures.

3The balls of some common radius values are built offline.

Algorithm 2: Oblivious Strong Simulation Algorithm (ObSSA)

Input : The data graph G, the adjacency matrix MQ and the query Q
Output: The strong simulation query result

1 result ← 0;
2 foreach v in VG, where LG(v) ∈ ΣQ do
3 retrieve the adjacency matrix MB of the ball B = G[v, dQ];
4 generate the vertex mapping matrix P from Q to B;
5 ObViolationPruning (MQ, MB , P);
6 ObCheckSS(P);
7 result ← result + prod ·sum2;
8 return result;

9 Procedure ObViolationPruning(MQ, MB , P):
10 generate R (of the same size as P) that contains 0s;
11 for n← 0; n < |VB | · |VQ|; n++ do
12 //Violation detection
13 foreach P (i, j) do
14 R(i, j)← Child (i,j); // Ref Eq. 1b
15 R(i, j)← R(i, j)· Parent (i,j); // Ref Eq. 1c
16 P ← R;
17 return P ;

18 Procedure ObCheckSS(P):
19 prod ← 1, sum2 ← 0;
20 foreach row i of P do
21 sum1 ← 0;
22 foreach element P (i, j) in P (i) do
23 sum1 ← sum1 + P (i, j);
24 prod ← prod · sum1;
25 foreach element P (i, j) in the column of the ball center do
26 sum2 ← sum2 + P (i, j);
27 return prod, sum2;

still satisfies Constraint 1 of Def. 1, i.e., for the vertex vi (the
ith vertex) in Q, there exists a vertex vj (the jth vertex) in B,
such that P (i, j) equals to 1. If there exists a row vector P (i)
equals to the zero vector (Line 21), there is no vertex in B
that matches the ith vertex in Q and Line 22 returns 0, i.e., no
match. CheckSS also checks (ii) whether the revised matrix
P satisfies Constraint 2 of Def. 1, i.e., for the ball center v, it
can be matched to at least one vertex in Q. If all the elements
in the column for the ball center equal to zero (Line 23), there
is no vertex in Q that can be matched to the ball center and
Line 24 returns 0, i.e., no match. If Lines 21 and 23 do not
hold, 1 is returned (Line 25). Following up with Example 2,
(i) P shown in Fig. 2 does not have a row that contains all
zeros and (ii) the column of the ball center (vertex 2) has a
non-zero (P (2, 3)). Hence, G has a strong simulation in B(
shown in the dotted box of Fig. 2(a)

)
. Finally, Line 7 returns

non-zero, i.e., Q ≺S G.

B. Oblivious Strong Simulation Algorithm (ObSSA)

In this subsection, we derive an oblivious algorithm called
ObSSA from the transformed algorithm TSSA.

Violation detection. The core of TSSA is to remove the
candidate matches that have the violations of Def. 1 Consider
the vertex mapping matrix P from the query Q to the ball B.
The value of P (i, j) is modified using a series of addition and
multiplication operations, called violation detector, as follows.

P (i, j)′ = Child(i, j) · Parent(i, j) , if P (i, j) 6= 0 (1a)

Child(i, j) =

|VQ|∏
k=1

[
MQ(i, k) +

|VB |∑
l=1

(
MB(j, l)P (k, l)

)] (1b)

Parent(i, j) =

|VQ|∏
k=1

[
MQ(k, i) +

|VB |∑
l=1

(
MB(l, j)P (k, l)

)]
, (1c)

where MQ(i, k) = 1 − MQ(i, k) and P (i, j)′ denotes the
modified value of P (i, j) after running the violation detector.
Pseudo-code for ObSSA (Alg. 2). ObSSA is presented in
Alg. 2. For each vertex v in G with LG(v) ∈ ΣQ, Line 3
retrieves the adjacency matrix MB of the ball B = G[v, dQ]
and Line 4 generates their vertex mapping matrix P from Q to
B. Then, ObViolationPruning() (Lines 9-17) updates the
matrix P iteratively for |VB | · |VQ| times using the violation
detector (Eq. 1). Next, ObCheckSS() (Lines 18-27) computes
the value prod and sum2 indicating that whether Q ≺S B.
If prod or sum2 equals to 0, then B ⊆ G does not satisfy
that Q ≺S G. Otherwise, Q ≺S G. Finally, Line 7 computes
whether Q ≺S G or not.
Obliviousness of ObSSA. Given queries of the same size and
label set, ObSSA performs the same number and sequence of
operations to evaluate each of them. Firstly, ObSSA traverses
the same balls. For each ball and each query, we can note that
the sizes of the vertex mapping matrices P s used in Line 4 are
the same and independent to the query structure. In addition,
regardless of the query structures, (i) the number of iterations
in Line 11 of ObViolationPruning() are the same, and (ii)
Eq. 1 (Lines 14-15), Lines 21-26 and Line 7 take the same
number and sequence of additions and multiplications.
Correctness of ObSSA. We prove the correctness of ObSSA
using two lemmas and a proposition.

Lemma 1. Given a query Q to ball B,
ObViolationPruning(MQ,MB , P) of ObSSA returns
an P ′ such that P ′(i, j) = 0 iff vi in VQ is not matched to
vj in VB in a strong simulation relation.

Proof. (Sketch). The lemma is established by a case analysis
on Child w.r.t Tab. I. Case 4 is the only case that has a violation
and Child yields 0. The analysis on Parent is similar.

Proposition 1. ObSSA returns non-zero iff there is a strong
simulation between Q and B.

Proof. (Sketch) By Lemma. 1, after ObViolationPruning,
P (i, j) = 0 iff there is a violation for 〈i, j〉. In Line 24, the
product of sum1s can be non-zero only if for each vi ∈ Q,
there exists a match in B (i.e., non-zero sum1 in Line 24). In
Line 26, the sum of all the elements in the column of the ball
center can be non-zero only if there exists one vertex in Q
that can be matched to the ball center (i.e., non-zero P (i, j)
in Line 26).

Example 3. Following up with Example 2, Fig. 2(b) shows the
initial P and Fig. 2(c) lists the non-zero entries in P ′ after
the execution of ObViolationPruning(). A non-zero value
of prod and sum2 is returned by ObCheckSS(). Thus, ObSSA
returns a non-zero result, which indicates Q ≺S G.

Time complexity. Let Nball denote the number of balls com-
puted in Line 2. In ObViolationPruning(), Line 11 is re-
peated for |VB |·|VQ| times. Assume that both the addition and
multiplication operations take O(1) time. Then, Eq. 1 takes

O
(
|VQ|·|VB |

)
time. Since there are |VQ|·|VB | elements in ma-

trix P to be computed using Eq. 1, ObViolationPruning()
needs O

(
|VQ|3 · |VB |3

)
time. For ObCheckSS(), computing

prod and sum2 needs O
(
|VQ| · |VB |

)
time. Hence, the total

time complexity is O
(
Nball · (|VQ|3 · |VB |3)

)
.

C. Encoding and Encryption

To make ObSSA secure, we present the encoding for the
matrices and adopt a partial homomorphic encryption scheme
(PHE) to facilitate secure matrix computations.

Encoding for MQ. ∀i, j ∈
[
1, |VQ|

]
, MQ(i, j) is encoded as

follows.
MQE

(i, j) =

{
q, if MQ(i, j) = 0; and

1, otherwise,

where q is a large prime number. Based on this encoding,
we use a symmetric encryption scheme called cyclic group
based encryption (CGBE) [20] to encrypted the encoding for
MQ. Fully homomorphic encryption scheme (FHE) [13] is
not adopted because of their efficiency problem. CGBE is
a partially homomorphic encryption scheme supporting both
additions and multiplications but the scheme is correct only
when the computed ciphertext corresponds to a plaintext that
does not exceed a predefined limit.

Encryption. We now recall the definition of CGBE, namely
the key generation Gen, encryption Enc, decryption Dec

functions as follows.
• Gen. Gen generates a cyclic group 〈g〉 = {gi|i ∈ Zp, g

i ∈
Zn} with the generator g and order p (p � q). Note that
p should be a large prime number. Moreover, Gen generates
a uniformly random secret key x ∈ [1, p]. It outputs p as
the public value for the computation on SP and (x, g) as the
private keys.
• Enc. Enc takes a message m and the secret key (x, g) as
input, chooses a random value r and produces the ciphertext
c as output, as follows,

c = mrgx (mod p).

• Dec. Dec takes a ciphertext c and the secret key (x, g)
as input and computes the decrypted message as output, as
follows,

mr = cg−x (mod p).

Note that Dec only decrypts the ciphertext c as a product
of message m and a random value r, where r is different for
each ciphertext. We use the following to encrypt the encoding
of MQ.

mr =

{
0 (mod q), which encrypts the plaintext 0;

Z+
(mod q), which encrypts the plaintext 1.

As discussed in [20], there is a negligible chance of false
positives that Z+ = 0 (mod q), since q is a large prime
number. Moreover, CGBE is correct only if the computed
ciphertext corresponds to a plaintext not larger than the order
p. Otherwise, there is an overflow.

D. Encrypted ObSSA and its Limitations

Using the encoding and encryption schemes, we describe
an encrypted ObSSA algorithm, and analyze its limitations.

TABLE I: The truth table for matching a vertex vi of the query to a vertex vj of the ball via a case analysis on vi’s child vk
MQ(i, k)

∑|VB |
l=1

(
MB(j, l)·P (k, l)

)
P (i,j)′

Meaning of values 0:(i, k)∈EQ 1:(i, k)/∈EQ 0:vk is not matched Z+:vk is matched 0:violation Z+: valid

Case 1. (i, k) missing; and vk matched 1 Z+ Z+

Case 2. (i, k) missing; and vk not matched 1 0 Z+

Case 3. (i, k) present & matched 0 Z+ Z+

Case 4. (i, k) present but vk not matched 0 0 0

Encrypted ObSSA. In encrypted ObSSA, the adjacency ma-
trix of Q is encrypted by the client. G is encoded for correct
computation. The encrypted ObSSA, the ball and the vertex
mapping matrix are generated by the SP as in ObSSA. In Line 5
(Lines 9-17), each element P (i, j) ∈ P is computed iteratively
|VB | · |VQ| times. If the size |VB | of ball B is large, it not only
takes a long runtime but also makes the value of the plaintext
for the encoding P (i, j) large. The following steps illustrate
the first two iterations of ObViolationPruning. Denote Pi

to be the computed vertex mapping matrix P after the i-th
iteration, and P0 is P .
1) The encrypted query MQE

, denoted as MQEnc
, contains

gx. To achieve homomorphic computation on Eq. 1 in each
iteration (Lines 11-16) for correct decryption in the end
(Line 17), each polynome of

∑|VB |
l=1

(
MB(j, l) · P0(k, l)

)
must

contain the same power of gx∝ with MQEnc
, where ∝ is a

value derived from the iteration number.
2) The first iteration of ObViolationPruning is different
from the others. Note that the initial matrix P0 contains
plaintext. SP can replace the possibly large plaintext value
of
∑|VB |

l=1

(
MB(j, l) · P0(k, l)

)
with the chosen ciphertexts of

0 and 1, denoted by c0 and c1, respectively, provided by
the client. If

∑|VB |
l=1

(
MB(j, l) · P0(k, l)

)
is a non-zero, SP

replaces it with c1, and otherwise, c0.
3) The remaining iterations are done in the ciphertext domain.
Overflow in ciphertext for its plaintext value.
1) The largest possible value of P1 can be analyzed as follows.
Recall Enc of CGBE. The ciphertext is either gxr or gxrq,
which corresponds to 1 or 0, and each ciphertext contains the
secret key gx. W.l.o.g, we analyze the computation for Child
in Eq. 1. Consider the largest possible value of Child in the
first iteration, i.e., each ciphertext has the largest value gxrq.
Then, the value of Child is as follows.

|VQ|∏
k=1

(g
x
rq + g

x
rq) =

[
(g

x
)
|VQ|

]
· (2rq)

|VQ|

2) In the second iteration, we ensure the two components of
Child (Eq. 1b) have the same order of gx, so that they can
be correctly added. First,

∑|VB |
l=1

(
MB(j, l) · P1(k, l)

)
contains

the power of the private key (gx)
2|VQ|. Second, we replace

MQEnc
(i, j) with MQEnc

(i, j)
|VQ|. As a consequence, after

the second iteration, the largest possible value of P2(i, j) is
the following.

P2(i, j) =
[
(g

x
)
4|VQ|

2]
·
[
(rq)

2|VQ| + |VB | · (2rq)
2|VQ|

]2|VQ|,

where
[
(rq)2|VQ| + |VB | · (2rq)2|VQ|

]2|VQ| corresponds to the
plaintext of the largest possible value for P2(i, j), which is
larger than (2rq)4|VQ|2 .

For example, consider the experimental settings of [20] and

[16]. We assume that both q and r are of 32 bits. If the public
value p is of 4096 bits and the size |VQ| of the query is 5,
(2rq)4|VQ|2 needs 6500 bits.
3) Similar to the second iteration, we can analyze that Child
of the nth iteration contains a factor (gx)

(2|VQ|)n .
From the above analysis, we can observe that in practice,

the value of the plaintext can be larger than the order p of
CGBE and there can be an overflow.

IV. A PRACTICAL INEXACT SOLUTION EncSSA

Due to the limitation discussed in Sec. III-D, we propose a
practical, inexact algorithm, called EncSSA, which comprises
three pruning ideas, namely, localized pruning, neighbor-label
pruning, and path pruning.

A. Localized Violation Pruning

Localized violation pruning (presented in Alg. 3
TwoIterPruning) contains two main techniques. Firstly, we
conduct violation detection for a bounded number of times.
Secondly, we replace large ciphertext with small ciphertext to
allow more violation detections before overflow happens.

We illustrate the techniques with an example of Child,
shown in Fig. 4(a). (The case of Parent is similar.) We also
denote G[v2, 2] as B. Alg. 3 checks whether a match from
u1 ∈ VQ to v2 ∈ VB violates Def. 1, i.e., conducting the
violation detector on P0(1, 2).

In the first iteration (Lines 3-8) of Alg. 3, Line 5 computes
the value of Child(1, 2) in Eq. 1(b). Then, Line 6 searches
for the value of Child(1, 2) in the column of the original
ciphertext in the replacement table shown in Fig. 4(b) and
updates Child(1, 2) with the corresponding ciphertext for re-
placement. The rows of the replacement table in Fig. 4(b)
list all the possible cases of Child. (The replacement table
has 2|VQ|−1 rows.) As the term MQEnc

(i, j) of Eq. 1(b) is
computed and provided by the client to SP, the client can also
precompute a ciphertext that corresponds to a small plaintext
for replacement.

The second iteration (Lines 9-12) conducts violation detec-
tion for the second time. It takes the encrypted vertex mapping
matrix P1 as input. Hence, Alg. 3 performs violation pruning
in the encrypted domain to yield P2.
Analysis of query size and overflow. In Fig. 4(b), the value
of Child is at most gxrq. Therefore, the value of each element
in P1 is at most g2x(rq)2 (Lines 7-8). With Eq. 1, we know
that the value of each element in P2 is:

P2(i, j) ≤
[
(g

x
)
4|VQ|

]
·
[
(rq)

2
+ |VB | · (2rq)

2]2|VQ|

Assume that both q and r are of 32 bits and the public
order p of CGBE is of 4096 bits. If |VB | needs 20 bits, then,

�

� �

u1

u2 u3

C1

A1 B1 A3 B3

B2
A2 C2 C3

v1

v2 v3 v4 v5

v6 v7 v8 v9

Q :
MQ(1; 3) = gxr2q

MQ(1; 2) = gxr1q

��� Q� ��� ��		� �
� ����
�
� ������
� ���� u1 �� v2

����� �� 	���
���
����� �� Child ��� u1 ��
�
��� �
	������� ��	�������� �
����
��

1: (MQ(1; 2) + c0) � (MQ(1; 3) + c0) (gxr1q + c0) � (g
xr2q + c0) gxrq ���

2: (MQ(1; 2) + c0) � (MQ(1; 3) + c1) (gxr1q + c0) � (g
xr2q + c1) gxrq ���

3: (MQ(1; 2) + c1) � (MQ(1; 3) + c0) (gxr1q + c1) � (g
xr2q + c0) gxrq ���

��� ��� ��� ���

2jVQ�1j : (MQ(1; 2) + c1) � (MQ(1; 3) + c1) (gxr1q + c1) � (g
xr2q + c1) gxr ��

��� ���	�����
� ���	� ��� u1�� ���	���

���� G[v2; 2]

Fig. 4: (a) The example query, ball and matching; and (b) the replacement table TR of large ciphertext with small ciphertext

Algorithm 3: Localized violation pruning TwoIterPruning

Input : The replacement tables TR of Q, the initial vertex mapping matrix P0

and the adjacency matrix MB

Output: The vertex mapping matrix R1 after two iterations of violation
detections (cf. ObViolationPruning of Alg. 2)

1 Procedure TwoIterPruing(TR, P0, MB):
2 generate two null matrices P1 and R1 of the same size as P0;
3 foreach element P0(i, j) do // 1st iteration
4 if P0(i, j) 6= 0 then
5 compute the values of Child and Parent; // Eq.1b and 1c
6 Search the replacement tables TR for both vi’s children and

parents, then replace Child and Parent with small ciphertext;
7 P1(i, j)← Child;
8 P1(i, j)← P1(i, j)· Parent;
9 foreach element P1(i, j) do // 2nd iteration

10 if P1(i, j) 6= 0 then
11 R1(i, j)← Child;
12 R1(i, j)← R1(i, j)· Parent;
13 return R1;

TABLE II: The encrypted 3-path table TP (partial)
3-path pi starting from u1 ciphertext cpi plaintext meaning

p1. (A,B,C) gxr Z+ not exists
p2. (A,C,B) gxr Z+ not exists

3-path pi starting from u2 ciphertext cpi plaintext meaning

p1. (B,A,C) gxrq 0 exists
p2. (B,C,A) gxr Z+ not exists

by substituting these number into the above formula and some
arithmetics, we have TwoIterPruning can support the query
size up to 13 (detailed derivations in [21]).

|VB | · 2302|VQ| < 2
4096 ⇒ |VQ| ≤ b

4076

302
c = 13.

Time complexity and correctness. Alg. 3 conducts two
iterations of violation detection instead of |VQ| · |VB | iter-
ations in Alg. 2. Therefore, the time complexity of Alg. 3
is O(|VQ|2 · |VB |2). Regarding the correctness, since Alg. 3
conducts two iterations of violation detection, Alg. 3 indicates
no violations for the balls having matches as well as some
balls that do not have matches (false positives).

B. Path-based Pruning

In the Sec. IV-A, we present localized pruning that makes
use of the information of 2-hop neighbors. In this subsection,
we propose a path-based pruning method making use of
neighbors reachable from larger hops.

We call k-path a directed path of k−1 edges of distinct
vertex labels. An example of 3-path in Fig 2(a) is u2→u1→u3

and its label sequence is (B,A,C). The following proposition
can be established from Def. 1.

Proposition 2. Given a query Q and a ball B in a graph G
with the center v, and any vertex u in Q, where LQ(u) =
LG(v), if there exists at least one k-path p starting from u in
Q but not from v in B, then u cannot be matched to v.

Prop. 2 is then used to prune balls that must contain
violations due to the balls’ centers. We illustrate the steps of
pruning with 3-path as follows.
• Client: For each vertex u of Q, the client enumerates
all possible k-paths starting from u using |ΣQ| labels. For
example, given Q as shown in Fig. 2(a), the client computes
an encrypted 3-path table TP of all the |VQ| ·A2

2 = 6 possible
3-paths, where A is the permutation symbol, as Tab. II shows
some of them. For each 3-path p in TP , there is a ciphertext
corresponding to a plaintext indicating that whether p exists
in Q. Then, the client sends TP to the SP.
• SP: After receiving table TP , for each ball B, the SP runs
PathPruning (Alg. 4). Line 3 first uses DFS to traverse ball
B and find all the 3-paths starting from the center vj of B. For
each vertex ui in Q that potentially matches vj , Lines 5-11
aggregate the ciphertexts in Ci for pruning B.

Specifically, for each k-path p starting from ui (Line 6), if
there exists k-path p starting at vj (Line 7), too, then, Line 8
multiplies Ci with the ciphertext of 1, which is used to ensure

the power of the private key g
x·Ak−1
|ΣQ|−1 for the correctness

of decryption. Otherwise, in Line 10, by Prop. 2, p leads to
violation if ui has p. Hence, Ci is multiplied by the ciphertext
cp of p in TP (Line 10). Line 11 aggregates the ciphertexts Cis
of all possible matching vertices into R2. If Dec(R2) = 0, i.e.,
B’s center vj cannot be matched to any vertices in Q, then B
is pruned. The generalization of path-based pruning including
k-paths ending at each vertex is immediate.
Analysis. Given queries with the same |VQ|, ΣQ and LQ,
Alg. 4 conducts the same operations without exploiting the
query structure. Thus, Alg. 4 is oblivious. Regarding the value
of k, the pruning of PathPruning when k = 2 is covered by
TwoIterPruning. Hence, we assume k > 2, but k ≤ |VQ|.

Regarding the overflow problem due to CGBE, we remark
that Lines 8 and 10 in Alg. 4 use multiplications for Ak−1

|ΣQ|−1

times in total. In the experimental settings in Sec. VI, both q
and r are of 32 bits while the public value p is of 4096 bits.
Hence, b4096/64c = 64 times of multiplication are supported.
If Ak−1

|ΣQ|−1 > 64, we can do the multiplications in batches.
Alg. 4 uses O(|VB |+|EB |) time for DFS and

O(|VQ|·Ak−1
|ΣQ|−1·k·DB) time for ciphertext aggregation

in the worst case, where DB is the maximum degree of B.

C. Neighbor-Label Pruning
In previous subsections, we use Child and Parent to check

two-hop neighbors and k-path to check neighbors that are
further away. Here, we propose to use simpler information (just
labels) to detect violations due to the neighbors even further
away, and yet we do not run into the overflow problem.

Algorithm 4: Path-based pruning PathPruning

Input : The length k, the encrypted k-path table TP , the adjacency matrix
MB and the vertex mapping matrix P

Output: The encrypted messages R2 for pruning ball B

1 Procedure PathPruning(TP , MB):
2 R2 ← 0;
3 start a DFS from B’s center vj to compute all k-paths;
4 foreach ui in Q where P (i, j) = 1 do
5 Ci ← 1;
6 foreach k-path p in TP starting at ui do
7 if p is found that starts at vj then
8 Ci ← Ci · c1; // aggregate ciphertext of 1
9 else

10 Ci ← Ci · cp; // violation if ui has p
11 R2 ← R2 + Ci;
12 return R2;

Algorithm 5: Neighbor-label pruning NLPruning

Input : The hop h, the NL-index NLh, the center v of ball B and the
encrypted NL-matrix EMh

Q
Output: The encrypted messages R3 for pruning ball B

1 Procedure NLPruning(EMh
Q, NLh):

2 foreach ui in Q with LQ(ui) = LG(v) do
// detect violation using Prop.3

3 Ci ← 1;
4 for the jth(1 ≤ j ≤ |ΣQ|) label l in ΣQ do
5 if l ∈ NLh(v)} then
6 Ci ← Ci · c1; // aggregate ciphertext of 1
7 else
8 Ci ← Ci · EMh

Q(i, j); // violation if l 6∈NLh(v)

9 R3 ← R3 + Ci;
10 return R3;

NL-index. Given a vertex u in G and a hop number h, we pre-
compute the h-hop neighbors N = {v|dis(u, v) = h}. Then,
the h-hop NL-index of u, denoted by NLh(u), is the labels
of the h-hop neighbors, i.e., NLh(u) = {LG(v)|v ∈ N}.

Example 4. Consider the graph G in Fig. 2(a). NL6(v2) =
{LG(v3), LG(v8), LG(v7)} = {A,B,C}.

NL-matrix. Given a query Q and a hop number h, the NL-
matrix of Q for h-hop neighbors (exclude cycles), denoted as
Mh

Q, is a |VQ| × |ΣQ| matrix defined as follows: Mh
Q(i, j) =

0 if the vertex vi has an h-hop neighbor; and 1 otherwise.
Based on NL-index and NL-matrix, we propose the follow-

ing proposition to detect violations.

Proposition 3. Consider a query Q and a ball B with the
center v and any vertex u in Q, where LQ(u) = LG(v). If u
has an h-hop neighbor that has a label l, but l /∈ NLh(v),
then u cannot be matched to v.

Since the hop in NL-matrix excludes cycles whereas the h-
hops in NL-index includes cycles, Prop. 3 holds and it can be
easily proved by following Def. 1. We propose the NLPruning
procedure (Alg. 5). NLPruning takes the hop number h, the
NL-index and the encrypted NL-matrix as inputs, and outputs
encrypted messages R3 as the violation detection result.

For each vertex ui in Q having the same label as the ball
center v (Line 2), Lines 4-8 aggregate the ciphertexts in Ci for
pruning B. Specifically, for each label l in ΣQ (Line 4), if v
can reach an h-hop neighbor that has label l (Line 5), then Line
6 multiplies Ci by the ciphertext of 1, to ensure correctness of

Algorithm 6: EncSSA Algorithm
Input : The data graph G, the encrypted adjacency matrix EMQ, the

diameter dQ, portion p, the replacement tables TR, length k with the
encrypted k-path tables TP , hop h with the encrypted NL-matrices
EMh

Q and the NL-indexes NLh

Output: A superset RS of balls containing the strong simulation results

At the SP side:
1 foreach v in VG, where LG(v) ∈ ΣQ do
2 retrieve the adjacency matrix MB of the ball B = G[v, dQ];
3 generate the vertex mapping matrix P0 from Q to B;
4 initialize R0, R1, R2 and R3;
5 BallPruning(MB , P0, p, TR, k, TP , h, EMh

Q, NLh);
6 ResultAggregation();
7 send to the client the ciphertexts Ri

0s, Ri
1s, R2s and R3s,

i ∈ [1, |VQ|] for all balls;

Procedure BallPruning(MB , P0, p, TR, k, TP , h, EMh
Q, NLh):

8 R0 = OneIterPruning(MB , P0); // 1-hop pruning
9 R1 = TwoIterPruning({TR}, MB , P0, p); // 2-hop

10 R2 = PathPruning({TP }, MB , k); // 3∼k-hops
11 R3 = NLPruning(EMh

Q, NLh, h); // k∼h-hops
Procedure ResultAggregation():

12 foreach row i ∈
[
1, |VQ|

]
do

13 Ri
0 =

∑|VB |
column=1 R0(i, column);

14 Ri
1 =

∑|VB |
column=1 R1(i, column);

15 R
′
0 =

∑|VQ|
row=1 R0(row, column for ball center);

16 R
′
1 =

∑|VQ|
row=1 R1(row, column for ball center);

At the Client side when R
′
0, R

′
1, Ri

0, Ri
1, R2 and R3 are received from

the SP:
Procedure Decryption(R

′
0, R

′
1, Ri

0, Ri
1, R2, R3):

17 foreach R
′
0, R

′
1, Ri

0, Ri
1, R2, R3 belonging to the same ball B do

18 if Dec(R2) = 0 then // Alg. 4 in Sec. IV-B
19 continue;
20 if Dec(R3) = 0 then // Alg. 5 in Sec. IV-C
21 continue;

22 if
∏|VQ|

i=1 Dec(Ri
0) = 0 ||

∏|VQ|
i=1 Dec(Ri

1) = 0 then
// similar to Line 24 in ObCheckSS() in Alg. 2

23 continue;
24 if Dec(R

′
0) = 0 || Dec(R

′
1) = 0 then

// similar to Line 26 in ObCheckSS() in Alg. 2
25 continue;
26 ball B is added into RS ;

decryption. Otherwise, in Line 8, there may be a violation for
the unreachable h-hop label l by Prop. 3. Assumed that l is
the jth label in ΣQ, Line 8 multiplies Ci by EMh

Q(i, j). If ui
has an h-hop neighbor with label l, then Dec(EMh

Q(i, j)) = 0
and hence, Dec(Ci) = 0. Otherwise, Dec(Ci) = Z+. Line 9
aggregates the ciphertexts Cis into R3. If Dec(R3) = 0, i.e.,
B’s center v cannot be matched to any vertices in Q, then B
can be pruned.

Analysis. The value of h for Alg. 5 should be larger than k
for k-path in Sec. IV-B to further prune the balls that cannot
be pruned by Alg. 4. The analysis of the obliviousness of
Alg. 5 and the overflow in Alg. 5 are similar to the one of
Alg. 4. Regarding the worst-case time complexity, Alg. 5 takes
O(|VQ|·|ΣQ|·max {|NLh(v)|}).

D. EncSSA Algorithm

In this subsection, to answer the strong simulation query,
we propose an encrypted inexact algorithm, called EncSSA,
using the pruning techniques of Sec. IV-A, IV-B and IV-C.

Pseudo-code for EncSSA (Alg. 6). Taking the data graph
G, the encrypted adjacency matrix EMQ, the diameter dQ,
portion p and the inputs of Alg. 3, 4, 5 as inputs, the EncSSA

algorithm outputs a superset RS of balls that contains the
strong simulation results for Q. At the SP side, for each vertex
v in G, Line 2 retrieves the adjacency matrix MB for the ball
B = G[v, dQ] and Line 3 generates the corresponding vertex
mapping matrix P0 from Q to B. Then, the BallPruning()

procedure (Line 5) computes the ciphertexts for pruning B.
Specifically, Line 8 conducts the violation detection on all
vertices in B for only one iteration (i.e., Lines 3-8 in Alg. 3),
which is denoted as OneIterPruning(). Then, Line 9 ran-
domly chooses a portion p (0 < p ≤ 1) of vertices among |VB |
and conducts Alg. 3 on these vertices. Line 10 conducts Alg. 4
and Line 11 conducts Alg. 5. Since R0 and R1 obtained by
Lines 8-9 are matrices, the ResultAggregation() proce-
dure (i) combines the ciphertexts in each row of both matrices
by addition (Lines 12-14), and (ii) combines the ciphertexts
in the column for the ball center by addition (Lines 15-16).
Finally, the SP sends the combined ciphertexts together with
R2 and R3 to the client (Line 7).

At the client side, after receiving the ciphertexts,
Decryption() first decrypts the ciphertext R2 (R3) and
prunes B based on Alg. 4 (Alg. 5) in Line 18 (Line 20).
Then, similar to ObCheckSS() in Alg. 2, (i) Line 22 checks
whether there exists at least one valid match in B for each
vertex in Q and (ii) Line 24 checks whether there exists at
least one vertex in Q that can be matched to the ball center.
If B cannot be pruned, Line 26 adds B into RS .

Analysis. As introduced in Sec. IV-A, IV-B and IV-C,
EncSSA can handle the situation of overflow. Moreover, the
computations at the SP side consist of Alg. 3-5, which are
oblivious. Then, we analyze the scale of ciphertexts need
in EncSSA. Let Nball denote the number of balls computed
in Line 1. For each ball, Lines 10-11 (Lines 15-16) both
generate O(1) ciphertexts while Lines 13-14 both generate
|VQ| ciphertexts. Therefore, EncSSA needs to transmit in total
Nball ·(a·|VQ|+b) ciphertexts, where 1 ≤ a, b ≤ 2, in practice.
Regarding time complexities, EncSSA needs O

(
Nball·(|VQ|2

·|VB |2+|EB |+|VQ|·Ak−1
|ΣQ|−1·k·DB+|VQ|·|ΣQ|·max {|NLh(v)|})

)
time at the SP side, and O(Nball·|VQ|·Dect) at the client
side, where Dect is the time for decrypting a ciphertext.

V. PRIVACY ANALYSIS

Due to space restrictions, we present the main ideas of the
privacy analysis, but present the detailed derivations in [21].

Lemma 2. CGBE [20] is secure against CPA. EMQ and
EMh

Q is preserved from SP against the attack model.

Proposition 4. The structure of query encrypted by CGBE is
preserved from SP against the attack model.

With Lemma 2 and Prop. 4, SP cannot attack the query’s
ciphertext directly. Then, we analyze Alg. 3-Alg. 5.

For Alg. 3, assume that the vertex mapping matrix has n
elements with value 1. Let A(Q) be a function that returns
1 if SP can determine the existence of an edge of Q, and 0
otherwise. Then, since Alg. 3 conducts oblivious computation
on ciphertexts encrypted by CGBE, we can yield Prop. 5.

TABLE III: Statistics of the real-world datasets
Graph G |VG| |EG| ΣG

Slashdot 82,168 948,464 32, 64, 128
DBLP 317,080 1,049,866 32, 64, 128
Twitter 81,306 1,768,149 32, 64, 128

Proposition 5. After running TwoIterPruning, Pr[A(Q) =
1] ≤ 2−n.

Prop. 5 states that there is a negligible probability that SP
can attack the vertex mapping matrix after conducting the
localized violation pruning.

For Alg. 4 (resp. Alg. 5), let G(R2) (resp. K(R3)) returns
1 if SP can compute the plaintext of the output ciphertext R2

(resp. R3), and 0, otherwise. We analyze the possibilities of
G(R2)=1 (resp. K(R3)=1) and yield Prop. 6 (resp. Prop. 7).

Proposition 6. After running PathPruning, Pr[G(R2) =
1] ≤ 1/2 + ε, where ε is negligible.

Proposition 7. After running NLPruning, Pr[K(R3) = 1] ≤
1/2 + ε, where ε is negligible.

Prop. 6 (resp. Prop. 7) states that there is a negligible
probability SP can do so after conducting the path-based
pruning (resp. neighbor-label pruning). In addition, we yield
Prop. 8 to show that SP cannot infer the plaintext of the
structural information of the query from the relations between
the encrypted messages of different hops (e.g., the 1-hop
adjacency matrix can yield the 2-hop adjacency matrix) needed
for neighbor-label pruning. Note that no relations exist in the
case for localized violation pruning (path-based pruning).

Proposition 8. Given the encrypted matrices EMQ and
EMh

Q, the neighbor information of the query is preserved from
SP against the attack model under CGBE.

Putting Props. 5, 6, 7 and 8 together, we have Thm. 1 since
the three pruning techniques used independently in EncSSA.

Theorem 1. EncSSA (Alg. 6) preserves the privacy of the
query structure against CPA.

VI. EXPERIMENTAL RESULTS

We conducted detailed experiments to investigate the effi-
ciency and effectiveness of our proposed algorithms.
Platform. The prototype4 used in the experiment is imple-
mented in C++. We used a machine with an Intel Xeon E5-
2630 2.2GHz CPU and 256GB RAM running CentOS 7.7
for both the SP and client. We used the GMP libraries to
implement CGBE encryption scheme.

Datasets. We used three real-world datasets, namely Slashdot,
DBLP and Twitter [22]. Some characteristics of the datasets
can be found in Tab. III. Since the vertices in these datasets
do not have labels, similar to [9], we generated random labels
for them. We use the subscript |ΣG| to denote the generated
datasets, i.e., Slashdot|ΣG|, DBLP|ΣG| and Twitter|ΣG|.

Query sets. Given a query size |VQ| and a diameter dQ, the

4https://github.com/PP-StrongSimulation?tab=repositories

TABLE IV: Statistics of the balls of random queries (Σ = 64)
Dataset # of balls (Bs) average |VB | stddev |VB |
Slashdot 4489 481 498
DBLP 4761 77 55
Twitter 5964 931 848

query generator QGen4 derived a radius γ. QGen randomly
chose a vertex v in the data graph and obtained the induced
graph of v’s 1 to γ-hop neighbors. After random edge dele-
tions, QGen output the maximum connected component if it
had a size |VQ| and diameter dQ.
Default parameters. The parameters are described as follows:
• CGBE. The encoding q and random number r for CGBE
were both of 32 bits. The public value was of 4096 bits.
• Query and graph. The query sizes |VQ| varied from 6 to 10.
The default value of |VQ| was 8. According to the analysis in
Sec. IV-A, the parameters for CGBE can support |VQ| ≤ 13
without overflow. The query diameter dQ varied from 3 to 5,
where the default value of dQ was 3. The label size |ΣG| =
32, 64 or 128 and the default value was 64.
• Neighbor-label pruning (NL). The value of hop h varied
from 4 to 6. The default value was 4.
• Path-based pruning (Path). The value of length k for k-path
varied from 3 to 5. The default value was 3.
• Two-iteration violation pruning (twoIter). We chose ver-
tices randomly in each ball with portion p (p = 0.1, 0.3, or 0.5)
for twoIter. This investigated the balance between efficiency
and effectiveness of the pruning. The corresponding algorithm
was denoted as twoIterp. The default value was 0.3.
• One-iteration violation pruning (oneIter). We conducted
one iteration on all the vertices for violation pruning.

Balls. Tab. IV shows some statistics of the balls generated
from random queries under the default setting. In a nutshell,
each query can lead to several thousand balls and each ball
contains hundreds of vertices.

A. Experiment on Efficiency

EXP-0. Performance at the client. Given a query, the client
generated the encrypted messages for EncSSA and decrypted
the ciphertexts returned by the SP to obtain the results.
1) Preprocessing. Given a query Q, the client generated the
adjacency matrix MQ, the replacement tables TR, the path
tables TP and the NL-matrices Mh

Q. The total preprocessing
times are all less than 0.15s.
2) Encryption. The messages to be encrypted were MQ,
TR, TP , Mh

Q and the chosen ciphertexts c0 and c1. Based
on the encrypted MQ, i.e., EMQ, the client generated the
replacement tables TR for twoIter. The total encryption times
are all less than 0.1s.
3) Decryption. The client decrypted the messages generated
from Path, NL and twoIter. The total runtimes for decryption
of EncSSA in our experiment are all less than 1s.
4) Message sizes. As analyzed in Sec. IV-D, the message size
is Nball·(a·|VQ|+b), 1≤ a,b ≤2, where Nball is the number of
computed balls. The size of each ciphertext for CGBE of 4096
bits is 512 bytes. Take the query for Twitter in the next EXP-1

 0

 100

 200

 300

 400

 500

1 2 3 4 5 6 7 8

ti
m

e
 (

m
ill

is
e

c
o

n
d

s
)

ball size interval x

Ball size: [(x-1)*250+1, x*250]

(a) twoIter0.3 (186.2s)

 0

 0.5

 1

 1.5

 2

 2.5

1 2 3 4 5 6 7 8

ti
m

e
 (

m
ill

is
e

c
o

n
d

s
)

ball size interval x

Ball size: [(x-1)*250+1, x*250]

(b) Path (2.2s)

 0

 0.3

 0.6

 0.9

 1.2

 1.5

1 2 3 4 5 6 7 8

ti
m

e
 (

m
ill

is
e

c
o

n
d

s
)

ball size interval x

Ball size: [(x-1)*250+1, x*250]

(c) NL (1.6s)
Fig. 5: Runtimes of twoIter0.3, NL and Path on Slashdot

 0

 10

 20

 30

 40

 50

1 2 3 4 5 6 7 8

ti
m

e
 (

m
ill

is
e

c
o

n
d

s
)

ball size interval x

Ball size: [(x-1)*2
5
+1, x*2

5
]

(a) twoIter0.3 (58.8s)

 0

 0.4

 0.8

 1.2

 1.6

 2

1 2 3 4 5 6 7 8

ti
m

e
 (

m
ill

is
e

c
o

n
d

s
)

ball size interval x

Ball size: [(x-1)*2
5
+1, x*2

5
]

(b) Path (3.5s)

 0

 0.3

 0.6

 0.9

 1.2

 1.5

1 2 3 4 5 6 7 8

ti
m

e
 (

m
ill

is
e

c
o

n
d

s
)

ball size interval x

Ball size: [(x-1)*2
5
+1, x*2

5
]

(c) NL (3.2s)
Fig. 6: Runtimes of twoIter0.3, NL and Path on DBLP

 0

 100

 200

 300

 400

 500

1 2 3 4 5 6 7 8

ti
m

e
 (

m
ill

is
e

c
o

n
d

s
)

ball size interval x

Ball size: [(x-1)*250+1, x*250]

(a) twoIter0.3 (220.9s)

 0

 0.5

 1

 1.5

 2

 2.5

1 2 3 4 5 6 7 8

ti
m

e
 (

m
ill

is
e

c
o

n
d

s
)

ball size interval x

Ball size: [(x-1)*250+1, x*250]

(b) Path (3.6s)

 0

 0.3

 0.6

 0.9

 1.2

 1.5

1 2 3 4 5 6 7 8

ti
m

e
 (

m
ill

is
e

c
o

n
d

s
)

ball size interval x

Ball size: [(x-1)*250+1, x*250]

(c) NL (2.6s)
Fig. 7: Runtimes of twoIter0.3, NL and Path on Twitter

 0

 100

 200

 300

 400

 500

1 2 3 4 5 6 7 8

ti
m

e
 (

m
ill

is
e

c
o

n
d

s
)

ball size interval x

Ball size: [(x-1)*250+1, x*250]

(a) Slashdot (83.5s)

 0

 2

 4

 6

 8

 10

1 2 3 4 5 6 7 8

ti
m

e
 (

m
ill

is
e

c
o

n
d

s
)

ball size interval x

Ball size: [(x-1)*2
5
+1, x*2

5
]

(b) DBLP (3.8s)

 0

 100

 200

 300

 400

 500

1 2 3 4 5 6 7 8

ti
m

e
 (

m
ill

is
e

c
o

n
d

s
)

ball size interval x

Ball size: [(x-1)*250+1, x*250]

(c) Twitter (83.2s)
Fig. 8: Runtimes of Match() on different datasets

as an example. The message size is 24MB, whose transmission
time is less than 0.5s in a 100Mbps Ethernet.

EXP-1. Overall runtimes under the default setting. For the
ease of exhibition, we used boxplots. In x-axis, we grouped
the balls according to their sizes, whose definition is shown
in the figures. Only 1% of balls were beyond x range. We
reported the performance as runtimes per ball, and for brevity,
we simply called them runtimes. The box of each interval was
drawn around the region between the first and third quartiles,
and a horizontal line at the median value. The whiskers
extended from the ends of the box to the most distant point
with a runtime within 1.5 times the interquartile range. Points
that lie outside the whiskers were outliers. The total runtime
of each technique was presented in the parentheses in the
subcaption of each figure.

We first investigated the algorithms on the three datasets un-
der the default setting. The results of Slashdot64 are presented
in Fig. 5. Fig. 5(a) shows that the runtimes of twoIter0.3

increase as the ball sizes |VB | increase. twoIter0.3 takes
roughly 300ms even for large balls. We remark that oneIter
is faster than twoIter0.5 but slower than twoIter0.3.

As expected, NL is efficient and not sensitive to |VB | but the
NL-index sizes. Path is also efficient but its runtimes increase
as |VB | increases. This is because Path involved traversing
the ball to check all the k-paths starting from the ball center.

The results of DBLP64 and Twitter64 are presented in Fig. 6
and Fig. 7. Similar trends can be observed with the exception
of the runtimes of Path of DBLP64. The reason is that the

 0

 90

 180

 270

 360

 450

1 2 3 4 5 6 7 8

ti
m

e
 (

m
ill

is
e

c
o

n
d

s
)

ball size interval x

Ball size: [(x-1)*200+1, x*200]
|VQ|=6
|VQ|=8

|VQ|=10

(a) twoIter0.3

 0

 0.7

 1.4

 2.1

 2.8

 3.5

1 2 3 4 5 6 7 8

ti
m

e
 (

m
ill

is
e

c
o

n
d

s
)

ball size interval x

Ball size: [(x-1)*200+1, x*200]
|VQ|=6
|VQ|=8

|VQ|=10

(b) Path

 0

 0.3

 0.6

 0.9

 1.2

 1.5

1 2 3 4 5 6 7 8

ti
m

e
 (

m
ill

is
e

c
o

n
d

s
)

ball size interval x

Ball size: [(x-1)*200+1, x*200]
|VQ|=6
|VQ|=8

|VQ|=10

(c) NL

Fig. 9: Runtimes by varying |VQ| on Slashdot

 0

 1200

 2400

 3600

 4800

 6000

Q6 Q7 Q8 Q9 Q10

#
 o

f
b

a
lls

Query

(a) # of balls

 0

 700

 1400

 2100

 2800

 3500

Q6 Q7 Q8 Q9 Q10

b
a

ll
s
iz

e

Query

(b) ball size

 0

 500

 1000

 1500

 2000

 2500

1 2 3 4 5 6 7 8

#
 o

f
b

a
lls

ball size interval x

Ball size: [(x-1)*250+1, x*250]

(c) ball distribution (Q8)
Fig. 10: Statistics of balls when varying |VQ| on Slashdot

balls of DBLP are very sparse, the performance differences
due to the traversals for k-paths cannot be observed.

Finally, we report in Fig. 8 the runtimes of strong simulation
in the plaintext domain to give a reference to the overhead
of privacy preserving computation. We implemented Match()
of [9] in our codebase. From the total runtimes indicated in
the figures’ subcaptions, the private algorithm is around 2.3x,
17x and 2.7x slower than Match().

EXP-2. Runtimes under different settings. We ran the
algorithms on Slashdot and vary a parameter at a time. In
the following figures, there are only fewer than 1% of outlier
performances that cannot be displayed.

2.1. Varying |VQ|. Fig. 9(a) shows the results for twoIter0.3

on Slashdot for Q6, Q8 and Q10. It can be observed that the
runtime increases as either |VQ| or |VB | increases. Moreover,
the trends of the runtime of twoIter0.3 are slightly superlinear
in practice. The runtime variations are larger when either |VQ|
or |VB | becomes larger. These show twoIter0.3 can always
process at least 2 balls per second under various settings.

Recall that two-Iter is oblivious, where the runtime
depends only on |VB | and |VQ|. Hence, we further investigated
|VB | and |VQ|. Fig. 10(a) shows the total number of balls of
different |VQ|s. The number of balls for Q6-Q10 ranged from
2400 to 4800. Fig. 10(b) shows the variations of |VB | and
Fig. 10(c) reports that many balls have hundreds of vertices.
twoIter0.3 can process more than 10 such balls in 1s.

The trends of NL and Path when varying |VQ| are shown
in Figs. 9(c) and 9(b). It can be observed that a larger |VQ|
leads to a larger runtime. For NL, a larger query has a larger
NL-matrix. For Path, more labels also make the path tables
larger. Therefore, NL and Path become slower.

2.2. Varying p for twoIterp. In Fig. 11, it can be observed
that the runtimes of twoIterp increase as p increases. When
p=1, the runtime of two-Iter1 on large balls can be large.
We can tune the runtime by tuning p, but introducing false
positives (see Sec. VI-B).

2.3. Varying k for Path. Due to space restriction, the detailed
results are presented in a technical report [21]. In a nutshell,
the runtimes increase when k increases. This is because Path

traverses each ball from the center to check all the k-paths. We
do not observe the increase in runtimes of DBLP since DBLP

 0

 140

 280

 420

 560

 700

1 2 3 4 5 6 7 8

ti
m

e
 (

m
ill

is
e

c
o

n
d

s
)

ball size interval x

Ball size: [(x-1)*250+1, x*250]
p=0.1
p=0.3
p=0.5

(a) Slashdot

 0

 14

 28

 42

 56

 70

1 2 3 4 5 6 7 8

ti
m

e
 (

m
ill

is
e

c
o

n
d

s
)

ball size interval x

Ball size: [(x-1)*2
5
+1, x*2

5
]

p=0.1
p=0.3
p=0.5

(b) DBLP

 0

 140

 280

 420

 560

 700

1 2 3 4 5 6 7 8

ti
m

e
 (

m
ill

is
e

c
o

n
d

s
)

ball size interval x

Ball size: [(x-1)*250+1, x*250]
p=0.1
p=0.3
p=0.5

(c) Twitter
Fig. 11: Runtimes by varying p: (0.1, 0.3 and 0.5) for twoIter

10
1

10
2

10
3

10
4

10
5

All Exact
oneIter

twoIter
NL Path

EncSSA

EncSSA*

60%

70%

80%

90%

100%

#
 o

f
m

a
tc

h
e

s

Accuracy
Number

4035.1

218.8

639.5 693.4 749.3
449.4 351.9 373.6

(a) Slashdot

10
1

10
2

10
3

10
4

10
5

10
6

All Exact
oneIter

twoIter
NL Path

EncSSA

EncSSA*

0%

20%

40%

60%

80%

100%

#
 o

f
m

a
tc

h
e

s

Accuracy
Number

4594.8

18.6
27.3

410.8 468.2

1686.4

25.8 26

(b) DBLP

10
1

10
2

10
3

10
4

10
5

All Exact
oneIter

twoIter
NL Path

EncSSA

EncSSA*

60%

70%

80%

90%

100%

#
 o

f
m

a
tc

h
e

s

Accuracy
Number

5872.7

19.9

433.3 491.5 574.9 503.4

200.4 243.3

(c) Twitter
Fig. 12: Overall accuracy and number of matches

10
1

10
2

10
3

10
4

10
5

All Exact
p=0.1

p=0.3
p=0.5

p=0.7
p=0.9

60%

70%

80%

90%

100%

#
 o

f
m

a
tc

h
e

s

Accuracy
Number

4035.1

218.8

761 693.4 586.8 483.7 376.2

(a) Slashdot

10
1

10
2

10
3

10
4

10
5

10
6

All Exact
p=0.1

p=0.3
p=0.5

p=0.7
p=0.9

0%

20%

40%

60%

80%

100%

#
 o

f
m

a
tc

h
e

s

Accuracy
Number

4594.8

18.6

565 410.8
202.6

87.5

22.6

(b) DBLP

10
1

10
2

10
3

10
4

10
5

All Exact
p=0.1

p=0.3
p=0.5

p=0.7
p=0.9

60%

70%

80%

90%

100%

#
 o

f
m

a
tc

h
e

s

Accuracy
Number

5872.7

19.9

563.7 491.5 367
269.2

172.9

(c) Twitter
Fig. 13: Effectiveness by varying p for twoIterp

is sparse and the traversal times have a negligible difference.

2.4. Varying h for NL. The runtimes are generally very small
and they increase as h increases [21].

B. Experiments on Effectiveness

EncSSA computes a superset of the solution of strong
simulation query, in which there can be false positives.
Thus, we investigated the accuracy of the results, defined
as (TP+TN)/(TP+TN+FP+FN), where TP (TN) denotes
true positive (true negative), and FP (FN) denotes false
positive (false negative), respectively. We remark FN=0.

We tested the effectiveness of oneIter, twoIter, NL, Path
and EncSSA independently. We also tested the effectiveness
of specific combinations of them on different datasets. For
Slashdot and Twitter, EncSSA∗ used twoIter, NL and Path.
For DBLP, EncSSA∗ used oneIter, NL and Path. All results
are the average from 10 random queries.

EXP-1. Overall effectiveness under the default setting.
Fig. 12 shows the number of matches obtained by each method
and the corresponding accuracy. It can be observed that almost
all the methods have accuracies higher than or close to 90%,
with only one exception. DBLP is sparse and there are fewer
paths with length larger than 3, which reduces the pruning
power of Path. Moreover, EncSSA has the highest accuracy
since its result is the intersection set of the results obtained by
oneIter, twoIter, NL and Path. For EncSSA∗, its accuracy
is slightly lower than EncSSA’s but its runtime is shorter than
EncSSA’s by turning off some specific technique(s).

EXP-2. Effectiveness under different settings. Fig. 13 shows
the results when varying p = 0.1, 0.3, 0.5, 0.7 and 0.9
for twoIterp. As expected, a larger p leads to fewer false
positives but more runtimes are needed (Fig. 11). Hence, we
can observe a trade-off between efficiency and effectiveness in
choosing p. We further ran Path and NL. A larger k for Path
leads to few false positives. The improvement from DBLP is

not obvious since there are few k-paths for k ≥ 4. In NL, when
h ≥ 4, the accuracy is larger than 80%. However, it does not
improve further since the center of each computed ball does
not have neighbors larger than 4 hops.

VII. RELATED WORK

There have been works on privacy preserving query process-
ing [23]–[26] in the recent three years. This section includes
only graph queries and secure query framework.
Privacy preserving graph queries. Cao et al. [17] studied
tree pattern queries on encrypted XML documents by pre-
determining the traversal order for each query. Cao et al.
[18] proposed a filtering and verification method to solve
the privacy preserving subgraph isomorphism query (sub-iso)
over encrypted graph-structured data in cloud computing. To
solve sub-iso in cloud computing, Fan et al. [20] transformed
the classic solution into matrix operations. They studied pri-
vacy preserving sub-iso under two different models, i.e., the
structure information of both query and graph are preserved
[20] and only query is preserved [16]. Chang et al. [27]
also solved the privacy preserving sub-iso by using the k-
automorphic graph to protect the structure information of data
graphs. Gao et al. [11] studied the privacy preserving strong
simulation query [9] in cloud. They used k-automorphic graph
to protect the structure information of data graphs. However,
the structure information of query is not preserved.
General secure query framework. Gentry et al. [13] de-
scribed the first plausible construction for a fully homo-
morphic encryption (FHE) that supports both addition and
multiplication operations on ciphertexts. However, due to the
known poor performance, FHE cannot be adopted for this
paper. An oblivious RAM simulator (ORAMs), introduced by
Goldreich and Ostrovsky [28], is a compiler that transforms
algorithms in such a way that the resulting algorithms preserve
the input-output behavior of the original algorithm but the
distribution of memory access pattern of the transformed
algorithm is independent to the memory access pattern of
the original algorithm. However, ORAMs cannot be applied
in this paper since the query is not known to the SP. Nayak
et al. [29] proposed a framework called GraphSC to provide a
programming paradigm that allows non-cryptography experts
to write secure graph-based algorithm with parallel secure
oblivious implementations. Following the Pregel/GraphLab
programming paradigm, GraphSC uses three primitives as
interfaces, i.e., scatter, gather and apply. However, GraphSC
still needs the query structure for violation detection.

VIII. CONCLUSION

This paper investigates the problem of privacy preserving
strong simulation queries for large graphs. This paper adopts
strong simulation query as it strikes a good balance between
matching flexibility and query efficiency. This paper presents
an oblivious algorithm for strong simulation queries under the
plaintext settings. Then, the paper proposes its encrypted ver-
sion and several optimizations for an inexact efficient secure
algorithm EncSSA. Privacy analysis results are presented. The

experimental results have shown the algorithms are efficient
and effective. As for future work, we plan to integrate query
answer authentication into this work.

ACKNOWLEDGMENT

This work is supported by HKBU12232716 and
HKBU12201518.

REFERENCES

[1] H. Tong, C. Faloutsos, B. Gallagher, and T. Eliassi-Rad, “Fast best-effort
pattern matching in large attributed graphs,” in SIGKDD, 2007.

[2] Y. Tian and J. M. Patel, “Tale: A tool for approximate large graph
matching,” in ICDE, 2008.

[3] W. Fan, “Graph pattern matching revised for social network analysis,”
in ICDT, 2012.

[4] S. A. Cook, “The complexity of theorem-proving procedures,” in STOC,
1971.

[5] J. Kim, H. Shin, W.-S. Han, S. Hong, and H. Chafi, “Taming subgraph
isomorphism for RDF query processing,” PVLDB, 2015.

[6] P. Hell and J. Nesetril, Graphs and Homomorphisms, 2004.
[7] R. Milner, Communication and Concurrency, 1989.
[8] S. Mennicke, J.-C. Kalo, D. Nagel, H. Kroll, and W.-T. Balke, “Fast

dual simulation processing of graph database queries,” in ICDE, 2019.
[9] S. Ma, Y. Cao, W. Fan, J. Huai, and T. Wo, “Strong simulation:

Capturing topology in graph pattern matching,” TODS, 2014.
[10] B. W. Hung and A. P. Jayasumana, “Investigative simulation: Towards

utilizing graph pattern matching for investigative search,” in ASONAM,
2016, pp. 825–832.

[11] J. Gao, J. Xu, G. Liu, W. Chen, H. Yin, and L. Zhao, “A Privacy-
Preserving Framework for Subgraph Pattern Matching in Cloud,” in
DASFAA, 2018.

[12] D. Eppstein, M. T. Goodrich, and R. Tamassia, “Privacy-preserving data-
oblivious geometric algorithms for geographic data,” in SIGSPATIAL,
2010.

[13] C. Gentry and D. Boneh, A Fully Homomorphic Encryption Scheme,
2009.

[14] Y. Lindell and J. Katz, Introduction to Modern Cryptography, 2014.
[15] D. Boneh, E.-J. Goh, and K. Nissim, “Evaluating 2-DNF formulas on

ciphertexts,” in TCC, 2005.
[16] Z. Fan, B. Choi, J. Xu, and S. S. Bhowmick, “Asymmetric structure-

preserving subgraph queries for large graphs,” in ICDE, 2015.
[17] J. Cao, F.-Y. Rao, M. Kuzu, E. Bertino, and M. Kantarcioglu, “Efficient

tree pattern queries on encrypted xml documents,” in EDBT/ICDT, 2013.
[18] N. Cao, Z. Yang, C. Wang, K. Ren, and W. Lou, “Privacy-preserving

query over encrypted graph-structured data in cloud computing,” in
ICDCS, 2011.

[19] H. Hu, J. Xu, Q. Chen, and Z. Yang, “Authenticating location-based
services without compromising location privacy,” in SIGMOD, 2012.

[20] Z. Fan, B. Choi, Q. Chen, J. Xu, H. Hu, and S. S. Bhowmick, “Structure-
preserving subgraph query services,” TKDE, 2015.

[21] L. Xu, J. Jiang, B. Choi, J. Xu, and S. S. Bhowmick,
“Privacy preserving pattern query processing for large graphs,”
https://www.comp.hkbu.edu.hk/%7Ecslyuxu/lyu2020tr.pdf, 2020.

[22] J. Leskovec and A. Krevl, “SNAP,” http://snap.stanford.edu/data.
[23] J. Bater, Y. Park, X. He, X. Wang, and J. Rogers, “Saqe: practical

privacy-preserving approximate query processing for data federations,”
PVLDB, 2020.

[24] S. Wu, Q. Li, G. Li, D. Yuan, X. Yuan, and C. Wang, “Servedb: Secure,
verifiable, and efficient range queries on outsourced database,” in ICDE,
2019.

[25] X. Lei, A. X. Liu, R. Li, and G.-H. Tu, “Seceqp: A secure and efficient
scheme for sknn query problem over encrypted geodata on cloud,” in
ICDE, 2019.

[26] N. Cui, X. Yang, B. Wang, J. Li, and G. Wang, “Svknn: Efficient secure
and verifiable k-nearest neighbor query on the cloud platform,” in ICDE,
2020.

[27] Z. Chang, L. Zou, and F. Li, “Privacy preserving subgraph matching on
large graphs in cloud,” in SIGMOD, 2016.

[28] O. Goldreich and R. Ostrovsky, “Software protection and simulation on
oblivious rams,” JACM, 1996.

[29] K. Nayak, X. S. Wang, S. Ioannidis, U. Weinsberg, N. Taft, and E. Shi,
“Graphsc: Parallel secure computation made easy,” in S&P, 2015.

