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Abstract—The availability of large-scale network data has
given rise to the opportunity to investigate higher level orga-
nization of these networks using graph theoretic analysis. In this
paper, we demonstrate a novel network decomposition tool called
FacetsViewer in order to make sense of the deluge of network
data. In contrast to traditional graph clustering techniques, it
finds not just a single decomposition of the network, but a
multi-faceted atlas of semantically meaningful decompositions
that portray alternative perspectives of the landscape of the

underlying network. Each facet in the atlas represents a dis-
tinct interpretation of how the network can be meaningfully
decomposed and organized. To this end, FacetsViewer maximizes
interpretative value of the atlas by optimizing inter-facet semantic
and structural orthogonality. Specifically, we demonstrate various
features of FacetsViewer and its superior ability to generate and
visualize multi-faceted atlas of complex networks.

Index Terms—Attributed network, multi-faceted decomposi-
tions, semantic and structural orthogonality, visualization.

I. INTRODUCTION

The increasing availability of massive amount of network

data presents us the opportunity to comprehend high level

organization of these networks. However, it is extremely

difficult to extract such information by simply visualizing a

network in a visual interface as it looks like a giant “hairball”.

Consequently, network (or graph) clustering methods that

decompose a networks into their functional or topological con-

stituents have gained increasing attention since the last decade.

For example, decomposing a protein-protein interaction (PPI)

network into functional or topological modules is often the key

step to comprehend the high-level relationships that underlie

the interaction data.

In general, graph clustering algorithms typically discover

regions of dense connectivity. For instance, in a PPI network

such dense regions facilitate discovery of protein complexes

or functionally coherent processes. Similarly, in a social net-

work such algorithms can facilitate detection of communi-

ties. Unfortunately, these clustering techniques output only

a single optimal decomposition of the underlying network.

Consequently, a network can only be decomposed and viewed

from a single perspective, whereas in reality there are often

multiple different perspectives (decompositions) associated

with the high-level organization of the underlying network,

all of which are distinct and equally valid. We refer to each

of these decompositions as a facet because they visualize the

organization of a network from a unique view, providing a

distinct interpretation of the organization of the underlying

network. Formally, a facet (a.k.a decomposition or view) of

an undirected network G = (V,E), denoted by F , is a set

of functional modules {C1, . . . , Cm} (possibly overlapping)

representing a specific semantic concept. A functional module

Ci = (V i
c , E

i
c) is a subnetwork of G such that V i

c ⊂ V and

Ei
c is the set of edges induced by V i

c from G. For example,

consider the human PPI network. A typical decomposition

based on a classical graph clustering technique identifies dense

regions of the network, which correspond to the decomposition

of protein complexes. However, this network can also be

viewed from other different perspectives. For instance, it can

be organized by the types of signaling pathways involved

in it. Notice that the decomposition from this perspective is

markedly different from the complex-based decomposition.

Furthermore, different proteins in the network may undergo

various modifications (e.g., acetylation, phosphorylation, and

ubiquitination). Hence, yet another way to decompose the

network is by their modification effects.

At first glance, it may seem that we can tune the clus-

tering parameters of existing graph clustering techniques in

order to generate multiple facets. Unfortunately, such tuning

only generates an exponential number of slightly perturbed

decompositions with incremental differences [4]. In other

words, such strategy does not generate semantically unique

decompositions. In contrast, it is imperative to ensure that

the decompositions or facets are distinctive, i.e., they are

maximally different from each other. This is because every

facet should provide a fresh and informative perspective to

the organization of the network, rather than providing just

incremental differences w.r.t other facets.

In this demonstration, we present a novel tool called

FacetsViewer that addresses the aforementioned limitations

of classical graph clustering techniques. Specifically, it en-

ables us to discover and visualize an atlas (i.e., a set of

facets {F1, F2, . . . , Fn} that represents distinctive semantic

landscapes of G) from a network by leveraging its topology

and attributes associated with its nodes, portraying alternative

views of the organizational landscape of the network. Each



Fig. 1: System architecture of FacetsViewer.

Fig. 2: GUI of FacetsViewer.

facet represents a distinct interpretation of how the network

can be decomposed and organized. Since a key objective is to

obtain n unique facets that are informative and orthogonal1,

FacetsViewer maximizes interpretative value of the atlas by

optimizing inter-facet semantic and structural orthogonality.

To elaborate further, consider a PPI network G. It can be

decomposed into protein complexes based on its topologi-

cal structure. On the other hand, if we consider regulatory

processes as a functional (or semantic) concept, then G can

be decomposed into signaling and regulation pathways, an

entirely different decomposition. Furthermore, these facets

must be topologically distinctive and semantically apart from

each other.

II. SYSTEM ARCHITECTURE

Figure 1 depicts the system architecture of FacetsViewer,

which consists of the following modules.

The GUI module. Figure 2 shows the screenshot of the

FacetsViewer interface. A user may load an attributed network

file through the top panel. The top-left panel provides a means

to visualize the network by setting various visualization param-

eters. When the Visualize Network button is clicked,

the right panel displays the input network based on these

parameters. For example, Figure 2 shows the human cancer

PPI network where the size of a node is proportional to its

degree centrality. The slider in the top panel enables us to

provide a zoomable view of the network. When a user clicks

on the Run with FACETS button, the left panel is replaced

by the corresponding panel shown in Figure 3. Specifically, a

user may select the ontology graph and the number of facets to

1We use the term orthogonal to describe the idea of distinctive clusters, rather than

its precise mathematical meaning.

Fig. 3: Partial view of an atlas (Best viewed in color).

be discovered through the top-left panel, which are exploited

by the facets generation modules. Note that in our demo we

choose Gene Ontology (GO) as a representative ontology graph

since we use PPI networks to demonstrate FacetsViewer. When

the Run button is clicked, the right panel in Figure 3 displays

the facets membership of different nodes using different colors.

Note that the bottom-left panel enables us to select a specific

facet for visualization using the drop-down selection box. The

Click here for more information button displays

the result quality of the multi-faceted decomposition process

for the input network.

The Network Annotation Generator module. Given an

undirected network G = (V,E) and an ontology graph D, this

module annotates the nodes of G with ontology information

from D. For example, for PPI networks we utilize GO anno-

tations associated with proteins to annotate the nodes. Specif-

ically, given a GO directed acyclic graph D = (Vgo, Ego),
the ordered set ∆ = 〈∆1,∆2, . . . ,∆d〉 is a topological sort

of D, where ∆i represents a single GO term. Each vertex

v ∈ V is associated with a d-dimensional term association

vector ∆v ∈ {0, 1}d, such that ∆v = 〈∆v
1 ,∆

v
2 , . . . ,∆

v
d〉,

∆v
i ∈ {0, 1} where ∆v

i = 1 if and only if the term ∆i ∈ D

or its descendants are associated with protein v, and ∆v
i = 0

if otherwise. Note that ∆v is an indicator vector of GO terms

that are associated with v. Figure 4(a) shows a toy PPI network

where the nodes are annotated with GO terms.

The Candidate Subnetwork Set Generator module.

Given the annotated network G = (V,E), this module

generates a set of candidate subnetworks from G. A facet

candidate subnetwork set Bi = {G1, G2, . . . , Gm} is a

set of connected subnetworks of G such that for every

Gk ∈ Bi, there is a shared ontology (e.g., GO) term ∆i

within every v ∈ Vk. That is, ∆i represents the common

semantic concept (i.e., function) of the candidate subnetwork.

A semantic bundle ωi = {∆1,∆2, . . . ∆m} is the set of

shared ontology annotations of Bi, i.e., ωi =
⋃

Gk∈Bi
∆Gk

.

For example, suppose B1 is a facet candidate subnetwork

set with ω1 = {∆1,∆2}, where ∆1 represents the Swr1

complex GO term and ∆2 is the Histone term. Hence, a

subgraph of an attributed PPI network is a valid member of

B1 if every node in that subgraph is annotated with Swr1

complex term.



This module first creates an initial set of decompositions

by performing graph clustering on G to obtain an initial set

of modules2. Each module is then randomly associated with a

facet, randomly distributing the modules over an initial set of

facets. Following that, it constructs the candidate subnetworks

from G that satisfy ωi-restricted decomposition constraint.

An ω-restricted decomposition is a decomposition of G into

Fi such that Fi satisfies the following criteria. First, every

module Cj ∈ Fi should be semantically bounded by ωi.

Let DCj
= {∆1,∆2, . . . ,∆m} be the set of shared terms

in Cj . Then, the semantic boundedness of module Cj by ωi

is given by r(Cj , ωi) = DCj
∩ ωi. A cluster Cj is bounded

by ωi if r(Cj , ωi) 6= ∅. Second, a facet Fi decomposes G

by maximizing a clustering objective function o(Fi) while

satisfying the above criterion3. Specifically, in FacetsViewer

every module Cj ∈ Fi has to be structurally dense and/or

semantically coherent (i.e., every node in module shares a

common semantic term), the coverage of Fi has to be high,

and the amount of overlap between modules should be low.

Observe that an ωi-restricted decomposition of a facet draws

from a restricted search space of subnetworks in G whose

vertices share at least a term within ωi. This search space is

modeled by Bi, where any valid Cj ∈ Fi must belong to Bi.

That is, for any subnetwork to be considered as a module, it

must first be sharing a term in ωi. Even if a subnetwork is

dense, it must yield to sparser subnetwork candidates if it is

not enriched with terms within ωi.

Since exhaustive generation of candidate subnetworks is

prohibitively expensive, we take the following steps to gen-

erate candidates for a facet Fi. For every ontology (GO) term

∆ ∈ ωi, we obtain the induced subnetwork in G whose nodes

are annotated with ∆ or its descendants. The subnetwork is

then decomposed into connected components, each forming

a candidate subnetwork Gj . Note that candidates formed this

way can vary greatly in resolution of the annotation that its

nodes share and can be highly overlapping. Fig. 4(b) and (c)

show an example of the candidate subnetworks generation and

initialization of facets for the toy PPI network in Fig. 4(a).

The Iterative Facets Constructor module. The goal of

this module is to leverage the candidate subnetworks to

simultaneously construct the atlas A = {F1, . . . , Fn} of

G and the semantic partition Ω = {ω1, . . . , ωn} (a set of

semantic bundles that form a partition of all ontology terms,

e.g., Vgo =
⋃

ωi∈Ω), s.t the following objective function is

maximized:

max
A,Ω

λt(Ω, A) + (1 − λ)|A|−1
∑

Fi∈A

o(Fi)

subject to Cs ∈ Bi∀Cs ∈ Fi, 1 ≤ i ≤ n

The right half of the terms captures the cost function

of decomposing G into A; the left half, decomposing D

into Ω. The parameter λ controls the weightage between the

2To this end, in our implementation we use the FUSE [7] algorithm.
3o(Fi) is determined by the specific graph clustering algorithm (FUSE [7] for our

implementation) that is adapted for creating a facet.

Fig. 4: Illustration of facets generation.

two terms. Here t(Ω, A) is a linear combination of inter-

facet semantic and structural orthogonality to ensure that

every facet in the atlas A is semantically and structurally

distinct modules within a facet, and as whole, structurally

and semantically distinct from modules within another facet.

Details related to the computation of t(Ω, A) for a PPI network

is given in [8]. Observe that it is necessary to optimize these

criteria simultaneously over the space of A and Ω. Otherwise,

one may end up with a poor objective score. For instance, if

t(Ω, A) is high (meaning highly orthogonal partitioning), but

Ω is improperly partitioned such that one ends up with ωi that

allow only poor decompositions, then the o(Fi) score would be

very low. The reader may refer to [8] for detailed description

of the optimization algorithm. Here, we briefly describe the

key idea.

The optimization is performed in rounds. At each round, it

updates A and Ω in two sequential steps. First, it assumes that

A is a constant and update Ω to increase t(Ω, A). Specifically,

for every candidate subnetwork Gj ∈ Bi, 1 ≤ i ≤ n,

the algorithm determines its closest centroid by considering

Gj’s average semantic and structural distance to modules

within a facet. Following that, Gj is reassigned to nearest

Bk (superset of Fk) and Ω is updated based on where

every ∆C
j ∈ Vgo is assigned to. Second, it updates A to

maximize the objective function while fixing Ω. To support ωi-

restricted decomposition of every Fi ∈ A, it scores candidate

subnetworks iteratively based on a profit maximization model

and greedily selects the best scoring candidate as member

in Fi. Figures 4(d)-(e) show the running example of these

iterative steps.

The Facets Visualizer module. This module takes as input

the facets generated by the preceding module and displays

them visually on the network. It provides two mode of

visualization, namely Atlas View and Facet View. In the Atlas

View mode, all facets (i.e., atlas) are shown on the network

by assigning different color codes for nodes in different

facets. Note that nodes that belong to multiple facets are

colored black. Atlas View is enabled when a user selects the

Overview item from the drop-down selection box in the

bottom-left panel of the GUI. Figure 3 shows an example of the

Atlas View in the human cancer network. On the other hand,



Fig. 5: Result quality visualization.

the Facet View allows us to view a specific facet by selecting

it from the drop-down selection box in Figure 3.

The Result Quality Visualizer module. This module pro-

vides a real-time graphical view of the quality of facets

generated for a specific network. Specifically, it measures

the inter-facet decomposition similarity using Jaccard index

(JI) score. Given two decompositions (or facets) F1 and F2,

the Jaccard index (JI) is defined as J(F1, F2) = A
A+B+C

,

where A is the number of node pairs that is co-clustered

in both F1 and F2, B is the number of node pairs co-

clustered in F1 but not F2, and C is the number of node

pairs co-clustered in F2 but not F1. For example, Figure 5

shows the 3D view of JI scores of the six facets discovered

in the human cancer network. Observe that the low scores

between facets show that they are decomposed distinctively.

This reflects significant organizational differences between

modules of signaling pathways and protein complexes.

This module also displays the coverage of a facet and the

extent of coverage overlap between the facets (we do not show

the visualization here due to space constraints). Specifically,

the coverage of a facet is Cvg(Fk) = |
⋃

Vc∈Fk
Vc|. The extent

of coverage overlap between Fi and Fj is Ext(Fi, Fj) =
|Vi∩Vj |
|Vi|

, where Vi =
⋃

Vc∈Fi
Vc and Vj =

⋃
Vc∈Fj

Vc. The

extent of overlap between facets reaches up to 0.316 for the

cancer PPI network. Hence, the overlap is not insignificant,

implying that the facets are not simply partitions of G.

III. RELATED SYSTEMS & NOVELTY

Traditional network clustering techniques [9] focus on

generating only a single optimal decomposition. There have

also been efforts in multi-view clustering [3], [5], [6] and

meta-clustering [2]. All these approaches, however, assume

data points in the vector space that allow the notion of

metric distances in a Euclidean geometry. On the other

hand, FacetsViewer demands a multi-view clustering method-

ology on attributed graphs, which requires a graph clustering

paradigm on both structure and annotation. To the best of our

knowledge, multi-view clustering paradigm in decomposing

networks from multiple, distinct perspectives has not been

demonstrated in any major conference venue.

Ensemble clustering methods generate an ensemble of near-

optimal decompositions [1], [4]. These near-optimal decompo-

sitions, however, have no notion of the orthogonality. Instead,

ensemble clusterings create a large number of perturbed so-

lutions, making them unsuitable as an atlas of semantically

distinct decompositions. For instance, in [4], a small network

of 32 nodes generated at least 82 permutations of clusterings.

IV. DEMONSTRATION OBJECTIVES

FacetsViewer is implemented in Scala and Java. It can

be downloaded from https://sites.google.com/site/cosbyntu/

softwares/facets. Our demonstration will be loaded with a few

popular real PPI network datasets (e.g., human, yeast) from

IntAct (www.ebi.ac.uk/intact/) containing up to around 9,000

nodes. The key objective of the demonstration is to enable

the audience to interactively experience the following modules

through the GUI.

Facets generation and display. One of the key objectives

of the demonstration is to enable the audience to interactively

experience the Iterative Facets Generator and Facet Visualizer

modules. Specifically, a user may choose a network using

the top panel in the GUI. Then, she can invoke the facets

generation module by clicking on the Run Using FACETS

button. She can choose the number of facets as well as

the ontology features from GO from the top-left panel of

Figure 3 and interactively view the atlas and individual facets

by interacting with the bottom-left panel. She may zoom in

to a region of the network using the slider at the top panel

to see details related to these facets. She can also modify

the various parameters and ontology details through the top-

left panel of Figure 3 and interactively experience its impact

on the facets generation in the right panel. Through this

experience, users will be able to appreciate the limitation of

classical graph clustering techniques that only produce one

unique decomposition of the network. Furthermore, we believe

that this interaction will also trigger interesting discussions

on some of the open research challenges associated with this

problem such as realizing it on massive networks.

Result Quality Visualization. Users can also experience

the working of the Result Quality Visualizer module by

clicking on the Click here for more information

button in the bottom-left panel to visualize the quality of

generated facets in real time. One may modify the various

parameters in the top-left panel (Figure 3) and experience its

impact on the result quality.
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