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ABSTRACT
Tags associated with social images are valuable information source
for superior tag-based image retrieval (TagIR) experiences. One of
the key issues in TagIR is to learn the effectiveness of a tag in de-
scribing the visual content of its annotated image, also known as
tag relevance. One of the most effective approaches in the litera-
ture for tag relevance learning is neighbor voting. In this approach a
tag is considered more relevant to its annotated image (also known
as the seed image) if the tag is also used to annotate the neighbor
images (nearest neighbors by visual similarity). However, the state-
of-the-art approach that realizes the neighbor voting scheme does
not explore the possibility of exploiting the content (e.g., degree of
visual similarity between the seed and neighbor images) and con-
textual (e.g., tag association by co-occurrence) features of social
images to further boost the accuracy of TagIR. In this paper, we
identify and explore the viability of four content and context-based
dimensions namely, image similarity, tag matching, tag influence,
and refined tag relevance, in the context of tag relevance learn-
ing for TagIR. With alternative formulations under each dimension,
this paper empirically evaluated 20 neighbor voting schemes with
81 single-tag queries on nus-wide dataset. Despite the potential
benefits that the contextual information related to tags bring in to
image search, surprisingly, our experimental results reveal that the
content-based (image similarity) dimension is still the king as it
significantly improves the accuracy of tag relevance learning for
TagIR. On the other hand, tag relevance learning does not benefit
from the context-based dimensions in the voting schemes.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Search
and Retrieval—Information Filtering; H.3.4 [Information Storage
and Retrieval]: Systems and Software—Performance evaluation
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1. INTRODUCTION
The increasing prevalence of digital photography devices (e.g.,

digital cameras, camera-enabled mobile phones) and increasing pop-
ularity of social image sharing platforms (e.g., Flickr) have made
availability of huge volume of images online. At the same time,
finding relevant images that best match a particular user’s informa-
tion need (i.e., the task of image retrieval) has become extremely
daunting. This has led to increasing research efforts by academic
and commercial communities toward building superior image re-
trieval strategies. Specifically, image retrieval has been widely stud-
ied from two paradigms, namely content-based and annotation-
based image retrieval [2, 4]. The former relies on visual descrip-
tors extracted from the images and aims to return images that best
match a user-specified example image. The latter returns images
matching user’s keyword query mainly based on the keyword an-
notations assigned to images. While obtaining high-quality image
annotations, either manually or automatically, has always been a
major obstacle for annotation-based image retrieval, freely avail-
able tags in social image sharing platforms have become a valuable
alternative source of annotations. Consequently, tag-based image
retrieval (TagIR), which is the task of retrieving the best matching
images for a keyword query based on the tags assigned to the im-
ages, has enjoyed increasing attention by the research community
and end users.

In a recent study related to different TagIR methods, Sun et al. [18]
identified five dimensions to quantify the matching score between
a tagged image and a keyword query and empirically evaluated the
impact of these dimensions. A key finding in this study is that
the degree of effectiveness of a tag in describing the tagged im-
age (known as tag relatedness or tag relevance) is one of the most
crucial dimensions for superior TagIR experience, especially for
single-tag queries. In fact, the best performing tag relevance mea-
sure used in [18] is based on the notion of neighbor voting as pro-
posed by Li et al [7,8]. The idea is that if many distinct users use the
same tags to label visually similar images, then these tags are likely
to reflect the visual contents of the annotated images. Specifically,
given an image d (seed image), its k-nearest neighbors (neighbor
images) are first obtained based on some visual similarity measure.
Then, the tag relevance of a tag t ∈ d is the probability of t being
used to annotate the neighborhood images minus the probability of
the tag being used in the entire collection, i.e., P(t |N(d)) − P(t |D),
where N(d) is the set of visually nearest neighbors of image d and
D denotes the image collection (see Section 2 for more details). In
this paper, this simple voting scheme is referred to as the baseline
scheme.

Although the aforementioned scheme is simple and effective, we
observe that it is oblivious to several distinct content and contextual
characteristics of social images, which if exploited may further en-
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Figure 1: Dimensions of tag relevance by neighbor voting.

hance the accuracy of tag-based image retrieval. Let us elaborate
on this further. Consider the example of neighbor voting in Fig-
ure 1. According to the baseline scheme, every neighbor image
contributes equally to the voting without considering the similarity
between the neighbor images and the seed image. However, it is
clear that the second neighbor image is visually more similar to the
seed image and should be allocated more voting power. Such visual
content information is not exploited by the baseline scheme.

There are also several distinct contextual characteristics due to
the nature of social tagging that may provide us opportunities to
boost the accuracy of TagIR. Firstly, social tags are assigned by
common users and are noisy in nature. Users may not use exactly
the same tag to describe a similar visual concept. For instance, the
flower tag in the second neighbor image and the rose tag in the seed
image carry similar meaning. Note that in the baseline scheme if a
neighbor image has a tag that exactly matches a tag in the seed im-
age, then it has one vote towards that tag, otherwise zero. Secondly,
users may often use multiple tags instead of a single tag to describe
the visual content of the image. For instance, the tags red and rose
are used to describe the seed image. Similarly, red and flower are
used to describe all the neighbor images. Observe that both red and
rose (resp. flower) are more relevant to the seed (resp. neighbor)
image compared to either red or rose (resp. flower). The base-
line scheme, however, assumes that the visual content of an image
is completely described by only single tags. Thirdly, not all tags
of an image (both seed and neighbor) equally describe the visual
content of the image. For instance, flower is more effective in de-
scribing the content of the first neighbor image compared to the tag
Naturesfinest. Although the baseline scheme considers the relative
relevance of the tags in the seed image for tag relevance learning,
it treats the relevance of all tags of a neighbor image equally and
gives them the same voting power.

Is it possible to enhance TagIR accuracy by incorporating the
aforementioned content and contextual features of social images in
tag relevance learning? In this paper, we show how to incorporate
these features in neighbor voting-based tag relevance computation
to address this question. Specifically, we incorporate the follow-
ing four dimensions (one content-based and three context-based)
to learn tag relevance.

1. Image Similarity. This content-based dimension allocates
more voting power to those neighbor images that are more
visually similar to the seed image.

2. Tag Matching. Since tags are incomplete, this dimension in-
corporates tag association measures to allocate some amount
of voting power to a neighbor image even if it does not con-
tain a tag of the seed image but contains some tags that are
highly associated with it.

3. Tag Influence. This dimension explores the relevance of
multiple tags for jointly describing the visual content of an
image.

4. Refined Tag Relevance. In this dimension, tag relevance
is learned for every image (instead of just the seed image)
in the collection and then the learned tag relevance is used
to further refine tag relevance learning of the seed image by
giving different voting power.

To gain an in-depth understanding of the impact of the above di-
mensions, we systematically evaluated the alternative formulations
under each dimension and their combinations for tag relevance vot-
ing. As tag relevance is difficult to be evaluated directly, we adopt
an extrinsic evaluation approach to evaluate the learned tag rele-
vance using the TagIR task based on the settings described in [18].
The evaluation was conducted on nus-wide dataset [3], the largest
human-annotated dataset consisting of more than 269K images from
Flickr, and involves 20 voting schemes in total with 81 single-tag
queries.

We use the Precision at top-K (P@K) and Mean Average Pre-
cision (map) measures to report a detailed analysis on the perfor-
mance of different voting schemes and the impact of the formula-
tions under each dimension. Although at first glance it may seem
that the three context-based dimensions (e.g., tag matching, tag
influence, refined tag relevance) should enhance the accuracy of
TagIR, our experimental results suggest that the content-based di-
mension (image similarity) instead of these context-based ones is
still the king! That is, the visual similarity between the seed image
and neighbor images significantly improves TagIR accuracy. In-
terestingly, voting schemes involving tag associations through for-
mulations under tag matching and tag influence models generally
affect the TagIR accuracy adversely. Surprisingly, our results also
show that using the learned tag relevance in the image collection
to refine tag relevance learning does not benefit most queries, lead-
ing to poorer overall TagIR accuracy. However, we note that these
negative results should not be interpreted as that contextual features
(e.g., tag co-occurrence) are not beneficial in general in tag-based
social image retrieval. Tag co-occurrence does benefit retrieval ac-
curacy if considered under some other dimensions (e.g., tag-query
matching model) of TagIR [18], but does not in learning tag rele-
vance for a given seed image from its visually similar neighbors.

The rest of the paper is organized as follows. We review related
research in Section 2. In Section 3, we present the content and
context-based dimensions and formulations for tag relevance vot-
ing schemes. In Section 4, we report the experimental setup for
the evaluation of the 20 voting schemes with alternative formula-
tions for the four dimensions. Section 5 presents systematic anal-
ysis of the experimental results on the impact of the dimensions in
the voting schemes for TagIR task followed by a discussion on our
interpretations of the key experimental findings. The last section
concludes the paper.

2. RELATED WORK
Social Image Tag Relevance Learning. Social image tagging has
gained significant attention across a wide spectrum of dimensions
from various research communities due to its potential to support
superior image retrieval and related applications. These dimensions
include the study on motivations for social image tagging [1], tax-
onomy and comparison of tagging systems [13], tag types [15, 16].
Since tags are noisy and incomplete in nature, several recent re-
search on social image tagging have focused on tag recommen-
dation, disambiguation, and de-noising among others [3]. In the



following, we review the works related to tag relevance learning
i.e., determining the effectiveness of a tag in describing the visual
content of the tagged image.

Li et al. in [8] proposed to learn tag relevance by visual near-
est neighbor voting based on two assumptions known as user tag-
ging and visual search. The former assumes that the probability of
correct user tagging is larger than the probability of incorrect tag-
ging in a large user-tagged image collection; the latter assumes a
content-based visual search is better than random sampling. For a
given image d its tag relevances are then computed in two steps.
In the first step, it obtains the K nearest neighbors of d based on
the visual features of images under unique user constraint (a user
has at most one image in the neighbor set). The basic intuition is
that if different persons label similar images using the same tags,
these tags are likely to reflect objective aspects of the visual con-
tent. In the second step, for each tag t of d, its tag relevance is the
probability of t being used among the K nearest neighbors minus
the probability of t being used among the image collection. Note
that the association between visual features and visual similarities
is a challenging problem. In a recent work, Li et al. compared
tag relevance learned by considering visual similarities defined by
multiple types of visual features and concluded that a uniform com-
bination of neighborhood images based on multiple visual features
yield comparable or better results than other combination meth-
ods [9].

In [18], three tag relevance formulations are evaluated, namely,
unit, tag-position, and neighbor-voting relevance. The experimen-
tal results demonstrate that neighbor-voting relevance significantly
outperforms other formulations for single-tag queries. It is also
interesting to observe that for multi-tag queries, the choice of tag
relevance does not significantly affect the TagIR accuracy proba-
bly due to the fact that a multi-tag query usually expresses a very
specific information need. Hence, in this paper we evaluate the tag
relevance voting schemes using single-tag queries.

Neighbor-voting based tag relevance has also been used in other
related applications. Liu et al. re-ranked the tags of a tagged im-
age such that the most relevant tags appear in top positions [11].
The authors used neighbor-voting as the first step and then applied
random-walk to further refine the learned tag relevance by con-
sidering pair-wise similarity between tags. The relevance learn-
ing is also related to the tag refinement task where less-relevant
user-assigned tags may be removed while more-relevant tags to the
image content are suggested [10, 20]. In this work, we evaluate
the dimensions in tag relevance voting through comparing different
voting schemes. Such an evaluation would benefit not only TagIR
but also other aforementioned techniques.

K-Nearest Neighbor Classifier. Most germane to this work are
studies on k-Nearest Neighbor (kNN) classifiers. kNN classifies an
unseen instance based on the category labels of its nearest neigh-
bors. In other words, each of its k nearest neighbors serves as an
evidence that supports the likelihood of the instance belonging to
certain category. Due to its simplicity and effectiveness, kNN has
been widely adopted in various classification tasks and also gained
research interests from multiple aspects such as the impact and
choice of k, the choice of similarity function [19]. In our setting,
the similarity function is defined based on the visual features used
to describe the images [9].

More related to this work are the studies on the voting schemes
(unweighed or weighted voting) in kNN with predetermined k. In
weighted voting, the similarity or distance between the unseen in-
stance and its neighbors are often used to determine the voting
power a neighbor has. Clearly, in tag relevance learning, this maps
to the similarity between the seed image and its neighbors. An-

Table 1: Table of notations.
D The image collection
T The set of all tags inD
d an image or the seed image whose tag relevance is learned
d′ one of the neighbor voting images
Vd set of visual features of d
Td set of tags of d
t a tag in Td
t′ a voting tag in the neighbor image d′
r the tag relevance vector of an image
ri i-th element of r, the tag relevance of the i-th tag ti ∈ Td
vi i-th element of v, the neighbor vote of tag ti ∈ Td
P the random walk’s transition probability matrix

other interesting dimension in kNN study is the certainty of the
labeled data. Given a labeled instance, a label often serves as a
binary indicator to specify whether or not this instance belongs to
that class [5, 6]. However, in reality, the certainty of the label itself
may not be uniform across different labels, e.g., in the diagnostic
domain. In [6], a fuzzy kNN is proposed to address the uncer-
tainty of one instance may belong to multiple classes having differ-
ent strengths. Unfortunately, in the context of social tagging, the
tags are assigned by users freely with different motivations for tag-
ging and different interpretations of the relevance between a tag and
an image. Consequently, the "labels" in social tagging setting are
much more uncertain compared to those in traditional classification
problems.

Clearly, social image tag relevance shares much similarity with
the kNN classification problem. On the other hand, the key dif-
ference between them is that tag relevance learning estimates the
effectiveness of a user-assigned tag in describing an image, which
is a continuous value (e.g., normally in the range of [0,1] after nor-
malization); however, kNN returns a crisp decision of a category
label where some decision theory can be applied and the voting
from some neighbors can be rejected [5]. Additionally, in a clas-
sification setting, the categories are predefined by domain experts
and are distinctive from each other, especially in flat classification
problems where the categories do not form a topic hierarchy. In
contrast, in social tagging it is common to use multiple tags to de-
scribe the same image (e.g., red, rose, flower for the seed image
shown in Figure 1). In fact, different concepts may emerge from
the tag co-occurrences [17,18]. This provides us the opportunity to
exploit additional dimensions to improve the baseline scheme for
more accurate tag relevance learning as highlighted in Section 1.

3. NEIGHBOR VOTING SCHEMES
In this section, we first give an overview of the neighbor voting

for tag relevance. Next, we enumerate a subset of alternative for-
mulations for different content and context-based voting schemes.
We begin by introducing some notations (see Table 1) to facilitate
our discussions.

Given the image collection D and the set T of all tags in D,
an image d ∈ D is a 2-tuple ⟨Vd ,Td⟩, where Vd is a collection of
low-level features/descriptors derived from the visual content of the
image and Td ⊆ T is a collection tags assigned by users. For each
tag ti ∈ Td , the tag relevance ri ∈ [0, 1] measures how accurately
ti objectively describes the visual content of d. The tag relevance
vector r of d is the list of tag relevances of all d’s tags, where ri is
the tag relevance of the i-th tag in Td .

3.1 Tag Influence-Unaware Neighbor Voting
We first consider neighbor voting scheme without the tag influ-

ence dimension. We assume that each neighbor image d′ is allowed
certain amount of voting power for the relevance of a tag t for seed



image d. Equation 1 computes the voting power based on the sim-
ilarity between the seed image d and neighbor image d′, the tag
matching model between the tag t and all tags of d′ (denoted by
Td′ ), and the effectiveness of Td′ in describing d′ (or tag relevances
of d′). Observe that this generic voting scheme considers the image
similarity, tag matching, and tag relevance dimensions.

vote(t, d, d′) = sim(Vd ,Vd′ )×match(t,Td′ )×relevance(Td′ , d′) (1)

vi =

∑
d′∈N(d) vote(ti, d, d′)

|N(d)| −
∑

d′∈D vote(ti, d, d′)
|D| (2)

The vote vi of tag ti ∈ Td for image d is computed by Equation 2.
Intuitively, it is the voting power received from the visually similar
neighbor images of d (N(d)) offset by the voting power expected
from arbitrary images in the collection. The tag relevance of ti is
the globally normalized vi in the collection.

While the computation of the voting power received from the
neighbor images (the first component in Equation 2) is straightfor-
ward, the computation for the collection’s expected voting power
(the second component in Equation 2) is expensive, requiring the
vote from all images inD. One approach to simplify the computa-
tion is to assume that the three functions sim(Vd ,Vd′ ), match(t,Td′ ),
and relevance(Td′ , d′) are independent, and to estimate them in-
dependently. However, such assumption contradicts the neighbor-
voting assumption (visually similar images are annotated with sim-
ilar tags). That is, sim(Vd ,Vd′ ) and match(t,Td′ ) are not indepen-
dent. In our experiments, we therefore estimate the expected voting
power from the collection through sampling. In each computation,
2600 images (about 1% of the entire collection) are randomly sam-
pled from the collection for estimation.

In the following, we discuss the alternative formulations for each
dimension with reference to the baseline voting scheme.

Image Similarity. In the baseline voting scheme, the voting power
allocated to a neighbor image is independent of the visual similarity
between the neighbor and the seed images. That is, sim(Vd ,Vd′ ) = 1
for every neighbor image. Similar to most kNN rules, we propose
a weighted voting scheme to allocate more voting power to those
neighbor images that are more visually similar to the seed image.
The function sim(Vd ,Vd′ ) is then the visual similarity between im-
ages d and d′ used to finding the nearest neighbors. For ease of
comparison, we assume that sim(Vd ,Vd′ ) is normalized to [0, 1].

Tag Matching. In the baseline voting scheme, a binary tag match-
ing function is adopted. If a neighbor image d′ contains tag t (i.e.,
t ∈ Td′ ) then its voting power to t is 1 otherwise 0. Since tags are
incomplete, we propose to use tag association measures to allo-
cate some amount of voting power to a neighbor image even if it
does not contain tag t but contains some tags that are highly asso-
ciated (or co-occurred) with t. The intuition behind this strategy
is that users may use highly co-occurring tags instead of t to tag
the neighbor images (e.g., flower instead of rose). Note that it has
been recently empirically demonstrated that tag association match-
ing model significantly improves TagIR accuracy [18].

To allocate voting power to a neighbor image d′ not containing
tag t, we propose two formulations referred to as Maximum and
Power Mean associations, respectively, as shown in Equation 3.

match(t,Td′ ) =


maxt′∈Td′ assoc(t, t′) Maximum(

1
|Td′ |
∑

t′∈Td′ assoc(t, t′)p
)1/p

Power mean.
(3)

The Maximum formulation allocates voting power to d′ based on
its most associative tag to t in Td . On the other hand, the Power
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Mean formulation considers associations from all tags in d′. A
large p signifies the voting power is mostly contributed by the most
associative tags in Td′ with t, while a small p indicates the contri-
bution of all tags in Td′ are relatively equal. Observe that the power
mean association is reduced to maximum association when p ap-
proaches infinity. In our experiments, we set p = 20 after empirical
tuning. We use Jaccard coefficient for the association measure be-
tween two tags assoc(t, t′) due to its relatively good performance
in various social tagging tasks [16, 18].

Refined Tag Relevance. In the baseline voting, for a given neigh-
bor image d′, all its tags are assumed to have the same effectiveness
in describing the image’s visual content and given the same voting
power, i.e., relevance(t′, d′) = 1,∀t′ ∈ Td′ . However, tags in a
neighbor image t′ ∈ Td′ also have different effectiveness in describ-
ing d′. We therefore propose to first learn tag relevances for all
image d ∈ D. Then, the learned relevance(t′, d′) (normalized in
[0, 1]) is used to re-learn tag relevance for a given seed image as in
Equation 1. However, we note that noise could be easily introduced
if we consider tag associative matching and tag relevance together.
For instance, a tag t′ ∈ Td′ may be marginally relevant to the im-
age d′ but largely associated with the voting tag t. We therefore
consider this refined tag relevance dimension only in the context of
exact tag match.

3.2 Tag Influence-Aware Neighbor Voting
As the visual content of an image is often annotated with multi-

ple associative tags (e.g., red, rose, and flower), it is interesting to
investigate whether the relevance of a group of correlated tags fur-
ther boost the accuracy of tag relevance computation as these tags
jointly describe the visual concept of the image. We propose two
variants of the tag influence model using random walk by consid-
ering either the association between the tags in the seed image or
the association between tags in both the seed image and the neigh-
bor images. The tag relevance is then the result of influence voting
on top of the relevance computed by neighbor voting as shown in
Equation 4, where the i-th element of vector v is the result of neigh-
bor voting on tag ti ∈ Td (see Equation 2).

r = in f luenceVote(v, d) (4)

Influence of Tags in the Seed Image. In this approach, we rep-
resent the tags associated with the seed image d as an undirected
graph G where nodes are tags Td in d. Two tags are connected with
an edge with weight assoc(t1, t2) when assoc(t1, t2) > 0. The graph
in Figure 2 encompassed by dotted rectangular box is an example
of such tag graph.

The transition probability matrix of G is denoted as P whose
element p ji indicates the probability of the transition from node i
to node j. Note that ∀i, j, p ji = assoc(ti, t j)/

∑
j assoc(ti, t j). Let

v be the vote vector computed from neighbor voting (Equation 4).



Let r(k) be a vector whose i-element r(k)
i indicates the relevance vote

of tag ti at step k. The random walk process is then formulated as
follow:

r(k) = αPr(k−1) + (1 − α)v (5)

where α ∈ [0, 1) is a parameter indicating the weight of tag re-
lations computed by random walk within the final computed tag
relevance (a discussion on α is given at the end of this section).
Mathematically, we should define the initial relevance r(0) as well.
However, as we shall prove later, in a random walk, the initial state
r(0) does not affect the stationary state. We can assign r(0) = v or
r(0) = (1, 1, . . . , 1). From Equation 5, the relevance score at step k
is given below. The reader may refer to Appendix for the proof of
invertibility of (I − αP).

r(k) = (αP)kr(0) + (1 − α)
( k∑

i=1

(αP)i−1
)
v

= (αP)kr(0) + (1 − α)
(
I − αP

)−1(
I − (αP)k

)
v

Since P is a non-negative column-normalized matrix, ∀k,Pk is
also a non-negative column-normalized matrix. Subsequently, all
elements in Pk are in [0, 1] since they are probabilities. Thus,
limk→∞(αP)k = 0. Hence,

r = lim
k→∞

r(k) = (1 − α)
(
I − αP

)−1

v

Influence of Tags in Neighborhood. In this approach, instead of
only considering the tags in the seed image d, all tags in both d
and N(d) are considered. However, since our main purpose is to
compute the relevance of tags in Td , we prevent the tag relevance of
tags in Td to "influence" the tag relevance of tags not in Td . Conse-
quently, the tag graph is now a directed graph G(NG,EG). The node
set NG contains of two partitions, denoted by NS and NT , where
NS contains all tags in Td and NT contains the remaining nodes.
There is an edge from t1 to t2 with weight of assoc(t1, t2) if (i)
assoc(t1, t2) > 0 and (ii) t1 < NS or t2 < NT . Figure 2 illustrates
the interaction between the tag graphs of seed and neighbor im-
ages. Note that the red edges indicate influences from NT to NS.
Mathematically, the transition probability matrix P is described as
follows:

P =
[
PS PST

0 PT

]
where PS and PT are square matrices indicating the transition prob-
ability within NS and NT , respectively, while PST stores the transi-
tion probability from NT to NS. Note that PS is identical to the tran-
sition probability matrix in the aforementioned tag graph of seed
image. Further, we follow the same random walk process as used
in the above model. In particular, the random walk follows Equa-

tion 5 leading to the same convergence of (1 − α)
(
I − αP

)−1

v.

Remark on α . Note that 0 ≤ α < 1. When α = 0, r(k) = v∀k
and tag relation is not considered. There are two reasons for set-
ting α < 1. First, α = 1 means neighbor voting is not considered
at all. Note that, if converged, the convergence state of random
walk is dependent on only the transition matrix but not the initial
state. Second, when α = 1, the random walk used on neighbor-
hood tag graph may not converge. According to Perron-Frobenius
Theorem [14], a random walk converges when its transition matrix
is irreducible and aperiodic. However, here, P is reducible. Hence,
in our experiments we set α = 0.5.

Table 2: Voting notations for the four dimensions.
Notation Semantics

Su Unit image similarity (baseline)
Sw Weighted image similarity
Me Exact tag matching (baseline)
Mx Tag matching by maximum association
Mp Tag matching by power mean association
Io Without tag influence (baseline)
Is Influence by tags in seed image
In Influence by tags in seed and neighbor images
Ru Unit tag relevance (baseline)
Rr Using learned tag relevance to re-learn relevance

4. EXPERIMENTAL SETUP
In this section, we report the experimental settings for evaluating

the proposed voting schemes for tag relevance learning. The exper-
imental setting largely follows the settings in [18] and conducted
on the nus-wide dataset [3].

4.1 Dataset
The nus-wide dataset contains 269,648 images from Flickr and

81 tags are manually labeled with ground-truth matching images.
All tags provided in the dataset are used in our experiments without
filtering.

Image Similarity. The nus-wide dataset provides six types of low-
level features to describe the visual contents of images, including
global features such as color, edge, texture, and local feature known
as bag of visual-words. Two sets of nearest neighbors are obtained
using global and local features, respectively. For global features,
64-D color histogram, 73-D edge direction histogram, and 128-D
wavelet texture features are used where the three types of features
for each image were aggregated into a 265-D vector after unit-
length normalization on each type of features. The nearest neigh-
bors are determined using Euclidian distance. For local features,
the 500-D bag of visual-words are used. The nearest neighbors
are determined by cosine similarity with t f × id f word weighting
scheme. Following [8], the neighbor images satisfy unique-user re-
quirement to avoid the possible bias introduced by the same user
annotating too many similar images for a seed image.

Number of Neighbors. To find the k nearest neighbors of a given
image, we ensure that half of the neighbors are based on global
features and the other half are based on local features. We set
k ∈ {100, 200, 400, 1000}. We observed that adding more neigh-
bors only lead to very minor improvement in the results. Since
number of neighbors is not crucial for our study, we report our ex-
perimental findings with k = 400 (i.e., 200 nearest neighbors are
obtained based on global features and another 200 neighbors are
based on local features). We first compute the tag relevance using
the 200 neighbors by global feature and the tag relevance using the
200 neighbors by local feature, respectively. This is because the im-
age similarities defined by global feature and local feature are not
directly comparable. Next, we average the learned tag relevance.

4.2 Naming of Voting Schemes
A voting scheme is a combination of alternative formulations se-

lected under the four proposed dimensions. We use the notations
listed Table 2 to uniquely identify each formulation. For instance,
SuMeIoRu refers to the baseline voting scheme, with unit (or un-
weighed) image similarity, exact tag matching, without tag influ-
ence, and unit tag relevance for neighbor images. Since there are
two choices for image similarity, three choices for tag matching,
and three choices for tag influence, there will be 18 different voting
schemes that need to be evaluated. For tag relevance, we evaluate



Table 3: Voting schemes ranked by P@100 and map. The "+"
and "-" indicate the results are significantly better or worse
than the baseline statistically. The baseline is underlined.

Rank Scheme P@100 Scheme map

1 SwMeIoRu 0.7515+ SwMeIoRu 0.3660
2 SwMeIsRu 0.7414 SuMpIoRu 0.3646+
3 SwMpIoRu 0.7390 SuMpIsRu 0.3634
4 SwMxIoRu 0.7388 SwMeIsRu 0.3633
5 SwMeInRu 0.7364 SuMeIoRu 0.3630
6 SwMpIsRu 0.7300 SuMeInRu 0.3621-
7 SuMpIoRu 0.7283+ SuMeIsRu 0.3619-
8 SwMxIsRu 0.7254 SuMpInRu 0.3617
9 SuMpIsRu 0.7243 SwMpIoRu 0.3615
10 SuMeIoRu 0.7231 SuMxIoRu 0.3611-
11 SuMpInRu 0.7227 SwMxIoRu 0.3610
12 SwMpInRu 0.7222 SwMeInRu 0.3602
13 SwMeIoRr 0.7216 SuMxIsRu 0.3600-
14 SuMeInRu 0.7211 SuMxInRu 0.3597-
15 SwMxInRu 0.7195 SwMeIoRr 0.3593
16 SuMeIsRu 0.7186- SwMpIsRu 0.3588
17 SuMxIoRu 0.7179- SwMxIsRu 0.3582
18 SuMxInRu 0.7152- SuMeIoRr 0.3581-
19 SuMxIsRu 0.7122- SwMpInRu 0.3565
20 SuMeIoRr 0.7064- SwMxInRu 0.3558-

the two voting schemes with exact tag matching and without tag
influence because of the reason discussed earlier. In summary, 20
voting schemes (including the baseline) are evaluated by our study.

4.3 TagIR Task and Evaluation Metrics
Since tag relevance is less significant for multi-tag queries [18],

we evaluate the TagIR accuracy using the 81 single-tag queries.
The manually labeled images to those 81 tags serve as the ground-
truth in our evaluation. Note that in [18] the best performing meth-
ods use neighbor-voting tag relevance (which will be evaluated in
this work) and, either (i) associative tag matching for matching an
image’s tag to a query tag or (ii) query expansion. For the case
of query expansion, the image retrieval system basically answers
a multi-tag query expanded from a single-tag query and the re-
sults depend on the expansion techniques used. In this evaluation,
we therefore consider associative tag matching where for a given
single-tag query (e.g., rose), the matching score of an image is
computed based on its tag matching the query tag (i.e., rose) and its
tags that are highly associated with the query tag (e.g., flower). The
results of QSRV DF LSMJ

1 defined in [18] is reported in this work. It
is the fifth best performing method without query expansion. We
selected this method because similar to our voting schemes it uses
Jaccard coefficient for tag associative measure. Note that, our
baseline result is slightly different from the one reported in [18]
because of two reasons: (i) we apply the unique-user constraint in
neighbor voting, and (ii) we apply global min-max normalization
for the tag relevance values learned in the entire data collection
while [18] applied min-max normalization to the learned tag rele-
vances within every image.

We report the performance of the voting schemes on this TagIR
task using two measures, Precision@K (P@K) and Mean Aver-
age Precision (map). Note that P@K may better evaluate a user’s
perception about a TagIR system as in reality a keyword query may
match a large number of images and a user is unlikely to go through
all returned images. For example, there are more than 74K images
matching query sky in the nus-wide dataset; queries like clouds,

1This method uses single query without query expansion (QS), neighbor-voting based
tag relevance (RV ), inverse document frequency for tag weighting (DF ), Lucene’s de-
fault square root length normalization (LS), and Jaccard coefficient for tag associative
matching (MJ ) between the image tag and query tag.

Table 4: Impact of the image similarity dimension.
Scheme P@100 map

MeIoRu Su ≪ Sw Su ≈ Sw
MxIoRu Su ≈ Sw Su ≈ Sw
MpIoRu Su ≈ Sw Su ≈ Sw
MeIsRu Su ≪ Sw Su ≈ Sw
MxIsRu Su ≈ Sw Su ≈ Sw
MpIsRu Su ≈ Sw Su ≈ Sw
MeInRu Su ≈ Sw Su ≈ Sw
MxInRu Su ≈ Sw Su ≈ Sw
MpInRu Su ≈ Sw Su ≈ Sw
MeIoRr Su ≈ Sw Su ≈ Sw

person, and water, each matches more than 30K images.

Precision@K is the ratio of the relevant images of the top-K re-
trieved images for a sample query. We measured different K ∈
{25, 50, 100, 200, 400} for the 81 queries and observed that P@K
values for different values of K follow very similar trend. Due
to space constraints, we choose to report P@100 only. For each
method, the reported P@100 is the macro-average of P@100 val-
ues of all evaluated queries.

Mean Average Precision. For each query, Average Precision mea-
sures the average precision values obtained when each relevant im-
age is retrieved [12]. Mean Average Precision (map) is the mean of
the Average Precisions for all sample queries.

5. RESULTS AND DISCUSSIONS
In this section, we first present an overview of the empirical re-

sults related to the 20 voting schemes on P@100 and map. Next, we
give a detailed comparison of our results over the four dimensions.
Finally we summarize our empirical findings.

5.1 Overview
Table 3 ranks the 20 voting schemes by P@100 and map respec-

tively. Observe that, by P@100 the baseline method is ranked at
the 10th position. Among the 9 methods outperform the baseline, 7
of them use weighted image similarity. Notably, the only differen-
tiating factor of the best performing voting scheme SwMeIoRu com-
pared to the baseline SuMeIoRu is Sw over Su (The performance dif-
ference is significant by paired t-test). Interestingly, tag matching
model seems to play a less significant role as there is no clear pat-
tern among the 9 methods outperformed the baseline. Furthermore,
the two voting schemes related to tag relevance perform poorer than
the baseline. In particular the method SuMeIoRr, differs only in tag
relevance dimension from the baseline, performs the worst among
all methods and is significantly worse than the baseline.

In summary, weighted voting based on image similarity is a bet-
ter choice than unweighed voting; refinement of tag relevances of
neighbor images actually hurts the performance; incorporating tag
matching model or tag influence voting has insignificant impact on
the results.

Now consider the ranking based on map. The baseline method
now occupies the 5th position. The method SwMeIoRu remains the
best performing method.

5.2 Alternative Choices vs Baseline
It is evident from the aforementioned results that only few vot-

ing schemes significantly outperform the baseline. In this section,
we present a detailed analysis on the impact of using alternative
formulations under each dimension against the baseline.

Image Similarity. Table 4 reports the comparison between Sw and
Su used by baseline. For any pair of voting schemes that only dif-



Table 5: Impact of the tag matching dimension.
Scheme P@100 map

SuIoRu Me ≫ Mx Me ≪ Mp Me ≫ Mx Me ≪ Mp
SwIoRu Me ≫ Mx Me ≫ Mp Me ≫ Mx Me ≈ Mp
SuIsRu Me ≫ Mx Me ≪ Mp Me ≫ Mx Me ≪ Mp
SwIsRu Me ≫ Mx Me ≫ Mp Me ≫ Mx Me ≫ Mp
SuInRu Me ≫ Mx Me ≪ Mp Me ≫ Mx Me ≫ Mp
SwInRu Me ≫ Mx Me ≈ Mp Me ≫ Mx Me ≫ Mp

Table 6: Impact of the tag influence dimension.
Scheme P@100 map

SuMeRu Io ≫ Is Io ≈ In Io ≫ Is Io ≫ In
SwMeRu Io ≫ Is Io ≫ In Io ≫ Is Io ≫ In
SuMxRu Io ≫ Is Io ≈ In Io ≫ Is Io ≫ In
SwMxRu Io ≫ Is Io ≫ In Io ≫ Is Io ≫ In
SuMpRu Io ≫ Is Io ≫ In Io ≫ Is Io ≫ In
SwMpRu Io ≫ Is Io ≫ In Io ≫ Is Io ≫ In

fer on image similarity, paired t-test is conducted based on the re-
sults on P@100 and map respectively. For example the row rep-
resenting the scheme MeIoRu reports the paired t-test results be-
tween SuMeIoRu and SwMeIoRu where the symbols≫,≪, and ≈ de-
note statistically significantly better, significantly worse, and com-
parable, respectively, based on the results of the 81 queries. The
weighted option Sw based on P@100 performs significantly better
than its unweighed counterpart Su for two voting schemes and is
comparably for other schemes. However, the two formulations are
comparable when map is used.

Tag Matching. Table 5 reports the comparison of the two asso-
ciative tag matching formulations, Mx and Mp, against the baseline
Me. Based on P@100, Me clearly outperforms Mx. Between Me and
Mp, on clear pattern can be observed. In other words, there is no
evidence that the Mp option significantly outperform the baseline
Me even with careful parameter tuning in Mp. In other words, as-
sociative tag matching performs poorly in comparison to exact tag
matching. The same observation is made for the comparison based
on map.

Tag Influence and Refined Tag Relevance. Tables 6 and 7 report
the results on tag influence and refined tag relevance dimensions,
respectively. Observe that the baseline formulations significantly
outperform these alternative formulations. In other words, tag in-
fluence or tag relevance in neighbor voting hurts accuracy of the
learned tag relevance in TagIR.

5.3 Content is Still King
Based on the above results and discussion, we can conclude that

the baseline voting scheme, despite its simplicity, remains one of
the most competitive scheme. Interestingly, despite the potential
of tags in improving social image search, significant improvement
is achieved only by the content-based dimension (visual similarity
between the seed image and neighbor images in the voting) instead
of the three context-based dimensions. Why this is so? In the fol-
lowing, we give our interpretations to this phenomenon.

We observed that the weighted image similarity formulation, com-
pared to the unweighed version, better reflects the observation that
visually similar images are annotated with similar tags. Hence if
a neighbor image is less visually similar to the seed image, the
neighbor image should be allocated with less voting power as the
tags assigned to this neighbor image may not necessarily be useful
for learning tag relevance for the seed image.

On the other hand, the relatively poor contributions of the three
context-based dimensions (tag matching, tag influence, tag rele-
vance) stem from the nature of tagging behavior of users. For in-

Table 7: Impact of refining tag relevance.
Scheme P@100 map

SuMeIo Ru ≫ Rr Ru ≫ Rr
SwMeIo Ru ≫ Rr Ru ≫ Rr

stance, the associative tag matching dimension is proposed based
on the assumption that users may not tag visually similar image
using exactly the same tag t. Instead, they may use another tag t′

which is highly associated with t. Hence, in this formulation t will
receive some voting power from a neighbor image having t′ but not
t. An aftermath of this formulation is that it makes a tag t, which is
irrelevant to the seed image d, to gain more voting from the neigh-
bor images. On the other hand, due to the unique user constraint for
nearest neighbors selection, each neighbor image are from a differ-
ent user. Given the large number of neighbors considered in voting
(e.g., 400 in our experiments), it is highly unlikely that this large
number of users would miss out a very relevant tag.

Now consider the tag influence dimension. The alternative for-
mulations of this dimension attempt to further boost tag relevance
by considering tag co-occurrences. Note that the sampling of near-
est neighbors by visual similarity is independent of user tagging
behavior. In reality, if tags t1 and t2 co-occur often in the whole
data collection, they are likely to co-occur often in the neighbor
images of any particular seed image. In other words, if t1 receives
more voting, then t2 would likely to receive more voting as well.
Consequently, the ability to further boost t1 or t2’s voting because
of their high co-occurrence diminishes and the tag influence dimen-
sion becomes less effective in TagIR.

Lastly, consider the impact of using learned tag relevance in the
first iteration to refine the learning in the next iteration. We eval-
uated two methods with exact tag matching without tag influence,
and to our surprise we observed that the results are both negative.
A closer look at the results reveals that it is possible to get slight
improvement for some queries which also achieve relatively good
results with the baseline voting scheme (P@100 or map). However,
for queries that perform poorly with the baseline voting scheme,
there is significant drop in performance in the presence of this di-
mension.

5.4 Case Study
We observe that for some queries (e.g., animal, horses, plants,

tiger, plane, toy, sky, clouds, coral, dog) the voting schemes have
minor impact on the retrieval accuracy. On the other hand, they
have significant impact on the retrieval accuracy of some other
queries (e.g., military, cat, valley, train, fire, nighttime, surf, rainbow,
cars, garden, house).

Among the 81 queries evaluated, Figure 3 shows the P@100
results for three single-tag queries (military, cat, and valley) hav-
ing largest variances among the 20 voting schemes. Clearly, the
choice of image similarity formulation in the voting schemes play
pivot role for TagIR performance. Specifically, the weighted voting
benefits queries like military and valley but adversely affect the per-
formance of cat. However, no clear pattern related to the "types" of
queries that would benefit from weighted or unweighed voting can
be observed from the experimental results.

6. CONCLUSION AND FUTURE WORK
The availability of user-given tags as meta-data has given rise to

opportunities to build novel and superior tag-based techniques to
significantly enhance our ability to understand social images and to
retrieve them effectively and efficiently. One of the key challenge
in this context is determining how accurately a tag objectively re-
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Figure 3: P@100 for single-tag queries: military, valley, and cat.

flect the visual content of the image, known as tag relevance. In
this paper, we explore the effectiveness of different variants of the
neighbor voting technique for tag relevance learning. Specifically,
we investigate a content-based dimension (image similarity) and
three context-based ones (tag matching, refined tag relevance, and
tag influence) that might affect the accuracy of tag relevance learn-
ing. We exhaustively explored 20 neighbor voting schemes based
on these dimensions with 81 single-tag queries on nus-wide dataset.
Surprisingly, our results reveal that significant improvement of ac-
curacy in tag relevance learning for TagIR is achieved only by the
content-based dimension instead of the three context-based dimen-
sions.

There are two interesting issues that we intend to explore in
the future. First, our results show that weighted voting signifi-
cantly outperform unweighed voting based on image visual sim-
ilarity. However, it also shows that the weighted voting benefit
some queries significantly but hurt the performance of some other
queries. It is interesting to explore the possibility of a query-dependent
voting scheme that can apriori select weighted or unweighed vot-
ing depending on the characteristics of the query (or the tags to be
voted in the neighbor voting). Second, we observe that the estima-
tion of visual similarity of a seed image to the entire collection may
affect the results. It is part of our future work to explore different
mechanisms to offset the tag voting expected from the image col-
lection. In summary, the results of this paper are an important first
step in this regard.
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APPENDIX
Lemma 1. For all P and α , I − αP is invertible.

Proof. Note that I − αP = (I − αPT )T and the transpose of an
invertible matrix is invertible. Thus, we shall prove that I − αPT is
invertible. It is equivalent with (I − αPT )x = 0 only has a trivial
solution x = 0.

(I − αPT )x = 0
x = αPT x
xi =

∑
j

α p jix j

Note that 0 ≤ p ji ≤ 1∀i, j and
∑

j p ji = 1∀ j. Let m = arg min{xi},
xm =

∑
j α p jmx j ≥

∑
j α p jmxm = αxm. Thus, (1 − α)xm ≥ 0 and

xm ≥ 0. Similarly, let M = arg max{xi}, we also have (1−α)xM ≤ 0
and xM ≤ 0. Thus, xi = 0∀i.


