
A Tale of Two Approaches: Query Performance
Study of XML Storage Strategies in Relational

Databases

Sandeep Prakash Sourav S. Bhowmick

School of Computer Engineering,
Nanyang Technological University, Singapore
assourav@ntu.edu.sg

Abstract. Several recent papers have investigated a relational approach to
store XML data and there is a growing evidence that schema-conscious ap-
proaches are a better option than schema-oblivious techniques as far as query
performance is concerned. This paper studies three strategies for storing XML
document including one representing schema-conscious approach (Shared-
Inlining) and two representing schema-oblivious approach (XParent and
Sucxent++). We implement and evaluate each approach using benchmark
non-recursive XQueries. Our analysis shows an interesting fact that schema-
conscious approaches are not always a better option than schema-oblivious ap-
proaches! In fact, it is possible for a schema-oblivious approach (Sucxent++)
to be faster than a schema-conscious approach (Shared-Inlining) for 55% of
the benchmark queries (the highest observed factor being 87.8 times). Sucx-
ent++ also outperforms XParent by up to 1700 times.

1 Introduction

Recently, there has been a substantial research effort in storing and processing XML
data using relational backends. This approach either shred the XML documents into
relational tables using some sort of encoding scheme [1, 5, 7, 8, 12, 15, 18, 19] or use a
BLOB column to store the XML document [6, 20, 21]. BLOB-based approaches use
stored procedures to invoke an external XPath/XQuery processor. The main advan-
tages of this approach are fast retrieval of full XML document and ability of storing
any XML document irrespective of the availability of the schema. However, in this
paper, we focus on shredding-based approaches as in the BLOB-based approaches,
usually the entire XML document must be brought into memory before processing,
severely limiting the size of the data and optimization possibilities.

The shredding-based approaches can be classified into two major categories:
the schema-oblivious and the schema-conscious approaches. In brief, the schema-
oblivious method consists of a fixed schema which is used to store XML documents.
This approach does not require existence of an XML schema/DTD. Some examples
of schema-oblivious approaches are Edge approach [7], XRel [18], XParent [8], Sucx-
ent++[12]. The schema-conscious method, on the other hand, derives a relational
schema based on the DTD/XML schema of the XML documents. Examples of such
approaches are Shared-Inlining [15] and LegoDB [1]. Once XML data is stored
using either schema-conscious or schema-oblivious approach, an XQuery/XPath is

translated into SQL for evaluation. A comprehensive review of methods for XML-to-
SQL query translation and their limitations is beyond the scope of this paper and
can be found in [9].

In this paper, we study the performance of schema-conscious and schema-oblivious
approaches and compare these alternatives. In particular, we compare the perfor-
mance of one schema-conscious approach (Shared-Inlining [15]) with two repre-
sentative schema-oblivious approaches (XParent[8] and Sucxent++[12]). At this
point, one would question the justification of this work as a growing body of research
suggests that schema-conscious approaches perform better than schema-oblivious
approaches. After all, it has been demonstrated in [16] that schema-conscious ap-
proaches generally perform substantially better in terms of query processing and
storage size. However, we believe that the superiority of schema-conscious approaches
(such as Shared-Inlining) as demonstrated in [16] may not hold anymore! This is
primarily due to the following reasons.

The Edge approach[7] was used in [16] as the representative schema-oblivious
approach for comparison. Although the Edge approach is a pioneering relational
approach, we argue that it is not a good representation of the schema-oblivious ap-
proach as far as query processing is concerned. In fact, XParent [8] and XRel [18]
have been shown to outperform the Edge approach by up to 20 times, with XPar-
ent outperforming XRel [8, 11]. This does not necessarily mean that XParent out-
performs schema-conscious approaches. However, it does raise the question whether
there exists a schema-oblivious approach in the literature that can outperform XPar-
ent significantly and consequently outperform a schema-conscious approach? In [12],
we provided answer to this question by presenting a novel schema-oblivious approach
called Sucxent++ (Schema Unconscious XML Enabled System) that outperforms
XParent by up to 15 times and a schema-conscious approach (Shared-Inlining) by
up to 8 times for certain types of recursive XML queries. A recursive XML query is
an XML query which contains the descendant axis (//) [10].

Although our effort in [12] asserts that it is indeed possible for a schema-oblivious
approach to outperform the schema-conscious approach, it was demonstrated only for
recursive XML queries. Naturally, we would like to know whether this result holds for
non-recursive XML queries. Note that a non-recursive XML query does not contain
any descendant axis. Such queries are prevalent in GUI-based XML query formulation
framework in the presence of DTDs/XML schemas. In other words, is it possible for
Sucxent++ to outperform XParent and Shared-Inlining for non-recursive XML
queries as well? In this paper, we provide the answer to this question.

2 Related Work

One of the earliest work on performance evaluation of XML storage strategies was
carried out by Tian et al. [16]. In this paper five strategies for storing XML doc-
uments were studied including one that stores documents in the file system, three
that uses a relational database system (Edge and Attribute approaches [7], Shared-
Inlining [15]), and one that uses an object manager. Recently, Lu et al. [11] reported
results on benchmarking six relational approaches on two commercial RDBMS and
two native XML database systems using the XMark[14] and XMach[2] benchmarks.

Both these efforts showed that schema-conscious approaches perform better than
schema-oblivious approaches. Our study differs from the above efforts in the fol-
lowing ways. First, we consider a relatively more efficient schema-oblivious storage
strategy (Sucxent++) compared to the approaches used in [16, 11] for our study.
Second, we evaluate the performance of our representative systems on much larger
data sets (1GB) having richer variety (data and text-centric single and multiple doc-
uments). Note that the maximum size of the data set was 140 MB and 150MB in
[16] and [11], respectively. This gives us a better insight on the scalability of the
representative approaches. Third, we experimented with wider and richer variety of
XML queries. Finally, contrary to the insight gained by Tian et al. and Lu et al.,
we show that it is indeed possible for a schema-oblivious approach to outperform a
schema-conscious approach for certain types of non-recursive XML queries.

XMach-1 [2] is a multi-user benchmark that is based on a Web application and
considers text documents and catalog data. The goal of the benchmark is to test how
many queries per second a database can process at what cost. Additional measures
include response times, bulk load times and database or index sizes. XMark [14] is
a single-user benchmark. The database model is based on the Internet auction site
and therefore, its database contains one large XML document with text and non-text
data. XOO7 [3] was derived from OO7 [4], which was designed to test the efficiency
of object-oriented DBMS. Besides mapping the original queries of OO7 into XML,
XOO7 adds some specific XML queries. Workloads of the above benchmarks, cover
different functionalities, but leave out a number of XQuery features [17]. XBench
[17] was recently proposed to cover all of XQuery functionalities as captured by
XML Query Use Cases. As our work is based on XBench data set and queries, we
also cover all these functionalities. In summary, all of these are application bench-
marks and measure the overall performance of a DBMS. That is, they compare the
performance of different RDBMSs (e.g., IBM DB2, SQL Server in XBench) and na-
tive XML DBMS (e.g., X-Hive) for processing XML data. On the contrary, we focus
on evaluating performance of schema-oblivious and schema-conscious approaches on
a specific commercial RDBMS.

3 Background

In this section, we present the framework for our performance study. We begin by
identifying the representative schema-oblivious and schema-conscious systems chosen
for our performance study and justify their inclusion. Then, we present the experi-
mental setup and data sets used for our study.

3.1 Representative Systems

We chose XParent[8], Sucxent++[13], and Shared-Inlining [15] as representative
shredding-based approaches for performance study. The reasons are as follows.

First, we intend to ensure that the implementation of our selected storage scheme
does not require modification of the relational engine. This is primarily because such
approach enhances portability and ease of implementation of the storage approach
on top of an off-the-shelf commercial RDBMS. Consequently, we did not choose the
dynamic intervals approach [5] and the approach in [19] as these approaches enhance

SD
(Single Document)

MD
(Multiple Document)

Online dictionaries
Digital libraries,

news corpus

E-commerce
catalogs

Transactional data

TC
(Text-centric)

DC
(Data-centric)

Data set
No of Nodes

10MB 100MB 1GB

DC/MD

DC/SD

TC/MD

TC/SD

219,382 2,183,331 23,821,115

238,260 2,394,886 24,810,315

229,258 2,335,180 23,704,294

279,004 2,765,209 28,419,013

(a) Data set (b) Data set of XBench

Fig. 1. Data set of XBench.

the relational engine with XML-specific primitives for efficient execution. Note that
in the absence of such XML-specific primitives, the query processing cost can be
expensive in these approaches. For instance, without the special relational operators
defined in [5], the query performance is likely to be inferior even for simple path
expressions [9].

Second, the selected approach must have good query performance. Jiang et al. [8]
showed that XParent outperforms Edge [7] (up to 20 times) and XRel [18] approaches
significantly. In [12], we have shown that Sucxent++ outperforms XParent (up to
15 times) and Shared-Inlining [15] (up to 8 times) for certain types of recursive
XML queries. Moreover, XParent takes 2.5 times more storage space compared to
the Sucxent++ approach. Hence, XParent and Sucxent++ are chosen as repre-
sentatives of the schema-oblivious approach.

Finally, we chose Shared-Inlining over LegoDB [1] as the representative of
schema-conscious approaches for the following reasons. First, Shared-Inlining is
widely used in the literature as a representative of schema-conscious approaches. Sec-
ond, unlike Shared-Inlining , LegoDB is application and query workload-dependent.
Third, despite our best efforts (including contacting the authors), we could not get
the source code of LegoDB.

3.2 Experimental Setup

Prototypes for Sucxent++, XParent and Shared-Inlining were developed using
Java JDK 1.5 and a commercial RDBMS1. The experiments were conducted on a P4
1.4GHz machine with 256MB of RAM and a 40GB (7200rpm) IDE hard disk. The
operating system was Windows 2000 Professional.

The XBench [17] data set was used for comparison of storage size, insertion and
extraction times, as it provides a comprehensive range of XML document types. We
studied both data-centric and text-centric applications consisting of single as well
as multiple XML documents. We also test for scalability (small (10MB), normal
(100 MB) and large (1 GB) dataset) of the schema-conscious and schema-oblivious
approaches. Figures 1(a) and 1(b) summarize the characteristics of the data sets
used. In our experiments, we create separate database instances for all the scenarios.
For example, we create three database instances for TC/SD, called TC/SD-small,
TC/SD-normal, and TC/SD-large. A total of 22 queries as described in [17] were
tested on this data set. The list of queries and their characteristics is shown in
Figures 2 and 3. Observe that we focus on non-recursive XML queries.

The queries were executed in the reconstruct mode where not only the internal
nodes are selected, but also all descendants of that node. Several steps were taken to

1
Our licensing agreement disallows us from naming the product.

for $order in input()/order[@id="1"]
return
$order/customer_id

- DCMD
- Exact match

for $a in input()/order[@id="2"]
return
$a/order_lines/order_line[1]

- DCMD
- Exact match,
 ordered access

for $a in input()/order[@id="4"]
return
$a//item_id

- DCMD
- Exact match
- One ‘//’ axis

for $a in input()/order
where $a/total gt 11000.0
order by $a/ship_type
return
 <Output>
 {$a/@id}{$a/order_date}{$a/ship_type}
 </Output>

- DCMD
- Sort
- Return multiple
 elements

Query Characteristics
1

2

3

4

#

for $item in input()/catalog/:item
where every $add in
 $item/authors/author/
contact_information/mailing_address
satisfies $add/name_of_country =
"Canada"
return $item

- DCSD
- Quantification

for $order in input()/order,
 $cust in input()/customers/customer
where $order/customer_id = $cust/@id
and $order/@id = "7" return
<Output>{$order/@id}{$order/
order_status}{$cust/first_name}{$cust/
last_name}{$cust/phone_number}</Output>

- DCMD
- Join
- Multiple return
 elements

for $item in input()/catalog/
item[@id="I1"]
return $item

- DCSD
- Exact match

6

7

8

for $a in input()/order[@id="6"]
return
$a

- DCMD
- Exact match
- Document
 reconstruction

5

Query Characteristics#

for $a in input()/catalog/item[@id="I6"]
return
 <Output>
 {$a/authors/author[1]/
contact_information/mailing_address}
 </Output>

- DCSD
- Document
 construction

for $a in input()/catalog/:item
where $a/date_of_release gt "1990-01-01"
and $a/date_of_release lt "1991-01-01"
and empty($a/publisher/
contact_information/FAX_number)
return
 <Output>
 {$a/publisher/name}
 </Output>

- DCSD
- Data type
 casting
- Irregular data

9

10

Fig. 2. XBench queries.

ensure the consistency of the test results. Prior to our experiments, we ensure that
statistics had been collected, allowing well-informed plan selection. Each test query
was executed 6 times while the performance results of the first run discarded. A 95%
confidence interval was computed. In our experiments, the estimated error was small
(< 10%). The bufferpool of the DBMS was cleared before each run to ensure times
reported are from cold runs. Also, appropriate indexes were constructed for all the
three approaches through a careful analysis on the benchmark queries. Note that
the RDBMS we have used can only create an index for varchar, which is less than
255. Hence, in schema-oblivious approaches, if a single text in the “value” attribute
exceeds the limit, which is highly possible for text-centric XML documents, then we
cannot create an index on this attribute to facilitate XML query processing. Similar
to [11], we use a two-table approach to handle short/long data values separately.

4 Data-Centric Query Processing

In this section we study the performance of the representative approaches (Shared-
Inlining , Sucxent++, and XParent) for XML queries on data-centric XML docu-
ments. The reader may refer to [15], [12, 13], and [8] for algorithmic details related to
XML query translation and evaluation. Note that we do not discuss storage size, doc-
ument insertion and extraction performance here as we have already presented this
in [13]. In general, Sucxent++ is 5.7 - 47 times faster than XParent and marginally
better than Shared-Inlining as far as insertion time is concerned. Sucxent++
is also the most efficient among the three approaches as far as document extraction
is concerned. On the other hand, Shared-Inlining requires the least amount of
storage. XParent takes 2.5 times more storage space compared to Sucxent++.

We use the queries Q1 to Q11 in Figures 2 and 3 for our performance study. The
results are shown in Figure 4. The maximum time we allowed a query to run for all

for $size in input()/catalog/:item/
attributes/size_of_book
where $size/length*$size/width*$size/
height > 500000
return
 <Output>
 {$size/../../title}
 </Output>

- DCSD
- Data type
 casting

for $prolog in input()/article/prolog
where
$prolog/authors/author/name="Ben Yang"
return
$prolog/title

- TCMD
- Exact
 match

Query Characteristics
11

12

#
for $a in input()/article/prolog/
authors/author
where empty($a/contact/text())
return
 <NoContact>
 {$a/name}
 </NoContact>

- TCMD
- Irregular data

for $a in input()/article
where contains ($a//p, "the hockey")
return
 <Output>
 {$a/prolog/title}
 {$a/body/abstract}
 </Output>

- TCMD
- Text search
- One ‘//’ axis

for $a in input()/article
where some $b in $a/body/abstract/p
satisfies (contains($b, "the") and
contains($b, "hockey"))
return $a/prolog/title

- TCMD
-Quantification

for $a in input()/article[@id="5"]
return
 <Output>
 {$a/prolog/title}
 {$a/prolog/authors/author/name}
 {$a/prolog/dateline/date}
 {$a/body/abstract}
 </Output>

- TCMD
- Multiple
 return paths

14

15

16

17

for $a in input()/article[@id="8"]/body/
section[@heading="introduction"]
return
 <HeadingOfSection>
 {$a/@heading}
 </HeadingOfSection>

- TCMD
- Two
 conditions

13

Query Characteristics#

for $ent in input()/dictionary/e
where $ent/hwg/hw="the"
return $ent

- TCSD
- Exact match
- Reconstruction

18

for $ent in input()/dictionary/e
where $ent/*/hw = "and"
return
 $ent/ss/s/qp/*/qt

- TCSD
- Path
 expressions

19

for $a in input()/dictionary/e
 [hwg/hw="the"]/ss/s/qp/q
order by $a/qd return
 <Output>
 {$a/a}{$a/qd}
 </Output>

- TCSD
- Sorting

20

for $a in input()/dictionary/e
where contains ($a, "hockey")
Return $a/hwg/hw

- TCSD
- Text search

21

for $ent in input()/dictionary/e
where $ent/ss/s/qp/q/qd="1900"
return $ent/hwg/hw

- TCSD
- Exact match
- Deep path

22

Fig. 3. XBench queries (contd.).

0

0.3

0.6

0.9

1.2

1.5

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

Query

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
)

Shared Inlining

XParent

SUCXENT++

6.159 4.673 6.81 40.01 15.101

(a) 10 MB (c) 1 GB

0

2

4

6

8

10

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

Query

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
)

Shared Inlining XParent SUCXENT++

198.8 658.218.2 10.6 15.9 2719

(b) 100 MB

0

1

2

3

4

5

6

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

Query

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
)

Shared Inlining

XParent

SUCXENT++

58.1 35.6 19327.2 362

Fig. 4. Query performance (data-centric).

experiments was 60 minutes; if the execution did not finish in that period, we do not
show it in the figures. Note that we use the optimized version of Sucxent++ for
our performance study. In non-optimized Sucxent++, the join between the Path
and PathValue tables took a significant portion of the query processing time. The
optimized version of Sucxent++ reduces this overhead by altering the translated
SQL queries. The join expression v1.PathId = p1.Id and p1.PathExp = path in
a translated SQL query is replaced with v1.PathId = n where n is the PathId
value corresponding to path in the table Path. Similarly, v1.PathId = p1.Id and
p1.PathExp LIKE path % is replaced with v1.PathId >= n and v1.PathId <= m.
For the second case PathIds are assigned in lexicographic order and (n, m) cor-
respond to the first and last occurrences of expressions that have the prefix path.
Furthermore, the optimized version also incorporates strategies to optimize recur-
sive path expressions. The reader may refer to [12, 13] for further details. We now
elaborate on the performance results.
Query Q1 [Exact match (DCMD)]: For all three data sizes Shared-Inlining per-
forms the best. This can be explained based on the relational schema generated for

Shared-Inlining and the SQL query corresponding to query Q1. The Shared-
Inlining version involves a single predicate on a single table. All other approaches
involve several joins and predicates. Observe that XParent performs marginally bet-
ter than Sucxent++ for the 10MB data set. This is due to two reasons. First,
Sucxent++ involves θ-joins whereas XParent use equi-joins. Second, the data set
has several small documents instead of one large document. The translations of both
schema-oblivious approaches involve a join of the DocId attribute to filter nodes in
the same document. This generates much smaller join sizes and the results are partic-
ularly obvious for equi-join based queries. However, for the 100MB and 1GB data sets
Sucxent++ performs better than XParent by up to 41.7 times. This is due to the
following reasons. First, XParent incurs a greater number of joins on a much larger
data set. Second, the optimization strategies in Sucxent++ reduce the number of
path joins significantly. This reduces the advantage of equi-joins to a great extent as
the data size increases.
Queries Q2, Q3 [Exact match and ordered access (DCMD)]: Sucxent++
outperforms both Shared-Inlining and XParent for these queries as data size in-
creases (see Figure 6 also). This is because for Shared-Inlining as data size increases
the cost of join operation to extract order line and item id (especially with descen-
dant axis) from other tables increases. Sucxent++ performs better than XParent
due to its more optimal storage strategy (as discussed above).
Query Q4 [Sort and return multiple elements (DCMD)]: Shared-Inlining
performs better than the other two approaches. The main observation here is that
Sucxent++ significantly outperforms XParent (up to 970 times) with the increase
in data size. This is because the number of joins in the translated SQL statement
increases with the number of predicates or return clause elements in the XQuery
query. Observe that this query has quite a few return elements (in addition to a sort
operation). As a result, XParent requires a greater number of joins (and on larger
data) than Sucxent++.
Query Q5 [Document reconstruction (DCMD)]: Shared-Inlining performs
better as evaluation of @id=6 is faster due to smaller (fragmented) tables. But the
cost of join becomes higher with increasing data size and therefore the gap between
Shared-Inlining and Sucxent++ decreases.
Query Q6 [Join and multiple return elements (DCMD)]: Sucxent++ now
performs better than both Shared-Inlining and XParent (up to 1629 times better
than XParent). This can be attributed to the fact that even Shared-Inlining has
to execute more joins for this query as it involves an XQuery join. XParent is out-
performed significantly by other two approaches due to larger number of joins.
Query Q7 [Exact match (DCSD)]: Shared-Inlining performs significantly bet-
ter for smaller data size than the other two approaches. However, the gap between
Sucxent++ and Shared-Inlining decreases with the increase in data size (reasons
are similar to the above discussion). Observe that XParent outperforms Sucxent++
for the small data set. However, Sucxent++ performs better than XParent for the
100 MB and 1GB data sets. This is because, unlike the DCMD version of this query,
the join on the DocId attribute no longer generates small join sizes and the advan-
tages of equi-joins are negated by the large data size in XParent.

0

0.3

0.6

0.9

1.2

1.5

Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

Query

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
)

Shared Inlining

XParent

SUCXENT++

3.108

8.592 4.419 3.198

2.716

3.473

(a) 10 MB

0

1

2

3

4

5

Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

Query

E
x

e
c

u
ti

o
n

 T
im

e
 (

s
)

Shared Inlining

XParent

SUCXENT++

6.13

26-12 64 13-69 14.9

(b) 100 MB (c) 1 GB

0

3

6

9

12

15

18

Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

Query

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
)

Shared Inlining

XParent

SUCXENT++

89.7 162 - 164 60.1 59.7

Fig. 5. Query performance (text-centric).

Query Q8 [Quantification (DCSD)]: This query is quite complex as it involves
quantification in the form of the every clause. The Shared-Inlining approach per-
forms the best even though it has to execute quite a few joins as well. This is because
the execution of the quantification clause is much better in the Shared-Inlining ap-
proach. Sucxent++ performs significantly better than XParent. In fact, XParent
failed to return results in 60 minutes for the 1GB data set and are, therefore, not
included in the figures.
Query Q9 [Document Construction (DCSD)]: Shared-Inlining outperforms
Sucxent++ for 10MB and 100MB data sets. With its inherent greater data frag-
mentation one would expect Shared-Inlining to perform the worst. However, the
query involves a predicate and the construction is only for a small part of the
document - with the entire part available in a single table. As a result Shared-
Inlining performs better. Particularly, for smaller data size the join cost to extract
child elements is not significant enough for Shared-Inlining . Cost of evaluating
@Id=I6 is lower for Shared-Inlining due to smaller tables. However, as the data
size increases the cost of the join increases. As a result, the overall performance dif-
ference is not as significant with the increase in data size. In fact, for 1GB data set
Sucxent++ marginally outperforms Shared-Inlining . Note that the mapping
strategies in [15] do not allow mapped documents to be faithfully reconstructed [9].
Hence, the resulting mapping may be lossy.
Query Q10 [Irregular Data (DCSD)]: For Shared-Inlining , all the data re-
quired for this query could be found in just one table. Therefore, Shared-Inlining per-
forms the best. Also, the empty clause is quite easily implemented by using = null in
the corresponding SQL statement. The translation for schema-oblivious approaches
is quite complicated as there is no notion of "null" in these two approaches. Both
approaches implement this query using the SQL not in clause. As a result the per-
formance is much worse than that of Shared-Inlining . Sucxent++ as expected
outperforms XParent. In fact, XParent failed to complete execution in 60 minutes
for the 100 MB and 1 GB data sets.
Query Q11 [Datatype Casting (DCSD)]: Shared-Inlining can implement
datatype casting in a much cleaner fashion than schema-oblivious approaches. Schema-
oblivious approaches (in this case at least) store all data as strings in a single column.
Shared-Inlining uses several different columns and each can be assigned a specific
datatype. As a result, the query performance in Shared-Inlining is much better.
In the schema-oblivious approach, data has to be first filtered based on the path

expression and only then can it be typecast. Note that this query has five path ex-
pressions. As a result the number of joins in XParent is significantly higher than in
Sucxent++. Therefore, Sucxent++ significantly outperforms XParent by up to
1700 times.

5 Text-centric Query Processing

Text search plays a very important role in XML document systems. In this sec-
tion we study the performance of the representative approaches for XML queries on
text-centric XML documents. We use the queries Q12 to Q22 in Figure 3 for our
performance study. The results are shown in Figure 5. Note that for fair comparison
we use the default text processing support of the RDBMS and do not build any
additional full text indexes on the underlying RDBMS.
Query Q12 [Exact match (TCMD)]: The performance characteristics for this
query are quite similar to those of Q1 except that the difference between Shared-
Inlining and the schema-oblivious approaches is not a significant as in the data-
centric case (Q1 to Q3). This is because the query in the Shared-Inlining approach
requires two tables (compared to one in Q1).
Queries [Q13 to Q15 (TCMD)]: For Q13, the evaluation of @heading=
"introduction" is faster for Shared-Inlining . The join operation to extract
child elements is not very expensive for this query. For larger data sizes Shared-
Inlining outperforms Sucxent++ mainly due to the smaller table that needs to
be queried for evaluating @heading="introduction". For Sucxent++ the Path-
Value table becomes quite large for larger data sets and hence it takes longer time.
Q14 has the contains clause which requires all child elements to be queried. This
involves a large number of joins for Shared-Inlining . Consequently, Sucxent++
performs better. Shared-Inlining performs better for Q15 for the same reasons as
discussed for Q13.
Query Q16 [Irregular Data (TCMD):] Unlike Q10, this query has only two
path expressions. The join cost for Shared-Inlining increases significantly with
the increase in data size (especially in the absence of an exact predicate) due to
several steps in the path expressions. As a result, even though both the schema-
oblivious approaches perform worse than Shared-Inlining for smaller data size,
Sucxent++ performs better for 1GB data set.
Query Q17 [Text search (TCMD)]: Shared-Inlining performs significantly
worse than the schema-oblivious approaches. This is due to the recursive nature of
the query. In Shared-Inlining , the resolution of the path expression /article//p
requires the use of the UNION operator on three sub-queries. In addition, one of
the sub-queries requires a join across several tables. Due to reasons discussed earlier,
Sucxent++ performs better than XParent.
Query Q18 [Exact match/Reconstruction (TCSD)]: Sucxent++ again per-
forms the best. Unlike in Q9, Shared-Inlining has to join four tables to reconstruct
the element e.
Queries Q19, Q20 [Path expressions (TCSD)]: Sucxent++ performs bet-
ter than all the other approaches. XParent performs the worse due to the multi-
ple path expressions in the query. Shared-Inlining performs slightly worse due to

Query
Shared-Inlining / SUCXENT++ XParent / SUCXENT++

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9

Q10

Q11

10MB 100MB 1GB 10MB 100MB 1GB

0.89 0.57 0.70 0.98 8.75 41.71

1.00 0.96 1.59 1.60 27.03 24.60

0.61 1.04 1.29 1.37 18.21 39.16

0.47 0.80 0.96 24.58 320.96 970.07

0.26 0.10 0.15 3.76 8.87 21.78

1.06 1.55 2.16 26.55 88.91 1629.09

0.23 0.33 0.92 0.57 1.26 7.06

0.91 0.77 0.64 10.62 472.97 DNF

0.76 0.93 1.07 8.29 9.48 16.62

0.52 0.16 0.12 153.33 DNF DNF

0.95 0.33 0.22 84.84 475.41 1699.74

Query
Shared-Inlining / SUCXENT++ XParent / SUCXENT++

Q12

Q13

Q14

Q15

Q16

Q17

Q18

Q19

Q20

Q21

Q22

10MB 100MB 1GB 10MB 100MB 1GB

1.07 0.67 0.92 1.67 1.81 3.24

1.96 1.09 0.91 3.62 4.27 11.45

2.55 2.64 3.85 6.67 45.76 134.26

1.04 0.17 0.10 3.10 5.56 62.41

0.30 0.51 1.89 10.02 7.63 18.05

26.12 9.14 13.90 4.30 4.23 14.06

10.56 20.63 33.01 39.11 270.90 DNF

3.67 2.75 4.48 3.12 14.55 DNF

2.59 5.73 1.04 5.93 7.34 5.07

16.38 9.89 5.49 6.00 5.21 5.63

69.46 87.84 68.66 6.70 12.38 14.81

Fig. 6. Performance summary.

multiple joins in the resulting SQL query - although the performance is still com-
parable to Sucxent++. Specifically, Shared-Inlining involves both join and the
union operators due to the wild card path expressions /dictionary/e/*/hw and
/dictionary/e/ss/s/qp/*/qt.
Query Q21 [Text search (TCSD)]: Sucxent++ performs the best for this query
again. The query for the Shared-Inlining approach has several joins in small sub-
queries that are finally combined with a UNION clause. This is due to the contains
clause in the XQuery query. In addition, Shared-Inlining must execute multi-
ple joins to reconstruct the hw element. However, with increasing size querying for
"hockey" in the PathValue table becomes more and more expensive compared to
searching for it in smaller tables in Shared-Inlining . Therefore, the gap reduces
with increasing data size.
Query Q22 [Exact match (TCSD)]: This query presents a “deep” path expres-
sion resulting in several joins for the Shared-Inlining approach. As a result Sucx-
ent++ significantly outperforms Shared-Inlining by up to 88 times.

6 Summary

In this paper, we compared the performance of one schema-conscious approach
(Shared-Inlining [15]) with two representative schema-oblivious approaches (XPar-
ent[8] and Sucxent++[12]). We show that it is indeed possible for a schema-
oblivious approach to outperform a schema-conscious approach for several types of
non-recursive XML queries. Figure 6 provides summary of the performance results for
the compared approaches with respect to Sucxent++. These figures show the ratio
of time taken for a given approach to the time taken in Sucxent++. If a query fails
to execute in 60 minutes then we show it as “DNF” in the corresponding column.
Observe that Shared-Inlining outperforms XParent for all queries except Q22.
However, Sucxent++ can be several times faster than the schema-conscious ap-
proach (Shared-Inlining) for text-centric documents; the highest observed factor
being 87.8. On the other hand, Shared-Inlining fares better for large data-centric
XML documents as it outperforms Sucxent++ for 73% of the benchmark queries
(Queries Q1 - Q11).

Sucxent++ significantly outperforms XParent for all non-recursive queries that
we have experimented with. In particular, Sucxent++ is 7-1700 times (excluding

“DNF” queries in XParent) faster than XParent for queries (Q1-Q11) on large data-
centric XML documents (1GB). For large text-centric documents, it is still 3-134
times faster. Note that the optimization techniques in Sucxent++ as described
in [12] can also be applied to XParent. A preliminary study of the query plans
generated by the RDBMS for XParent suggests that XParent can also benefit from
these optimizations. However, a considerable performance difference shall still exists
between Sucxent++ and XParent, especially for large data set, primarily due to
XParent’s large storage requirements and consequently greater I/O-cost.

References

1. P. Bohannon, J. Freire, P. Roy, J. Simeon. From XML Schema to Relations: A Cost-based Approach
to XML Storage. In IEEE ICDE , 2002.

2. T. Böhme, E. Rahm. XMach-1: A Benchmark for XML Data Management. In German Database
Conference, 2001.

3. S. Bressan, M-L. Lee, Y. G. Li, Z. Lacroix, U. Nambiar. The XOO7 Benchmark.In EEXTT , 2002.
4. M. Carey, D. DeWitt, J. Naughton. The OO7 Benchmark. In ACM SIGMOD, 1993.
5. D. DeHaan, D. Toman, M. P. Consens, M. T. Ozsu. A Comprehensive XQuery to SQL Translation

Using Dynamic Interval Coding. In ACM SIGMOD, 2003.
6. L. Ennser, C. Delporte, M. Oba, K. Sunil. Integrating XML and DB2 XML Extender and DB2 Text

Extender. IBM Redbooks, 2001.
7. D. Florescu, D. Kossman. Storing and Querying XML Data using an RDBMS. IEEE Data Engi-

neering Bulletin. 22(3), 1999.
8. H. Jiang, H. Lu, W. Wang and J. Xu Yu. Path Materialization Revisited: An Efficient Storage Model

for XML Data. 13th Australasian Database Conference (ADC’02) , 2002.
9. R. Krishnamurthy, R. Kaushik, J. F. Naughton. XML to SQL Query Translation Literature: The

State of the Art and Open Problem.In XSym, 2003.
10. R. Krishnamurthy, V. T. Chakaravarthy, R. Kaushik, J. F. Naughton. Recursive XML Schemas,

Recursive XML Queries, and Relational Storage: XML-to-SQL Query Translation.In IEEE ICDE,
2004.

11. H. Lu, H. Jiang, J. X. Xu, G. Yu et al. What Makes the Differences: Benchmarking XML Database
Implementations. In ACM Trans. on Internet Technology, 5(1), 2005.

12. S. Prakash, S. S. Bhowmick, S. K. Madria. Efficient Recursive XML Query Processing Using Rela-
tional Databases. In ER, 2004.

13. S. Prakash, S. S. Bhowmick, S. K. Madria. Efficient Recursive XML Query Processing Using Rela-
tional Databases. To appear in Data and Knowledge Engineering Journal , Special Issue on Best
Papers of ER 2004, Elsevier Science, 2006.

14. A. Schmidt, F. Waas, M. Kersten, M. J. Carey, I. Manolescu and R. Busse. XMark: A Benchmark
for XML Data Management. In VLDB, 2002.

15. J. Shanmugasundaram, K. Tufte et al. Relational Databases for Querying XML Documents: Limi-
tations and Opportunities. In VLDB 1999.

16. F. Tian, D. DeWitt, J. Chen and C. Zhang. The Design and Performance Evaluation of Alternative
XML Storage Strategies. ACM Sigmod Record, Vol. 31(1), 2002.

17. B. Yao, M. Tamer Özsu, N. Khandelwal. XBench: Benchmark and Performance Testing of XML
DBMSs. In ICDE , Boston, 2004.

18. M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura. XRel: A Path-based Approach to Storage
and Retrieval of XML Documents Using Relational Databases. ACM TOIT 1(1):110-141, 2001.

19. C. Zhang, J. Naughton, D. Dewitt, Q. Luo and G. Lohmann. On Supporting Containment Queries
in Relational Database Systems. In ACM SIGMOD, 2001.

20. Microsoft SQL Server 2000 SDK Documentation, Microsoft 2000, http://www.microsoft.com.
21. Oracle XML DB. http://www.oracle.com.

