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ABSTRACT
Recent functional genomics research has yielded a large in
silico gene regulatory network model (622 nodes) for en-
domesoderm development of sea urchin, a model organism
for embryonic development. The size of this network makes
it challenging to determine which genes are most responsible
for a given biological effect. In this paper, we explore feasi-
bility and accuracy of existing in silico techniques for identi-
fying key genes that regulate Endo16, a widely-accepted gas-
trulation marker. We apply target prioritization tools (sen-
sitivity analysis and Pani) to the endomesoderm network to
identify key regulators of Endo16 and validate the results by
comparing against a set of benchmark Endo16 regulators col-
lated from literature survey. Our study reveals that global
sensitivity analysis methods are prohibitively expensive and
inappropriate for large networks. We show that Pani ef-
ficiently produces superior prioritization results compared
to both random prioritization and local sensitivity analy-
sis (lsa) techniques. Specifically, the area under the roc

curve was 0.625, ∼0.5, and 0.549 for Pani, random prioriti-
zation, and lsa, respectively. Our study reveals that certain
unique characteristics of the endomesoderm network affect
the performance of target prioritization techniques. In addi-
tion to identifying many known regulators of Endo16, Pani

also discovered additional regulators (e.g., Snail) that did
not appear initially in the benchmark regulators set.

Categories and Subject Descriptors
J.3 [Life and Medical Sciences]: Biology and genetics.

General Terms
Algorithms, Experimentation, Performance, Verification

Keywords
PANI, sea urchin, endomesoderm, endo16, target prioritiza-
tion

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IHI’12, January 28–30, 2012, Miami, Florida, USA.
Copyright 2012 ACM 978-1-4503-0781-9/12/01 ...$10.00.

1. INTRODUCTION
Gastrulation is a process that happens early in embryo-

genesis when the blastula (unstructured assembly of cells)
rearranges and forms the three germ layers (ectoderm, meso-
derm, and endoderm) of the embryo [34]. These three germ
layers subsequently differentiate and develop into different
tissues and organs in the organogensis process. In the sea
urchin, the gastrulation process consists of primary and sec-
ondary invagination [9]. In primary invagination, a portion
of the epithelial wall of the blastula bend inwards creating
the primitive gut known as archenteron. The secondary in-
vagination starts when the archenteron has extended a dis-
tance of one-quarter to one-half across the blastocoel. Gas-
trulation defects can result in abnormal development of the
body [14] and even death [29]. For instance, mutation of
the Shp2 phosphatase in zebrafish embryos result in con-
vergence and extension cell movement defects. The phe-
notypes display craniofacial and cardiac defects similar to
symptoms observed in human with Noonan and leopard

syndromes [14]. Although the gastrulation process varies
across different organisms, there are certain characteristics
which remain common. For instance, the gastrulation move-
ments, such as invagination which is the inward bending of
a sheet of cells, are preserved across species [36]. The use of
animal models to study the gastrulation process enhances
our understanding of the mechanisms underlying the devel-
opmental defects.

The use of monoclonal antibody and cloned gene probes
enable the study of individual genes during gastrulation.
Endo16, a cell surface glycoprotein, was first isolated from
the purple sea urchin (Strongylocentrotus purpuratus) and
characterized by [23]. The authors proposed that the Endo16

protein may be involved in cell adhesion and gastrulation.
Further studies in [30] identified Endo16 as essential for gas-
trulation. Sea urchin Lytechinus variegatus embryos defi-
cient in Endo16 fail to undergo gastrulation and their blas-
tocoele are filled with dissociated cells of unknown iden-
tity [30]. Understanding how regulators, such as Otx, affect
Endo16 protein expression brings us one step closer to dis-
covering therapeutic targets for gastrulation defects.

1.1 Related Work and Motivation
Efforts in sea urchin developmental research have resulted

in a vast accumulation of knowledge about different players
in the gastrulation process [20,23,30]. In an attempt to in-



tegrate this knowledge, Davidson et al. [8] have constructed
an ordinary differential equation (ode) model describing the
dynamic interactions between these different players based
on experimental data from published literature. As the inte-
grated network model grows large in size, it becomes increas-
ingly difficult to study it manually. The endomesoderm gene
regulatory network model described in [16] currently con-
sists of 622 nodes (molecules) and 778 edges (interactions).
In order to study the regulation of particular molecules (e.g.,
Endo16), researchers have to sieve through the entire regu-
latory network to trace out relevant regulatory pathways.
Hence, in silico techniques can play a key role in study-
ing this problem by prioritizing the nodes that are likely to
be relevant Endo16 regulators. However, to the best of our
knowledge, no in silico study has been carried out to study
the Endo16 regulatory pathway in the sea urchin endomeso-
derm gene regulatory network.

At first glance, it may seem that we can efficiently iden-
tify these target nodes by leveraging on the existing sensi-
tivity analysis approaches [12, 27, 41]. Sensitivity analysis
measures the effect of a parameter perturbation (e.g., a ki-
netic rate constant change) on the node of interest, such
as Endo16, and assigns sensitivity values to a node based
on the extent of perturbation on Endo16. The parame-
ter values of a real biological network vary due to differ-
ences in genetics, cellular environment and cell type. Hence,
no single “true” nominal parameter value is deemed to ex-
ist. Thus, global sensitivity analysis (gsa) based methods,
such as multi-parametric sensitivity analysis (mpsa) [41] and
sobol [33], are deemed to be more appropriate for biological
networks compared to local sensitivity analysis (lsa). gsa-
based methods prioritize nodes using the sensitivity values
when all parameters are varied simultaneously. These tools
have been used widely to analyze several networks [41, 42].
However, our initial investigation revealed that these tools
suffer from the following compelling limitations that prevent
us from adopting them for investigating the endomesoderm
gene regulatory network. First, they are computationally
expensive as they require simulating the network behaviour
for a combinatorial number of different parameter combi-
nations. The use of gsa methods is limited to networks
of smaller size. Particularly, both mpsa and sobol fail to
perform the study of Endo16 regulators in the large endome-
soderm network on a modern server machine due to memory
issues1. Second, prioritization based only on the sensitivity
values means that “insensitive” nodes that may be impor-
tant regulators may be missed. Lastly, as we shall see in
Section 2.1, the sea urchin endomesoderm network is par-
tially correct or partially complete. Unfortunately, sensi-
tivity analysis based approaches are not robust enough to
generate robust results from such networks. In summary,
the aforementioned limitations have been the key obstacles
for the research community to undertake systematic in sil-
ico strategy to study the Endo16 regulatory pathway in the
endomesoderm gene regulatory network.

1.2 Overview
This paper takes a first step to investigate the use of in

silico target prioritization tools to identify regulatory nodes
of Endo16 in the endomesoderm gene regulatory network.

1
sbml-sat is used to perform mpsa and sobol analysis and is obtained

from http://sysbio.molgen.mpg.de/sbml-sat/. The default number of
simulations is set to 2000 and 10000 for mpsa and sobol, respectively.

Target prioritization is the problem of choosing a set of reg-
ulatory molecules specific to a particular node of interest
(output node) that is related to the biological problem un-
der investigation [7]. In this work, we chose Endo16 as the
output node for the endomesoderm network due to its crit-
ical role in gastrulation.

Recently, we proposed a generic algorithm for target prior-
itization called Pani (Putative TArget Nodes PrIoritization),
which uses network information and simple empirical scores
to prioritize and rank biologically relevant target molecules
in signaling networks [7]. Pani takes a two-phase approach
to identify and rank target molecules. First, it prunes the
nodes based on a reachability rule to eliminate nodes that
are likely to be non-regulators. Then, it calculates the puta-
tive target score of each resulting node, which is a weighted
rank aggregation of a dynamic property (profile shape simi-
larity distance (pssd)) and two structural properties (target
downstream effect (tde) and bridging centrality (bc) [13])
of the node. In [7], we demonstrated that Pani can pri-
oritize a majority of drug targets that regulate Erk in the
mapk-pi3k network (containing only 36 nodes). Further-
more, the quality of results generated by this approach is
superior to the gsa-based techniques. Hence, in this pa-
per we investigate whether Pani can also be exploited to
prioritize targets specific to Endo16 regulation in the large
endomesoderm network containing more than 600 nodes.

Our study reveals several interesting findings. Pani is
successful in producing superior quality results by prioritiz-
ing many known Endo16 key regulators in around 250 sec-
onds on a modern desktop machine. We also observe that
the endomesoderm network has certain unique structural
and dynamic characteristics. Specifically, it contains a very
large strongly connected component (scc) and many nodes
have constant concentrations. Consequently, the structural
properties (e.g., bc) in Pani play a more critical role com-
pared to the dynamic property (pssd) in producing supe-
rior quality results compared to random prioritization and
lsa, which are oblivious to these characteristics. Note that
Pani provides us the flexibility to tune the relative weights
of structural and dynamic properties according to the char-
acteristics of the underlying network. Lastly, Pani iden-
tified several target molecules (e.g., Snail) that were not
initially part of the set of benchmark regulators which we
harnessed during literature survey. Further investigation re-
vealed that these molecules indeed play a role in regulating
Endo16. Hence, in addition to identifying many known reg-
ulators of Endo16, Pani’s prioritization results give us a clue
to additional targets that may also be regulators.

The rest of the paper is organized as follows. In Section 2,
we describe the sea urchin endomesoderm gene regulatory
network model used for analysis. In Section 3, we describe
the use of Pani to prioritize the Endo16 regulators and the
steps to validate the results. Pani’s prioritization results are
then presented and discussed in Section 4. We discuss how
Pani’s parameters affect the result quality in Section 5.

2. ENDOMESODERM NETWORK
In this section, we summarize the general characteristics

of the endomesoderm gene regulatory network model and
briefly describe the biological process (endomesoderm spec-
ification) described by this network. The Endo16 regulatory
pathway (Figure 1a) which we use to validate our results in
Section 4 forms a portion of this network. We create the



cB

Blimp1 Wnt8

OtxEndo16

GataE

Hox11/13bBra

Ets1Pmar1

NotchDeltaHesC

TCF

N�:TCF

2

11

10

SuH

Eve

B

Gro

15 16

18

19

ASoxB1

12

78

13

4

3

Brn1/2/4

C

Dri

20

21

17

1

5

6

9

14

22

(a)

 1

 10

 100

 1000

 1  10  100  1000

F
re

qu
en

cy

Degree

Legend
In Degree

Out Degree
Total Degree

(b)

Figure 1: (a) The sea urchin Endo16 regulatory pathway. Edges and modules (blue, red and green boxes) are
labelled and elaborated in Section 2.2 and (b) Degree distribution of the endomesoderm network.

Endo16 regulatory pathway based on literature survey and
the scope of the survey is described in Section 3.2.

2.1 Network Characteristics
We obtain the ode model of sea urchin endomesoderm

gene regulatory network (biomd0000000235) from the
Biomodels.net database [18]. This model is constructed from
numerous perturbation experiments and contains 622 nodes
and 778 edges. The nodes consist of 217 root nodes (with
no incoming edges), 4 singletons (nodes with no incoming or
outgoing edges) and 401 intermediate nodes (with incoming
and outgoing edges). Amongst the intermediate nodes, 25
are not in any sccs2. Of the remaining intermediate nodes,
there are 8 sccs containing two nodes and one huge scc con-
taining 360 nodes. The high percentage of nodes (∼ 60%)
involved in sccs implies that many of the molecules are
involved in autoregulation (a molecule regulating its own
activity), a characteristic common in gene regulatory net-
works [19]. Figure 1b shows that the degree distribution
of the endomesoderm network follows the power-law. An-
other characteristic of in silico models is their incomplete-
ness, which may be due to missing genes or interactions [16],
or to the approach used for model construction. In the case
of the endomesoderm network, the authors use a heuristic-
based approach to construct the network kinetics as it is
impractical to perform parameter estimation for the entire
network due to its large size. Validation against a similar
subnetwork constructed using parameter estimation shows
that there is 74% agreement of the simulation results. When
compared to experimental data, the level of agreement falls
to 48%. Hence, the endomesoderm network is partially cor-
rect. Note that such partial correctness is a real-world fea-
ture of many biological networks. Hence, any in silico ap-
proach for prioritizing biologically relevant targets must be
robust enough to handle such networks.

2.2 Endomesoderm Specification
The network model used in [16] is an extension of that pro-

posed in [8]. Although the model is partially correct (Sec-
tion 2.1), it is still able to describe the key steps in endome-
soderm development, namely, the initiation of the endome-
soderm specification signal, the maintenance of the speci-
fication signal, the activation of the Delta/Notch signaling

2In a given scc containing nodes u and v, there exists a path from u

to v and vice versa.

pathway, and the specification of veg1 endoderm. Hence,
it is still useful for our in silico study of the regulation of
Endo16, whose expression is one of the crucial end points
of the endomesoderm specification. In subsequent descrip-
tion, annotations of edges and modules (blue, red and green
boxes) refer to that in Figure 1a.

Initiation of the endomesoderm specification signal.
The single-cell zygote undergoes cleavage to form a multi-
cell embryo. By the 6th cleavage, the initial specification
of the veg2 domain occurs. This step requires two inputs:
an intracellular signal from the micromeres and the nucle-
arization of β-catenin (cB), a cofactor required by the tcf

transcription regulator for gene activation [8]. The nucle-
arization of cB relieves the repression of tcf by Groucho

(Gro) as tcf binds with the nuclearized cB (nβ) to form a
complex (nβ:tcf) (blue box A) [8]. nβ:tcf activates several
genes, including Blimp1 [4].

Maintenance of the specification signal. The activ-
ity of nβ:tcf is regulated positively by a feedback loop in-
volving Blimp1 and Wnt8; and negatively by its repressor,
SoxB1 [2] (edge 1). In the feedback loop, nβ:tcf activates
Blimp1 (edge 2) and together with Blimp1 results in the acti-
vation of Wnt8 (edge 3) [8]. This in turn initiates the ampli-
fication of the endomesoderm specification activation signals
(edge 4) [8]. Dri which is positively regulated by Pmar1 [24]
(edge 5), affects the late vegetal clearance of SoxB1 in the
veg2 domain [1] (edge 6). The nβ:tcf signal is required for
expression of many veg2 endomesodermal regulatory genes
in the early to mid blastula stage, such as Gcm [8].

Activation of the Delta/Notch signaling pathway. At
around the 8th to 9th cleavage, the micromeres express Delta,
a ligand which activates the Notch receptor in the veg2 cells,
thus initiating the specification of these cells as mesodermal
precursors [24]. Genes under the control of the Notch path-
way, such as GataE, are expressed [11]. The Delta/Notch

signaling is effected by the Suppressor of Hairless (SuH)
transcription factor which is initially inhibited by Groucho

(Gro) (red box B) [22]. The activity of Delta is in turn mod-
ulated by several molecules, namely, Ets1, HesC and Pmar1.
Ets1 has been implicated in downregulation of Delta ex-
pression at the late blastula stage when Erk is inhibited [31].
Inhibition of Erk prevents the phosphorylation of Ets1 on
Thr107, thus inhibiting Ets1 (edge 7) [31]. HesC-Pmar1 pro-
vides a double-negative control of Delta activity, whereby



Pmar1 inhibits HesC activity (edge 8) which in turn, inhibits
Delta activity (edge 9) [6]. Hence, Pmar1 and Ets1 activate
Delta while HesC inhibits Delta. The Neutralized-like-1

(Nrl) homolog in Drosophila, Neuralized (Neur), acts as
a ubiquitin ligase which promotes the internalization and
degradation of Delta [17], suggesting that Nrl may interact
with Delta in the sea urchin in the same way. However, no
supporting evidence has yet been found in the sea urchin.
Hence, we did not consider Nrl as part of the Endo16 regu-
latory pathway in Figure 1a.

Specification of veg1 endoderm. At the late blastula
stage, specification of the veg1 endoderm takes place. In this
step, endodermal markers such as Endo16 are expressed [8].
Initially, Endo16 is expressed in the vegetal plate of the blas-
tula [30]. The expression of Endo16 is regulated differently
depending on the cell type and the embryogenesis phase.
For instance, in primary mesenchymal cells (pmc), expres-
sion of Endo16 is downregulated [30]; Endo16 expression is
maintained throughout the invaginating archenteron during
gastrulation but downregulated in the anterior one-third of
the archenteron at the end of gastrulation [30]. Specifically,
the expression of Endo16 is regulated by Blimp1, Otx and
Brain-1, -2, and -4 (Brn1/2/4). The initial activation of
Endo16 in the endomesoderm is a result of Blimp1 activa-
tion of Otx (edges 10 and 11) [20, 38], while the late phase
expression of Endo16 is regulated by Brn1/2/4 [40]. In [40],
morpholino-substituted antisense oligonucleotide (maso)
treatment depresses the expression of Endo16 Module B sig-
nificantly (edge 12). Quantitative pcr (qpcr) perturbation
data at the later endoderm stage suggests that Otx drives
the expression of Brn1/2/4 (edge 13) [40].

The activity of Otx is in turn regulated by several molecules,
namely, Blimp1, GataE, Bra, Hox11/13b and Dri. There
are three positive feedback loops that maintain Otx activ-
ity. The first two loops involve Blimp1 (edge 10) and GataE

(edge 14) which interact with the β1/2 transcription unit of
Otx [39]. The third loop involves Bra and Hox11/13b. Bra, a
target gene of Otx, activates Otx (edge 15). The Bra-induced
amplification of Otx is further amplified by Hox11/13b ac-
tivation of Bra (edge 16) [28]. Dri is found to positively
regulate the activity of Otxβ1/2 from qpcr perturbation
data [1] (edge 17).

Another player in the Endo16 regulatory pathway is Even-

skipped (Eve). Experimental data in [32] shows that Eve

is regulated by four other molecules, namely, Otx, Blimp1,
Hox11/13b and nβ:tcf. Both Otx (edge 18) and nβ:tcf

(edge 19) activate Eve. The remaining nodes, Blimp1 and
Hox11/13b, form a separate autoregulatory loop with Eve.
In the Blimp1/Eve loop, both Blimp1 and Eve are positively
activated (edge 20); in the Hox11/13b/Eve loop, Eve is re-
pressed while Hox11/13b is activated (edge 21). Observa-
tion of the spatial expression of Hox11/13b in the vege-
tal plate in [3] suggests that Hox11/13b is downstream of
the Wnt8/Blimp1/Otx (green box C) positive autoregulatory
loop (edge 22).

Interested readers may refer to [8] and [24] for a detailed
description of the model.

3. IN SILICO PRIORITIZATION
In this section, we describe our approach to identify and

prioritize Endo16 regulators in the endomesoderm network.
Our approach consists of two key steps. First, target priori-
tization was performed by exploiting the algorithm Pani [7].

Second, the results generated by the previous step were vali-
dated. Target prioritization and all subsequent experiments
were carried out on an Intel 1.86ghz dual core processor
machine with 2gb ram, running Microsoft Windows xp.

3.1 Step 1: In Silico Prioritization
Pani [7] is a generic target prioritization algorithm that

suggests target proteins for drug development, by predicting
the most influential nodes in a disease-related signaling net-
work. We have chosen to apply Pani (a two-phase algorithm
described in [7]) to the problem of identifying key regulators
of gastrulation. Briefly, the first (pruning) phase of Pani

tests for the existence of a path between each node in the
endomesoderm network and the node of interest, Endo16.
Nodes having such paths are retained for further analysis in
the next phase. Specifically, at the end of the first phase, 606
nodes are selected for subsequent processing. In the second
phase (prioritization phase), a putative target score is calcu-
lated for each node and used for prioritization. The putative
target score is a weighted rank aggregation of the profile
shape similarity distance (pssd), the target downstream ef-
fect (tde) and the bridging centrality (bc) [13] of the nodes,
which we elaborate in turn.

The first property, pssd, identifies the most relevant up-
stream regulators of Endo16 by assessing the similarity be-
tween the concentration-time series profile (plot of a node’s
concentration against time) of each node with that of Endo16.
Specifically, the pssd between Endo16 and node v is calcu-
lated as the minimum dynamic time warping (dtw) dis-
tance [15] between two pairs of concentration-time profiles,
namely {ζEndo16 ,ζv} and {ζEndo16 ,ζ′

v} where ζ′
v is the inverted

profile of node v. In this paper, the concentration-time pro-
files are obtained from in silico simulations of the endome-
soderm network model [16] using Copasi with parameters:
{duration=70 hours, intervals=0.1 hours}3. That is, the
length of the concentration time series (|ζ|) is set to 700.
The second property, tde, measures the potential impact
on the network when a node is perturbed. It is calculated
as the sum of the effect of each of its downstream node w,
which is the product of w’s degree and the probability of
perturbing w. The probability of perturbing w depends on
the likelihood of the existence of a path leading to w. In the
case of the endomesoderm network, we set this probability as
1 since the network is constructed based on extensive litera-
ture survey [16]. The last property, bc, identifies nodes that
are located at a connecting bridge between modular subre-
gions in a network [13]. It is calculated as the product of
two ranks, namely, the inverses of betweenness centrality [5]
and bridging coefficient [13].

The choice of the relative weights for the aforementioned
properties in order to compute putative target score is in-
fluenced by the topological and dynamic characteristics of
the network. For instance, Pani’s computation of the pssd

ranks depend on similarity of changes in the concentration-
time series profiles [7]. Consequently, the presence of many
nodes having constant profiles in the network affects the
pssd rank and hence the prioritization results. Interestingly,
in the endomesoderm network, 49.2% of the 197 nodes re-
lated to the benchmark regulators have constant profiles.
Additionally, the presence of a large scc in the network also

3The simulation time is unrelated to the duration parameter which
intuitively, corresponds to the range of ζ and is related to |ζ|
( duration

interval
= |ζ|).
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have an effect on tde and bc rankings. Hence, we allocate
relatively lesser weights to pssd and tde compared to bc.
Specifically, we set ωpssd=0.1, ωtde=0.2 and ω 1

bc
=0.7. Note

that this is in contrast to the weights of these properties for
the mapk-pi3k network where pssd is given higher weigh-
tage compared to tde and bc [7]. In Section 5, we shall
investigate the effect of different values of these weights on
the target prioritization for the endomesoderm network.

3.2 Step 2: Validation of Results
A key issue of the previous step is the validation of the

quality of the prioritization results. The purpose of the tar-
get prioritization is to identify the key regulators of Endo16.
Hence, we will evaluate the quality of the results in terms of
the biological relevance of the prioritized targets as Endo16

regulators in the sea urchin endomesoderm network.
We collate a list of known sea urchin Endo16 regulators

based on extensive literature survey and use it as benchmark
for validating the prioritized targets. We note that the use
of literature survey for validation of biological relevance has
limitations. For instance, the result of the validation is af-
fected by the literature survey process, such as the keywords
and selection criteria used for gathering and selecting the
relevant literature. In order to keep our survey process as
relevant to the problem as possible, we have looked for litera-
ture pertaining specifically to the sea urchin endomesoderm
specification. We used the keywords “sea urchin endomeso-
derm” to search the PubMed repository and 73 publications
were returned as of July 1, 2011. The literature survey was
done based on these publications.

The specific steps for results validation were as follows.

• First, we constructed the sea urchin Endo16 regulatory
pathway by mapping out the interactions between dif-
ferent molecules from the publications. We restricted
our regulatory pathway (Figure 1a) to reflect nodes in
the network model [16] that were relevant to Endo16

regulation to facilitate our validation later, as nodes in
this regulatory pathway would be used as the bench-
mark set of Endo16 regulators. This benchmark set
of regulators were made up of 20 different molecules.
These molecules were represented as multiple nodes in
the network (Tables 1 and 2), each of which is a differ-
ent form of the molecule (e.g., protein, gene, mrna) in
different embryonic territories (e.g., endoderm, meso-
derm and primary mesenchyme cells (pmc)). For in-
stance, Protein P Otx is the Otx protein in the pmc.

• Next, we evaluated the quality of the results by as-
sessing how well the top ranking (top 10%) nodes cor-
respond with the benchmark set of Endo16 regula-
tors. We also evaluated the sensitivity and specificity
of our prioritization technique to identify the set of
Endo16 regulators using Receiver Operating Charac-
teristic (roc) analysis (Section 4.1).

• Finally, we compared the performance of Pani with
random prioritization and local sensitivity analysis (lsa)
in the context of the endomesoderm network (Sec-
tion 4.2).

4. VALIDATION OF IDENTIFIED TARGETS
In this section, we validate the quality of our prioritized

results. In order to assess how well the prioritization results
can identify the set of benchmark regulators, we examine
the correlation between the list of Pani’s top ranking nodes
and the benchmark regulators, and perform a roc analysis.
For a more complete analysis, we also compare Pani to two
baseline approaches, namely random prioritization and the
lsa-based approach.

4.1 Top-Ranked Nodes and ROC Analysis
From the prioritized list of targets generated by Pani, we

take the top 10% of nodes to test for enrichment of known
Endo16 regulators. Tables 1 and 2 report the ranks of all
the nodes based on their putative target scores. Recall from
Section 3.1 that the size of the pruned set of candidate nodes
is 606. Hence, there are 61 nodes in the top 10%. Observe
that the top 61 nodes in Tables 1 and 2 consist of 25 differ-
ent molecules V = {Wnt8‡, Bra‡, Hox‡, cB‡, Delta‡, GataE‡,
Notch‡, Otx‡, Pmar1‡, SoxB1‡, Ets1‡, HesC‡, Dri‡, Erg, Hex,
Hnf6, Snail, Tgif, vegfr, SoxC, Tel, vegfsignal, Sm30, Gcm,
Gcad} as some of these molecules are represented multiple
times. Molecules marked with ‡ are implicated in the en-
domesoderm specification process that controls Endo16 ac-
tivity (Section 2.2) and represent a significant percentage
in the top 61 nodes. For instance, cB is represented as
Protein M cB, Protein E cB and Protein P cB, referring
to β-catenin protein in the endoderm, in the mesoderm
and in primary mesenchyme cells (pmc), respectively. In to-
tal, 45 (74%) of the 61 putative target nodes are implicated
in the regulation of Endo16, implying that the top 10% nodes
are enriched with known Endo16 regulators.

We note that 12 molecules in V not marked with ‡ do not
correspond with the benchmark regulators in Figure 1a. We
extended our literature search beyond the 73 publications
to look for evidence implicating these molecules {Gcm, Hnf6,
Tgif, Erg, Hex, Snail, Gcad, vegfr, SoxC, Tel, vegfsignal,
Sm30} in the Endo16 regulatory pathway. We found that
GataC is activated by Gcm [11] and Hnf6 [26] and indirectly
inhibited by Alx1. Knockdown of GataC correlates strongly
with down-regulation of FoxA [16] which inhibits Bra‡ [10];
Alx1 is activated by Tgif which is also involved in positive
double feedback loops containing Erg and Hex [25]; Snail

represses Gcad activity [37] which plays an inhibitory role
on the nuclearization of cB‡ [21]. Hence, many of these
nodes regulates the benchmark Endo16 regulators either di-
rectly or indirectly. Only vegfr, SoxC, Tel, vegfsignal,
and Sm30 were not found linked with the benchmark regu-
lators. Pani’s prioritization results identify both benchmark
Endo16 regulators and additional nodes that are likely to play
a regulatory role.



ID Node Name ΨP ΨL ID Node Name ΨP ΨL ID Node Name ΨP ΨL ID Node Name ΨP ΨL ID Node Name ΨP ΨL

1 gene E Alx1 306‡ 126 90 *gene M Otx 310‡ 126 179 mrna E FvMo 162‡ 68 268 mrna M Tel 187‡ 126 357 pre M umanrl 316‡ 126
2 gene E Apobec 308‡ 126 91 gene M Pks 309‡ 126 180 mrna E GataC 214 68‡ 269 mrna M Tgif 258‡ 126 358 pre M umr 316‡ 126
3 *gene E Blimp1 313‡ 126 92 *gene M Pmar1 309‡ 126 181 *mrna E GataE 114‡ 84 270 *mrna M UbiqSoxB1 154 5‡ 359 *pre P cB 316‡ 126
4 *gene E Bra 310‡ 126 93 gene M Sm27 313‡ 126 182 mrna E Gcad 25 5‡ 271 *mrna M umadelta 281 102‡ 360 *pre P Ets1 315‡ 126
5 *gene E Brn 305‡ 126 94 gene M Sm30 307‡ 126 183 mrna E Gcm 61‡ 51 272 mrna M umanrl 280 103‡ 361 pre P Gcad 315‡ 126
6 gene E capk 318 126 95 gene M Sm50 314‡ 126 184 mrna E Gelsolin 107‡ 67 273 mrna M umr 281 102‡ 362 pre P L1 316‡ 126
7 gene E CyP 309‡ 126 96 gene M Snail 307‡ 126 185 *mrna E HesC 167‡ 126 274 mrna M vegfr 247‡ 126 363 *pre P Otx 315‡ 126
8 *gene E Delta 310‡ 126 97 *gene M SoxB1 308‡ 126 186 mrna E Hex 250‡ 109 275 *mrna M Wnt8 42‡ 61 364 pre P UbiqAlx1 316‡ 126
9 gene E Dpt 307‡ 126 98 gene M SoxC 309‡ 126 187 mrna E Hnf6 193‡ 126 276 mrna M z13 203‡ 126 365 pre P Ubiqes 316‡ 126
10 *gene E Dri 308‡ 126 99 gene M SuTx 308‡ 126 188 *mrna E Hox 73‡ 70 277 mrna P Alx1 146 37‡ 366 *pre P UbiqEts1 316‡ 126
11 gene E Endo16 308‡ 126 100 gene M tbr 309‡ 126 189 mrna E Kakapo 107‡ 67 278 mrna P Apobec 226 62‡ 367 *pre P UbiqHesC 316‡ 126
12 gene E Erg 309‡ 126 101 gene M Tel 309‡ 126 190 mrna E Lim 178‡ 77 279 *mrna P Blimp1 205 78‡ 368 pre P UbiqHnf6 316‡ 126
13 gene E es 309‡ 126 102 gene M Tgif 310‡ 126 191 mrna E Msp130 262‡ 126 280 *mrna P Bra 115‡ 77 369 pre P UbiqSoxC 316‡ 126
14 *gene E Ets1 308‡ 126 103 gene M vegfr 310‡ 126 192 mrna E MspL 227‡ 126 281 *mrna P Brn 273 68‡ 370 pre P UbiqTel 316‡ 126
15 *gene E Eve 310‡ 126 104 *gene M Wnt8 309‡ 126 193 mrna E Not 249 68‡ 282 mrna P capk 307‡ 126 371 protein E Alx1 237‡ 116
16 gene E Ficolin 310‡ 126 105 gene M z13 309‡ 126 194 *mrna E Notch 281 101‡ 283 *mrna P cB 152 5‡ 372 protein E Apobec 286 35‡

17 gene E FoxA 313‡ 126 106 gene P Alx1 311‡ 126 195 mrna E Nrl 195‡ 126 284 mrna P CyP 117‡ 77 373 *protein E Blimp1 127‡ 113
18 gene E FoxB 311‡ 126 107 gene P Apobec 308‡ 126 196 mrna E OrCt 224 62‡ 285 *mrna P Delta 58‡ 77 374 *protein E Bra 4‡ 126
19 gene E FoxN23 307‡ 126 108 *gene P Blimp1 313‡ 126 197 *mrna E Otx 35‡ 83 286 mrna P Dpt 276‡ 126 375 *protein E Brn 137 39‡

20 gene E FoxO 310‡ 126 109 *gene P Bra 310‡ 126 198 mrna E Pks 162‡ 68 287 *mrna P Dri 121‡ 80 376 protein E capk 298‡ 126
21 gene E FvMo 308‡ 126 110 *gene P Brn 307‡ 126 199 *mrna E Pmar1 59‡ 77 288 mrna P Endo16 97‡ 77 377 *protein E cB 6‡ 126
22 gene E GataC 310‡ 126 111 gene P capk 318 126 200 mrna E Sm27 263‡ 126 289 mrna P Erg 74‡ 71 378 protein E CyP 297‡ 126
23 *gene E GataE 309‡ 126 112 gene P CyP 309‡ 126 201 mrna E Sm30 211‡ 126 290 *mrna P Ets1 23‡ 81 379 *protein E Delta 131‡ 126
24 gene E Gcad 308‡ 126 113 *gene P Delta 310‡ 126 202 mrna E Sm50 238‡ 126 291 *mrna P Eve 132‡ 64 380 *protein E Delta2 282‡ 126
25 gene E Gcm 312‡ 126 114 gene P Dpt 307‡ 126 203 mrna E Snail 275‡ 126 292 mrna P Ficolin 98‡ 80 381 protein E Dpt 125 9‡

26 gene E Gelsolin 307‡ 126 115 *gene P Dri 308‡ 126 204 *mrna E SoxB1 31‡ 38 293 mrna P FoxA 176‡ 77 382 *protein E Dri 220‡ 126
27 *gene E HesC 308‡ 126 116 gene P Endo16 308‡ 126 205 mrna E SoxC 191‡ 126 294 mrna P FoxB 244 80‡ 383 protein E Endo16 64‡ 60
28 gene E Hex 309‡ 126 117 gene P Erg 309‡ 126 206 *mrna E SuH 280 100‡ 295 mrna P FoxN23 228‡ 126 384 protein E Erg 221‡ 112
29 gene E Hnf6 317‡ 126 118 *gene P Ets1 308‡ 126 207 mrna E SuTx 162‡ 68 296 mrna P FoxO 108‡ 80 385 protein E es 296‡ 126
30 *gene E Hox 311‡ 126 119 *gene P Eve 310‡ 126 208 mrna E tbr 266‡ 116 297 mrna P FvMo 271 68‡ 386 *protein E Ets1 163‡ 118
31 gene E Kakapo 307‡ 126 120 gene P Ficolin 310‡ 126 209 mrna E Tel 189‡ 126 298 mrna P GataC 202 18‡ 387 *protein E Eve 217 30‡

32 gene E Lim 308‡ 126 121 gene P FoxA 313‡ 126 210 mrna E Tgif 254‡ 115 299 *mrna P GataE 47‡ 78 388 protein E Ficolin 297‡ 126
33 gene E Msp130 313‡ 126 122 gene P FoxB 311‡ 126 211 *mrna E UbiqSoxB1 154 5‡ 300 mrna P Gcad 25 5‡ 389 protein E FoxA 174‡ 114
34 gene E MspL 311‡ 126 123 gene P FoxN23 307‡ 126 212 mrna E umr 281 102‡ 301 mrna P Gcm 161‡ 117 390 protein E FoxB 279‡ 126
35 gene E Not 307‡ 126 124 gene P FoxO 310‡ 126 213 *mrna E uvaotx 281 97‡ 302 mrna P Gelsolin 109‡ 67 391 protein E FoxN23 287‡ 126
36 gene E Nrl 312‡ 126 125 gene P FvMo 308‡ 126 214 mrna E vegf 283 96‡ 303 *mrna P HesC 155‡ 72 392 protein E FoxO 297‡ 126
37 gene E OrCt 308‡ 126 126 gene P GataC 310‡ 126 215 mrna E vegfr 248‡ 126 304 mrna P Hex 87‡ 76 393 protein E frizzled a 318 126
38 *gene E Otx 310‡ 126 127 *gene P GataE 309‡ 126 216 *mrna E Wnt8 43‡ 61 305 mrna P Hnf6 120‡ 77 394 protein E frizzled i 318 52‡

39 gene E Pks 308‡ 126 128 gene P Gcad 308‡ 126 217 mrna E z13 209‡ 126 306 *mrna P Hox 70‡ 77 395 protein E FvMo 177 25‡

40 *gene E Pmar1 309‡ 126 129 gene P Gcm 312‡ 126 218 mrna M Alx1 190‡ 126 307 mrna P Kakapo 109‡ 67 396 protein E GataC 265 31‡

41 gene E Sm27 313‡ 126 130 gene P Gelsolin 307‡ 126 219 mrna M Apobec 210 22‡ 308 mrna P L1 281 99‡ 397 *protein E GataE 46‡ 94
42 gene E Sm30 307‡ 126 131 *gene P HesC 308‡ 126 220 *mrna M Blimp1 198 77‡ 309 mrna P Lim 201 77‡ 398 protein E Gcad 68‡ 126
43 gene E Sm50 314‡ 126 132 gene P Hex 309‡ 126 221 *mrna M Bra 100‡ 77 310 mrna P Msp130 80‡ 80 399 protein E Gcm 10‡ 48
44 gene E Snail 307‡ 126 133 gene P Hnf6 307‡ 126 222 *mrna M Brn 251 68‡ 311 mrna P MspL 63‡ 80 400 protein E Gelsolin 75 15‡

45 *gene E SoxB1 308‡ 126 134 *gene P Hox 311‡ 126 223 mrna M capk 107‡ 67 312 mrna P Not 274 68‡ 401 *protein E Gro 300‡ 126
46 gene E SoxC 309‡ 126 135 gene P Kakapo 307‡ 126 224 *mrna M cB 152 5‡ 313 mrna P Nrl 105‡ 66 402 *protein E Grotcf 143 45‡

47 gene E SuTx 308‡ 126 136 gene P Lim 308‡ 126 225 mrna M CyP 270‡ 126 314 mrna P OrCt 226 62‡ 403 protein E Grotfc 313 118‡

48 gene E tbr 309‡ 126 137 gene P Msp130 313‡ 126 226 *mrna M Delta 50‡ 47 315 *mrna P Otx 37‡ 82 404 protein E gsk3 a 318 85‡

49 gene E Tel 309‡ 126 138 gene P MspL 311‡ 126 227 mrna M Dpt 85‡ 67 316 mrna P Pks 271 68‡ 405 protein E gsk3 i 318 126
50 gene E Tgif 310‡ 126 139 gene P Not 307‡ 126 228 *mrna M Dri 272‡ 126 317 *mrna P Pmar1 55‡ 75 406 *protein E HesC 134‡ 126
51 gene E vegfr 310‡ 126 140 gene P Nrl 312‡ 126 229 mrna M Endo16 91‡ 77 318 m rna P Sm27 67‡ 80 407 protein E Hex 170‡ 112
52 *gene E Wnt8 309‡ 126 141 gene P OrCt 308‡ 126 230 mrna M Erg 257‡ 126 319 mrna P Sm30 54‡ 44 408 protein E Hnf6 241‡ 126
53 gene E z13 309‡ 126 142 *gene P Otx 310‡ 126 231 *mrna M Ets1 168‡ 126 320 mrna P Sm50 60‡ 80 409 *protein E Hox 17‡ 104
54 gene M Alx1 311‡ 126 143 gene P Pks 308‡ 126 232 *mrna M Eve 126‡ 65 321 mrna P Snail 111‡ 69 410 protein E Kakapo 75 15‡

55 gene M Apobec 309‡ 126 144 *gene P Pmar1 309‡ 126 233 mrna M Ficolin 267‡ 126 322 *mrna P SoxB1 182‡ 126 411 protein E L1 303‡ 126
56 *gene M Blimp1 313‡ 126 145 gene P Sm27 313‡ 126 234 mrna M FoxA 180‡ 77 323 mrna P SoxC 231 77‡ 412 protein E Lim 199‡ 126
57 *gene M Bra 310‡ 126 146 gene P Sm30 307‡ 126 235 mrna M FoxB 268‡ 126 324 mrna P SuTx 271 68‡ 413 protein E Msp130 297‡ 126
58 *gene M Brn 307‡ 126 147 gene P Sm50 314‡ 126 236 mrna M FoxN23 230‡ 110 325 mrna P tbr 208 73‡ 414 protein E MspL 296‡ 126
59 gene M capk 307‡ 126 148 gene P Snail 307‡ 126 237 mrna M FoxO 267‡ 126 326 mrna P Tel 218 77‡ 415 *protein E nBtcf 83‡ 112
60 gene M CyP 309‡ 126 149 *gene P SoxB1 308‡ 126 238 mrna M FvMo 165‡ 68 327 mrna P Tgif 95‡ 74 416 protein E Not 253 25‡

61 *gene M Delta 310‡ 126 150 gene P SoxC 309‡ 126 239 mrna M GataC 216 68‡ 328 mrna P UbiqAlx1 150 6‡ 417 *protein E Notch 133‡ 59
62 gene M Dpt 308‡ 126 151 gene P SuTx 308‡ 126 240 *mrna M GataE 113‡ 75 329 mrna P Ubiqes 154 6‡ 418 *protein E Notch2 259 42‡

63 *gene M Dri 308‡ 126 152 gene P tbr 309‡ 126 241 mrna M Gcad 25 5‡ 330 *mrna P UbiqEts1 154 4‡ 419 protein E Nrl 242‡ 126
64 gene M Endo16 308‡ 126 153 gene P Tel 309‡ 126 242 mrna M Gcm 86‡ 57 331 *mrna P UbiqHesC 154 7‡ 420 protein E OrCt 286 35‡

65 gene M Erg 309‡ 126 154 gene P Tgif 310‡ 126 243 mrna M Gelsolin 102 20‡ 332 mrna P UbiqHnf6 154 5‡ 421 *protein E Otx 14‡ 98
66 *gene M Ets1 308‡ 126 155 gene P vegfr 310‡ 126 244 *mrna M HesC 173‡ 105 333 mrna P UbiqSoxC 152 5‡ 422 protein E Pks 177 25‡

67 *gene M Eve 310‡ 126 156 *gene P Wnt8 309‡ 126 245 mrna M Hex 250‡ 126 334 mrna P UbiqTel 152 5‡ 423 *protein E Pmar1 21‡ 126
68 gene M Ficolin 310‡ 126 157 gene P z13 309‡ 126 246 mrna M Hnf6 193‡ 126 335 mrna P vegfr 32‡ 79 424 protein E Sm27 297‡ 126
69 gene M FoxA 313‡ 126 158 mrna E Alx1 215‡ 119 247 *mrna M Hox 72‡ 77 336 *mrna P Wnt8 45‡ 61 425 protein E Sm30 295‡ 126
70 gene M FoxB 311‡ 126 159 mrna E Apobec 224 62‡ 248 mrna M Kakapo 102 20‡ 337 mrna P z13 203‡ 126 426 protein E Sm50 295‡ 126
71 gene M FoxN23 307‡ 126 160 *mrna E Blimp1 196 74‡ 249 mrna M Lim 181‡ 77 338 none 57‡ 126 427 protein E Snail 166‡ 126
72 gene M FoxO 310‡ 126 161 *mrna E Bra 92‡ 76 250 mrna M Msp130 262‡ 126 339 *pre E cB 316‡ 126 428 *protein E SoxB1 12‡ 126
73 gene M FvMo 308‡ 126 162 *mrna E Brn 245 95‡ 251 mrna M MspL 225‡ 126 340 pre E Gcad 315‡ 126 429 protein E SoxC 246‡ 126
74 gene M GataC 310‡ 126 163 mrna E capk 307‡ 126 252 mrna M Not 252 68‡ 341 *pre E Notch 316‡ 126 430 *protein E SuH 142‡ 89
75 *gene M GataE 309‡ 126 164 *mrna E cB 157 5‡ 253 *mrna M Notch 154 5‡ 342 *pre E Otx 315‡ 126 431 *protein E Suhn 103 10‡

76 gene M Gcad 308‡ 126 165 mrna E CyP 270‡ 126 254 mrna M Nrl 156 3‡ 343 *pre E SoxB1 315‡ 126 432 protein E SuTx 177 25‡

77 gene M Gcm 312‡ 126 166 *mrna E Delta 164‡ 117 255 mrna M OrCt 210 22‡ 344 *pre E SuH 316‡ 126 433 protein E tbr 206‡ 119
78 gene M Gelsolin 308‡ 126 167 mrna E Dpt 77‡ 40 256 *mrna M Otx 34‡ 80 345 *pre E UbiqSoxB1 316‡ 126 434 *protein E tcf 139 53‡

79 *gene M HesC 308‡ 126 168 *mrna E Dri 266‡ 126 257 mrna M Pks 153 21‡ 346 pre E umr 316‡ 126 435 protein E Tel 235‡ 126
80 gene M Hex 309‡ 126 169 mrna E Endo16 90‡ 58 258 *mrna M Pmar1 56‡ 77 347 *pre E uvaotx 316‡ 126 436 protein E Tgif 204‡ 111
81 gene M Hnf6 317‡ 126 170 mrna E Erg 261‡ 109 259 mrna M Sm27 260‡ 126 348 pre E vegf 316‡ 126 437 protein E UbiqAlx1 309 110‡

82 *gene M Hox 311‡ 126 171 mrna E es 185‡ 126 260 mrna M Sm30 211‡ 126 349 *pre M cB 316‡ 126 438 *protein E UbiqDelta 310 114‡

83 gene M Kakapo 308‡ 126 172 *mrna E Ets1 171‡ 116 261 mrna M Sm50 232‡ 126 350 pre M Gcad 315‡ 126 439 protein E Ubiqes 309‡ 126
84 gene M Lim 308‡ 126 173 *mrna E Eve 147‡ 63 262 mrna M Snail 275‡ 126 351 *pre M Notch 316‡ 126 440 *protein E UbiqEts1 308 108‡

85 gene M Msp130 313‡ 126 174 mrna E Ficolin 267‡ 126 263 *mrna M SoxB1 31‡ 38 352 *pre M Otx 315‡ 126 441 protein E UbiqGcad 308 106‡

86 gene M MspL 311‡ 126 175 mrna E FoxA 175‡ 78 264 mrna M SoxC 191‡ 126 353 *pre M SoxB1 315‡ 126 442 *protein E UbiqHesC 308‡ 126
87 gene M Not 307‡ 126 176 mrna E FoxB 268‡ 126 265 *mrna M SuH 281 102‡ 354 *pre M SuH 316‡ 126 443 protein E UbiqHnf6 317‡ 126
88 gene M Nrl 313‡ 126 177 mrna E FoxN23 234‡ 126 266 mrna M SuTx 165‡ 68 355 *pre M UbiqSoxB1 316‡ 126 444 *protein E UbiqSoxB1 27‡ 126
89 gene M OrCt 309‡ 126 178 mrna E FoxO 267‡ 126 267 mrna M tbr 269‡ 110 356 *pre M umadelta 316‡ 126 445 protein E UbiqSoxC 309‡ 126

Table 1: Node names and associated identification numbers (IDs) (assigned in alphabetical order) for the
endomesoderm network. Table is read from top to bottom and from left to right. ΨP and ΨL are the ranks of
PANI and LSA, respectively. The different embryonic region are represented by M, E and P which indicates
mesoderm, endoderm and PMC cells, respectively. Nodes associated to molecules found in Figure 1a are
marked with *. The higher normalized ranks of each node i is marked with ‡, where the normalized PANI

and LSA ranks are
ΨPi

MAX(ΨP )
and

ΨLi

MAX(ΨL)
, respectively; ΨPi

is the PANI rank of node i and MAX(ΨP ) is the

maximum PANI rank of all nodes in Tables 1 and 2. This table contains IDs [1 – 445] and the rest of the
IDs continue in Table 2.



ID Node Name ΨP ΨL ID Node Name ΨP ΨL ID Node Name ΨP ΨL ID Node Name ΨP ΨL

446 protein E UbiqTel 309‡ 126 491 *protein M HesC 159‡ 114 536 protein M vegfr 140‡ 126 581 protein P Msp130 101‡ 126
447 *protein E umadelta 310 114‡ 492 protein M Hex 172‡ 117 537 protein M vegfSignal 124‡ 114 582 protein P MspL 89‡ 126
448 protein E umanrl 312‡ 126 493 protein M Hnf6 243‡ 126 538 *protein M Wnt8 2‡ 21 583 *protein P nBtcf 76‡ 113
449 protein E umr 304 90‡ 494 *protein M Hox 22‡ 110 539 protein M z13 293‡ 126 584 protein P Not 277 26‡

450 *protein E uvaotx 291 93‡ 495 protein M Kakapo 71 17‡ 540 protein P Alx1 122‡ 108 585 *protein P Notch 151‡ 126
451 protein E vegf 82‡ 86 496 protein M L1 303‡ 126 541 protein P Apobec 288 34‡ 586 *protein P Notch2 119‡ 126
452 protein E vegfr 141‡ 126 497 protein M Lim 200‡ 126 542 *protein P Blimp1 136‡ 126 587 protein P Nrl 179 8‡

453 protein E vegfSignal 124‡ 114 498 protein M Msp130 297‡ 126 543 *protein P Bra 24‡ 126 588 protein P OrCt 288 34‡

454 *protein E Wnt8 1‡ 19 499 protein M MspL 295‡ 126 544 *protein P Brn 184 26‡ 589 *protein P Otx 16‡ 123
455 protein E z13 294‡ 126 500 *protein M nBtcf 78‡ 126 545 protein P capk 298‡ 126 590 protein P Pks 277 26‡

456 protein gcm 310‡ 126 501 protein M Not 255 27‡ 546 *protein P cB 7‡ 126 591 *protein P Pmar1 41‡ 110
457 protein M Alx1 236‡ 126 502 *protein M Notch 49‡ 125 547 protein P CyP 106‡ 126 592 protein P Sm27 104‡ 126
458 protein M Apobec 285 36‡ 503 *protein M Notch2 197 43‡ 548 *protein P Delta 48‡ 126 593 protein P Sm30 66 2‡

459 *protein M Blimp1 123‡ 126 504 protein M Nrl 188 41‡ 549 *protein P Delta2 79‡ 50 594 protein P Sm50 96‡ 126
460 *protein M Bra 38‡ 126 505 protein M OrCt 285 36‡ 550 protein P Dpt 297‡ 126 595 protein P Snail 9‡ 11
461 *protein M Brn 145 27‡ 506 *protein M Otx 13‡ 122 551 *protein P Dri 36‡ 110 596 *protein P SoxB1 160‡ 126
462 protein M capk 75 15‡ 507 protein M Pks 129 23‡ 552 protein P Endo16 84‡ 126 597 protein P SoxC 186‡ 126
463 *protein M cB 5‡ 126 508 *protein M Pmar1 20‡ 126 553 protein P Erg 33‡ 114 598 *protein P SuH 299‡ 126
464 protein M CyP 297‡ 126 509 protein M Sm27 297‡ 126 554 *protein P Ets1 18‡ 120 599 *protein P Suhn 128‡ 109
465 *protein M Delta 39 12‡ 510 protein M Sm30 295‡ 126 555 *protein P Eve 222 32‡ 600 protein P SuTx 277 26‡

466 *protein M Delta2 229 1‡ 511 protein M Sm50 295‡ 126 556 protein P Ficolin 88‡ 126 601 protein P tbr 99‡ 126
467 protein M Dpt 112 16‡ 512 protein M Snail 166‡ 126 557 protein P FoxA 183‡ 126 602 *protein P tcf 138‡ 55
468 *protein M Dri 239‡ 126 513 *protein M SoxB1 11‡ 126 558 protein P FoxB 219‡ 126 603 protein P Tel 149‡ 126
469 protein M Endo16 65‡ 126 514 protein M SoxC 246‡ 126 559 protein P FoxN23 289‡ 126 604 protein P Tgif 26‡ 107
470 protein M Erg 223‡ 117 515 *protein M SuH 130‡ 88 560 protein P FoxO 94‡ 126 605 protein P UbiqAlx1 62‡ 125
471 *protein M Ets1 169‡ 112 516 *protein M Suhn 93‡ 56 561 protein P frizzled a 318 126 606 *protein P UbiqDelta 310‡ 126
472 *protein M Eve 213 28‡ 517 protein M SuTx 194 33‡ 562 protein P frizzled i 318 52‡ 607 protein P Ubiqes 81‡ 126
473 protein M Ficolin 297‡ 126 518 protein M tbr 212‡ 115 563 protein P FvMo 277 26‡ 608 *protein P UbiqEts1 28‡ 124
474 protein M FoxA 192‡ 126 519 *protein M tcf 135‡ 54 564 protein P GataC 256 24‡ 609 protein P UbiqGcad 308 113‡

475 protein M FoxB 278‡ 126 520 protein M Tel 233‡ 126 565 *protein P GataE 44‡ 126 610 *protein P UbiqHesC 30‡ 121
476 protein M FoxN23 290‡ 115 521 protein M Tgif 240‡ 107 566 protein P Gcad 68‡ 126 611 protein P UbiqHnf6 8‡ 126
477 protein M FoxO 297‡ 126 522 protein M UbiqAlx1 311‡ 126 567 protein P Gcm 110‡ 114 612 *protein P UbiqSoxB1 308‡ 126
478 protein M frizzled a 318 126 523 *protein M UbiqDelta 310‡ 126 568 protein P Gelsolin 69 14‡ 613 protein P UbiqSoxC 52‡ 126
479 protein M frizzled i 318 52‡ 524 protein M Ubiqes 318 126 569 *protein P Gro 302‡ 126 614 protein P UbiqTel 52‡ 126
480 protein M FvMo 194 33‡ 525 *protein M UbiqEts1 308‡ 126 570 *protein P Grotcf 148 46‡ 615 *protein P umadelta 310‡ 126
481 protein M GataC 264 29‡ 526 protein M UbiqGcad 308 106‡ 571 protein P Grotfc 313‡ 126 616 protein P umanrl 312‡ 126
482 *protein M GataE 51‡ 111 527 *protein M UbiqHesC 308 117‡ 572 protein P gsk3 a 318 85‡ 617 *protein P uvaotx 310 119‡

483 protein M Gcad 68‡ 126 528 protein M UbiqHnf6 317‡ 126 573 protein P gsk3 i 318 126 618 protein P vegfr 116‡ 119
484 protein M Gcm 29‡ 49 529 *protein M UbiqSoxB1 27‡ 126 574 *protein P HesC 118‡ 114 619 protein P vegfSignal 53 13‡

485 protein M Gelsolin 71 17‡ 530 protein M UbiqSoxC 309‡ 126 575 protein P Hex 15‡ 116 620 *protein P Wnt8 3‡ 21
486 *protein M Gro 301‡ 126 531 protein M UbiqTel 309‡ 126 576 protein P Hnf6 40‡ 126 621 protein P z13 293‡ 126
487 *protein M Grotcf 144 46‡ 532 *protein M umadelta 284 91‡ 577 *protein P Hox 19‡ 126 622 ribosome 318 126
488 protein M Grotfc 313‡ 126 533 protein M umanrl 292 92‡ 578 protein P Kakapo 69 14‡

489 protein M gsk3 a 318 85‡ 534 protein M umr 304 90‡ 579 protein P L1 158‡ 87
490 protein M gsk3 i 318 126 535 *protein M uvaotx 310‡ 126 580 protein P Lim 207‡ 126

Table 2: Continuation of node names and associated IDs for the endomesoderm network from Table 1. Table
is read from top to bottom and from left to right. Explanations of symbols follow that in Table 1.

We perform roc analysis to examine the enrichment of
the benchmark Endo16 regulators in the top k nodes prior-
itized by Pani, pssd, tde and bc (properties used to com-
pute the putative target scores). We vary k in the range
[0 – |V |], where |V | is the size of the endomesoderm net-
work. The area under the roc curve (auc) (Figure 2) is
0.625, 0.56, 0.572 and 0.637 for Pani, pssd, tde and bc,
respectively. In the case of the endomesoderm network, the
performance of Pani is mainly attributed to bc. This is
probably because unlike pssd, bc is less sensitive to exper-
imental error and parameter estimation. Also, the unique
topological characteristics of the network as discussed earlier
contribute to the important role bc plays in this network.
In summary, the good performances of Pani and bc indi-
cate that network topology features are useful complement
to traditional simulation-based model analysis, especially for
networks where the dynamics are still fuzzy. Note that Pani

achieves slight improvement over bc in terms of the mini-
mum number of top scoring nodes required to identify the
benchmark regulators (MinNode) (Pani=599, bc=603) and
the enrichment of benchmark regulatory nodes in the top-61
ranked nodes (Pani=74%, bc=65.6%).

4.2 Comparison with Random Prioritization
and Local Sensitivity Analysis (LSA)

For random prioritization, the set of nodes related to the
benchmark Endo16 regulators are randomly prioritized 100
times. For simplicity, we assume that the random priori-
tization assigns a unique rank from the range [1 – 622] to
each benchmark node. We compare the minimum number
of top scoring nodes required to identify all the benchmark

regulators (MinNode). The MinNode of Pani is 599 while
that of the random trials varies in the range [612 – 622].
Hence, Pani can identify the benchmark Endo16 regulators
using much fewer top scoring nodes compared to random
prioritization. Next, we perform a paired t-test of ranked
nodes generated by Pani and random prioritization. The
rankings are normalized to the range [0 – 1] before carrying
out the paired t-test to account for the presence of ties in
Pani’s rankings and the lack of ties in the random rank-
ings. The p-value of the two-tailed paired t-test varies in
the range [1.54×10−5 – 0.1], suggesting that the rankings
of Pani and the random trials are different. Furthermore,
Pani ranks benchmark regulators higher than random trials
at 5% significance level in one-tailed paired t-test and the
roc auc varies in the range [0.44 – 0.54].

We use Copasi to perform the lsa and set the parameters
as follows: {Subtask=Time Series, Function=Non-Constant
Concentrations of Species, Variable=Initial Concentrations}.
The analysis took ∼19 minutes and the rankings are repre-
sented in Tables 1 and 2. The Spearman’s correlation coef-
ficient between Pani’s and lsa’s ranks is 0.472, implying a
moderate correlation between the rankings. The MinNode
values of Pani and lsa are 599 and 622, respectively, imply-
ing that Pani requires fewer top ranking nodes to identify
all the benchmark regulators. The one-tailed paired t-test
performed on the normalized rankings of Pani and lsa re-
veals that Pani ranks benchmark regulators higher than lsa

at 5% significance level. In fact, Pani ranks 80.1% of the
benchmark regulators higher than lsa. For instance, com-
pared to Pani, lsa ranks all nodes associated to Wnt8 and
Bra lower although both are Endo16 regulators. Further-
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Figure 4: Effect of property-weights on relative
ranking result of nodes.

more, the roc auc of lsa is 0.549 (Figure 2) and in the
lsa’s top-61 nodes, only 20 (32.8%) are in the set of bench-
mark nodes. Hence, Pani produces superior prioritization
results compared to random prioritization and lsa.

5. ROBUSTNESS OF PRIORITIZATION
In this section, we study the robustness of the target pri-

oritization step (Step 1 in Section 4) by examining the effect
of various parameters. The parameters that we examine are
the concentration-time profile length (|ζ|), the weights of
the three properties (ωpssd, ωtde and ωbc), and the node of
interest (output node). Recall that the concentration-time
profile is used to compute pssd while the weights are used
for the calculation of the putative target score. The out-
put node is used as a reference for the reachability-based
pruning of non-regulators and the computation of pssd. We
vary each of these parameters and examine their effects on
the prioritization ranking as well as the execution time of
Step 1. Note that examining the effects of the parameters
on ranking allows us to study the sensitivity of the prior-
itization results to these parameters, giving us a sense of
the robustness of Pani-based targets prioritization in the
endomesoderm network.

5.1 Effects of Profile Length (|ζ|)
In this experiment, we examine the effect of varying the

number of time points in the concentration-time profile ζ
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Figure 6: Effect of varying output node on endome-
soderm ranking results. Node names of the corre-
sponding node ID can be found in Tables 1 and 2.

(|ζ|) on the ranking. The profiles are obtained using Copasi
where |ζ| varies in the range of {10, 25, 50, 75, 100, 250,
300, 500, 750, 1000}. We observe that the execution times
of Pani increase with increasing value of |ζ| (Figure 3) as
the latter affects the time for calculating pssd.

Next, we investigate the effect of |ζ| on the ranking re-
sults. This gives us a sense of the minimum |ζ| required
to produce superior quality ranking and allows us to assess
the practical execution time more accurately. We compare
the changes in the ranking results using Spearman’s rank-
ing correlation coefficient as depicted in Figure 3. We ob-
serve that |ζ| = 10 has a lower coefficient with respect to
the rankings obtained for other values of |ζ|. Although the
coefficient at |ζ| = 10 is lower, it is still relatively high at
∼98%, suggesting that the concentration-time profiles in the
endomesoderm network may have few profile changes and a
small |ζ| is sufficient to capture the variations in the pro-
files. In fact, three of the benchmark regulators {protein e

Pmar1, protein m Hox, protein m Pmar1} are assigned the
same ranks and the standard deviation of the ranks of the
benchmark regulators vary in the range [0 – 8] across the
entire range of |ζ|. At |ζ| > 25, the correlation coefficient
approaches a constant value of ∼ 100% when compared with
other values of |ζ| > 25. Hence, a small value of |ζ| is suffi-
cient and the execution time of Step 1 for |ζ| < 100 is less
than 100 seconds.



Figure 7: Clustergram analysis of Spearman’s cor-
relation coefficient of endomesoderm ranking result
when output node is varied.

5.2 Effects of Weights (ωP SSD, ωT DE and ω 1

BC

)
We now investigate the effects of different scalar weight

factors on the ranking result by examining how the percent-
age of common putative target nodes varies as the weights
are modified. We vary each weight in the range of
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} while ensuring that
ωpssd + ωtde + ω 1

bc
= 1. This produces 36 different weight-

ratios. For each weight-ratio, the putative target score of
each node is calculated. Then, the Spearman’s correlation
coefficient of the rankings of each pair of weight-ratios is
evaluated. We find that many of the weight-ratios contain
common putative target nodes. The correlation coefficient
ranges between ∼ 0.8 to 1 (Figure 4) and 76.9% of the
top-50% putative target nodes in all the ratios are com-
mon. Next, we look at the minimum number of top scoring
nodes required to identify the benchmark Endo16 regulators
(MinNode) in these weight-ratios. We find that the MinNode
needed to identify at least 75% of the benchmark regulators
for this 622-node network is 497. The standard deviation of
the ranks of the benchmark regulators vary in the range [0.58
– 84.7] across the entire range of weight-ratios and 63.3%
of the regulators has deviation of less than 20. In partic-
ular, protein m SoxB1, protein e SoxB1, protein e cB,
protein m cB, protein p cB, protein e Hox and protein

p Hox are consistently ranked in the 90th percentile. These
results imply that although the rankings of the targets vary,
most of the targets are still ranked high enough to be con-
sidered as a putative target node in most weight-ratios,
and many of these putative target nodes correspond to the
benchmark regulators.

5.3 Effects of Selecting Different Output Node
In this experiment, we examine the effect of selecting a

different output node on the execution time and the priori-
tization results. When we vary the output node, the num-
ber of pruned targets |T | obtained from the pruning phase

(Section 3.1) falls into two distinct clusters (Figure 5), one
containing less than 20 nodes (cluster 1) and another con-
taining more than 600 nodes (cluster 2). This distribution
of |T | is likely due to the network structure such as the pres-
ence of sccs (Section 2.1). Recall that the endomesoderm
network contains a large scc with 360 nodes. Since nodes
in the same scc have the same set of pruned targets and
hence the same |T |, it is likely that selecting an output node
belonging to this scc contributes to many of the points in
cluster 2. Observe that the execution time varies linearly
with |T |. When we vary the output node, the prioritization
results change. We perform Spearman’s rank correlation co-
efficient and clustergram analysis to investigate the effect of
selecting different output node on the prioritization results.
For the purpose of computing the Spearman’s ranked cor-
relation coefficient, candidate nodes that are pruned (V \T )
are assigned the lowest rank value to reflect their low rele-
vance as putative target node.

Although the endomesoderm network (Figure 6) appears
to have a close Spearman’s correlation coefficient across the
entire range of output nodes, some of these output nodes
seem to share more similar rank correlation coefficient than
others. The endomesoderm network’s correlation coefficient
appears to fall into two different clusters. The clustergram
analysis (Figure 7) reveals two main clusters. The first main
cluster (Figure 7, magenta box) contains the set of root
nodes, singleton nodes and intermediate nodes which are
not in any scc; the second main cluster contains nodes in
the 8 two-node sccs and the 360-node scc. For the two-node
sccs, nodes in the same scc were clustered together. For
the larger-sized scc, nodes of the same types tend to form
sub-clusters. For instance, nodes associated to Blimp1 and
FoxA cluster together to form a sub-cluster {mrna E Blimp1,
mrna E FoxA, mrna M Blimp1, mrna M FoxA, mrna P Blimp1,
mrna P FoxA, mrna P GataC} (Figure 7, blue box). Hence,
for the endomesoderm network, selection of output nodes
in the same scc produces closer rank correlation coefficient
and hence more similar prioritization results. This is most
likely due to output nodes in the same scc sharing similar
pssd as time series profiles of genes in the same module are
highly correlated in gene regulatory network [35].

6. CONCLUSIONS
In this paper, we apply prioritization tools (lsa and Pani)

to the sea urchin endomesoderm gene regulatory network to
identify putative target nodes involved in the regulation of
Endo16. Prioritization tools assist researchers in identifying
a set of nodes that should be prioritized for the study of a
particular problem, thus saving precious time and resources.
Target prioritization is particularly useful for large networks
where visualization is challenging and manually analyzing
the network is virtually impossible. We obtain a prioritized
list of nodes that corresponds well with the set of bench-
mark Endo16 regulators using Pani in around 250 seconds.
We find that the characteristics of the endomesoderm net-
work affect Pani’s performance. Specifically, the presence
of a large scc and constant concentration profiles of many
nodes significantly reduced the roles played by tde and pssd

features for identifying target molecules. This highlights
an intricate relationship between the network characteris-
tics and its influence on the role of structural and dynamic
properties of nodes in in silico targets prioritization, which
should be considered in future applications.



Besides identifying the benchmark Endo16 regulators, Pani

also prioritizes several nodes (e.g., Snail) that play a regu-
latory role for Endo16 but are not in the set of benchmark
nodes. Hence, we can exploit the capability of in silico tar-
get prioritization techniques (e.g., Pani) to identify these
interesting nodes to gain further biological insights, such as
improving on the Endo16 regulatory pathway which is far
from complete. For instance, we can design experiments to
uncover the relationships between nodes that Pani priori-
tizes and the Endo16 benchmark regulators to help us fill
the gaps in the pathway, thereby improving its accuracy.
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