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ABSTRACT
Keyword search for smallest lowest common ancestors (SLCAs) in
XML data has been widely accepted as a meaningful way to iden-
tify matching nodes where their subtrees contain an input set of
keywords. Although SLCA and its variants (e.g.,MLCA) perform
admirably in identifying matching nodes, surprisingly, they per-
form poorly for searches on irregular schemas that have missing
elements, that is, (sub)elements that are optional, or appear in some
instances of an element type but not all (e.g., a <population>
subelement in a <city> element might be optional, appearing
when the population is known and absent when the population is
unknown). In this paper, we generalize the SLCA search paradigm
to support queries involving missing elements. Specifically, we
propose a novel property called optionality resilience that specifies
the desired behaviors of an XML keyword search (XKS) approach
for queries involving missing elements. We present two variants
of a novel algorithm called MESSIAH (Missing Element-conSciouS
hIgh-quality SLCA searcH), which are optionality resilient to irreg-
ular documents. MESSIAH logically transforms an XML document
to a minimal full document where all missing elements are repre-
sented as empty elements, i.e., the irregular schema is made “reg-
ular”, and then employs efficient strategies to identify partial and
complete full SLCA nodes (SLCA nodes in the full document) from
it. Specifically, it generates the same SLCA nodes as any state-of-
the-art approach when the query does not involve missing elements
but avoids irrelevant results when missing elements are involved.
Our experimental study demonstrates the ability of MESSIAH to
produce superior quality search results.
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Figure 1: Missing label ratio on different datasets.

1. INTRODUCTION
Keyword search on XML data (XKS) has gained popularity as it

relieves users from learning complex XML query languages (e.g.,
XPath, XQuery) and from having to know the structure of under-
lying data. However, the lack of expressivity and inherent ambigu-
ity bring in two key challenges in performing XKS [9]. First, we
need to automatically connect the nodes that match the search key-
words in an intuitive, meaningful way. Second, we should effec-
tively identify the desired return information. Specifically, the first
challenge involves finding some nodes (e.g., SLCA nodes) whose
subtrees contain all matching nodes [2,8,17] while the second chal-
lenge focuses on filtering nodes within these subtrees to produce
relevant and coherent results [1, 4, 7, 9, 10]. In this paper, we focus
on the first challenge.

The smallest lowest common ancestor (SLCA) [17] is arguably
the most popular technique for locating highly-related data nodes
and has become the foundation for many recent XKS approaches [1,
4, 7, 9, 10]. A keyword search using the SLCA semantics returns
nodes in the XML tree that satisfy the following two conditions: (a)
the subtrees rooted at the nodes contain all the keywords, and (b)
the nodes do not have any proper descendant that satisfies condition
(a). The set of returned data nodes is referred to as the SLCAs of
the keyword search query. For example, the only SLCA node sat-
isfying the query Q1(Provo area) on the XML document D2

in Figure 2(a) is the node with ID 0.4.3 (for brevity, in the sequel
we will use nid to denote a node with ID id). Figure 3(a)(i) shows
the SLCA node n0.4.3 (shaded) along with its matches to all Q1’s
keywords.

1.1 A Problem with SLCA
Nested, tagged elements are the building blocks of XML. Each

tagged element has a sequence of zero or more attribute/value pairs,
and a sequence of zero or more subelements. An implication of this
“relaxed” structure of XML data is that a subelement may appear in
one nested substructure of an XML document but not in another
“similar” substructure. For example, consider the XML document
D1 in Figure 2(a). Notice that although the area element ap-
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Figure 2: Sample XML documents D1 and D2 (D2 contains all the nodes of D1 and an additional area element (rightmost node))
and their DataGuide.

pears in the first city substructure, it is missing in the last two
substructures.

There can be many reasons for such missing elements. For in-
stance, a specific entity may not have an element (as an attribute)
as it is meaningless in this context (e.g., the spouse attribute of a
person entity who is single is meaningless). Elements may also
be missing due to incompleteness of data or human error. Whatever
may be the semantics of a missing (or optional) element in a spe-
cific context, we refer to this scenario collectively as the missing
element1 phenomenon and the label of the missing element (e.g.,
area) a missing label. Note that “missing element” covers the
“missing attribute” scenario as well. Furthermore, the missing ele-
ment could contain subelements that are also missing, i.e., it could
be a missing subtree in a data model instance. Note that in XML
documents it is not mandatory to explicitly mark such missing data
using empty elements (i.e., <tag></tag> or <tag/>) or empty
attributes (i.e., tag="")).

Is the missing element phenomenon prevalent in real XML docu-
ments? Interestingly, our initial investigation with several popular
real-world XML datasets reveal that it is indeed so. Figure 1 shows
a glimpse of this phenomenon. The third column shows the miss-
ing label ratio, which is the ratio between the number of missing
labels and the number of unique labels in a specific dataset. No-
tice that in all but one of the datasets more than 40% of the labels
are missing labels. Hence, it is highly possible for users’ queries
to involve missing elements. However, it is unrealistic to expect
the users to be aware of elements which may be missing. Hence,
it is imperative for the underlying XKS engine to handle this phe-
nomenon appropriately.

Surprisingly, SLCA-based XML keyword search (XKS) techniques
perform poorly in the presence of the missing element phenomenon.
Specifically, the quality of SLCA nodes is adversely affected when
a keyword query contains a missing label. For instance, for Q1

on D1, n0.4 is selected as the SLCA node by [14, 17] as shown in
Figure 3(a)(ii). However, n0.4.1 is not a relevant match as it is not
Provo’s area and does not conform to the user’s search intention
in Q1. That is, selecting n0.4 as an SLCA node would produce a
result subtree containing irrelevant data.

At first glance, an advocate of classical SLCA computation tech-
niques may argue that the selection of n0.4 as an SLCA node may
be considered relevant and meaningful if we accept that it gives
an “approximation” of the desired result. However, we argue that
such approximation is often irrelevant to the search intention. To
illustrate this point further, let us consider the query QM(York

1We adopt the “missing element” term from [13] where it refers to elements that are
declared optional in the DTD.

latitude) on the Mondial dataset. One of the cities containing
the keyword York but without latitude information is York city
in the UK. For this result, SLCA-based approaches [14, 17] will re-
turn the country node of the UK which contains all cities in the
UK. Observe that this result has two core drawbacks. First, it is too
broad. There are nearly 100 cities of the UK in the dataset and it
is unrealistic to expect users to explore all of them to find desired
results. Second, it does not provide a precise or direct answer to the
query and user’s search intention. Since QM is specifically about
York’s latitude information, retrieving “approximate” results con-
taining many irrelevant data without answering the question di-
rectly may annoy users. Note that the core reason for such poor
performance is that most XKS techniques consider matches “close”
to each other as relevant but when the most relevant matches (e.g.,
n0.4.3.2 or York’s latitude) are missing, even the closest one may
be irrelevant.

It may also seem that approaches built on top of SLCA nodes
that effectively identify the desired return information (e.g., [1, 4,
7, 9, 10]) can address the above limitation. Although these efforts
certainly improve the result quality, when querying in the presence
of missing elements, they make the same assumptions as SLCA-
based techniques and cannot improve the poor input from [14, 17]
significantly. In fact, for Q1 on D1, these techniques produce the
same result as [14, 17].

1.2 Challenges
A straightforward approach to address the aforementioned lim-

itation is to first modify the XML document by adding empty ele-
ments (<tag/>) to represent missing elements and then adopt an
existing technique (e.g., [17]) to find SLCA nodes. We refer to such
a modified XML document as a full document. The intuition being
that if there is no missing element in the full document, the afore-
mentioned problem does not occur. For example, document D3 in
Figure 3(b) is a full document of D1 in which all missing elements
are represented by empty elements (depicted by a dotted box). For
instance, the area node for Provo, which is missing in D1, is
now shown in D3 using an empty area element. Clearly, an ex-
isting SLCA-based XKS can now find high quality SLCA nodes in
the full document. For instance, Figure 3(a)(iii) shows the SLCA
node n0.4.3 (and all of its matches) for Q1 on D3. Notice that the
irrelevant area node n0.4.1 is no longer considered a match. The
node n0.4.3.2 is depicted in a dotted box to indicate that it is not
originally in D1.

Unfortunately, the aforementioned naïve solution to identify high
quality SLCA nodes demands modification of the XML document
which is usually undesirable in real-world applications. Firstly, an
XML document may be accessed by multiple, heterogeneous appli-
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Figure 3: Results of a keyword query and an example of full document.

cations such that altering it may have undesirable effect on some of
these applications. Secondly, creating a copy of the existing docu-
ment and adding empty elements to it will necessitate strict consis-
tency checks, which is usually expensive to maintain especially for
frequently updated documents. Thirdly, a full document version
is not as space efficient as the original document, potentially af-
fecting XML query performance. Fourthly, as mentioned earlier, an
element may be missing in a document for various reasons. For in-
stance, it may be meaningless for certain entities. Hence, explicitly
adding it into these entities compromises data semantics. Lastly,
often write permission of an XML document on the Web may not
be available due to technical or legal reasons, making the aforemen-
tioned approach impractical. Furthermore, a direct consequence of
such modification is the necessity of automatically pruning SLCA
nodes in the full document which are empty elements. Otherwise,
it may confuse end-users as they will not be able to locate some
SLCA nodes when they browse the original XML document.

1.3 Contributions
Given a query Q on document D, how can we identify high-

quality SLCA nodes in D that are also SLCAs in the full document
version of D without physically creating the latter? In this paper,
we address this core challenge. To the best of our knowledge, this is
the first work that systematically addresses the SLCA computation
problem germinated from the missing element phenomenon in XML
data. More specifically, we make the following contributions.

• In Section 3, we propose a novel property called optional-
ity resilience that specifies the desired behaviors of an XKS
approach for queries with missing elements. We analyze the
optionality resilience of existing XKS approaches to system-
atically identify their limitations in handling the missing ele-
ment phenomenon.

• In Section 4, we introduce the notion of full SLCA (FSLCA)
that satisfies the optionality resilience property. Full SLCAs
are SLCAs in the original document as well as in the full doc-
ument version of it. Specifically, the set of FSLCA nodes
is identical to SLCA nodes when the query does not contain
missing elements but avoids irrelevant results when missing
elements are involved. Hence, identifying FSLCA nodes in
a document enables us to produce high-quality SLCA nodes
even when the query involves missing elements.

We introduce two variants of FSLCA nodes, namely partial
and complete FSLCA, to give users flexibility in viewing re-
sults containing missing elements. Complete FSLCA does
not return result nodes containing missing elements (n0.4.3

in D1 for Q1). Alternatively, partial FSLCA returns result
nodes with missing elements (e.g., Figure 3(a)(iii)). In this
representation the user is explicitly informed that the desired
data is missing.

• In Section 5, we propose two variants of a novel algorithm
called MESSIAH (Missing Element-conSciouS hIgh-quality
SLCA searcH), that efficiently identifies sets of complete and
partial FSLCA nodes for a given keyword query (possibly
containing missing labels) on document D. An important
feature of MESSIAH is that it does not physically add miss-
ing elements to D. Particularly, a full document is logically
created with the sole goal of facilitating the generation of
superior quality FSLCA nodes. Furthermore, MESSIAH can
be integrated seamlessly with state-of-the-art techniques for
retrieving relevant information (Step 2 of XKS) [1, 7, 9–11],
potentially inheriting the strengths of these approaches.
• In Section 6, extensive experiments with real datasets are

conducted to validate our solution’s effectiveness, superior-
ity, efficiency, and scalability. Specifically, we show that the
quality of results generated by MESSIAH is identical to state-
of-the-art SLCA computation techniques when the query does
not contain missing labels. However, when the query con-
tains missing labels then MESSIAH consistently generates su-
perior quality results compared to these state-of-the-art tech-
niques. Importantly, such superior result quality is achieved
without any significant performance overhead of the proposed
algorithms.

2. PRELIMINARIES
We model an XML document D as an ordered and node-labeled

tree. Each node n ∈ D is assigned two functions L(n) and F(n)
returning n’s label (i.e., tag) and text value, respectively. A node n
is called an empty node (element) when F(n) returns empty string.
We use notation n1 ≺ n2 to denote n2 is a descendant of n1. Each
node n ∈ D is assigned an identifier (ID), denoted as id(n), satis-
fying the following condition: ∀n1, n2 ∈ D, id(n1) < id(n2) iff
n1 precedes n2 in document order. Note that the preorder attribute
in containment encoding scheme [18] or Dewey number in Dewey
encoding scheme [15] can be used as identifiers of nodes. Con-
sistent with several existing XKS techniques, we also use Dewey
numbers as node identifiers which enable fast LCA computation.
The IDs of nodes in Figures 2(a) and 3(b) are their Dewey numbers
in the corresponding documents.

Similar to [1, 7], we use prefix paths to indicate the type of
a node. Two nodes are considered of the same type when they
share the same prefix path. Using path as type enables us to use
DataGuide [3] as type structure. A DataGuide S is a prefix tree
representing all unique paths in D i.e., each unique path p in D
is represented in S by a node (referred to as schema node) whose
root-to-node path is p. Hence, each schema node in S also corre-
sponds to a type and the hierarchical relationship among schema
nodes represents type relations. Specifically, a type t2 is called
a child (descendant) type of another type t1 if t2’s corresponding
schema node is a child (descendant) of t1’s schema node in S. We



shall use t1 ≺S t2 to denote t2 is a descendant type of t1. Notice
the subscript S is added to indicate type relation on S. For instance,
Figure 2(b) depicts the DataGuide of document D1 in which tstate
≺S tcity . We also denote ND(t) as the set of all nodes of type
t. For example, ND1(tstate) = {n0.2, n0.3, n0.4}. Note that it
is not mandatory for an XML document to be accompanied by its
DataGuide as it can be easily extracted from a “schemaless” docu-
ment in linear time [3]. In fact, DataGuides have been exploited in
research related to XKS [1, 7, 9].

Given a query Q(w1, . . . , wk), if a keyword wi is contained in
either L(n) or F(n) then the node n is called a label match or a
value match to wi, respectively. The sets of all label and value
matches to wi in D are denoted as LD(wi) and VD(wi), respec-
tively. The set of all matches to wi in D, MD(wi), is equal to
LD(wi) ∪ VD(wi). Notably, if a node is a label match to wi then
all nodes of the same type are also label matches to wi. We call this
type a type match to wi whose set is denoted as TD(wi). When the
context is clear, we denote VD(wi), LD(wi), MD(wi), TD(wi) as
Vi, Li, Mi, Ti, respectively. For example, in D1 (Figure 2(a)),
VD1 (city)= {n0.4.2.0}, LD1 (city)= {n0.3.1, n0.4.2, n0.4.3},
TD1 (city)= {tcity}.

Given a query Q(w1, . . . , wk), the XKS process can be broadly
divided into two steps: (a) locating result nodes and (b) retrieving
result matches [9]. The first step corresponds to selecting a set
of result nodes R(Q,D) from document D satisfying Q. For each
result node r ∈ R(Q,D), the second step retrieves a set of matches
SD(r) ⊆ (MD(w1)∩· · ·∩MD(wk)∩descD(r)) where descD(r)
is the descendant set of r in D. In this paper, we focus on the first
step.

As mentioned in Section 1, one of the most popular approaches
to represent results nodes is SLCA [17]. Formally, for a query
Q(w1 . . . wk) on a document D, let lca(m1, . . . ,mk) be the LCA
of k matches m1,. . . ,mk and LCA(Q,D) = {lca(m1, . . . ,mk)|
mi ∈ Mk∀i ∈ [1, k]}. Then, SLCA returns the result nodes
R(Q,D) = SLCA(Q,D) = {n ∈ LCA(Q,D)|@
n′ ∈ LCA(Q,D), n ≺ n′}. Since each type corresponds to a
schema node in S, we extend the LCA and SLCA concepts to types
as well. For instance, lcaS(tstate/name, tstate/city) = tstate.

3. OPTIONALITY RESILIENCE
Optionality resilience describes the desired behaviors of an XKS

system when handling the missing element phenomenon. Specif-
ically, it captures how the query result changes when an optional
node is missing from the document. In this section, we first iden-
tify two types of optionality resilience, namely result resilience and
match resilience, corresponding to the two steps of XKS. Next, we
analyze existing XKS approaches in terms of these two properties.

3.1 Result Resilience
In an XKS query, the relevance of a result depends on the search

intention as well as result matches. Since users are rarely aware
of the missing element phenomenon, missing nodes should not
change the search intention (i.e., an XKS system should not return
new results that are irrelevant to the search intention). More specif-
ically, a missing element may make an existing result irrelevant
but should not add a new result. For example, consider the docu-
ments D1 and D2 where n0.4.3.2 is the only node missing in D1

but appears in D2. Consider now the query Q2(city, area)
on D1 and D2. The search intention is probably to find the areas
of all cities. Hence, the results should include all city subtrees
in the document with an area child (e.g., n0.3.1 and n0.4.3 on
D2). However, when the area of n0.4.3 is missing as in D1, the
corresponding area subtree becomes irrelevant. Consequently, in-

troducing new result n0.4 related to state for Q2 on D1 is likely
to be irrelevant. Similarly, absence of the area of Provo (n0.4.3.2)
should not make areas of other cities such as Salt Lake City
(e.g., n0.4.2) more relevant to Provo than Salt Lake City.

DEFINITION 1. [Result Resilience] Let Q be an XKS query on
two documents D and D′ where D′ = D\{n} and n is a la-
bel match to Q. Then, an XKS system is called result-resilient if
R(Q,D′) ⊆ R(Q,D).

3.2 Match Resilience
In an XKS query, label keywords reflect the desired data in the

final result tree [1,9]. Reconsider the query Q2 on D1 and D2. The
node n0.3.1 is a common result of Q2 in both these documents. The
match resilience property asserts that the match set of n0.3.1 should
remain the same in D1 and D2 as n0.4.3.2 is not a descendant of
n0.3.1. On the other hand, consider the query Q3(Utah, city,
population, area). The common result of this query is the
subtree rooted at n0.4. Then, the match resilience property also
asserts that the result tree of n0.4 should be (non-strictly) smaller
in D1 than in D2 as the missing node n0.4.3.2 in D1 is a descendant
of this subtree in D2.

DEFINITION 2. [Match Resilience] Consider a label query
Q(w1, . . . , wn) and two documents D, D′ where D′ = D\{n}
and n is a label match to Q. An XKS system is match-resilient if
for each result r ∈ R(Q,D) ∩R(Q,D′) any one of the following
holds: (a) SD′(r) = SD(r) if n /∈ SD(r); (b) SD′(r) ⊆ SD(r) if
n ∈ SD(r).

3.3 Optionality Resilience Analysis of Exist-
ing Approaches

Smallest Lowest Common Ancestor (SLCA). The SLCA ap-
proach introduced in [17] has been arguably the most popular tech-
nique to locate the result nodes and has become the backbone of
various other approaches such as XSeek [9], XReal [1], XBridge
[7], MaxMatch [10], etc. However, SLCA violates result resilience
which explains its inability to handle missing elements as high-
lighted in Section 1. For example, consider the query Q1(Provo,
area) on D2. The SLCA approach returns the node n0.4.3 but it
returns n0.4 on D1 = D2\{n0.4.3.2}.

Meaningful Related Lowest Common Ancestor (MLCA). The
MLCA-based technique [8] returns each result tree as a group of
matches, called pattern match, containing exactly one match for
each keyword. Two nodes n1 and n2 that match keywords w1 and
w2, respectively, are meaningfully related if there does not exist
n′1 and n′2 that match w1 and w2 such that the LCA of n1 and n2

is an ancestor of the LCA of n′1 and n′2. When a set of nodes are
pair-wise meaningfully related, their LCA is called an MLCA. Each
returned pattern match contains an MLCA node and its correspond-
ing pair-wise related matches.

MLCA does not satisfy result resilience. Consider the query
Q4(USA, Tennessee, Utah, area) to find the areas of
both Tennessee and Utah. The results on D1 is empty since no mat-
ter which area node is chosen in the pattern match, it is not related
to at least one value match. Specifically, node n0.4.1 is not related
to n0.2.0 and node n0.2.1 is not related to node n0.4.0. Meanwhile,
if n0.4.1 is removed from the document, MLCA returns a pattern
match in which n0.0, n0.2.0, n0.4.0 and n0.2.1 are matches for USA,
Tennessee, Utah and area, respectively.

XSEarch. In XSEarch [2], two nodes n1 and n2 are considered
related if the path between them consists of no same-label nodes
except n1 and n2 themselves. For example, in D1 (Figure 2(a)),



nodes n0.4.3.0 and n0.4.1 are considered related. A pattern match
is considered related if all of its matches are related to each other.
XSEarch considers two semantics, namely, all-pair and star. All-
pair semantics requires all pairs of matches to be related. Star-
semantics only requires at least one match which is related to all
other matches.

XSEarch also violates result resilience. For Q1, XSEarch re-
turns same results as SLCA on D1 and D2. Notice that n0.4.3.0 is
considered related to both n0.4.3.2 and n0.4.1.

Structural Consistency. In [6], the authors propose a new con-
straint for the SLCA list called structural consistency. A list of
SLCA nodes are structural consistent when there are no ancestor-
descendant relationships among them not only in instance-level (as
in the original definition of SLCA) but also in schema-level. How-
ever, structural consistency is not sufficient to ensure result re-
silience when missing elements are involved. In fact, [6] returns
same results as SLCA for Q1 on D1 and D2 since there is only one
SLCA node in both cases.

XSeek. A sub-task in retrieving result nodes is to deduce the
result type. XSeek is a result type deduction technique built on
top of SLCA [17]. Specifically, it attempts to locate entity nodes
using a heuristic that entity nodes usually have same-label siblings.
Then, for each SLCA node na, XSeek’s result node is the lowest
entity node ne such that ne � na. However, XSeek still violates
result resilience. For example, for Q1, it produces identical results
to SLCA on D1 and D2 since both n0.4 and n0.4.3 are entity nodes.

XReal and XBridge. XReal [1] and XBridge [7] are also re-
sult type detection techniques but based on match statistics. In a
nutshell, XReal computes the confidence of a type T to be the re-
sult type by counting the number of T -typed nodes containing the
matches for each query keyword but penalizes types that are too
close to the root node. On the other hand, XBridge computes the
result type confidence by aggregating the confidence for all results
of that type. The confidence of each result is computed based on
its match frequency and distribution in the query answer. Notably,
the confidence value from both XReal and XBridge is zero when
the result type has no results with at least one match for each key-
word (i.e., non-zero match frequency). Consequently, both these
approaches fail to satisfy result resilience. For example, for Q1

on D2, the returned result type is city since the only result with
non-zero match frequency for all keywords is of that type. On D1,
however, the returned result type is state. Since the result types
are different, their results fail to satisfy result resilience.

AllMatch. PathReturn and SubtreeReturn are two typical tech-
niques for the second step of XKS [4, 9, 10]. PathReturn returns all
descendant matches of each result node and the paths connecting
them while SubtreeReturn returns the full subtrees rooted at each
result node. Since PathReturn and SubtreeReturn return the same
set of matches (i.e., all descendant matches) for each result node,
in this paper, we refer to them as AllMatch. The result trees from
AllMatch satisfy match resilience. For each result node r, all de-
scendant matches are returned. On the other hand, when a node is
removed from the document, r will not get any new descendants.
Thus, no new descendant matches of r are introduced.

MaxMatch and Relaxed Tightest Fragment (RTF). While
PathReturn and SubtreeReturn do not violate result resilience, they
suffer from low recall and precision [9]. MaxMatch [10] and RTF [4]
are introduced to address this problem. MaxMatch filters irrelevant
matches under an SLCA node by returning only contributors. For
each node n, its contribution is defined as the set of query key-
words whose matches are descendant of n. A node is a contributor
if its contribution is not subsumed by any of its siblings. RTF ex-
tends this notion of contributor to the so-called valid contributor,

which is a node whose contribution is not subsumed by any of its
same-label siblings.

MaxMatch [10] also incorporates four desirable properties of
XKS by comparing XKS results when the document or query changes.
However, these properties do not guarantee desirable behavior when
missing elements are involved in the query. Specifically, both Max-
Match and RTF violate match resilience. For instance, consider
Q5(Utah, city, population, area)whose intention is
probably to find the population and area of all cities of Utah. The
only result node from [1, 9, 17] on both D1 and D2 is n0.4. For
n0.4, on D2, both MaxMatch and RTF select n0.4.3.1 as relevant
match. Notice that n0.4.2.1, the population of Salt Lake City, is
not selected since it only has population but not area whereas
Provo city has both these elements. On the other hand, on D1 the
matches for both Salt Lake City and Provo are returned as Provo’s
area information is missing.

4. FULL SLCA (FSLCA)
Recall from Section 1, if an XML document is full then all miss-

ing elements are specified by empty elements. Consequently, SLCA
nodes identified during keyword search on a full XML document
will be able to satisfy optionality resilience property as there are
no missing elements. Among these identified SLCA nodes, we re-
fer to the nodes that exist in the original document as full SLCA
(FSLCA) nodes. For example, reconsider the query Q1 on D1. The
only SLCA node matching the query is n0.4 which is undesirable.
Document D3 (Figure 3(b)) displays the full version of D1. If we
now compute the SLCA nodes on D3 for Q1, it would produce
n0.4.3 since its descendant node n0.4.3.0 matches to Provo and
node n0.4.3.2 matches to area. Since n0.4.3 also exists in D1, it is
an FSLCA of Q1. We now formally introduce the concepts of full
XML document and FSLCA.

4.1 Full XML Document

DEFINITION 3. [Full Node] Given a document D, a node n ∈
D with type t is full, denoted as FullNode(n), if for each child
type tc of t, n has at least one child node with type tc.

For example, in D1, n0.3.1 is a full node since type city has
three child types, namely name, population and area, and
n0.3.1 has corresponding child nodes n0.3.1.0, n0.3.1.1 and n0.3.1.2,
respectively.

DEFINITION 4. [Full Document] An XML document D is con-
sidered full, denoted as F (D), iff all of its nodes are full. That is,
∀n ∈ D, FullNode(n) = true.

For example, D3 in Figure 3(b) is a full document. Noticeably,
a document D can be transformed to a full document F (D) by
adding empty elements as children to nodes that are not full in D.
For instance, D1 can be transformed to D3 by adding empty ele-
ments (in dotted rectangles). Observe that there are infinite num-
bers of full documents F (D) of D. For example, adding any num-
bers of area nodes as siblings of n0.4.3.2 would create another
full document of D1. In practice, we only consider the minimal
full document of D.

DEFINITION 5. [Minimal Full Document] Given an XML doc-
ument D, a full document F (D) is minimal, denoted as Fmin(D)
iff the following conditions are true: (a) ∀n ∈ D, n ∈ Fmin(D);
(b) for each n′ ∈ Fmin(D), n′ is either in D or removing it would
make Fmin(D) no longer a full document; and (c) all nodes in
Fmin(D)\D are empty nodes.



For example, D3 in Figure 3(b) is a minimal full document of
D1. In the sequel, for brevity, we shall use F (D) or F instead of
Fmin(D) when the context is clear. Clearly, given a document D,
the DataGuides of D and F (D) are identical.

4.2 FSLCA Definition
Since a full document may contain empty nodes that do not exist

in the original document, each FSLCA node belongs to one of the
following two categories:

• Category 1: Both the FSLCA node and its matches are in
the original document D. For example, consider the query
Q2(area,city) on D1. Then the FSLCA node n0.3.1 be-
longs to this category as its subtree includes matches for both
city and area.
• Category 2: The FSLCA node is in D but its matches are not

in D. For example, for Q2 on D1, FSLCA nodes n0.4.2 and
n0.4.3 belong to this category as both do not have any area
element as descendant.

In this paper, we refer to the result sets consisting of only Cate-
gory 1 FSLCA nodes as complete FSLCA nodes while the results sets
consisting of both the aforementioned categories are called partial
FSLCA nodes. Formally,

DEFINITION 6. [Partial & Complete FSLCA] Given a query Q
on a document D,

• the set of partial FSLCA nodes of Q on D, denoted as
PFSLCA(Q,D) is defined as, PFSLCA(Q,D) =
SLCA(Q,F (D)) ∩D.
• the set of complete FSLCA nodes of Q on D, denoted as

CFSLCA(Q,D) is defined as, CFSLCA(Q,D) =
PFSLCA(Q,D) ∩ SLCA(Q,D).

Remark. The complete and partial FSLCAs are designed to allow
two different strategies of returning result nodes containing miss-
ing elements. The most obvious approach is to ignore result nodes
containing missing elements, which is realized by complete FSLCA.
For example, consider the query Q2(city,area) on D1. Here,
CFSLCA(Q2, D1) = {n0.3.1} as n0.4.2 and n0.4.3 do not have
area element as descendant. Alternatively, partial FSLCA does
not eliminate such results nodes and returns them explicitly indi-
cating the missing elements. For example, PFSLCA(Q2, D1) =
{n0.3.1, n0.4.2, n0.4.3} and the area elements in n0.4.2 and n0.4.3

are represented as empty nodes (an empty node is represented as a
box with a dashed line border).

4.3 Proofs for Optionality Resilience

THEOREM 1. Both partial and complete FSLCA nodes satisfy
result resilience.

PROOF. For any pairs of document D and D′ = D\{n} where
n ∈ D, we have F (D) = F (D′). Therefore, SLCA(Q,F (D)) =
SLCA(Q,F (D′)) for any query Q. Since D′ ⊂ D,
PFSLCA(Q,D′) ⊆ PFSLCA(Q,D).

For all result nodes r ∈ CFSLCA(Q,D′), r has descendant
matches to all keywords in D′. Meanwhile, since D ⊆ F (D) =
F (D′), there are no results in SLCA(Q,D) that is a descendant
of r. Thus, r ∈ SLCA(Q,D). But r ∈ SLCA(Q,F (D′)) =
SLCA(Q,F (D)). Therefore, r ∈ CFSLCA(Q,D).

The following lemmas prove that existing XKS approaches built
on top of FSLCA nodes instead of SLCA nodes satisfy the optional-
ity resilience property.

LEMMA 1. The results of XSeek on top of either partial or com-
plete FSLCA nodes satisfy result resilience.

PROOF. Let n0 be a node in document D. Let xseek(n0) be
a function returning the lowest ancestor entity node of n0 as de-
scribed in Section 3.3. Since PFSLCA(Q,D′) ⊆ PFSLCA(Q,D)
and CFSLCA(Q,D′) ⊆ CFSLCA(Q,D), their images through
function xseek() maintain inclusion relation ⊆.

LEMMA 2. If matches to empty elements are considered, the
results of MaxMatch and RTF on top of either partial or complete
FSLCA nodes satisfy match resilience.

PROOF. Let Q be a query on two documents such that D′ =
D\{n}, n ∈ D and n is a label match of Q. Let r be a result node
and r0 be a node within the result tree rooted at r. If n is not a
descendant of r0, its contribution is unchanged in D and D′. If n
is a descendant of r0, r0 would have at least one label match with
same label with n in F (D) and F (D′). Therefore, the contribution
of r0 is unchanged for both MaxMatch and RTF.

5. FSLCA COMPUTATION
In this section, we present two variants of the MESSIAH algo-

rithm, namely P-MESSIAH and C-MESSIAH, to compute partial and
complete FSLCA nodes, respectively. These algorithms can retrieve
FSLCA nodes without the need of physically generating full docu-
ments. Also, it is not necessary for the XML document to be ac-
companied by its schema or DTD as a DataGuide tree can be easily
generated from a “schemaless” XML document [3]. Note that such
DataGuide tree has also been used in several prior work related
to XKS [1, 7, 9]. We first summarize the principle behind existing
SLCA computation approach which serves as a foundation for the
FSLCA computation problem.

5.1 Principles for SLCA Computation
The core idea behind all existing SLCA computation techniques

can be summarized by the following lemmas (see [17] for full proofs).

LEMMA 3. Given a node n ∈ D and a query keyword w, the
level of the SLCA between n and matches of w on D, denoted as
slcaLvl(n,D,w), is equal to max(lvl(lca(n, lm(n,MD(w)))),
lvl(lca(n, rm(n,MD(w))))) where lvl() returns the level of a
node and lm(n,MD(w)) and rm(n,MD(w)) return the last node
before n and the first node after n in MD(w), respectively.

LEMMA 4. Given a node n ∈ D and keywords w1, . . . , wk, the
level of the SLCA between n and matches of w1, . . . , wk on D, de-
noted as slcaLvl(n,D,w1, . . . , wk), is equal to
min(slcaLvl(n,D,w1), . . . , slcaLvl(n,D,wk)).

Lemma 3 focuses on a special case of SLCA computation where
there are only two sets in which one set is a single element n.
It reduces the SLCA into the LCA of n to either lm() or rm().
Lemma 4 extends this results to multiple sets. The final SLCA com-
putation is then achieved by computing slcaLvl(n,D,w1, . . . , wk)
for all nodes n of a set M as candidates and then pruning those
SLCA candidates with at least one descendant candidate. The dif-
ference between [17] and [14] lies on how to get M . [17] chooses
M = MD(w1) in which w1 is the keyword with smallest match
set whereas [14] reduces M further by exploiting several optimiza-
tions. Meanwhile, [19] considers all ancestor-or-self of MD(w1)
as M but uses equality comparison instead of lm() and rm().

Both [17] and [14] exploit a non-indexed and an indexed ap-
proach to support lm() and rm(). The indexed approach uses ran-
dom access to retrieve lm() and rm() from a B-tree, which is suit-
able when M is small. When M is large, non-indexed approach



using sequential scan is more suitable. For all cases, the time com-
plexity is O(dk|M |log(|Mmax|) where d is the document depth
and Mmax is the largest match set.

5.2 Key Strategies behind MESSIAH
The key idea of FSLCA computation using MESSIAH is based on

the following two observations. First, SLCA or FSLCA computation
only requires checking whether a node has descendant matches but
not retrieving the matches directly. Note that existing approaches
compute SLCA by retrieving the matches first (i.e., lm(), rm())
and then computing SLCA from them. However, this approach can-
not be used in MESSIAH as some matches are “virtual” (missing
elements) and cannot be retrieved. Second, since a full document
does not have missing nodes, we can infer the subtree structure of
a node by analyzing its type only. For instance, in a full document,
we can infer that each state has some city as child and each
city has name, population and area as children. These two
observations are materialized in the following theorem.

THEOREM 2. In a minimal full document F , given a node n
with type t, n has a descendant label match n′ to a keyword w iff
there exists a type match t′ to w such that t �S t′.

PROOF. It follows from the definition of minimal full document
(Definition 5).

COROLLARY 1. Let F be the minimal full document of D. Given
node n ∈ D and a query keyword w, slcaLvl(n, F,w) =
max(lvl(lca(n, lm(n,MD(w)))), lvl(lca(n, rm(n,MD(w)))),
slcaLvl(t, S, w)) where t is the type of n and slcaLvl(t, S, w)
is the level of the SLCA between t and all type matches of w in S.

COROLLARY 2. Given a node n ∈ D, minimal full document
F , and keywords w1, . . . , wk, slcaLvl(n, F,w1, . . . , wk) =
min(slcaLvl(n, F,w1), . . . , slcaLvl(n, F,wk)).

Corollary 1 and 2 are useful generalization of Lemma 3 and 4,
respectively. Observe that the left-hand-sides of the equations in
these corollaries leverage F while the matches are retrieved from
D (i.e., MD(w)). Importantly, as DataGuides for most practical
datasets are small [1], slcaLvl(t, S, w) can be computed efficiently
(can even be pre-computed).

5.3 Partial FSLCA Computation
Partial FSLCA computation needs to address a novel challenge

compared to existing SLCA computation techniques. Observe that
Lemma 3-4 and Corollary 1-2 assume that each SLCA/FSLCA node
has a match n in D (called anchor node in [14]). However, some
partial FSLCA nodes may not have any match in D. To address this
challenge, we split the partial FSLCA computation problem into two
cases, namely FSLCA node with at least one value match and FSLCA
node with only label match, and address each them in turn.

Case 1: FSLCA with at least one descendant value match.
Corollary 1 and 2 can be applied for Case 1 since all value matches
are in D (converting D to F is not necessary). However, since the
value matches can be matches of any keywords, the set of anchor
nodes is V1∪ · · ·∪Vk instead of M1 as used in SLCA computation.

Case 2: FSLCA with at least one label match to each key-
word. When a partial FSLCA node na has at least one descendant
label match n` to each keyword, it may not have any match in the
original document D. Consequently, locating anchor nodes is chal-
lenging. We propose a technique to retrieve the candidate node na

without using anchors.
Based on Theorem 2, na has a descendant label match to key-

word w if and only if its type ta has a descendant type match to w.

Algorithm 1: The P-MESSIAH Algorithm.
Input: A query Q with k keywords w1 . . . wk

Input: The list of value matches Vi and type matches Ti for each wi

in document D whose Dataguide is S
Output: The list of FSLCA nodes of Q on D

1 Result = ∅;
2 T = SLCAS(T1, . . . , Tk);
3 Cand2← merge({ND(t)|t ∈ T});
4 Anchor1← merge(V1,. . . ,Vk);
5 c′1← root;
6 c2← Cand2.next();
7 while there are more nodes in Anchor1 do
8 a1← Anchor1.next();
9 t1← the type of a1;

10 for i = 1→ k do
11 if a1 /∈ Vi then
12 `i = max(lvl(lca(a1, Anchor1.peekLast(i))),

lvl(lca(a1, Anchor1.peekNext(i))),
slcaLvl(t1, S, wi));

13 ` = min1≤i≤k(`i);
14 c1 = ancestor(a1, `);
15 if id(c′1) <= id(c1) then
16 if c′1 � c1 and c′1 � c2 then
17 Result = Result ∪ {c′1};
18 while c2 is not null and id(c2) < id(c1) do
19 if c2 � c1 then
20 Result = Result ∪ {c2};
21 c2← Cand2.next();
22 c′1 ← c1;

23 if c2 is null or c′1 � c2 then
24 Result = Result ∪ {c′1};
25 while c2 is not null do
26 Result = Result ∪ {c2};
27 c2← Cand2.next();
28 return Result

Therefore, ta must have at least one descendant type match to each
keyword. In other words, ta is an SLCA of the type matches of
all keywords w (i.e., given a query Q(w1, . . . , wk) on D, ta ∈
SLCAS(TD(w1), . . . , TD(wk))). Thus, to retrieve na, we can
find all ta and then retrieve all corresponding na in D. Notice
that this strategy does not require any anchors. Furthermore, it is
extremely efficient since label matches are not retrieved and the
number of possible values of ta is small.

The P-MESSIAH Algorithm. Algorithm 1 outlines the procedure
of P-MESSIAH which realizes our above discussion on partial FSLCA
nodes computation. Observe that the inputs are value matches and
type matches for Q which can be retrieved directly from D. Lines 2-
3 correspond to our technique for Case 2. All candidate nodes gen-
erated for this case (i.e., having at least one descendant label match
for each keyword) are stored in Cand2. The Anchor1 stores all
value matches for Q which shall serve as anchor matches. The
merge() function in Lines 3 and 4 merges the input sets into a sin-
gle sorted set of nodes and returns them in stream format. Note
that if all of the input sets are sorted stream, the merge() function
can be implemented efficiently without sorting and consumes min-
imal memory. Both Anchor1 and Cand2 are required to be sorted
for pruning which we shall discuss later. The symbols a1 and c2
denote the current cursor node of streams Anchor1 and Cand2,
respectively. They are assumed to be null when there are no more
nodes in the stream.



Lines 7-14 materialize Case 1. The loop in Lines 7-22 is ex-
ecuted for each anchor node a1 in Anchor1. Lines 10-14 use
Corollary 1 and 2 to ensure that the candidate node c1 of a1 has de-
scendant matches to all keywords. Notably, instead of using lm()
and rm() functions, we use peekLast(i) and peekNext(i) which
return the last and next node, respectively, in the i-th input stream
(i.e., Vi) in Anchor1. Although the latter functions return same
results as lm(a1, Vi) and rm(a1, Vi), respectively, peekLast(i)
and peekNext(i) are more efficient since they can be easily sup-
ported in streams by storing the last retrieved node and looking
ahead the next retrieved node of each input stream. Specifically,
they take O(1) time compared to O(log(Vi)) time of lm(a1, Vi)
and rm(a1, Vi).

Lines 15-22 check whether the new candidate nodes can be par-
tial FSLCA nodes. Since the candidates come from two cases, they
need to check against each other. Lines 15-17 check c′1 against
Case-1 candidate c1 and Case-2 candidate c2. Lines 18-21 check
all following Case-2 candidates against Case-1 candidate c1. No-
tice that Case-2 candidates do not require checking against each
other since they cannot have ≺ relation. Lines 23-27 are similar to
Lines 16-22 to evaluate the last c′1.

Time Complexity. Let T be the result returned in Line 2 and d be
the document depth. Then the time complexity of Algorithm 1 is
O(dk

∑
1≤i≤k |Vk| + dlog(k)

∑
t∈T |ND(t)|). These two terms

correspond to Case 1 and 2, respectively. In particular, Case 1 pro-
duces O(

∑
1≤i≤k |Vk|) candidate nodes, each takes O(dk) time

(due to Line 12). Case 2 produces O(
∑

t∈T |ND(t)|) candidates,
each takes O(d log(k)) time (due to the merge function in Line 3).

Remark 1. Since the complexity of ILE algorithm [17] is
O(kd|M1|log(|Mk|), it may seem that our complexity is worse.
However, notice that the result size between two cases are not equal.
In practice, as demonstrated in Section 6, P-MESSIAH outperforms
ILE. First, the ILE algorithm uses lm() and rm() functions with
random access while our algorithm exploits stream extensively with-
out random access. Second, for most keywords w, L(w)� V (w).
Hence,

∑
1≤i≤k |Vk| is potentially much smaller than |M1|log(|Mk|).

Third, the dlog(k)
∑

t∈T |ND(t)| term only appears when T (wi) 6=
∅∀i.

Remark 2. P-MESSIAH follows an “eager” strategy i.e., FSLCA
nodes are returned in document-order and the first output node can
be returned even before all of input nodes are read. This property is
highly desirable in practice since it greatly reduces query response
time (i.e., the time the users need to wait to view the first result).

EXAMPLE 1. Consider Q2(city,area) on D1. We have
VD1(city) = {n0.4.2.0}, TD1(city) = {tcity}, VD1(area) =
∅, TD1(area) = {tterritory/area, tstate/area, tcity/area}. Us-
ing the DataGuide in Figure 2(b), Line 2 returns tcity . Thus, Cand2
= {n0.3.1, n0.4.2, n0.4.3}. Meanwhile, Anchor1 = {n0.4.2.0} so
that the first and only value for a1 is n0.4.2.0. For this a1, ` = 3 and
c1 = n0.4.2. The condition in Line 15 is satisfied but not the one
in Line 16. As c2 = n0.3.1 precedes c1 = n0.4.2, the while-loop in
Lines 18-21 proceeds to check Line 19 condition and adds n0.3.1 as
the first result. Next, c1 = n0.4.2 is assigned to c′1. At Line 23, the
condition fails since both c′1 and c2 refer to the same node n0.4.2 so
that c′1 is not added to the results. Finally, Lines 25-26 add the two
remaining nodes in Cand2, n0.4.2 and n0.4.3, as results. The final
results is {n0.3.1, n0.4.2, n0.4.3}.

5.4 Complete FSLCA Computation
The C-MESSIAH algorithm is outlined in Algorithm 2. Similar

to [17], each node a in M1 (assumedly the smallest match set) is

Algorithm 2: The C-MESSIAH Algorithm.
Input: A query Q with k keywords w1 . . . wk

Input: The matches Mi in document D whose Dataguide is S
Output: The list of complete FSLCA nodes of Q on D

1 Result = ∅;
2 c′← root;
3 isSLCA← false;
4 while there are more nodes in M1 do
5 a←M1.next();
6 t← the type of a1;
7 for i = 2→ k do
8 `′i =

max(lvl(lca(a1, lm(a1,Mi))), lvl(lca(n, rm(a1,Mi))));

9 `i = max(`′i, slcaLvl(t, S, w));

10 ` = min2≤i≤k(`i);
11 c = ancestor(a1, `);
12 if id(c′) <= id(c) then
13 if c′ � c and isSLCA = true then
14 Result = Result ∪ {c′};
15 c′ ← c;
16 isSLCA← (` = min2≤i≤k(`

′
i));

17 if isSLCA = true then
18 Result = Result ∪ {c′};
19 return Result

processed one-by-one2 (Lines 4-5) and the computed candidate c
is pruned based on document order and ≺ relation (Lines 12-13).
Since our purpose is to get the SLCA nodes of Q in F and not D,
Corollary 1 and 2 are used instead of Lemma 3 and 4 (Lines 8-11).
The filtering is accomplished using the isSLCA flag which indi-
cates whether the current node stored in c′ is SLCA(Q,D) and is
set at Line 16. Notice that min2≤i≤k(`

′
i) is equal to

slcaLvl(a,D,w2, . . . , wk) (Lemma 4). When this value is larger
than `, it means the candidate c is an SLCA node for Q on D.

Time Complexity. Assume that slcaLvl(t, S, w) in Line 9 can be
computed in O(1) since S is usually much smaller than D. Then
the time complexity of Algorithm 2 is O(dk|M1| log(|Mmax|))
where d is the document depth, M1 and Mmax are the smallest
and largest match sets.

EXAMPLE 2. Consider Q2(city,area) on D1. MD1(city)
= {n0.3.1, n0.4.2, n0.4.2.0, n0.4.3} and MD1(area) = {n0.1.1,
n0.2.1, n0.3.1.2, n0.4.1}. Since the match sets have equal size, we
can use either one as M1. Lets choose MD1(city). For n0.3.1,
the nodes returned by lm and rm functions are n0.2.1 and n0.3.1.2,
respectively, whose LCA levels with n0.3.1 are 1 and 3, respectively
(Lines 7-8). Thus, `′i in Line 8 is 3. Since the type t of n0.3.1 is
city, slcaLvl(t, S,area) is 3 and `i = 3. In Line 11, c = n0.3.1

which is assigned to the empty c′ with isSLCA set to true. Sim-
ilarly, for the next node n0.4.2, we get candidate c = n0.4.2 with
`′i = 2 and `i = 3. Since n0.3.1 ⊀ n0.4.2, n0.3.1 is returned as the
first result node. n0.4.2 is then assigned to c′ but with isSLCA set
to false. For the next node n0.4.2.0, c = c0.4.2.0 and isSLCA
is set to false. Lastly, for n0.4.3, the candidate node c = n0.4.3

but isSLCA is still false. Therefore, it is also not added to the
results. Hence, n0.3.1 is the only result node.

5.5 Heuristics-based Algorithm Selection
Recall that C-MESSIAH ignores result nodes containing missing

elements (returns complete FSLCA) whereas P-MESSIAH does not
2More optimized technique such as [14] can also be applied. However, it is orthogonal
to the problem.



eliminate such results nodes and returns them explicitly indicating
the missing elements as empty nodes (returns partial FSLCA). That
is, P-MESSIAH returns all complete FSLCA nodes of C-MESSIAH
as well as additional results containing missing elements. Given a
query Q, how can we automatically deduce which variant of MES-
SIAH needs to be executed? In this section, we present a heuristics-
based selection strategy to answer this question. Specifically, our
heuristic is based on the statistics of underlying XML data and not
on their semantics.

Intuitively, the selection choice is influenced by the usefulness
of the additional results generated by P-MESSIAH. We advocate
that it depends on the number of complete FSLCAs as well as the
number of results (denoted by N ) desired by a user. In the context
of keyword search, N is typically small. So if an XKS system re-
turns more than N complete FSLCA results, then a user may not be
interested in the results with missing elements. Consequently, C-
MESSIAH is relatively more appropriate for this case. On the other
hand, if there are fewer than N complete FSLCA results, then dis-
playing additional results with missing elements using P-MESSIAH
will be potentially useful.

The challenge here is to estimate the number of complete FSLCAs
apriori. We address it by adopting a lightweight version of the XS-
ketch-index [12]. In short, an XSketch-index is a directed acyclic
graph synopsis G where each synopsis node g represents a set of
data nodes with same labels and each edge (gp, gc) signifies the
parent-child relationship between the data nodes of gp and gc. Each
internal (resp. leaf) synopsis node stores the structural (resp. value)
distribution of the child labels (resp. value tokens) among its data
nodes. For example, a synopsis node gcity representing all city
elements in D1 will have the structural distribution of 100% for
name and population but 33% for area since all city ele-
ments have name and population but only one out of three has
area. Similarly, for the gcity/area synopsis node representing all
city/area elements in D1, the value distributions of Houston,
Salt, Lake, City, and Provo are all 33%.

We use a lightweight version of XSketch-index where the synop-
sis graph G is represented using the DataGuide tree S. Specifically,
each synopsis node corresponds to exactly one schema node in S.
Note that G can be built while computing S and stored with it. It
is worth mentioning that although a more detailed XSketch-index
would provide a better estimation, it takes more space. A detailed
discussion on the space-accuracy trade-off is provided in [12]. As
we shall see later, such lightweight version is sufficient to select the
correct variant of MESSIAH with high accuracy.

To illustrate the estimation process, let us reconsider Q1 and
Q2 on D1. For Q1(Provo area), from the XSketch-index, all
cities have name but only 33% of name have value Provo.
Meanwhile, only 33 % of cities have area. Assuming inde-
pendent distribution between the two, 11% of cities have both
Provo and area. Since there are 3 city elements in D1, the
estimated result size is 3× 0.11 = 0.33. Similarly, for Q2(city
area), 33% of city elements have area which leads to the es-
timated result size of 1. Let N = 1. Since 0.33 < 1, P-MESSIAH
is used for Q1 but C-MESSIAH is used for Q2. This estimation re-
flects the intuition that Q1 is more likely to have no relevant results
in the document so results with missing elements are desirable.

6. EXPERIMENTAL STUDY
We conducted experiments to compare performance of MESSIAH

against state-of-the-art SLCA computation approaches, namely, SE
and ILE [17]; and IMS and IIMS [14]. For complete FSLCA, we
also provide two implementations, non-indexed (denoted by NC-
MESSIAH) and indexed (denoted by IC-MESSIAH), corresponding

Figure 4: Query set.

to two methods to realize lm() and rm() functions as in [14, 17].
Notice that partial FSLCA does not use lm() and rm(), so we only
provide one implementation (P-MESSIAH). All techniques are im-
plemented using Java 1.7 on top of Berkeley DB 4.0.103. The ex-
periments were performed on an Intel Xeon X5570 machine with
4GB memory. Since the techniques to select relevant return nodes
within the SLCA subtrees (e.g., [1, 9, 10]) are orthogonal to MES-
SIAH, we do not compare them.

6.1 Experimental Setup
Dataset. The experiments are performed on four XML datasets,

Mondial (1.72MB), INTERPRO (69MB), DBLP (740MB) and SHAKE-
SPEARE (9.1MB). Mondial is a data-centric XML dataset with many
short texts while SHAKESPEARE is a text-centric XML document
consisting of mostly long texts. INTERPRO and DBLP are datasets
with both short and long text. Note that these data sources are also
used for empirical study in prior works [1, 9, 10, 17].

Queryset. The set of queries studied for each dataset is re-
ported in Figure 4. The queries for Mondial, INTERPRO, DBLP, and
SHAKESPEARE are denoted as QM1-QM8, QP1-QP8, QD1-QD8,
and QS1-QS8, respectively. They are selected as follow. We em-
ploy ten unpaid volunteers who have knowledge of XML but are
not involved in this project. Since our focus is on queries involv-
ing missing elements, for each volunteer, we ask them to generate
four queries without missing labels and four with missing labels
for each dataset. The missing labels for each dataset are provided
beforehand. For each dataset, with 80 sample queries, we keep 8
queries with diversity in numbers of keywords, keyword selectiv-
ity and whether the keyword matches to a label or a value for ex-
periments. The first four queries do not contain missing elements
whereas the last four queries do. Thus, the result size of each of
the first four queries is identical for all benchmark approaches. Ob-
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Figure 5: Precision.

serve that the result sizes of complete FSLCA, partial FSLCA and
SLCA may not be identical in the last four queries. Note that the
first four queries are used to compare the performance of MES-
SIAH with state-of-the-art techniques when missing labels are not
in users’ queries.

Indexes used. To support efficiently evaluation of Algorithm 1,
we exploit the following two indexes. (a) Inverted List: Our in-
verted list maps each keyword w to a sorted set of value matches to
w and a set of type matches to w. They are used to find the input
set for Algorithm 1. Notice that while the value match is sorted, a
sorted index such as B+-tree is not required for P-MESSIAH since
we do not employ random access at all. Instead, a hash index can
be used which allows faster sequential traversal. The node order
is maintained when the index is built while parsing the document.
(b) Type Index: It maps each type t to a sorted ND(t). It is in-
voked in Line 3 of Algorithm 1. Similar to the inverted list, the
order of ND(t) is not required to be maintained by a B+-tree but
by inserting them in correct order.

6.2 Results
Search quality. In this experiment, we compare the quality of re-
sults returned by SLCA and FSLCA approaches. Since all SLCA ap-
proaches return the same results, we only use the results returned
by [17] as representative results. Since the difference between par-
tial and complete FSLCA approaches are some explicitly marked
missing data results which do not contribute to precision or recall,
we use complete FSLCA (C-MESSIAH) as representative for FSLCA.

For each query, we ask each volunteer to specify the search in-
tention. We then provide document schema and ask them to convert
their intention to XQuery/XPath query. The results of these queries
are considered as correct results. The volunteers can discuss among
themselves but unanimity is not required.

To measure the search quality, we use precision and recall, de-
fined as follow:

precision =
|Rel ∩Ret|
|Ret| , recall =

|Rel ∩Ret|
|Rel|

where Rel is the set of nodes retrieved by an XML query (as de-
scribed above) and Ret is the set of result type matches returned by
SLCA/FSLCA. For instance, for QM6, the XPath query agreed by all
of our volunteers is //city[contains(name,’York’)]/
latitude. The set of latitude nodes retrieved by this query is
denoted as Rel. Ret is the set of all latitude matches returned
by FSLCA(resp. SLCA)-based techniques.

Since the focus of our paper is on queries with missing labels,
some of our experimental queries actually do not have relevant re-
sults (QD6, QD8, QM5, QM8, QP5, QP8, QS5, QS7 and QS8). For
these queries, recall is not available since the sets of relevant nodes,
Rel, are empty. Hence, for precision measurement, if the approach
returns empty results, we consider the precision in this case (0/0)
is 100%. On the other hand, if non-empty results are returned, the
precision is considered 0%.

The recall of both SLCA and FSLCA are consistently high. Specif-
ically, except for the no-relevant-result queries (QD6, QD8, QM5,
QM8, QP5, QP8, QS5, QS7 and QS8) whose recall is unavailable,
the recall of both SLCA and FSLCA are 100% for all other queries.
It shows that our approach matches SLCA’s ability to produce high
recall [9, 10].

Figure 5 reports the precision of MESSIAH in comparison with
SLCA-based techniques. It is clear that our approach has higher or
equal precision than SLCA-based approaches for all queries, espe-
cially queries with missing elements (i.e., queries with subscripts 5
to 8). In particular, for queries QD6, QD8, QM5, QM8, QP5, QP8,
QS5, QS7 and QS8, SLCA approaches have zero precision. There
are no relevant results for these queries. For complete FSLCA ap-
proach, no results are returned. On the other hand, SLCA returns
lots of irrelevant result matches. For instance, consider QD6. The
intention of this query is to find the citations in all of Aradhye’s
papers. Notice that DBLP only stores the citation information for
only few publications [5] and do not have any data on Aradhye’s
citations. For this query, complete FSLCA returns empty results.
Meanwhile, existing SLCA techniques’ only result is the root node
containing many irrelevant cite nodes.

A similar problem also arises for QM6. Note that there are five
cities in the world with name containing York but only one (i.e.,
New York) contains latitude data in the Mondial dataset. For
this query, complete FSLCA approach returns a single city node
corresponding to New York. Meanwhile, partial FSLCA will re-
turn all 5 cities with York. Except for New York, the remaining
cities’ subtrees do not include any latitude data. Hence, these
partial FSLCAs explicitly indicate that their latitude data are
missing. On the other hand, for SLCA, besides the latitude of
New York city, the latitudes of cities belonging to the same
province or same country as York are returned instead.

While FSLCA consistently outperforms SLCA-based approaches,
for some queries, both suffer poor precision. For instance, consid-
ering QM1, most of our volunteers expect the result to be the city of
London, UK. However, there are other cities containing London
such as East London in South Africa which are unexpectedly
returned by both FSLCA and SLCA. Consider another example QP4
whose intention is probably to find proteins published in Science
in 2002. However, a protein can be involved in multiple publi-
cations. Hence if a protein has one publication in Science but
not in 2002 and another publication in 2002 but not in Science,
then this protein is still returned as a result. All volunteers agree
that both Science and 2002 should be associated with the same
publication. Nevertheless, we note that these problems lie on the
semantics of SLCA itself which is orthogonal to this work.

We also notice that both FSLCA and SLCA have low precision on
text-centric documents (e.g., SHAKESPEARE) compared to data-
centric documents (e.g., DBLP, Mondial). The reason is that all
SLCA approaches match each keyword individually while, for long-
text-attributes, collective matching is expected. For example, con-
sider QS3. Its intention is probably to find the speaker of the line
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Figure 6: Execution times (in msec). Note that y-axis is in log scale.
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Figure 7: Execution times (in msec).

to be or not to be. Thus, the keywords to be or not
to be are expected to be matched collectively to a single node in
that order. However, FSLCA and all SLCA-based approaches pro-
cess those keywords individually so that a result can have different
matches for to, be, not, etc. Nevertheless, this problem can be
solved by ranking [1, 16] or collective matching as used in IR.

Execution times. In this set of experiments, we study the execution
times of MESSIAH against state-of-the-art algorithms to compute
SLCA nodes. Notice that we only measure the time to retrieve the
SLCA/FSLCA nodes without retrieving the matches. The results are
reported in Figure 6 (MESSIAH is shown in solid colors).

Clearly, P-MESSIAH is faster than most of the SLCA-based ap-
proaches for majority of the queries. It is an order of magnitude
faster than the fastest SLCA-based approaches for several queries
(e.g., QD4, QM7, QP3, QP4, QS3). Notice that these queries have a
lot of label keywords (e.g., publication, inproceedings).
In an XML document, these keywords typically have a huge num-
ber of matches, significantly deteriorating performance of SLCA al-
gorithms while P-MESSIAH is independent of the number of label
matches (see Section 5.3). Also, C-MESSIAH is consistently fast
for all queries with only one query exceeding 100ms.

On the other hand, the execution times of C-MESSIAH (both in-
dexed and non-indexed) are generally worse than P-MESSIAH even
when its result size is smaller. It is because, unlike P-MESSIAH, C-
MESSIAH requires retrieval of label matches. As discussed in [17],
the indexed implementations (IC-MESSIAH, ILE, IIMS) are gener-
ally faster and perform well when there are selective keywords in
the query (i.e., QM6, QP5, etc.) while the non-indexed implemen-

tations are generally slower but perform well when all keywords
have high frequency (e.g., QD5). However, notice that C-MESSIAH
is still faster than its corresponding counterparts in [14] and [17].

Note that larger result size of P-MESSIAH compared to SLCA-
based approaches does not mean slower subtree retrieval cost for
the former. Since MESSIAH is conscious of the missing element
phenomenon, results of P-MESSIAH are usually specific descen-
dants of SLCA’s results. Thus, the size of each result subtree re-
turned by P-MESSIAH is smaller than that of SLCA-based approaches.
For instance, consider QD6. The result size of SLCA is 1 but its only
result subtree is, in fact, the whole XML tree!

Scalability. In this experiment, we vary the data size of DBLP
dataset by trimming it to 161MB, 322MB, 485MB and 646MB. The
performance of QD5 is then measured on these datasets. Note that
QD5 is chosen because it involves missing elements and has a large
result size, ensuring significantly different result size when the data
size varies. The results are shown in Figure 7(a). Expectedly,
the execution time increases when the data size increases for all
approaches. More importantly, our approaches are significantly
faster than all SLCA approaches across all datasets. Also notice
that, in this case, NC-MESSIAH is faster than P-MESSIAH. It is be-
cause cite is a relatively rare label in DBLP [5] so that there are
much fewer complete FSLCA nodes than partial FSLCA nodes.

Number of missing elements. In this experiment, we vary the
number of nodes which are missing in the document and study its
effect on the execution times of the benchmark approaches. The
query used for this experiment is interpro name on the IN-



TERPRO dataset. Notice that each interpro node in INTER-
PRO has exactly one leaf child with label name. We remove K%
of these name nodes and measure the performance on the mod-
ified document with missing nodes. Here, we vary K from 0 to
80 where K = 0% refers to the original document. The results
are reported in Figure 7(b). We can make two key observations.
Firstly, for existing SLCA algorithms and C-MESSIAH algorithms,
more missing elements tend to reduce the execution time. It is ex-
pected since more missing elements means fewer SLCA (complete
FSLCA) interpro nodes to be returned. Secondly, the execution
time of P-MESSIAH does not change significantly when the number
of missing nodes varies. Recall that the time complexity of Algo-
rithm 1 is independent of the number of label matches. Observe
that removing the name node for query interpro name only
affects the number of label matches to name.

Number of keywords. Next, we study the effect of number of
keywords in a query on the execution time. We use the query XML
title inproceedings author Torsten Grust 2007
(on DBLP) containing seven keywords for this purpose. We first
start with the query XML and then incrementally add more key-
words from left to right. In each step, the execution time is mea-
sured and reported in Figure 7(c). The results show that the per-
formances of all approaches except P-MESSIAH vary with different
number of keywords. On the other hand, the execution time of P-
MESSIAH is faster than these approaches and generally do not vary
significantly with the number of keywords. Observe that when the
number of keywords increases, a query has more input nodes but
the result size also decreases. For SLCA-based approaches the ef-
fect of the input nodes dominates since output size is generally not
as large as input size. However, for P-MESSIAH, for each keyword,
we only retrieve the value matches and type matches and not the
label matches. Hence, the input size is typically much smaller re-
sulting in significant performance gain. Also notice that, when the
number of keywords increase, the query becomes more selective
so that indexed algorithms tend to be faster than non-indexed algo-
rithms. Figure 7(c) also clearly shows that our C-MESSIAH algo-
rithms are faster than the corresponding SLCA counterparts.

Heuristics for algorithm selection. Lastly, we study the accuracy
of our proposed heuristic in choosing C-MESSIAH or P-MESSIAH
appropriately. As C-MESSIAH and P-MESSIAH share identical re-
sult set for all queries with subscripts 1 to 4, we only consider sam-
ple queries with subscripts 5 to 8. We set N = 20 (desired num-
ber of results). Figure 8 shows the results of our study. Clearly,
our approach estimates the number of complete FSLCA nodes with
reasonable accuracy (see Figure 4) and more importantly uses it
to make accurate choice. Specifically, for all queries where C-
MESSIAH would return empty results (e.g., QD5, QP5, QD6) or very
few results (e.g., QP7, QS6), P-MESSIAH is suitably chosen to effec-
tively inform a user existence of missing elements in desired result
sets. On the other hand, for queries with reasonably large results
size (e.g., QM7, QP6, QD5), C-MESSIAH is employed as discussed
in Section 5.5.

7. CONCLUSIONS
The quest for high quality keyword search in XML data has be-

come more pressing because many users favor the simplicity and
familiarity of search queries to formulating a syntactically correct
query using a complex XML query language. State-of-the-art XML
keyword search techniques adopt smallest lowest common ances-
tors (SLCAs) and its variants as a meaningful way to identify match-
ing nodes in XML data. However, SLCA-based approaches per-
form poorly for queries involving missing elements as they are
not optionality resilient. In this paper, we present two variants
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Figure 8: Heuristic-based algorithm selection (underline means
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of a novel algorithm called MESSIAH which identify optionality-
resilient FSLCA nodes instead of SLCA nodes to address this lim-
itation. MESSIAH exploits the notion of a full document and the
small size of its DataGuide to efficiently identify superior quality
FSLCA nodes. A compelling benefit of MESSIAH is that it can be
integrated seamlessly with state-of-the-art techniques for relevant
return nodes selection, potentially improving the strengths of these
approaches. Our empirical study demonstrated that MESSIAH not
only produces superior quality results but also is significantly faster
than state-of-the-art SLCA computation techniques.
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