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ABSTRACT
Recently, with the emergence of event-based online social services
(e.g., Meetup), there have been increasing online activities to cre-
ate, distribute, and organize social events. In this paper, we take the
first systematic step to discover influential event organizers from
online social networks who are essential to the overall success of
social events. Informally, such event organizers comprise a small
group of people who not only have the relevant skills or expertise
that are required for an event (e.g., conference) but they are also
able to influence largest number of people to actively contribute to
it. We formulate it as the problem of mining influential cover set
(ICS) where we wish to find k users in a social network G that to-
gether have the required skills or expertise (modeled as attributes
of nodes in G) to organize an event such that they can influence the
greatest number of individuals to participate in the event. The prob-
lem is, however, NP-hard. Hence, we propose three algorithms to
find approximate solutions to the problem. The first two algorithms
are greedy; they run faster, but have no guarantees. The third algo-
rithm is 2-approximate and guarantees to find a feasible solution if
any. Our empirical study over several real-world networks demon-
strates the superiority of our proposed solutions.

Categories and Subject Descriptors
H.2.8 [Information Systems]: Database Management

Keywords
Influence Maximization; Event-based social network; Event Orga-
nization

1. INTRODUCTION
Recently, there has been increasing popularity and growth of

event-based online social services, such as Plancast (www.plancast.
com) and Meetup (www.meetup.com), in providing platforms
for people to create, distribute, and organize social events. One
may leverage these platforms to organize a variety of social events
such as informal get-together, fund raising for flood victims, and
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organizing technical conferences. This has led to the germination
of event-based social network (EBSN) [16] comprising both online
and offline social interactions. The availability of such large scale
social data paves the way to take a data-driven approach to se-
lect influential event organizers for a social event. Intuitively, such
event organizers comprise a small group of people who not only
have the relevant skills or expertise that are required for an event
but they are also able to influence largest number of people to ac-
tively contribute to it. For example, to organize a multidisciplinary
conference on sustainability, we may want to choose a small group
of program chairs (e.g., three or four) whose expertise covers the
topics of the conference and are able to influence the largest num-
ber of people in the community to contribute and participate in the
conference. Obviously, selection of influential event organizers is
critical to the success of an event. Note that influential event or-
ganizers can be discovered by leveraging not only online EBSN
but also traditional online social networks. For instance, in order
to find influential organizers of a conference one may leverage the
DBLP network to identify them. In this paper, we take the first sys-
tematic step towards discovering such influential event organizers
from large-scale online social networks1.

Specifically, we wish to find k influential users in a social net-
work that together have the required skills to organize an event such
that they can influence the greatest number of individuals to join the
event. Consequently, we can formulate it as the problem of mining
influential cover set (ICS) in social networks. Formally, given a
social network G, let each node v in G refers to a user and is as-
sociated with a set of attributes A(v), where an attribute may refer
to an expertise topic of a user. The ICS problem is to identify a set
{v1, . . . , vk} of k users in G such that (1)

⋃k
i=1A(vi) covers a set

of query attributes, denoted by Q, and (2) the set of k users can
influence the largest number of other users in G.

At first glance, it may seem that the ICS problem can be ad-
dressed by adopting any technique designed to address the tradi-
tional influence maximization (IM) problem [11], which aims to
find a set of initial users of size k (referred to as seeds) so that they
eventually influence the largest number of individuals (referred to
as influence spread) in a social network. Unfortunately, this is not
the case as state-of-the-art IM techniques do not meet the attribute
covering constraint of the ICS problem. That is, in contrast to the
traditional IM problem, the challenge for solving the ICS problem is
to ensure that the k selected nodes cover the query attributes while
their influence spread is maximized. Furthermore, in our problem
setting k is significantly smaller (typically less than 6) compared
to the IM problem since, as mentioned above, the number of event

1In this paper, we refer to traditional online social network as well as online EBSN
collectively using the term “social network”.

www.plancast.com
www.plancast.com
www.meetup.com


organizers of a particular social event is typically small. Conse-
quently, it is imperative to design efficient techniques that leverage
this unique characteristics of the seed set size.

We show that the ICS problem is NP-hard and propose three al-
gorithms to address it. The first two solutions are greedy algo-
rithms, namely ScoreGreedy and PigeonGreedy, and the third
one is an approximation algorithm called PICS. Given an influ-
ential cover set query comprising query attributes Q and size k,
ScoreGreedy selects k seed nodes in a greedy manner by consid-
ering both the number of newly covered attributes and marginal in-
fluence increase incurred by a candidate node. The PigeonGreedy
algorithm leverages the pigeonhole principle since to cover |Q| at-
tributes with k nodes, we know at least one node in the selected
seed set should cover more than |Q|

k
attributes. Based on this ob-

servation, it chooses the one with the maximum marginal influence
increase among the nodes that cover at least |Q|

k
attributes.

While the greedy algorithms are efficient, they may not be able
to return a seed set that covers all attributes in the query even if such
a set exists. This led us to the design of the PICS (Partition-based
Influential Cover Set) algorithm, which always returns a seed set
that covers all query attributes if such a set exists, and, even bet-
ter, it is an approximation algorithm with performance guarantee.
Specifically, for each partition of the given attributes Q, we find
a seed set of size k in which the attributes of each node cover a
subset of the partition and they have the largest influence spread.
Finally, it returns the seed set with the maximum influence spread.
We prove that the algorithm can approximate the optimal solution
within a factor of 2.

Despite the benefits of PICS to address the ICS problem, a key
limitation is that the number of partitions can be very large when
|Q| is large (e.g., 115,975 at |Q|= 10), making it computationally
expensive. To improve the efficiency, we propose the notion of
cover-group to group partitions. We develop an algorithm called
PICS+ for pruning the partitions in each cover-group from con-
sideration, which cannot generate the result seed set. We show that
this algorithm is instance optimal in pruning unnecessary partitions.
In summary, the contributions of this paper are as follows.

• To the best of our knowledge, this is the first work to formu-
late the influential cover set (ICS) mining problem to discover
influential event organizers in online social networks.
• We develop two greedy algorithms, which are efficient but

have no performance guarantees, to address the ICS problem.
We also present an approximation algorithm that guarantees
to return a feasible solution if any .
• By applying the proposed algorithms to real-world datasets,

we demonstrate their efficiency and effectiveness in discov-
ering influential cover set.

The remainder of this paper is organized as follows. The related
work is reviewed in the next section. Section 3 presents the for-
mal definition of the influential cover set problem. In Sections 4,
we present the greedy algorithms. Section 5 presents the approxi-
mation algorithm PICS, its approximation ratio, and its optimized
variant called PICS+. Section 6 presents the experimental study.
Finally, the last section concludes this paper. The key notations
used in this paper are given in Table 1.

2. RELATED WORK
Event Organization and Event-based Social Networks. Lappas
et al. [13] consider the team formation problem in the presence of
a social network of individuals. They aim to find a team with the
set of required skills and minimum communication cost. The prob-
lem formulation is also adopted by some subsequent work on team

Table 1: Table of notations.
Notation Definition
Q The set of attributes in a query
k The size of seed set
A A set of attributes
A(v) The set of attributes associated to node v
V (A) The set of nodes such that for any v ∈ V (A), v can coverA
VQ The set of nodes such that for any v ∈ VQ,A(v) ∩Q 6= ∅
P A partition
R A covergroup
Li A list of tuples constructed with respect toR.ri
t A tuple in a list L
T A combination
σG(S) Influence spread of seed set S in G
σG(S1, S0)

+ σG(S0 ∪ S1) − σG(S0), the influence increase of S1 w.r.t.
S0

formation, e.g., [2, 17]. These techniques aim to form a team to
implement a task, but not organize an event; and more importantly
they do not consider the influence of users in team formulation.
However, influential organizers are very important for the success
of online event planning [18].

Recently, Liu et al. [16] introduce the notion of event-based so-
cial network (EBSN) which comprises online and offline social
interactions. Specifically, they analyze various characteristics of
EBSN such as network properties, community structures and in-
formation flow over this network. They also propose a technique
for event recommendation. Our work is orthogonal to this effort
as we focus on the online component of the EBSN and present an
efficient and scalable technique to find influential event organizers.
Influence Maximization Techniques. There exists a lot of work
on the problem of influence maximization in social networks. Kempe
et al. [11] formulate the problem as a discrete optimization prob-
lem, which is adopted by subsequent studies. They prove the influ-
ence maximization problem is NP-hard, and propose a greedy al-
gorithm to approximately solve it by repeatedly selecting the node
incurring the largest marginal influence increase. Most of subse-
quent algorithms follow the framework of the greedy algorithm.
However, the greedy algorithm framework does not consider the
attribute coverage when greedily selecting nodes into the seed set.
Hence, the solution returned by such a framework may not satisfy
the attribute coverage requirement in our problem setting.

The problem of calculating influence spread of a given seed set
itself is intractable (Chen et al. [5] prove it to be #P-hard). A num-
ber of approaches have been proposed to estimate the influence
spread. Kempe et al. [11] propose to simulate influence spread-
ing process starting from the given seed set for a large number of
times, and then use the average value of simulation results to ap-
proximate it. However, the simulation based method is computa-
tionally expensive. To mitigate this problem, Leskovec et al. [14]
propose a mechanism called CELF to reduce the number of times
required to calculate influence spread. Chen et al. propose two fast
heuristics algorithms, namely DegreeDiscount [5] and PMIA [4],
to select nodes at each step of the greedy algorithm. DegreeDis-
count estimates the influence spread for a node using its degree
after discounting the degrees of neighbors of the selected nodes in
previous steps. PMIA calculates influence spread by employing lo-
cal influence arborescences, which are based on the most probable
influence path between two nodes. Jung et al. [10] estimate the in-
fluence spread using an iterative approach, which is derived from
the belief propagation approach. The concept of influence spread
path is proposed to estimate the influence of a set of nodes [12,15].
Other Work on Influence. The problem of building the underly-
ing influence propagation graph from history data has been studied,
such as [8,19]. However, this problem is orthogonal to the influence
maximization problem, which assumes that the influence graph is
known.



3. THE INFLUENTIAL COVER SET (ICS)
PROBLEM

In this section, we begin by briefly introducing the Independent
Cascade (IC) model [11] for influence propagation, which has been
widely adopted in addressing the influence maximization problem
(e.g., [4,5,12,14,15]). Specifically, we leverage this influence prop-
agation model to define the influential cover set problem.

3.1 Independent Cascade (IC) Model
We refer to a social network as G(V,E,w), where V denotes a

set of nodes and E = {(vi, vj)|vi, vj ∈ V } is a set of edges. For
each edge (u, v) ∈ E, w(u, v) is the propagation probability from
u to v, which ranges over (0, 1]. In the IC model, (a) each node is
either active or inactive, and (b) a node is only allowed to switch
from an inactive state to an active state, but not vice versa.

Given a seed set S and a social network G, the IC model works in
an inductive way: Let S0 = S and St denote the set of nodes acti-
vated at step t. At step t+1, each node v ∈ St has a single chance
to activate each currently inactive neighbors u with a probability
w(u, v). The propagation process terminates when St = ∅.

The influence spread of S on G, denoted as σG(S), is defined as
the total number of nodes influenced by S. We define σG(S1, S0)

+ =
σG(S1∪S0)−σG(S0) to represent the marginal influence increase
produced by S1 w.r.t. S0. However, exact evaluation of influence
spread under the IC model is #P-hard [4]. Monte-Carlo (MC) sim-
ulations method is proposed to obtain an accurate estimate of the
influence spread [11]. By MC simulations method, we can obtain
arbitrarily close approximation of influence with high probability.

In addition, heuristic approaches (e.g., [4,5,12,14,15]) have been
proposed to approximate the computation.

3.2 Problem Definition
In practice, each node in a social network is usually associated

with a set of attributes to describe the node, which can represent
the skills or interests of a user. For instance, in Meetup, users are
associated with a set of interests like music and games. Given a
social network G (or network for brevity), we denote the set of
attributes of a node v by A(v). If attribute ai ∈ A(v), we say
that node v has (or covers) attribute ai; otherwise v does not have
(or cover) attribute ai. We say a set of nodes V ′ ⊆ V cover a set
of attributes A = {a1, . . . , am} if for any attribute ai ∈ A, there
exists at least one node v ∈ V ′ such that v has ai. We use V (A)
to denote the set of nodes such that each node in the set can cover
A. Given a set of attributes Q, we define VQ ⊆ V the candidate
set such that for any node v ∈ VQ, v contains at least one attribute
ai ∈ Q. Hereafter, we refer to a network as G(V,E,w,A).
Example 1: Given a network containing 4 nodes v1, v2, v3 and
v4. A(v1) = {a, b, c}, A(v2) = {a, b}, A(v3) = {c, d}, and
A(v4) = {a, b}. Let A1 = {a}. Then V (A1) = {v1, v2, v4}. 2

It is natural to take the attributes into account in finding a set of
most influential event organizers in a social network. As remarked
earlier, the traditional influence maximization problem cannot be
used to address this problem. Hence, in the following we propose
the influential cover set problem to address it. Intuitively, the influ-
ential cover set is to find a set of k nodes in a social network such
that the k nodes can cover the query attributes and the influence
spread of the selected nodes is maximized.

DEFINITION 1 (INFLUENTIAL COVER SET (ICS)). Given a set
of attributes Q and parameter k, the influential cover set (ICS)
problem aims to select the k seed nodes S from G(V,E,w,A):

S = arg max
S⊆V,|S|=k

σG(S)

s.t. Q ⊆
⋃
s∈S A(s), (1)

where σG(S) is the influence spread of S on G, i.e., the number
of nodes influenced by nodes in S, and A(s) denotes the set of
attributes associated with node s.

Note that |Q| is typically small in our problem setting and hence
we treat |Q| as a constant. Furthermore, as mentioned earlier, we
usually have k < |Q| because we want to choose a small number
k of users that have the required skills Q. Note that this is a chal-
lenging problem and our main focus in this paper; in the case of
k ≥ |Q|, the attribute covering constraint is easily satisfiable.

Observe that according to the problem definition, we look for the
seed set with exactly k nodes and an empty set will be returned if
such k nodes cannot be found, even if a smaller size seed set can
already cover all the attributes in the query.

THEOREM 1. The ICS problem is NP-hard.

PROOF. The traditional influence maximization problem is NP-
hard [11]. It can be regarded as a special case of ICS problem that
the attribute set of each node can always cover the query Q. Hence
the ICS problem is NP-hard.

Remark Our solutions to the ICS problem are orthogonal to the
influence probability of each edge in G, whose interpretation is an
application-specific issue [11] and is beyond the scope of this pa-
per. We assume that we have influence probability of each edge
in G. In practice, there are different ways to set the probabil-
ity [3, 7, 10, 11]. For example, we can adopt the approach [3] to
learn a set of topic-aware influence probabilities for each edge,
from which we determine the probability of each edge for an at-
tribute set Q based on the relevance between query Q and the top-
ics. Alternatively, we can follow other previous work on influence
maximization (e.g., [10, 11]).

4. GREEDY SOLUTIONS
In this section, we present two greedy algorithms for mining in-

fluential cover set (ICS).

4.1 Score-based Greedy Algorithm
To select seeds in a greedy manner, we need to take both attribute

coverage and influence spread into consideration. Specifically, the
node that we greedily select in each iteration is supposed to have
a high marginal influence increase and cover many uncovered at-
tributes.

To achieve this, we introduce a ranking function to measure the
score of each node, which will be used to select nodes in the greedy
algorithm. Given a set of uncovered attributes Q′ and a set of se-
lected seed nodes S′, the final score of node v with respect to S′

and Q′ is a linear interpolation of two factors, namely the score for
attribute coverage and the score for influence spread

Score(v, S′, Q′) = α
|F(v,Q′)|

max
u∈VQ

|F(u,Q′)|+(1−α) σG({v}, S′)+

max
u∈VQ

σG({u}, S′)+

(2)
where α ∈ [0, 1] is a parameter used to balance them, F(v,Q′) =
A(v) ∩Q′ is the set of attributes that are newly covered by v, and
σG({v}, S′)+ is the marginal influence increase of node v with re-
spect to S′. Note that if max

u∈VQ

|F(u,Q′)| (resp. max
u∈VQ

σG({u}, S′)+)

is 0, then |F(v,Q′)|
max

u∈VQ
|F(u,Q′)| (resp. σG({v},S′)+

max
u∈VQ

σG({u},S′)+ ) is set as 1.



Algorithm 1: PigeonGreedy
Input: Q, k,G
Output: Seed Set S

1 S ← ∅, Q′ ← Q;
2 while |S| < k do
3 L← {u | |A(u) ∩Q′| ≥ d |Q

′|
k−|S| e, u ∈ VQ} − S;

4 if L = ∅ then return ∅;
5 v ← argmax

u∈L
σG({u}, S)+;

6 Q′ ← Q′ −A(v);S ← S ∪ {v}
7 return S;

Based on the above score, we develop a greedy algorithm to se-
lect seed nodes iteratively, called ScoreGreedy. It selects seeds in
k iterations. In each iteration, the algorithm selects the node with
the maximum score and includes it in the seed set. If all attributes
are covered by the k selected nodes, ScoreGreedy returns seed set
S as the result; otherwise it returns ∅.

Note that ScoreGreedy cannot guarantee to find the seed set
that can cover all attributes even if such a set exists.
Time complexity. Let t(n) denote the time complexity of eval-
uating the influence spread of a node set in G, where n is the
number of nodes in G. The time complexity of ScoreGreedy is
O(k · |VQ| · t(n)).

4.2 PigeonGreedy Algorithm
We propose another greedy algorithm that leverages the pigeon-

hole principle to select seed nodes in a greedy manner.

LEMMA 1. If a seed set S with k nodes can cover the attribute
set Q, then at least one node in S can cover no fewer than d |Q|

k
e

attributes.

Based on Lemma 1, we propose the PigeonGreedy algorithm
outlined in Algorithm 1. Algorithm 1 follows the pigeonhole prin-
ciple. The main idea is to iteratively apply Lemma 1 in a greedy
manner. PigeonGreedy computes a set of nodes L which can
cover more than d |Q

′|
k−|S|e uncovered attributes, where Q′ is the set

of uncovered attributes. Then it selects the node with maximum
marginal influence increase from L. The algorithm invokes this
procedure iteratively until k nodes are added to the seed set.
Time complexity. Let ni be the number of nodes in L when se-
lecting the i-th seed node. Let t(n) denote the complexity of eval-
uating influence spread for one set in G, where n is the num-
ber of nodes in G. Therefore, the time cost of PigeonGreedy is
O(t(n)(

∑
i∈[1,k] ni)).

THEOREM 2. PigeonGreedy can always return a seed set con-
sisting of k nodes that covers attributes in the query if such a set
exists when k ≥ |Q|.

PROOF. When k ≥ |Q|, d |Q
′|

k−|S|e = 1. So we can cover at least
one attribute in each iteration. Hence PigeonGreedy can always
return a seed set satisfying the constraint if such a set exists.

Remark. Though PigeonGreedy can guarantee to return a seed
set covering all attributes if such a set exists when k ≥ |Q|, it does
not hold when k < |Q|. We illustrate this with an example.

Example 2: Consider the graph in Figure 1. LetQ = {a, b, c, d, e, f}.
LetA(v1) = {a, f},A(v2) = {a, b, c, d},A(v3) = {a, b, c, d, e},
and A(v4) = {b, c, d}. Suppose a user wants to select 2 nodes to
cover all the attributes in Q. When PigeonGreedy is employed,

v1 v2

v3 v4

v1: {a, f}

v2: {a, b, c, d}

v3: {a, b, c, d, e}

v4: {b, c, d}

Figure 1: An example of the ICS problem.

we first select a node with maximum influence from the nodes that
can cover no less than 6

2
= 3 attributes. Assume that v2 produces

larger influence spread than v3. So we add v2 to the seed set. Now
{e, f} are still uncovered and we can only choose one more node.
But there exists no node that can cover both {e, f}. Hence the al-
gorithm returns an empty set. However, there exists a seed set of 2
nodes, {v1, v3}, which cover all attributes in Q. 2

The two algorithms proposed here exploit different greedy strate-
gies. As we shall see later, ScoreGreedy usually has a better per-
formance when k is small while PigeonGreedy can usually find a
seed set with larger influence when k is large. However, neither of
them can guarantee to return a seed set if such a set exists.

5. APPROXIMATION SOLUTIONS
In this section, we present the Partition-based Influential Cover

Set (PICS) algorithm which addresses the limitation of the afore-
mentioned greedy approaches by guaranteeing finding a seed set
that covers all attributes in a query if such seed set exists. Further-
more, to reduce unnecessary computation in PICS, we propose an
optimized variant of PICS which we refer to as PICS+.

5.1 Terminology
We first introduce some terminologies to facilitate exposition.

DEFINITION 2 (PARTITION). Given a set Q of attributes and
a positive integer k, P = {A1, . . . , Am} (0 ≤ m ≤ k) is a
partition of Q if and only if

(1) for each i ∈ [1,m], attribute set Ai ⊆ Q is not empty;

(2) for any i 6= j (i, j ∈ [1,m]), Ai ∩Aj = ∅.
(3)

⋃
i∈[1,m]Ai = Q, i.e., A1, . . . , Am together cover Q.

We call
⋃
Ai∈P Ai the attributes of P . Given two sets of attributes

Q1 and Q2, Q1 ⊆ Q2, and a partition P ′ of Q1, we say that P ′ is
a partial partition of Q2.

Example 3: Consider an attribute setQ = {a, b, c, d, e} and an in-
teger k = 3. Then we have the following: (1)P1 = {{a, b, c}, {d, e}}
is a partition; (2) P2 = {{b, c, d}, {a, e}} is a partition; (3) P3 =
{{a, b, c}, {c, d}, {e}} is not a partition since {a, b, c}∩{c, d} 6=
∅; (4) P4 = {{a, b}, {d, e}} is not a partition since c is not covered
by P4; And (5) P5 = {{a, b}, {c}, {d}, {e}} is not a partition
since P5 contains more than 3 attribute sets. 2

LEMMA 2. For a set Q of attributes and a positive integer k,
the number of all possible partitions ofQ is bounded by

∑|Q|
i=1 {

|Q|
i },

where {|Q|i } is a stirling number of the second type, i.e., {|Q|i } =
1
i!

∑i
j=0(−1)

i−j(ij)j
|Q|.

PROOF. There are two cases to consider: k ≤ |Q| or k > |Q|.
(1) When k ≤ |Q|, it is easy to know that there are

∑k
i=1 {

|Q|
i }

≤
∑|Q|
i=1 {

|Q|
i } partitions. Recall that the stirling number of the

second type {|Q|i } is the number of ways to partition a set of |Q|
elements into i nonempty subsets [9].



Algorithm 2: PICS
Input: Q, k,G
Output: Seed Set S

1 S ← ∅;
2 if |VQ| < k then return ∅
3 for (j ← 0; j < k; j ← j + 1) do
4 SP [j]← argmaxu∈VQ−S′ σG(u, S

′)+;
5 S′ ← S′ ∪ {SP [j]} ;
6 for each partition P = {A1, . . . , Am} of Q do
7 SP ← ∅; j ← 0;
8 while |SP | < k − |P | do
9 For each Ai ∈ P , remove attributes covered by SP , and

remove Ai from P if all attributes in Ai are covered;
10 SP ← SP ∪ {SP [j]}; j ← j + 1;
11 if σG(SP ) + upper(P ) > σG(S) then
12 SP ← PartitionSelect(SP ,G, {V (Ai1 ), ..., V (Aih )});
13 if σG(SP ∪ SP ) > σG(S) then
14 S ← SP ∪ SP ;
15 return S;

(2) When k > |Q|, there are at most |Q| attribute sets in a
partition by its definition. Then similar to (1), we know that there
are

∑|Q|
i=1 {

|Q|
i } possible partitions.

By (1) and (2) above, we have the conclusion.

5.2 The PICS Algorithm
We now give the main intuition behind PICS. Recall an attribute

set Ai in a partition P corresponds to a set of nodes V (Ai) that
each contains Ai. Clearly, if for every attribute set Ai of partition
P , we select a node from V (Ai) to form a seed set, it is guaranteed
that such a seed set covers all attributes in Q. Since the number
(|P |) of attribute sets of P may be less than k, to get a seed set with
k nodes, we may need to further select nodes from VQ. Hence,
in PICS, we first select nodes from VQ since V (Ai) ⊆ VQ, and
thus the nodes selected from VQ are more likely to provide a better
influence spread. Then the attributes covered by the nodes selected
from VQ can be removed from P because they have already been
covered; we select nodes from V (Ai) for each remaining Ai in P .
Among the seed sets selected from every partition, we choose a
seed set with the maximum influence spread.

More specifically, for each partition P , PICS aims to find a seed
set with the maximum influence spread that covers all attributes in
Q as follows: (1) We greedily select a set of k−|P | nodes, denoted
by SP , from VQ (without any constraint of attribute coverage); (2)
For each attribute set Ai ∈ P , we remove from it the attributes that
have been covered by a node in SP ; If all attributes inAi have been
covered, we remove Ai from P , and greedily choose a node from
VQ and add it to SP ; We repeat this step until |SP |+ |P | = k and
no attribute in P is covered by SP ; and (3) The set of remaining
attribute set actually forms a partial partition of Q, denoted by P ′.
For each attribute set Ai ∈ P ′, we greedily select a node vi from
V (Ai) to cover Ai; these selected nodes form a set, denoted by
SP . We call the set SP free set, and the set SP constrained set. (4)
Finally, PICS returns the seed set with the largest influence among
the seed sets of all partitions.

Algorithm 2 outlines the PICS algorithm. It takes as input a set
of attributes Q, an integer k, and a social network G. The result
seed set is stored by S, which is initialized by an empty set (line
1). In the rare case that |VQ| < k, it is impossible to find a seed set
consisting of k nodes to cover all attributes, and the algorithm re-
turns an empty set as the result (line 2). We greedily select k nodes
from VQ and store them in an array SP (lines 3–5), and then for

Function PartitionSelect(SP ,G, {V1, . . . , Vm})
Output: Seed Set SP

1 SP ← ∅;
2 for each Vi ∈ {V1, . . . , Vm} do
3 if Vi − SP = ∅ then return ∅;
4 v ← argmaxu∈(Vi−SP ) σG({u}, SP ∪ SP )

+;
5 SP ← SP ∪ {v}
6 return SP ;

each partition P we use array SP to populate free set SP , which
records the set of nodes selected from VQ (lines 7–10). For each
Ai ∈ P , we remove from it attributes covered by SP and remove
it from P if all attributes in Ai are covered (line 9), i.e., we can se-
lect a node from VQ rather than V (Ai). Next, PICS selects a node
for each remaining attribute set in partition P to ensure that all at-
tributes of Q are covered; all the selected nodes form constrained
set Sp. Let Ai1 , . . . , Aih be the remaining attribute sets in P . Be-
fore finding Sp, we first apply an optimization (discussed later) to
check if partition P can be pruned (line 11). If P cannot be pruned,
PICS invokes PartitionSelect to find constrained set Sp with the
node sets that can cover the remaining attribute sets of partition P
as the arguments (line 12). Result S is updated if Sp ∪ SP has a
higher influence (lines 13–14). When all partitions are considered,
S is returned as the final result.

The PartitionSelect procedure takes as input a set of attributes
Q, an integer k, a network G, and a group of node sets {V1, . . . , Vm}.
It first checks whether Vi contains at least one node that has not
been added to SP yet. If not, empty set is returned as the result.
Otherwise, it picks the node with maximum marginal influence in-
crease from Vi − SP (line 4). It repeats this until every node set Vi
provides one node to SP .

Example 4: Reconsider Example 2. Q has many partitions and
P1 = {{a, b, c, d, e, f}} is a partition. When processing P1 in
PICS, we add SP [0] to SP1

due to k − |P1| = 1 > 0. We assume
SP [0] = v1. We then remove attributes of v1 from each attribute
set in P1 and P1 becomes {{b, c, d, e}}. Now k = |P1| + |SP1

|
and free set SP1

= {v1}. Assume that σG(SP1
) + upper(P1) >

σG(S) and we invoke PartitionSelect to compute constrained set
SP1 . Now P1 only contains one attribute set {b, c, d, e} and {v3}
is the node set that can cover it. PartitionSelelct returns {v3} as
SP1 . Therefore the seed set for P1 is {v1, v3}. 2

Next, we compute an upper bound of influence spread for any
constrained set SP selected for set P , which can be a partition or
a partial partition (if any Ai is removed from P at line 12).

DEFINITION 3 (UPPER BOUND OF INFLUENCE SPREAD). The
upper bound of P w.r.t. SP is defined by

upper(P, SP ) =
∑
Ai∈P

max
v∈V (Ai)

σG({v}, SP )
+

LEMMA 3. We have upper(P, SP ) ≥ σG(SP , SP )
+ for any

SP returned by function PartitionSelect.

PROOF. Since the function σG() is submodular, we have

σG(SP , SP )
+ ≤

∑
v∈SP

σG({v}, SP )
+ ≤

∑
Ai∈P

max
v∈V (Ai)

σG({v}, SP )
+

Based on Lemma 3, if the upper bound together with the influence
of SP is smaller than the known best result σG(S), we simply prune
the partition P to avoid finding a seed set for it.



THEOREM 3. Given a network G(V,E,w,A), a set of attributes
Q, and an integer k, PICS can always find a set of k nodes S that
cover all attributes in Q, if such a set exists.

PROOF. Assume that S is a seed set that covers all attributes
in Q, which implies |VQ| ≥ k. We can find m (≤ k) nodes
{v1, . . ., vm} from S such that ∪i∈[1,m]A(vi) = Q and for each
node vi there exists an attribute ai ∈ Q that is covered by vi but
not other m − 1 nodes. The m nodes correspond to a partition
P = {A1, . . . , Am} such that vi ∈ V (Ai), i.e., V (Ai) 6= ∅. Since
PICS considers all possible partitions, the partition P is guaran-
teed to be identified. For the partition P , it is guaranteed that PICS
will generate set SP due to |VQ| ≥ k. Since V (Ai) is not empty
for each Ai in P , PICS can select one node from V (Ai). Hence,
PICS can find S covering all attributes if such S exists.

Time Complexity. Let t(n) denote the time complexity of evaluat-
ing the influence spread of a node set in G, where n is the number
of nodes in G. Given a partition P = {A1, . . . , Am}, it takes
O((k)|VQ| · t(n)) to select a seed set for a partition. Since there
are at most

∑|Q|
i=1{

|Q|
i } partitions, the time complexity of PICS is

O((k)|VQ| · t(n) ·
∑|Q|
i=1{

|Q|
i }).

5.3 Approximation Ratio Analysis of PICS
When MC simulations are adopted to compute the influence spread,

algorithm PICS has the following performance guarantee.

THEOREM 4. If MC simulations are adopted to compute the in-
fluence spread, algorithm PICS provides an approximation bound
of 1/2−φ, where φ is an arbitrarily small positive rational number.

PROOF. By Lemma 2, we know that PICS finishes in polyno-
mial time when |Q| is bounded by a constant. We next show PICS
has an approximation bound of 1/2− φ.

First let SOPT = {s1, . . . , sk} be an optimal solution that the set
of k seed nodes has the maximum σG(S

OPT ). Also let partition
POPT = {A1, . . . , Am} (m ≤ k) such that for each Ai ∈ POPT ,
there must exist an si ∈ SOPT such that si ∈ V (Ai), and, more-
over, si 6= sj for Ai and Aj (i 6= j ∈ [1,m]). Note that algorithm
PICS can always find partition POPT . Let S = SPOPT ∪ SPOPT

be the seed set selected from POPT by PICS, where SPOPT is the
constrained set and SPOPT

is the free set. Without loss of gener-
ality, we assume that SPOPT has g nodes, where g ≤ m. We de-
note P ′ = {A′1, ..., A′g} as the set of remaining attributes after re-
moving the attributes covered by the free set. Apparently, for each
A′i ∈ P ′, we can find a different Aj ∈ POPT such that A′i ⊆ Aj
and V (Aj) ⊆ V (A′i). Thus for each A′i ∈ P ′, we can find a dif-
ferent si ∈ SOPT such that si ∈ V (A′i). We use SOPTPOPT

to denote
such nodes and SOPT is divided into SOPTPOPT

and SOPT
POPT

such
that SOPTPOPT

= {s1, ..., sg} and SPOPT = {u1, ..., ug}, where
si ∈ V (A′i) and ui ∈ V (A′i) for any i ∈ [1, g]. We also assume
that SOPT

POPT
= {sg+1, ..., sk} and SPOPT

= {ug+1, ..., uk}.
Since the influence function σG() is submodular and monotone,

and ∀S ⊆ V , t ∈ V , σG(t, S)+ ≥ 0, we have:

σG(S
OPT ) ≤ σG(S) +

∑
s∈SOPT−S

σG({s}, S)+

≤ σG(S) +
∑

si∈SOPT

σG({si}, S)+
(3)

Let Si be the set of nodes after the i-th seed node is added to the
seed node set. For any node v ∈ V , σG({v}, Si)+ ≥ σG({v}, S)+.
It follows that σG(SOPT ) ≤ σG(S) +

∑
si∈SOPT

σG({si}, Si−1)
+.

When selecting the i-th seed node uj , there are two cases to con-
sider. (1) When the i-th node is from the free set, PICS selects
the node with maximum approximate marginal influence increase
from VQ. Then the node that PICS selects has a larger influence
than any node in SOPT

POPT
. (2) When the i-th selected node is from

the constrained set, it is the node with maximum marginal influ-
ence increase in V (A′j). Since sj ∈ V (A′j), we know that the uj
can produce a higher marginal influence increase than sj . Thus, for
each node ui in S, there’s a different node si in SOPT such that
ui has a larger marginal influence increase than si. By MC simu-
lations, we can obtain arbitrarily close approximations to the exact
influence with a high probability. Hence, for any ε > 0, there is a
γ > 0 such that by using (1 + γ)-approximate value of σG(), we
have

σG({uj}, Si−1)
+ + ε ≥ σG({sj}, Si−1)

+ (4)

By Equation 4, we have the following.

σG(S
OPT ) ≤ σG(S) +

∑
si∈SOPT

(σG({si}, Si−1)
+ + ε)

≤ σG(S) +
∑
ui∈S

σG({ui}, Si−1)
+ + kε

= σG(S) + σG(S) + kε = 2 · σG(S) + kε

(5)

That is, σG(S) ≥ 1
2
· σG(SOPT )− k

2
ε for both cases.

Let Smax be the seed set returned by Algorithm PICS. Since
PICS returns the seed set with maximum approximate influence
spread, σG(Smax) ≥ σG(S)− ε. Let φ = ( k

2
+ 1)ε and φ can be

an arbitrarily small positive rational value by changing ε. Then we
have σG(S) ≥ 1

2
· σG(SOPT )− φ.

Put these together, we have the conclusion.

Next we discuss the approximation ratio when using heuristic
methods to approximate the influence spread for PICS, such as De-
greeDiscount [5], MIP [4], ISP [15], and IRIE [10]. Though these
heuristic methods cannot provide a theoretical bound for influence
spread, they perform well in practice in terms of both efficiency and
influence spread, and they are also submodular and monotone.

LetHG be the class of heuristic algorithms for influence approxi-
mation that are submodular and monotone, and let σ̂G ∈ HG be one
of the heuristic methods in HG . Now assume that σ̂G is employed
to compute the influence spread. We have the following result.

THEOREM 5. σ̂G(S) ≥ 1/2σ̂G(SOPT ), where S is a seed set
returned by PICS based on σ̂G , and SOPT is an optimal seed set
whose influence σ̂G(SOPT ) is maximum.

PROOF. Since σ̂G is submodular and monotone, by the proof of
Theorem 4 we have

σ̂G(SOPT ) ≤ σ̂G(S) +
∑

si∈SOPT

σ̂G({si}, Si−1)
+,

where Si is the set of nodes after the i-th seed node is added to
the seed set. For si ∈ SOPT = {s1, . . . , sk} and ui ∈ S =
{u1, . . . , uk}, we also have σ̂G({si}, Si−1)

+ ≤ σ̂G({ui}, Si−1)
+.

Therefore, it follows that

σ̂G(SOPT ) ≤ σ̂G(S) +
∑
ui∈S

σ̂G({ui}, Si−1)
+

= σ̂G(S) + σ̂G(S) = 2σ̂G(S)

(6)



5.4 Optimized PICS Algorithm
Observe that the PICS algorithm needs to enumerate all partitions,

which can be inefficient. To alleviate this problem, we leverage
the notion of cover-groups so that the partitions can be reorga-
nized by their cover-groups. Consequently, as we shall see later,
such organization will enable us to develop a Threshold-Algorithm-
flavored [6] approach to avoid unnecessary enumeration of partitions.
We also show that our optimized algorithm is instance optimal in
pruning unnecessary partitions.

5.4.1 Cover-group
We first introduce the notion of cover-group and then elaborate

on how we can group partitions using cover-group.

DEFINITION 4 (cover-group). Consider a set of attributes Q
and a partial partition P = {A1, A2, . . . , Am} of Q, and let ri =
|Ai| (i ∈ [1,m]) be the number of attributes of Ai. The multiset
R = {r1, r2, . . . , rm} is called the cover-group of P .

Example 5: Consider Q = {a, b, c, d, e}. (1) P1 = {{c, d}, {e}}
is a partial partition of Q and its cover-group is {2, 1}. (2) P2 =
{{c, e}, {d}} is also a partial partition of Q and it cover-group
is {2, 1}. Observe that although P1 and P2 are 2 different partial
partitions of Q, they have the same cover-group. 2

Recall that for each partition P the seed set returned by the
PICS algorithm comprises two parts: free set SP and constrained
set SP . Nodes in SP are selected from VQ. Nodes in constrained
set SP are selected based on P ′, a partial partition of Q, which
comprises the remaining attribute sets after removing attributes cov-
ered by nodes in SP . Hereafter, when we say partial partition of a
partition, we refer to the partial partition like P ′.

We group partitions in two steps. First, we group partitions ac-
cording to their free sets (SP ), i.e., partitions with the same free
set will be put into the same group. This means that for partitions
in the same group, their partial partitions contain the same number
of attribute sets and covers the same set of attributes. We generate
at most min (k, |Q|) groups in this step because there are at most
min (k, |Q|) free set.Second, for partitions in each group gener-
ated in the first step, we further group them based on their partial
partitions’ cover-groups, i.e., if their partial partitions’
cover-groups are the same, they form a group.

Observe that each group has a distinct cover-group and can be
uniquely identified by its cover-group, which is shared by all the
partitions in the group. In addition, for each groupR, its partitions
share the same free set, denoted by SR. For group R, the set
of attributes that are not covered by nodes in SR are denoted by
QR; they actually form the attribute sets of the partial partitions of
partitions in the group.

Example 6: Consider a set of attributesQ = {a, b, c, d, e}, k = 4
and two partitions of Q, P1 = {{a, b}, {c}, {d, e}} and P2 =
{{a, b, c}, {d, e}}. Assume that the first two nodes selected from
VQ can cover {c, d}. Then for both P1 and P2, their free set is the
same, and their partial partition is {{a, b}, {e}}. Hence, the two
partitions are in the same group. 2

Given Q, the number of cover-groups is no more than the num-
ber of integer partitions of |Q|, which is much smaller than the
number of partitions [1] (e.g., at |Q| = 10, the number of
cover-groups is bounded by 42 while the number of partitions can
be 115,975). To enumerate all the cover-groups, we enumerate
cover-groups for each size. To enumerate cover-groups of size i,
we first select k − i nodes from VQ greedily, which form the free
set. Let QR be the set of attributes not covered by the k − i nodes
in the free set. Attributes in QR form partial partitions of size i.

Table 2: Examples for UA.

List1(r1 = 3) List2(r2 = 2) List3(r3 = 1)

t1 : [{abc}, {v1}, 40] t2 : [{de}, {v4, v5}, 60] t3 : [{f}, {v3, v6}, 70]
t4 : [{abe}, {v2}, 30] t5 : [{ab}, {v1, v2}, 40] t6 : [{d}, {v4, v5}, 60]
t7 : [{bcf}, {v3}, 20] t8 : [{bc}, {v1, v3}, 40] t9 : [{e}, {v2, v4, v5}, 60]
t10 : [{cde}, {v4}, 10] t11 : [{ac}, {v1}, 40] t12 : [{a}, {v1, v2}, 40]

t13 : [{ae}, {v2}, 30] t14 : [{b}, {v1, v2, v3}, 40]
t15 : [{be}, {v2}, 30] t16 : [{c}, {v1, v3, v4}, 40]
t17 : [{bf}, {v3}, 20]
t18 : [{cf}, {v3}, 20]
t19 : [{cd}, {v4}, 10]
t20 : [{ce}, {v4}, 10]

Every way of decomposing |QR| as the sum of i positive integers
corresponds to a cover-group. In case of QR = ∅ and i = 0, the
only cover-group is ∅.

5.4.2 The Upper bound Algorithm (UA)
Observe that each element R.ri of cover-group R may corre-

spond to many attribute sets, each of which contains R.ri number
of uncovered attributes and may correspond to many nodes that
contain the attribute set. For each element R.ri, we order its corre-
sponding attribute sets in descending order of their influence upper
bounds to form a list. This enables us to access partial partitions
under the cover-group by scanning these lists, and design an al-
gorithm called Upper bound Algorithm (UA) to prune enumerat-
ing partial partitions, based on the no random access (NRA) al-
gorithm [6] and compute a seed set for each enumerated partial
partition. After we process all cover-groups, the seed set with
maximum influence spread is returned as the final result.

We now proceed to detail how to generate lists for cover-group
R. Each element R.ri (1 ≤ i ≤ m) corresponds to a set of at-
tribute sets, each of which contains R.ri attributes which are not
covered by any node in SR. For each element R.ri, we build a list
Li for its set of attribute sets. Each tuple t in list Li is associated
with three types of information: an attribute set At that comprises
ri attributes in QR, a set of nodes Vt each of which can cover At,
and the maximum marginal influence increase of nodes in Vt w.r.t.
SR, i.e., maxv∈Vt σG({v}, SR)

+. We denote the three types of
information of a tuple t by Attr(t), Node(t), and Inf(t), respec-
tively. The tuples in list Li are ranked in descending order of their
maximum marginal influence increase Inf(t). We say t1 = t2 if
and only if (1) Attr(t1) = Attr(t2), (2) Node(t1) = Node(t2),
and (3) Inf(t1) = Inf(t2).

Example 7: Consider a network G(V,E,w,A), where V =
{v1, v2, v3, v4, v5, v6}, andA(v1) = {a, b, c},A(v2) = {a, b, e},
A(v3) = {b, c, f}, A(v4) = {c, d, e}, A(v5) = {d, e}, and
A(v6) = {f}. Let Q = {a, b, c, d, e}, k = 3, cover-group
R = {3, 2, 1}, and SR = ∅. Let the marginal influence increase of
v1, v2, v3, v4, v5 w.r.t. SR be 40, 30, 20, 10, 60, 70, respectively.
We construct List1, List2, List3 as shown in Table 2. 2

We can also divide a tuple t into several smaller tuples t1, t2, . . . , tm,
where (a)Attr(ti) = Attr(t) (1 ≤ i ≤ m), (b)∪i∈[1,m]Node(ti)
= Node(t), and (c) Inf(ti) is computed within its Node(ti).

Next, based on the lists of a cover-group R, we present our
NRA-inspired UA approach to pruning the enumeration of partitions
inR while finding the partition with the maximum influence. Note
that NRA, which is proposed to solve the well-known top-k prob-
lem, cannot be directly adopted here. Specifically, our goal is to
prune the enumeration of partition without missing the result. In
contrast to the setting for finding top-k objects, a tuple in a list Li
can be combined with multiple tuples in any other list Lj (j 6= i)
of R to cover QR. Hence, the NRA algorithm (and its variants)



cannot be used directly. To facilitate the exposition of UA, we first
define the notion of combination.

DEFINITION 5 (COMBINATION). Given a cover-groupR and
a set of tuple lists {L1, . . . , L|R|}, we call a group of p (p ≤ |R|)
tuples t1, . . . , tp, each from a distinct list in {L1, . . . , L|R|}, a
combination, denoted by T , if Attr(ti) ∩ Attr(tj) = ∅ for any
i, j ∈ [1, p], i 6= j. A combination T is called a full combination
if |T | = |R|.

We say two combinations T1 = T2 if for each tuple ti in T1,
there exists a tuple tj in T2 such that ti = tj .

Example 8: Consider Table 2. Here (1) {t1, t2} is a combination,
(2) {t1, t5} is not a combination because Attr(t1) ∩ Attr(t5) =
{ab}, (3) {t1, t4} is not a combination because the tuples come
from a single list List1, and (4) {t1, t2, t3} is a full combination.

2

Our algorithm UA does sorted access in parallel to each of the
|R| sorted list Li. At each depth d (when d tuples have been ac-
cessed under sorted access in each list), we maintain (1) all the
generated combinations ; (2) the influence values associated with
the tuples at depth d in the lists; and (3) the upper bound of influ-
ence for each combination T . Note that if two combinations are
equal, we only maintain one of them. For a tuple from a list Li
(1 ≤ i ≤ m) at depth d, we check whether it can be combined with
any existing combination to form a new combination.

Once a combination becomes a full combination, Attr(t) for
all its tuple t together forms a partial partition of QR. We then
compute a upper bound influence value using Definition 3. If the
upper bound is better than the best seed set so far, we compute the
seed set for the combination to check if it has a larger influence,
and prune it, otherwise. For each combination, we maintain the
upper bound of its marginal influence increase using Definition 6.

DEFINITION 6 (UPPER BOUND FOR combination). GivenR,
SR, and depth d, let xd1, . . . , x

d
m be the influence values associ-

ated with the tuples at depth d in lists L1, . . . , Lm, respectively.
Consider a combination T , and assume that Li1 , . . . , Lij (j =
|R| − |T |) are the set of lists from which we have not selected any
tuple for T . The upper bound marginal influence increase w.r.t. SR
of T at depth d is upper(T )d =

∑
t∈T Inf(t)+xdi1 + · · ·+xdij .

Example 9: Consider the lists in Table 2. Let T = {t1, t2} and
List3 be the list from which no tuples are selected for T . Assume
that we access tuples at depth 4. Then we have x43 = 40. Hence
upper(T )4 = inf(t1)+ inf(t2)+x

4
3 = 40+60+40 = 140. 2

If the upper bound of marginal influence increase of T is smaller
than the currently best marginal influence increase, we can safely
prune the combination, i.e., any full combination extended from
it cannot provide a better result. The drop condition is given in
Definition 7. When no combination is left, our algorithm UA halts.

DEFINITION 7 (DROP-CONDITION). Given a set of lists L1,
. . . , Lm, a set of nodes SR, and a combination T , let Infmax be
the currently best influence spread of any known seed set. We drop
T at depth d if either of the following conditions is satisfied:

1. upper(T )d + σG(SR) < Infmax; or

2. There exists a list Li from which we have not selected any
tuple for T such that the end of Li is reached at depth d.

Example 10: Consider the lists in Table 2. Suppose SR = ∅,
σG(SR) = 0, and the currently best influence spread of known
seed sets is 165. (1) Assume that we access tuples at depth 3, and

Algorithm 3: UA
Input: G, SR, L1, . . . , Lm, S
Output: Seed set S

1 d← 0, C ← {∅};
2 repeat
3 for each T ∈ C do
4 if T satisfies the drop-condition then
5 remove T from C;
6 for tuple tdi in each list Li at depth d do
7 for each T ∈ C do
8 T ′ = T ∪ {tdi };
9 if T ′ is a full combination then

10 ST ′ ← PartitionSelect(Sk−m,G, Nodes(T ′));
11 if σG(ST ′ ∪ SR) > σG(S) then
12 S ← ST ′ ∪ SR;
13 else
14 C ← C ∪ {T ′};
15 d← d+ 1;
16 until C = ∅;
17 return S

T1 = {t1, t2} is a combination. Its upper bound influence at depth
3 is upper(T1)3 = Inf(t1)+Inf(t2)+x

3
3 = 40+60+60 = 160.

It is smaller than the known best influence 165, and thus we drop
T1 at depth 3. (2) Assume that we access tuples at depth 5, and
T2 = {t2, t3} is a combination. The end of list List1 is reached at
depth 5, and thus T2 can be dropped. 2

Algorithm 3 presents the pseudo code of UA. It takes as input
(1) network G, (2) the node set SR consisting of k − |R| nodes
selected from VQ, (3) the set of lists L1, . . . , L|R|, and (4) the seed
set S with maximum influence spread known so far. In UA, we use
the following variables: d indicates the depth of lists that UA is ac-
cessing; and C keeps track of all active combinations. At depth d,
we first check each combination in C and remove it from C if it
satisfies the drop-condition(line 3–5). Then for tuple tdi in each list
Li, UA checks each combination in C (lines 6–14). Specifically, it
adds tdi to each combination to get a new combination (line 8). If
a new combination is a full combination, then UA invokes Parti-
tionSelect to compute ST ′ , where argumentNodes(T ) represents
the set of node sets for combination T , each node set correspond-
ing to Nodes(t), t ∈ T ; Otherwise, we add T ′ to C (line 14). We
update the best known seed set S if the influence of ST ′ ∪ SR is
larger than σG(S)(lines 11–12). We increase d to access tuples at
next level (line 15) until C is empty. Finally, we return S.

Example 11: Consider UA runs on the three lists in Table 2: Ini-
tially,C comprises an ∅. At depth 1, it computes upper bound influ-
ence for ∅, representing a combination, which is 40 + 60 + 70 =
170. (1) Assume that the currently known best influence σG(S)
is 180. UA first remove ∅ from C because of the drop-condition
and then halts. (2) Assume that σG(S) is 150. UA will find 7
combinations: T1 = {t1}, T2 = {t2}, T3 = {t1, t2}, T4 = {t3},
T5 = {t1, t3}, T6 = {t2, t3} and T7 = {t1, t2, t3}. Since T7 is a
full combination, UA invokes PartitionSelect to compute a seed
set for Nodes(T7). Assume the seed set is {v1, v5, v6} and its in-
fluence is 165. We update S and now σG(S) = 165. Then at depth
2,UA next checks the combinations inC. At depth 2, upper(∅)2 =
130, upper(T1)2 = 140, upper(T )2 = 150, upper(T3)2 = 160,
upper(T4)2 = 140, upper(T5) = 150, upper(T6) = 160. The
upper bound of every combination in C is smaller than the best
known influence 165, and thus all of them are dropped at depth 2
and C is empty. Therefore the algorithm terminates. 2

We next consider the optimality of Algorithm UA.



Algorithm 4: PICS+
Input: G, Q, k
Output: Seed set S

1 S ← ∅;
2 if |VQ| < k then return ∅;
3 foreach j from 1 to k do
4 SP [j]← argmaxu∈VQ−S′ σG(u, S

′)+;S′ = S′ ∪ {SP [j]};
5 foreach cover-group R do
6 SR = ∪i∈[1,k−|R|]{SP [i]};
7 Build lists L1, . . . , L|R|;
8 S ← UA(G, SR, L1, . . . , L|R|, S);
9 return S;

THEOREM 6. Given a cover-groupR and a set of nodes SR, let
D be the class of all generated |R| lists L1, . . . , L|R| for R. Let A
be the class of correct algorithms that run on every {L1, . . . , Lm}
using sorted access to deterministically find the full combination
with maximum marginal influence increase with respect to SP , which
is computed by PartitionSelelct. Apparently, algorithm UA is in A.
We say UA is instance optimal over A and D, i.e. for any algorithm
A ∈ A and any {L1, . . . , Lm} ∈ D, cost(UA, {L1, . . . , Lm}) ≤
c×cost(A , {L1, . . . , Lm}), where cost(UA, {L1, . . . , Lm})(resp.
cost(A , {L1, . . . , Lm})) is the number of tuples seen by UA(resp.
A ) and c is a constant.

PROOF. Assume that UA halts at depth d onD1 = {L1, . . . , Lm}.
We will show that A must get to depth d in at least one list in D1;
otherwise A cannot always return the correct answer. For contra-
diction, we assume that A can always return the correct answer
and it does not get to depth d in any list in D1. We will show the
contradiction by constructing a D2 ∈ D on which A cannot find
the correct answer.

Since UA halts at depth d on D1, there exists a combination T
such that upper(T )d−1 > σG(S). We constructD2 = {L′1, . . . , L′m}
as follows: L′i is identical to Li up to depth d − 1 (that is, for
each i ∈ [1,m], the top d − 1 tuples in L′i are the same as in
Li). Run UA on D2. There also exists a combination T ′ such that
T ′ and T contain the same attribute sets. Let L′j1 , . . . , L

′
jx(x =

|R| − |T ′|) be the set of lists from which we have not selected any
tuple for T ′. We let the attribute sets in the tuples at depth d in
L′j1 , . . . , L

′
jx be the particular attribute sets such that T ′ can be-

come a full combination Tfull if we expand it with these tuples.
Let Inf(tji) for tuple tji at depth d in L′ji be xd−1

ji
, where xd−1

ji
is the influence part of the tuple at depth d − 1 in list Lji . So
upper(Tfull) > Infmax. Assume the seed set of T has a larger
marginal influence increase than Infmax. Since the top d − 1 tu-
ples in each list in D2 are the same as those in D2, and A does
not get to depth d in any lists, the seed sets returned by A on D1

and D2 are the same. So A cannot find the correct answer on D2,
contradicting that A is a correct algorithm. Therefore A must get
to depth d in at least one list in D1. cost(UA, L1, . . . , Lm) ≤
m · cost(A , L1, . . . , Lm), where m is the size of R and is smaller
than constant |Q|.

5.4.3 The PICS+ Algorithm
Finally, we present the PICS+ to process all cover-groups, for

each of which we use UA to find a seed set for partial partitions
under the cover-group and to update the known best seed set. Note
that some cover-group may not contribute to the final seed set (i.e.,
it is pruned) as illustrated in Example 11. The pseudo code of
PICS+ is shown in Algorithm 4. In PICS+, we use S to record the
best known seed set. It first selects k nodes greedily from VQ and

Table 3: Dataset properties.
Property FX PC DBLP MeetUp
# of nodes 38,834 76,665 874,305 1,013,453
# of edges 164,093 1,702,058 9,415,206 34,410,754

# of distinct attr. 37,036 103,289 89,975 64,721
avg. # of attr. per node 47 9 27 11

store them in an array SP (lines 3–4). Then for each cover-group,
it uses array SP to populate SR, which stores the nodes selected
from VQ (line 6). The algorithm next constructs lists L1, . . . , L|R|
for each element in the cover-group R (line 7). It invokes UA to
update the best seed set S (line 8). After all cover-groups are con-
sidered, the algorithm returns S as the final result.

Correctness. This can be verified by showing that the seed set
returned by PICS+ is the same as the one returned by PICS.

6. PERFORMANCE STUDY
6.1 Experimental Setup

Datasets. We use 4 datasets in our experiments and their proper-
ties are given in Table 3. MeetUp is crawled from an event-based
social network meetup.com from July 2013 to Oct 2013. Each node
represents a user and the interests specified by the user form the at-
tributes of each node. Two users are connected by an edge if they
appear in the same group at least three times. PC2 is a real-life
event-based social network from plancast.com. Each node repre-
sents a user and each edge represents a subscription between two
users. We group the events into clusters and the clusters contain-
ing the events that a user attended form the attributes of the node.
DBLP is a real-life network from DBLP. Each node represents an
author, and the attributes of a node comprise the words in the au-
thor’s publication titles after removing stopping words and stem-
ming. An edge represents the co-author relationship between two
authors. Lastly, FX3 is a dataset of movie ratings from flixster.com
in 2008. Each node represents a user and the movies that have been
rated by the user form the attributes of each user.

Query. A query contains an integer k and a set of attributes Q.
We use a pair of integers (x, y) to denote a group of queries where
x = k and y = |Q|. Attributes in Q are randomly generated such
that there exists a set of k seed nodes to cover all attributes in Q.
Each group comprises 30 queries.

Evaluated algorithms. The following algorithms are evaluated.
(a) ScoreGreedy algorithm, denoted by SG; (b) PigeonGreedy
algorithm, denoted by PG; and (c) PICS+ algorithm. Recall that
SG and PG may not always return a seed set that can cover all at-
tributes in the query even if such a set exists. In contrast, PICS+
guarantees to return a seed set that can cover all attributes in the
query if such a set exists. The parameter α in SG is set at 0.6 since
it usually achieves the best success rate (defined below) according
to our experiments. We use a state-of-the-art method, IRIE [10],
to approximate the influence spread. We also evaluate the perfor-
mance when MC simulation is used to compute the influence.

Note that there is no existing algorithm that addresses the pro-
posed ICS problem. Nevertheless, since one of our goals is to
demonstrate that the seed set generated by our proposed techniques
cannot be found by existing influence maximization (IM) approaches,
we confine ourselves to compare the PICS+ against a state-of-the-
art IM technique, IRIE. All algorithms are implemented in C++. All
experiments are run on a Windows PC with Intel Xeon 2.66 GHZ
6-core CPU and 24 GB memory.

Performance measures. We consider three measures. (a) The
success rate = a/b, where b is the number of queries in a group,

2
http://lsna2012.net76.net/ebsn/

3
http://www.cs.sfu.ca/~sja25/personal/datasets/

http://lsna2012.net76.net/ebsn/
http://www.cs.sfu.ca/~sja25/personal/datasets/
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Figure 2: Influence spread under influence probabilities generated by four methods.

Table 4: Success rate of SG and PG.
Dataset Method (2,4) (3,6) (4,8) (5,10) (6,12)

FX SG 0.87 0.77 0.87 0.83 0.87
PG 0.77 0.67 0.7 0.57 0.6

PC SG 0.47 0.53 0.53 0.5 0.43
PG 0.63 0.36 0.33 0.23 0.1

DBLP SG 0.47 0.37 0.53 0.47 0.5
PG 0.5 0.17 0.23 0.27 0.27

MeetUp SG 0.33 0.2 0.13 0.2 0.03
PG 0.47 0.0 0.03 0.03 0.03

Table 5: Comparison with an IM technique: Jaccard similarity (JC)
and attribute coverage rate (ACR).

Dataset (2,4) (3,6) (4,8) (5,10) (6,12)

FX JC 0.033 0.02 0.01 0.011 0.021
ACR 3.3% 1.1% 0.8% 2.3% 1.7%

PC JC 0.033 0.033 0.040 0.054 0.031
ACR 2.5% 1% 12.5% 10% 0.6%

DBLP JC 0.044 0.033 0.056 0.079 0.096
ACR 25.8% 33.9% 31.3% 34% 37.2%

MeetUp JC 0.0 0.0 0.005 0.0 0.0
ACR 0% 0.5% 3% 1% 0.8%

and a is the number of queries in the group for which an algorithm
is able to find a seed set (satisfying attribute constraints). (b) The
influence spread of the seed set. We apply 20,000 Monte Carlo
simulations and the average number of influenced nodes is used as
the influence spread of the seed set. (c) The runtime of algorithms.

Propagation probability. As remarked earlier, our solutions to
the ICS problem are orthogonal to the techniques for generating
influence probability. Hence, we consider four methods of gen-
erating propagation probability. (a) Degree. The probability on
edge (u, v) is set to be 1

Nin(v)
, where Nin(v) is the in-degree of v.

(b) Random. The probability on edge (u, v) is randomly selected
from {0.1, 0.01, 0.001}. (c) TopicPP. We first compute a pu,v for
each edge (u, v) as pu,v = max ( |A(u)|·|A(v)|·|A(u)∩A(v)|

|Q|3 , 0.001).
Then the probability on edge (u, v) is set to be pu,v∑

(s,v)∈E ps,v
.

(d) TIC. We adopt the TIC model proposed in [3] and learn the
propagation probability from the action log of FX. For each movie
a, we can compute the probability pau,v that u activates v according
to the model. Given a query Q = {a1, ..., aq}, the weight of edge
(u, v) is defined as 1−

∏
ai∈Q (1− paiu,v). Note that the remaining

three datasets do not provide historical action logs information.
We study the effects of the propagation probability generated by

four methods on influence spread. We run 5 groups of queries,
(2, 4), (3, 6), (4, 8), (5, 10), and (6, 12). Figure 2 shows the average
influence spreads of the three evaluated algorithms on FX. We can
see that the relative performance of the four algorithms in terms of
influence spread is consistent over the different methods of generat-
ing propagation probabilities. The relative performance of the four
algorithms in terms of success rate and efficiency is also consistent,
irrespective of methods of generating the propagation probability.

We also investigated the impact of adjusting the propagation prob-
ability between two nodes based on their degrees. Our results show
that it does not significantly affect the relative performances of the
algorithms. We omit the detailed results due to space constraint. In
the sequel, the propagation probability is generated by TopicPP.

Table 6: Success rate of SG and PG (Varying |Q|).
|Q|

Dataset Method 8 9 10 11 12 13 14 15

FX SG 0.83 0.9 0.83 0.93 0.9 0.8 0.83 0.63
PG 0.63 0.83 0.57 0.8 0.73 0.63 0.57 0.5

PC SG 0.7 0.6 0.5 0.27 0.33 0.57 0.2 0.37
PG 0.63 0.7 0.23 0.13 0.2 0.27 0.03 0.13

DBLP SG 0.77 0.53 0.47 0.23 0.3 0.17 0.23 0.13
PG 0.67 0.3 0.27 0.2 0.1 0.03 0.1 0.0

MeetUp SG 0.43 0.26 0.2 0.23 0.33 0.03 0.2 0.1
PG 0.53 0.26 0.03 0.2 0.2 0.13 0.13 0.0

Table 7: Success rate of SG and PG (Varying k).
k

Dataset Method 5 6 7− 13

FX SG 0.83 1.0 1.0
PG 0.56 0.96 1.0

PC SG 0.5 0.93 1.0
PG 0.23 0.83 1.0

DBLP SG 0.47 0.93 1.0
PG 0.27 0.73 1.0

MeetUp SG 0.2 0.47 1.0
PG 0.03 0.6 1.0

6.2 Experimental Results
Comparison with IM techniques. First, in this set of experiments

we compare the seed sets generated by our algorithm (PICS+) and
a traditional IM technique (we use the IRIE method) for each query.
Specifically, we measure the (1) Jaccard similarity between the
seed sets returned by these two techniques, (2) the attribute cover-
age rate of the seed sets returned by traditional IM technique, which
is defined as |

⋃
s∈S A(s)∩Q|
|Q| , and (3) the runtime of these two tech-

niques. Table 5 reports the results. Observe that there is very low
similarity between the seed sets returned by these two techniques.
We can also observe that only a small portion of attributes in the
query can be covered by the seed sets returned by the traditional IM
technique. Hence we conclude that traditional IM techniques are
not suitable for addressing the ICS problem. The runtime of IRIE
and PICS+ is reported in Figure 3. As expected, IRIE is faster be-
cause it does not take into account the attribute covering constraint.

Overall Performance. Next, we evaluate the performance of the
three proposed methods. We run 5 groups of queries, (2, 4), (3, 6),
(4, 8), (5, 10), and (6, 12) for each dataset. Table 4 shows the suc-
cess rates of SG and PG in finding a seed set covering all the at-
tributes in a query for each query group containing 30 queries. Note
that PICS+ guarantees to find such a seed set, and thus its success
rate is 1. The success rates of SG and PG often are around 0.5,
which means they fail on half of 30 queries in a group. On some
query groups, the success rate of PG can be as low as 0.17. This
indicates that the greedy algorithms may not be a good choice for
the ICS problem, especially when k is smaller than |Q|.

Figure 4 shows the influence spread of the three algorithms on
PC, DBLP and MeetUp (Figure 2 gives results on FX). If SG or PG
cannot find a seed set to cover attributes in some query, it returns an
empty set whose influence spread is 0. We can see that the influence
spread of PICS+ is consistently better than the other two methods.
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Figure 3: Runtime vs. query groups.
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Figure 4: The influence spread vs. query groups.
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Figure 3 shows the runtime of different algorithms. Although
PICS+ can finish in reasonable time for the largest dataset, it is
less efficient than SG or PG as expected.

Effect of |Q|. This set of experiments is conducted to study the
effect of |Q|. We set k = 5 and vary |Q| from 8 to 15. Table 6
shows the success rates of SG and PG. We observe that SG and
PG may fail to return a seed set for a significant portion of queries.
We also observe that the success rate usually drops as |Q| increases,
as expected. This is because it is more difficult to cover all the
attributes as |Q| increases.

Figure 6 shows the influence spread with different |Q|. PICS+
outperforms the other two methods consistently; When |Q| gets
larger, the disparity between PICS+ and the other two methods be-
come larger. In addition, the influence spread usually drops as |Q|
increases on PC, DBLP, and Meetup . This is because when |Q| is
small, it is relatively easier to cover the attributes inQ, and thus we
have better chances to choose nodes with high influence while sat-
isfying the attribute constraint. On FX, the influence spread is less
affected by |Q| since nodes in FX can cover many attributes and it
is easier for SG and PG to find a good seed set. Although PICS+
is usually 2-3 times slower than SG and PG, PICS+ still can finish
in reasonable time even for the largest network. The runtime of all
three methods increases slightly with the increase of |Q|. Due to
the space limitation, we do not show the runtime.

Effect of k. We evaluate the effect of k by varying it from 5 to
13 while fixing the query attributes in Q and |Q| at 10. As shown
in Figure 7, PICS+ consistently achieves better influence than the
other two methods. However, as k increases, the gap becomes
smaller. This is because when k gets larger, it becomes easier to
cover all attributes and the constraints of attributes are weakened.
Note that in our problem typically k < |Q| as the number of desired
event organizers is small. We also observe that SG outperforms PG
when k < |Q|, and they perform similarly when k ≥ |Q|.

PICS+ is usually 2-3 times slower than SG and PG that take
similar time. The runtime of PICS+ is almost not affected by k,
but SG and PG become slower as k increases. Due to the space
limitation, we do not give the runtime results.

The success rate of SG and PG is given in Table 7. As expected,
the success rate approaches to 1 when the value of k approaches
|Q| since it becomes relatively easier to cover attributes inQ. How-
ever, we need to temper the observation. Here we use the same set
of query attributes for different k values, and each query Q is gen-
erated such that Q can be covered in the case of k = 5, which
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Figure 8: Computing influence by MC simulations.

means that those queries are easy queries for k > 5 (their attributes
are easier to be covered for k > 5). This also explains why success
rate of SG and PG can be 1 at k = 7. Nevertheless, the results indi-
cate that when k ≥ |Q|, SG and PG are a better choice. However,
as remarked earlier, k is usually small in our target applications.

Comparison between PICS and PICS+. We compare the
efficiency of PICS+ and PICS. Note that they return the same re-
sults and thus have the same influence spread (their success rate is
1). Figure 9 reports the runtime of the two methods for processing
4 groups of queries, (2, 4), (3, 6), (4, 8), (5, 10) on FX. Note the
y-axis is in logarithmic scale. We observe that PICS+ is orders of
magnitudes faster than PICS, especially when |Q| becomes larger.
The results on the other datasets are qualitatively similar.

Computing Influence by MC Simulations. This experiment is to
study whether the relative performance of the three methods is sim-
ilar when MC Simulations are used to estimate influence. In terms
of the success rate, the results using MC simulations are almost
the same as those using IRIE reported in Table 4. Figure 8 shows
the runtime and influence spread of the three methods on dataset
FX. Experiment for group (6, 12) cannot finish in 5 hours and we
terminate it and do not get its runtime. We observe that the rela-
tive influence spread of the three methods using MC simulations is
similar as that using IRIE. Actually, MC simulations achieve simi-
lar influence spread as does IRIE. In terms of runtime, the relative
performance of the three methods is also similar; however, by com-
paring Figure 8a and Figure 3a, we observe that the runtime using
MC simulations is much longer than that using IRIE. The results
on the other datasets are qualitatively similar.

Scalability with graph size. We extract subgraphs from MeetUp.
On each graph, we run 5 groups of queries, (2, 4), (3, 6), (4, 8),
(5, 10), (6, 10). We only report the runtime for (4, 8) in Figure 5.
The trend on other groups are similar. We find that all the three
algorithms scale well with the graph size.
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Figure 6: Influence spread vs. |Q| (k = 5).
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Figure 7: Influence spread vs. k (|Q| = 10).
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7. CONCLUSIONS
The quest for organizing successful social events has become

more pressing due to the rapid growth of event-based online social
services. In this paper, we introduce the problem of discovering
influential event organizers from an online social network. We for-
mulate it as the problem of mining influential cover set (ICS), which
is intractable. Hence, we propose two greedy algorithms, Score-
Greedy and PigeonGreedy, to find approximate solutions to the
problem. Although they are efficient, they have no guarantee to
find a feasible solution. This led us to propose an approximation
algorithm called PICS+ that guarantees to find a feasible solution
if any. The experimental results on real-world datasets demonstrate
that PICS+ guarantees to find a feasible solution if any within rea-
sonable time. Although the two greedy algorithms run faster, they
fail to find feasible solution for a significant portion of queries.
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