
BOOMER: Blending Visual Formulation and Processing of
P-HomomorphicQueries on Large Networks

Yinglong Song ‡,§ Huey Eng Chua‡ Sourav S Bhowmick‡ Byron Choi† Shuigeng Zhou§

‡School of Computer Science and Engineering, Nanyang Technological University, Singapore
§Shanghai Key Lab of Intelligent Information Processing, School of Computer Science, Fudan University, China

†Department of Computer Science, Hong Kong Baptist University, Hong Kong
hechua|assourav@ntu.edu.sg,bchoi@comp.hkbu.edu.hk,ylsong15|sgzhou@fudan.edu.cn

ABSTRACT

Visual graph query interfaces (a.k.a gui) make it easy for non-expert

users to query graphs. Recent research has laid out and implemented

a vision of a novel subgraph query processing paradigm where

the latency offered by the gui is exploited to blend visual query

construction and processing by generating and refining candidate

result matches iteratively during query formulation. This paradigm

brings in several potential benefits such as superior system response

time (srt) and opportunities to enhance usability of graph databases.

However, these early efforts focused on subgraph isomorphism-

based graph queries where blending is performed by iterative edge-

to-edge mapping. In this paper, we explore how this vision can

be realized for more generic but complex 1-1 p-homomorphic (p-
hom) queries introduced by Fan et al. A 1-1 p-hom query maps an

edge of the query to paths in the data graph. We present a novel

framework called Boomer for blending bounded 1-1 p-hom (bph)

queries, a variant of 1-1 p-hom where the length of the path is

bounded instead of arbitrary length. Our framework is based on a

novel online, adaptive indexing scheme called cap index. We present

two strategies for cap index construction, immediate and deferment-

based, and show how they can be utilized to facilitate judicious

interleaving of visual bph query formulation and query processing.

Boomer is also amenable to modifications to a bph query during

visual formulation. Experiments on real-world datasets demonstrate

both efficiency and effectiveness of Boomer for realizing the visual

querying paradigm on an important type of graph query.

ACM Reference Format:

Yinglong Song ‡,§ Huey Eng Chua‡ Sourav S Bhowmick‡ Byron

Choi† Shuigeng Zhou§. 2018. BOOMER: Blending Visual Formulation and

Processing of P -Homomorphic Queries on Large Networks. In SIGMOD’18:

2018 International Conference on Management of Data, June 10–15, 2018,

Houston, TX, USA. ACM, New York, NY, USA, 17 pages. https://doi.org/10.

1145/3183713.3196902

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGMOD’18, June 10–15, 2018, Houston, TX, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-4703-7/18/06. . . $15.00
https://doi.org/10.1145/3183713.3196902

1 INTRODUCTION

Given two vertex-labeled graphs G1 = (V1,E1) and G2 = (V2,E2),
the problem of graph homomorphism (resp. subgraph isomorphism)

is to find a (resp. 1-1) mapping from V1 to V2 such that each vertex

inV1 is mapped to a (resp. distinct) vertex inV2 with the same label,

and each edge in E1 is mapped to an edge in E2. Querying graphs
based on this conventional notion of graph homomorphism or

subgraph isomorphism is often restrictive in many real-world graph

applications [13, 14]. Consequently, Fan et al. [13] extended these

two notions to p-homomorphism (p-hom) and 1-1 p-hom (1-1 refers

to the 1-1 mapping [13]), respectively, by mapping edges from one

graph to paths to another and by measuring similarity of vertices

instead of simply vertex label equality. It has been reported in [13,

14] that due to its generality, p-hom and 1-1 p-hom-based queries

have a variety of real-world applications such as website matching,

identification of suspects in criminal networks, plagiarism, and

complex objects (e.g., face) recognition. However, formulating these

queries textually using a graph query language requires a user to

have programming and debugging expertise. Unfortunately, this

assumptionmakes it harder for non-programmers to take advantage

of a p-hom search framework.

A popular approach to make formulation of p-hom query ac-

cessible to non-programmers is to provide a visual query inter-

face (gui) for interactive construction of queries. This has recently

paved the way for several visual graph query-based techniques

and applications [2]. In particular, Jin et al. [21, 22] and Hung et

al. [20] proposed an innovative visual substructure search (i.e., exact

subgraph and substructure similarity [4, 18, 37]) query processing

paradigm where instead of processing a query graph after its con-

struction, it blends (i.e., interleaves) visual query construction and

processing. When a user visually constructs an edge during query

formulation, the current query fragment is evaluated by exploiting

the gui latency (i.e., time to construct a query vertex or an edge

visually) and a set of candidate matches containing the query frag-

ment is generated using underlying index structures. Next, when

she constructs another edge, the candidate set is refined by filtering

irrelevant matches. This continues until the user has completed

formulation of her query and the final results are computed by

utilizing the refined candidate set.

The above visual querying paradigm brings in at least two key

benefits [2]. First, it improves system response time (srt), which is

the duration between the time a user presses the Run icon to the time

when she gets the query results. Second, it opens up opportunities to

enhance usability of graph databases (e.g., exploratory search [19]).

Early efforts in [20–22] that implemented the aforementioned

vision limited their focus on blending subgraph isomorphism-based

graph queries. Consequently, it is an open problem whether more

complex but generalized graph queries such as p-hom queries can

be realized in this paradigm. In this paper, we present a novel frame-

work called Boomer (Bounded 1-1p-homQuery Blender) to realize

the visual graph querying paradigm for a class of p-homomorphic

graph queries referred to as bounded 1-1 p-hom (bph) queries. A bph

query is derived from 1-1 p-hom query introduced by Fan et al [13].

Intuitively, in a bph query an edge is mapped to a path of bounded

length (i.e., it satisfies certain length constraints) in the underly-

ing data graph instead of mapping it to a path of arbitrary length.

Specifically, each edge (qi ,qj) in a bph query is labeled with a pair

of integers [lower ,upper], referred to as lower and upper bounds,

respectively, representing the minimum and maximum allowable

path lengths connecting a vertex pair (vi , vj) in a data graph that

match qi and qj , respectively. Consider the following user problem.

Example 1.1. A key task for exploring new drugs at preclinical

and clinical trials during drug development is the identification of

suitable animal models with disease-related biological processes

that are highly similar to that in human [26]. Bob, a biologist is

interested in finding out if C. elegans is a suitable animal model

for studying apoptosis in human. Given the knowledge of protein-

protein interaction (ppi) of genes related to apoptosis in C. elegans

(Figure 1(a)), he first needs to identify the corresponding homologs1

in its human counterpart (Figure 1(b)). This can be done through a

literature search or using databases such as OrthoList [27]. Conse-

quently, he extracts the subgraph involving four relevant genes (i.e.,

egl-1, ced-3, ced-4, ced-9) in C. elegans as shown in Figure 1(a)

(color-coded vertices). Next, he finds corresponding homolog genes

(bid, casp 3, apaf1, and bcl2, respectively) in human. Using these

homolog genes and the subgraph structure, Bob wishes to search

the human ppi (Figure 1(b)) to determine if C. elegans is an appro-

priate organism for studying apoptosis process in human. Bob is

aware that there may not be strict correspondence between the

two models due to evolution. Consequently, there may not exist

an exact match of the subgraph on human ppi. However, the pairs

of genes (e.g., (bcl2, casp 3)) should not be far apart in the hu-

man ppi either as too large distance between them indicates that

the interaction is unlikely to be conserved. Hence, Bob wishes to

formulate a bph query as shown in Figure 1(c). Note that the upper

bound constraints can be varied depending on prior knowledge of

potential deviation due to evolution. As Bob is a non-programmer,

he wishes to formulate it using a user-friendly gui using click-and-

drag. A matching result of this query on the human ppi is shown in

Figure 1(d). How can Bob formulate and process such queries?

Another application of bph query is in the identification of pu-

tative drug targets in cancer where certain oncogenes2 (e.g., myc)
are deemed to be “undruggable” [9]. We can formulate a bph query

with a lower bound3 of 2 or 3 to find these putative targets.

Observe that bph queries are more general than existing sub-

graph isomorphism-based queries as the edge-to-edge mapping of

1Homolog genes which have conserved interactions across multiple organisms form the basis for

translating knowledge of biological processes from one organism to another organism [34].
2Genes which have the potential to transform a cell into a tumor cell.
3Cancer targets are typically found to be 1 to 2 hops away from oncogenes [33].

Figure 1: Apoptotic pathway of (a) C. elegans and (b) human

in BioGRID database; (c) bph query on (b); (d) A matching

result.

the latter is unable to specify such connectivity constraints in a

data graph. Particularly, when lower = upper = 1, the bounded

1-1 p-hom-based matching reduces to the subgraph isomorphism-

based matching. Hence, our Boomer framework can be utilized to

formulate both bph and exact subgraph search queries (detailed in

Section 4). Similar to [13, 14], in this work we assume that the bph

queries are ad hoc queries (i.e., user’s queries cannot be anticipated

and optimized for) formulated on a large network residing in a

single machine.

Designing a framework to support efficient blending of bph

query formulation and processing is challenging. Predecessor ef-

forts [20–22] follow the immediate evaluation strategy, i.e., they

follow the edge formulation sequence to efficiently process visually

constructed edges iteratively by utilizing the gui latency. Although

this strategy is effective for substructure search queries as it in-

volves iterative edge-to-edge mapping, for bph queries we need to

match a query edge e = (qi ,qj) to paths of bounded length within

the available gui latency. This can be prohibitively expensive when

there are many matches to qi and qj in the data graph and the upper
bound constraint associated with e is relatively large. Consequently,
this may delay the processing of subsequent vertices/edges in the

query leading to a larger srt. Besides, since the processing of a

constructed vertex or edge depends on the results of the previous

step, it is important to design an efficient online, adaptive index

structure that can maintain the partial candidate matches to the

(partially) formulated query by utilizing the limited gui latency.

However, it is expensive to maintain all intermediate vertices and

edges of paths matching to a query edge as it may result in indexing

a large portion of the underlying network.

In this paper, we present a novel online, adaptive indexing scheme

called cap (Compact Adaptive Path) index to facilitate judicious

interleaving of visual bph query formulation and query processing.

Intuitively, it is a graph-structured index that efficiently stores the

candidatematching vertices that satisfy the upper bound constraints

of the edges in a (partially) constructed bph query. Note that we

defer the checking of paths satisfying the lower bound greater than

1 until the Run icon is clicked to execute the query so that it does

not impose additional cost during cap construction. Specifically,

we exploit the gui latency in the following novel ways to construct

and maintain the index. First, we take a non-traditional strategy of

judiciously deferring evaluation of current query edge, if necessary,

so that it can exploit the latency associated with the formulation of

a future edge and the clicking of Run icon. Second, since visualizing
large graphs is cognitively challenging, it is extremely difficult to

comprehend the structural relationships among the vertices in a

matching result overlaid on a large network. Hence, in Boomer

each result match of a query is displayed by visualizing a small

subgraph of the network that contains it. Consequently, the gui

latency associated with visualizing the result matches iteratively

is exploited by Boomer to filter matching vertices based on lower

bounds specified in the query. We also show how the cap index can

efficiently support query modifications by a user. In summary, the

main contributions of this paper are as follows.

• A novel framework.We present a novel framework for blend-

ing visual bounded 1-1 p-hom (bph) query formulation and

processing. To the best of our knowledge, this is the first

effort that presents an effective solution to interleave visual

formulation and processing of a type of p-hom queries.

• A new online index. We present a novel adaptive, on-the-fly,

space-efficient index called cap to facilitate efficient pruning

and retrieval of matching vertices satisfying a (partial) bph

query. It is also amenable to modification to the visual query

at any time during its construction.

• Fast evaluation of BPH queries.We present algorithms for ef-

ficient evaluation of bph queries and visual query modifica-

tions by efficiently exploiting the cap index and gui latency

offered by the visual querying paradigm.

• Experimental study.Using real-world datasets and user study,

we show the effectiveness of our framework in supporting

bph queries in this new visual querying paradigm. Specifi-

cally, our deferment-based strategy to evaluate query vertices

and edges is superior to the immediate evaluation strategy.

Paper Outline. Section 2 defines the preliminary concepts. We for-

mally introduce the visual bph querying problem and the Boomer

framework in Sections 3 and 4. We present the cap index and how

it can be leveraged to facilitate blending of bph query formulation

and processing in Section 5. Section 6 discusses efficient query

modification. Experimental results are presented in Section 7. We

review related research in Section 8. The last section concludes the

paper. The proofs of all lemmas and formal code of key procedures

are presented in Appendices A and B, respectively.

2 BACKGROUND

A data graph is an undirected, simple graph G = (V ,E,L) where
V is the set of vertices, E ⊆ V × V is a set of undirected edges,

and L is a vertex labelling function. We denote a path between a

pair of vertices (v,v ′) in G as p : v → · · · → v ′. The length of a

path p counts the number of edges in p and is denoted as lenдth(p).
Distance between (v,v ′) is defined as the length of the shortest

path between these vertices and is denoted as dist(v,v ′). A degree

of a vertex v ∈ V is denoted as deд(v).
Given two graphs G1 = (V1,E1) and G2 = (V2,E2), a mapping

function φ : V1 → V2 is a called a homomorphism if and only if,

for all vi ,vj ∈ V1, if (vi ,vj) ∈ E1, then (φ(vi),φ(vj)) ∈ E2 [28].

In contrast, subgraph isomorphism seeks to identify an injective

mapping ϕ between G1 and G2 such that for every pair of vertices

vi ,vj ∈ V1, (vi ,vj) ∈ E1 implies (ϕ(vi),ϕ(vj)) ∈ E2.
Fan et al. [13] introduced the notions ofp-homomorphism and 1-1

p-homomorphism for directed graphs to relax graph homomorphism

and subgraph isomorphism, respectively. P-homomorphism extends

homomorphism by mapping every edge from one graph to a path

Figure 2: (a) bph query, (b) data graph, and (c) cap index.

(instead of an edge) in another and match the vertices based on

their similarity [13]. Given two graphs G1 = (V1,E1) and G2 =

(V2,E2), a similarity matrix M4 and a similarity threshold t , G1 is

p-homomorphic (p-hom) toG2 if there exists a mapping ξ fromV1 to
V2 such that for every vertexv ∈ V1, (1) if ξ (v) = u, thenM(v,u) ≥ t
where u ∈ V2, and (2) for each edge (v,v ′) ∈ E1, there exists a non-
empty path p : u → · · · → u ′ in G2 such that ξ (v ′) = u ′. Briefly,
every edge from v is mapped to a path originating from u and ξ (.)
is a p-hom mapping function from G1 to G2.

Further, G1 is 1-1 p-homomorphic (1-1 p-hom) to G2 if ξ (.) is
a 1-1 (injective) p-hom mapping from G1 to G2. That is, distinct

vertices inG1 have to be mapped to distinct matches inG2. Observe

that subgraph isomorphism and graph homomorphism are special

cases of 1-1 p-hom and p-hom, respectively [13]. It is intractable to

determine whether a graph is p-hom or 1-1 p-hom to another [13].

3 BOUNDED 1-1 P-HOMOMORPHIC QUERY

In this section, we introduce the notion of bounded 1-1 p-homomorphic

query and the visual bounded 1-1 p-hom search problem.

3.1 Definition

Given a data graph G = (V ,E,L), intuitively a 1-1 p-hom query

QP finds one or more subgraphs in G that are 1-1 p-hom match to

QP . Recall that in 1-1 p-hom matching an edge is mapped to a path

of arbitrary length. However, in reality the relationship between

two entities in a network become less relevant as the distance

between them increases [6]. Consequently, it is appropriate for

matching paths of an edge in Q to be bounded (i.e., they satisfy

certain length constraints). We refer to this variant of 1-1 p-hom
query as bounded 1-1 p-hom query. Specifically, a bounded 1-1 p-hom
query (bph query) QB = (VB ,EB ,L, λ) is a connected, undirected,
simple labeled graph whereVB and EB are the sets of query vertices

and edges, respectively. QB has the same labelling function L as G
and qi ∈ VB matches vj ∈ V if L(qi) = L(vj). Further, λ is an edge

labelling function that assigns an edge eq = (qi ,qj) in QB to a pair

of integers [lower ,upper], referred to as lower and upper bounds,

respectively, representing the minimum and maximum allowable

path lengths connecting a vertex pair (vi , vj) where vi ∈ V , vj ∈ V ,

L(qi) = L(vi) and L(qj) = L(vj). That is, λ(eq) = [lower ,upper].
We shall refer to the lower and upper bounds of eq as eq .lower
and eq .upper , respectively. Note that eq .lower ≥ 1, and eq .lower ≤

eq .upper . Figure 2(a) shows an example of a bph query.

Note that in practice often all edges in a bph query have eq .lower =
1. However, in certain applications lower of an edge may be greater

than 1. For example, given a user A in a social network, we may

wish to explore the friends-of-friends (fof) neighborhood of A. In

4For each pair (v, u) of vertices in V1 × V2, M(v, u) is a number in [0, 1], indicating how close

labels of v and u are.

this case the query edge connectingA to a vertex in fof has a lower

bound of 2. Another example is given in Example 1.1.

Definition 3.1. [Bounded 1-1 p-hom-based Matching] Given

a data graph G = (V ,E,L) and a BPH query QB = (VB ,EB ,L, λ), a
set of distinct vertices VD ⊆ V is a bounded 1-1 p-hom match of

QB if and only if the following constraints are satisfied:

(1) Label constraint: L(q) = L(v),∀q ∈ VB ,v ∈ VD ,
(2) Query size constraint: |VD | = |VB |, and
(3) Edge bound constraint: if there exists an edge eq = (qi ,qj),

eq ∈ EB with bounds [lower ,upper], there must exist a non-

empty path p : v → · · · → v ′ in G where L(qi) = L(v),
L(qj) = L(v ′) and lenдth(p) ∈ [lower ,upper]. Such a path p
is referred to as amatching path of eq .

Observe that when eq .lower = eq .upper = 1, the bounded 1-1

p-hom-based matching reduces to the subgraph isomorphism-based

matching.

We refer to the order in which the vertices of a bph query is

matched as the matching order (denoted asM). Note that in visual

graph querying environment, this may simply be the order in which

a user constructs the query vertices. For example, a matching order

of Q1 in Figure 2 is M : q1 → q2 → q3 (i.e., a user may visually

construct the vertices in this sequence). We denote |M | = |VB |.

3.2 Structure of Visual Interface

Several real-world academic [7, 17, 22, 24, 25, 32] and commercial

(e.g., Pubchem) visual interfaces for subgraph query construction

largely focus on formulating substructure search queries. We can

easily extend these interfaces to support visual formulation of bph

queries. Such interface consists of the following main panels. (a)

Data Panel: This panel displays the data graphs (networks) available

for querying. (b) Attribute Panel: It displays a list of attributes (e.g.,

labels) of vertices or edges of a network. In Boomer, labels of the

vertices are displayed. (c) Query Panel: It is used for constructing

a bph query graphically. (d) Results Panel: This panel displays the

result subgraphs of a bph query.

Then, we can construct a bph query by performing the following

steps: (1) Move the mouse cursor to the Attribute Panel. (2) Scan and

select an attribute (e.g., label BCL2). (3) Drag the selected attribute

to the Query Panel and drop it to create a single vertex of the bph

query. (4) Repeat Steps 1-3 to construct another vertex. (5) Construct

an edge between the vertex pair by clicking on the vertex pairs. (6)

Specify the lower and upper bounds of the edge by clicking on it

and filling a combo box. The default value is [1,1]. (7) Repeat Steps

4-6 until the entire query is formulated.

3.3 Visual Bounded 1-1 p-Hom Search Problem

Given a bph query QB visually constructed on a visual query inter-

face and a data graph G = (V ,E,L), the goal of visual bounded 1-1
p-hom search problem is to retrieve all bounded 1-1 p-hom matches

of QB in G by interleaving (i.e., blending) formulation and process-

ing of QB . For example, consider the bph query in Figure 2(a) and

the data graph in Figure 2(b). Assume that the query is formulated

using a visual interface. Then the goal of the search problem is to

find the result matches (i.e., result subgraphs) inG by blending its

formulation and processing. For instance, a valid result match of

the query is q1 → v2, q2 → v5, q3 → v12.

4 THE BOOMER FRAMEWORK

Boomer consists of the following two major components.

The Preprocessor. Boomer preprocesses the input data graph

G to compute the average edge processing time tavд and the pruned

landmark labelling (pml) index P [1] which are used during cap

index construction (in bph query blender module). The former is

used for prioritizing the edges of a bph query and determining when

they should be processed. The latter is used for processing distance

queries. Briefly, pml is based on 2-hop cover and used for fast exact

shortest-path distance computation5.

For a given data graph G, this module first computes the pml

index which facilitates 2-hop queries of any vertex pair. Next, it

computes tavд of G as follows. It utilizes the pml index to process

1 million randomly selected distance queries between vertex pairs

in G. tavд is then computed as the average processing time of

these distance queries. We observe that tavд computation time is

cognitively negligible and pml computation time is less than 15

min for several large networks (tavд and pml computation time

for a set of data graphs are reported in [29]). Hence, the empirical

determination of tavд can be completed within several minutes for

a large network. We emphasize that the preprocessing step is only

one-time cost as it is performed offline and only once for a given

data graph.

The bph Query Blender. Algorithm 1 outlines the procedure

for blending formulation and processing of a visual bph query as

well as query modification during construction. Let QB be a visual

bph query being formulated by a user. The framework monitors

four visual actions, namely, NewVertex for adding a new vertex to

QB , NewEdge for adding a new edge to QB , Modify for removing

an existing edge or updating the bounds, and Run for executing

the current bph query. In particular, Boomer uses an action stream

(denoted as stream) to keep track of the vertices and edges added

during query construction and processes these actions to construct

the online cap index (Lines 3 to 8). Observe that initiation of index

construction happens during query construction and completes

only after the query is completely formulated (when the Run icon
is clicked). Specifically, three cap index construction strategies

are proposed, namely, Immediate, Defer-to-Run, and Defer-to-Idle,

to judiciously utilize the availability of gui latency during query

formulation (detailed in Section 5). Since a user may modify the

bounds of a previously formulated edge or delete an existing edge

during query formulation, the modification of bph query is handled

in Lines 9-10, which updates the cap index efficiently (discussed

in Section 6). When the user clicks the Run icon, Boomer proceeds

to complete the cap index construction (Lines 12 to 16). Using the

constructed cap index and matching orderM , Boomer computes a

list of result vertex set that satisfies the upper bound constraints of

the edges in QB (Line 18). Finally, when a user iteratively selects

a particular query result GB to visualize, Boomer generates the

result subgraph in GB that satisfies the lower bound constraints of

the edges in QB (Lines 20 to 24). We elaborate on Lines 18-23 in

Section 5.4.

Interested reader may refer to [29] for a case study of Boomer

framework based on Example 1.1.

5Although we use the pml index, our framework is orthogonal to the choice of exact shortest-
path distance computation technique. Any existing efficient technique can be plugged into our

framework.

Algorithm 1 Boomer Query Blender.

Require: GUI action a, data graph G = (V , E, L), a bph query QB , pml index P, average edge
processing time tavд ;

Ensure: Set of bounded 1-1 p-hom result subgraphs H ;
1: pool, str eam, C, VΔ ← ϕ
2: CAPCompleted ← f alse
3: if a is NewVertex or a is NewEdge then
4: str eam ← Insert(a, str eam)
5: M ← UpdateMatchingOrder(a, M)
6: for a ∈ str eam do
7: C, pool ← ConstructCAP(a, str eam, C, G, QB , P, tavд, pool) /* Sec-

tion 5*/
8: end for
9: else if a is Modify on edge eq then

10: C, pool ← UpdateCAP(a, str eam, C, QB , G, P, pool, tavд, eq) /* Section 6 */

11: else if a is Run then
12: if str eam � ϕ then
13: for a ∈ str eam do
14: C, pool ← ConstructCAP(a, str eam, C, G, QB , P, tavд, pool)
15: end for
16: end if
17: CAPCompleted ← true
18: VΔ ← PartialVertexSetsGen(QB , M, C)/* Section 5.4*/
19: end if
20: whileCAPCompleted = true do
21: if a isGB with partial-matched vertex setVP ∈ VΔ then
22: H ← FilterByLowerBound(VP , G) /* Section 5.4 */
23: end if
24: end while

Generality of the framework.The above framework is generic

and extensible. Specifically, it can also be utilized to process exact

subgraph search query, which is a special case of bph query. Recall

from Section 3.2, e .upper and e .lower of a new edge is set to 1 by

default. Hence, if a user does not enter any value for these bounds

(Line 3) for all edges of a bph query, then it reduces to an exact

subgraph search query. Boomer can be utilized to process such

queries as the cap index maintains all candidate matching vertices

that satisfy the upper bound constraints (in this case e .upper = 1).

Our framework can also work with different types of guis. Ob-

serve that the actions in Lines 3, 9, and 11 are orthogonal to specific

steps taken by a gui to realize them. For instance, different visual

graph query interfaces may follow different steps to add a vertex

or an edge to a bph query. Boomer is independent of these steps.

Lastly, our framework is amenable to different indexing and

results generation schemes. Lines 7 and 14 can adopt different

instantiations of online indexing schemes to support bph queries.

Similarly, Line 10 can adopt different modification policies. Line 22

also can be implemented using different results generation schemes.

5 CAP-BASED BLENDING OF QUERIES

In this section, we describe three strategies for constructing and

maintaining the cap (Compact Adaptive Path) index, namely, Im-

mediate, Defer-to-Run, and Defer-to-Idle.

5.1 CAP Index

The cap index is an adaptive online data structure which efficiently

stores the candidate matching vertices in G that satisfy the upper

bound constraints of the edges in a (partially) constructed bph

query. This helps us to efficiently retrieve candidate matching ver-

tices during query formulation and results generation as the dis-

tances between vertices inG do not have to be computed repeatedly.

In addition, unsuitable candidates (i.e., those which subsequently

violate the upper bound constraints) can be pruned immediately.

Given a (partial) bph query QB = (VB ,EB ,L, λ), a matching

order M , and a data graph G = (V ,E,L), intuitively a cap index

C = (VC ,EC) is a |VB |-level undirected graph containing vertices

ofV that matchVB , i.e.,VC ⊆ V . Each edge in EC connects a pair of

matching vertices in two different levels of C if these vertices are

connected by a path in G that satisfies the upper bound constraint

specified in the corresponding edge in EB . For example, consider

the data graphG and the query graphQ1 in Figure 2(a) with match-

ing order M : q1 → q2 → q3. The corresponding cap index after

the construction of Q1 is shown in Figure 2(c). Observe that it has

three levels as there are three vertices inQ1. The matching vertices

of q1, q2, and q3 that satisfy the upper bound constraints of edges

in Q1 are Vq1 = {v2,v3}, Vq2 = {v5,v6,v8}, and Vq3 = {v12}, re-
spectively. Observe that although v1 matches q1, it is pruned out

after the formulation of (q1,q2) edge as the paths connecting ver-
tices matching q1 and q2 do not satisfy the upper bound constraint.

Hence, although v1 is initially retrieved when q1 is constructed

by the user, it is subsequently removed from the index as soon

as the corresponding upper bound constraint is violated. On the

other hand,v2 andv12 are connected by an edge in the index as the

distance between (v2,v12) is 2, which satisfies the upper bound con-
straint of (q1,q3) inQ1. For the same reason, (v6,v12) are connected
in the index.

Definition 5.1. [CAP Index] Given a data graph G = (V ,E,L)
and a BPH query QB = (VB ,EB ,L, λ) with matching order M :

q1 → · · · → q |VB | , the CAP index is an undirected graph C =

(VC ,EC) where VC ⊆ V and satisfies the following conditions: (1)

VC = Vq1
⋃

· · ·
⋃
Vq |VB |

where ∀u ∈ Vqi , L(u) = L(qi). (2) EC =

Ee1
⋃

· · ·
⋃

Ee |EB |
where ei ∈ EB and ∀(u,v) ∈ Eei , there exists a

path p : u → · · · → v in G such that lenдth(p) ≤ ei .upper .

We now introduce some auxiliary terminology. Given amatching

order M : q1 → · · · → q |VB | of a bph query QB on a data graph

G, consider a matching candidate vertex v of query vertex qi (i.e.,
v ∈ Vqi) in C. Note that L(v) = L(qi). An adjacent indexed vertex set

(aivs) of v , denoted as V
qj
qi (v), refers to the set of candidate vertex

matches X of query vertex qj ∈ QB that has an edge connecting

to v in C such that ∀u ∈ X , there exists at least one path in G,
between u and v , that satisfies eq .upper where eq = (qi ,qj). For
example, consider v2 in G which is a matching vertex of q1, i.e.,
v2 ∈ Vq1 . Then V

q3
q1 (v2) = {v12} and V

q2
q1 (v2) = {v5}. Observe that

V
q3
q1 (v2) ⊆ Vq3 and V

q2
q1 (v2) ⊆ Vq2 . They imply that there exists at

least one path v2 → · · · → v12 whose length is in the range [1, 3]

and the path v2 → v5 has length of exactly 1.

Next, we introduce the notion of partial-matched vertex set (de-

noted as VP) in C. Consider the connected subgraph consisting

of v2, v5, and v12 in Figure 2(c). Observe that there is a 1-1 map-

ping between these vertices and the query vertices. Specifically, v2
matches q1, v5 matches q2, v12 matches q3 and the edges (v2,v5),
(v5,v12), and (v2,v12) in the cap index satisfy the upper bounds of

the corresponding edges inQ1. We refer to these vertices as partial-

matched vertex set. Note that at this point, we do not check the

satisfaction of lower bound constraints of VP . Such check is neces-

sary only when e .lower > 1 and we defer it to the result subgraphs

generation phase (Section 5.4). Note that when e .lower = 1, all

results satisfying the upper bound constraints also satisfy the lower

bound constraints. Observe that the number of vertices and edges

in the subgraph are identical to those of the bph query. Clearly,

there can be many partial-matched vertex sets in a cap index for

a bph query. We denote the set of all partial-matched vertex sets

as VΔ = {VP1 , · · · ,VP |VΔ |
}. For example, consider Figure 2(c). For

Q1, VΔ = {{v2,v5,v12}, {v3,v6,v12}, {v3,v8,v12}} where v2 and

v3 map to q1; v5, v6 and v8 map to q2; and v12 maps to q3.

Lemma 5.2. Given a data graph G = (V ,E,L) and a BPH query

QB = (VB ,EB ,L, λ), the space complexity of the CAP index is

O(
∑
qi ∈VB |Vqi | +

∑
e(qi ,qj)∈EB |Vqi | × |Vqj |) in the worst case.

Although the worst case space complexity of cap index is qua-

dratic in theory, it is smaller in practice due to the pruning of

vertices that do not satisfy the upper bound constraints during

query formulation. We shall demonstrate this in Section 7.

5.2 Immediate Construction (IC)

Intuitively, we can construct the cap index during visual formu-

lation of a bph query by processing the query vertices and edges

iteratively in the order they are constructed. We refer to this strat-

egy as immediate construction (ic). Formally, let QB be a bph query

and a user follows a matching order M : q1 → q2 → · · · → qk
to construct it visually. Correspondingly, she follows a specific

sequence of edge construction E : e1 → e2 → · · · → ej based
onM to complete formulation of QB . For example, consider Q1 in

Figure 2(a) and the matching order M : q1 → q2 → q3. Hence,
a user may visually construct the following sequence of edges

E : (q1,q2) → (q2,q3) → (q3,q1) to construct the query. Then in

the ic strategy, we process the vertices and edges in the order they

are constructed (i.e.,M and E) by utilizing the gui latency available

during query formulation. For instance, in the above example, the

gui latency available during the visual construction of (q2,q3) is
utilized to process the edge (q1,q2) and maintain the cap index.

Algorithm 2 outlines this procedure. Briefly, for every vertex

qi that is added to the bph query, it identifies candidate vertices

Vqi in the data graph having the same label as qi (Lines 1- 4); and
for every edge (qi ,qj) in the query (Lines 7-8), it first identifies

the aivs of qi and qj (V
qj
qi and V

qi
qj) that satisfy the upper bound

constraint of (qi ,qj) by issuing distance queries. Specifically, it first
expands the partial cap index by creating aivs associated with qi
and qj , respectively (V

qj
qi and V

qi
qj) and initialize them as empty .

Then, it populates these vertex sets by checking each vertex pair

(vi ,vj) ∈ Vqi × Vqj and adding vj to V
qj
qi (vi) and vi to V

qi
qj (vj)

if and only if dist(vi ,vj) ≤ upper . We refer to this procedure for

populating vertex sets as PopulateVertexSet (denoted as pvs).

Observe that this procedure can be expensive when the upper

bound constraint is relatively large (≥ 3). Hence, we adopt three

different strategies, namely neighbor search, 2-hop search and large

upper search, to efficiently populate the aivs. Intuitively, for a new

edge eq = (qi ,qj) we first retrieve the candidate matching vertices

Vqi and Vqj . If eq .upper is 1 or 2 then the neighbor search or 2-hop

search is used. Otherwise, the large upper search scheme is utilized.

Neighbor Search. When the upper bound of (qi ,qj) is 1, the
aivs can be found by either (a) performing a scan of the neighbours

of each v ∈ Vqi to identify all vertices occurring in Vqj (referred to

as out-scan) or (b) by scanning Vqj to identify all vertices adjacent

to v (referred to as in-scan). The cost of such a scan can be expen-

sive for the former if v has many neighbours (denoted as Costout)
and if Vqj contains many vertices that are not adjacent to v in the

Algorithm 2 Algorithm ConstructCAP (Immediate construction)

Require: GUI action a, action stream str eam, C = (VC , EC), G = (V , E, L), (partial) bph
queryQB = (VB , EB , L, λ), pml index P;

Ensure: cap index C;
1: if IsNewVertex(a) = true then
2: qi ← GetNewVertex(a)
3: Vqi ← {v : v ∈ V , L(v) = L(qi)}

4: C← UpdateCAPVertex(C, Vqi)
5: else
6: (qi , qj), upper ← GetNewEdge(a)

7: C← ProcessEdge(C, (qi , qj), upper, G, QB , P)
8: end if

latter (denoted as Costin). Specifically, Costout is computed by per-

forming a linear scan of vi ’s neighbour and for each neighbour

vertex vj having the same label as qj , it checks for its existence in
Vqj , leading to a cost of O(deд(vi) + deд(vi) × pL(qj) × loд(|Vqj |))

(Lemma 5.3) where pL(qj) is the probability of a vertex in G la-

belled as L(qj). In comparison, Costin is computed by performing

linear scan on Vqj and checking iteratively if the vertex is adjacent

to vi , resulting in Costin = O(|Vqj | × loд(deд(vi))) (Lemma 5.3).

When |Vqj | 	 deд(vi),Costin > Costout and Boomer performs an

out-scan. Otherwise, an in-scan is performed.

Lemma 5.3. Given a query edge (qi ,qj), a vertex vi ∈ Vqi and a
candidate vertex set Vqj , the costs of identifying the AIVS (based on
neighbor search strategy) using out-scan and in-scan areO(deд(vi)+
deд(vi)×pL(qj)×loд(|Vqj |)) andO(|Vqj |×loд(deд(vi))), respectively,

in the worst case.

Two-hop Search. When eq .upper = 2, Boomer examines the

2-hop neighbourhood of vi . In particular, the out-scan and in-

scan cost in the above algorithm are replaced with Costout =
TwoHop(vi)+TwoHop(vi)×pL(qj)×loд(|Vqj |) andCostin = |Vqj |×

(deд(vi) + deд(vj)), respectively (Lemma 5.4). Recall from the pre-

ceding section we pre-compute the 2-hop neighbourhood of each

vertex in G. Note that we only record the count and not the exact

vertex set since the edge processing cost is estimated based on the

number of 2-hop neighbours. This results in efficient use of space.

Lemma 5.4. The costs for identifying the AIVS (based on two-

hop search strategy) using out-scan and in-scan areO(TwoHop(vi)+
TwoHop(vi)×pL(qj) ×loд(|Vqj |)) andO(|Vqj | ×(deд(vi)+deд(vj))),

respectively, in the worst case.

Large Upper Search. For larger upper bounds, adopting the

aforementioned strategies would involve scanning significantly

larger number of vertices, rendering it impractical. Hence, Boomer

exploits the pml index to process the distance queries whenupper ≥

3. Specifically, it scans Vqi and Vqj and for each pair of vertices

(vi ,vj) ∈ Vqi × Vqj , vi and vj are added to V
qi
qj (vj) and V

qj
qi (vi),

respectively, if dist(vi ,vj) ≤ upper .

Lemma 5.5. The cost of identifying AIVS when upper ≥ 3 is

O(|Vqi | |Vqj | × (|C(vi)| + |C(vj)|)) in the worst case, where C(vi)
is the distance-aware 2-hop cover of vi .

In practice, even with the usage of pml, pvs can still be costly

especially when |Vqi | or |Vqj | is very large. Boomer prunes all

isolated vertices whose adjacent candidate vertex set is null (i.e.,

V
qj
qi (vi) = ϕ and V

qi
qj (vj) = ϕ). Note that removal of a vertex v af-

fects the candidate vertex set of neighbouring vertex sets (i.e.,Vqi−1
andVqi+1) sincev may be the sole vertex in the candidate vertex set.

Hence, removing it may result in an empty candidate vertex set for

Figure 3: Example of cap index construction (PVS stands for PopulateVertexSet procedure).

Vqi−1 or Vqi+1 . In order to address this, Boomer performs pruning

recursively by checking the candidate vertex set of neighbouring

vertex sets for every vertex v removed.

Lemma 5.6. The maximum number of pruning steps to be per-

formed is
∑
qi ∈VB |{v |L(v) = L(qi),∀v ∈ V }|.

Example 5.7. Consider Q1 on G in Figure 2. Figure 3 illustrates

the steps for constructing the cap index asQ1 is visually formulated.

In Steps 1 and 2, q1 and q2 are drawn and the cap index consists

of Vq1 = {v1,v2,v3,v4} and Vq2 = {v5,v6,v7,v8}. After the edge

e1 = (q1,q2) is drawn (Step 3), V
q2
q1 and V

q1
q2 are populated by the

PopulateVertexSet (pvs) procedure using the neighbor search strat-

egy since e1.upper = 1. In Step 4, it prunes isolated vertices (i.e.,v1).
Next, when the query vertex q3 is added toQ1 (Step 5),Vq3 = {v12}
is added to the index. In Step 6, when the edge e2 = (q2,q3) is
drawn, V

q3
q2 and V

q2
q3 are populated by the two-hop search strategy

in pvs since e2.upper = 2. It prunes isolated vertices v4 and v7 in
Step 7. In Step 8, the last edge e3 = (q1,q3) is constructed and V

q3
q1

and V
q1
q3 are populated by the large upper search strategy in pvs

since e3.upper = 3 (Step 9). There are no isolated vertices identified

in Step 10. Hence, no pruning is performed.

Remark. Several k-neighborhood indexes have been utilized by

existing subgraph matching techniques [4, 18, 36]. [4, 18] utilize 1-

hop indexes and hence cannot be efficiently used in our framework

for higher upper bounds. SPath [36] uses the k-neighborhood by

maintaining for each vertex u in the data graph a structure that

contains the labels of all vertices that are at a distance less or equal

to k from u. Consequently, it may store a large portion of the entire

data graph for larger k . This makes it prohibitively expensive to

utilize in our framework as demonstrated in [29]. In contrast, the

cap index is lightweight in practice and is created on-the-fly during

query construction only for candidate matches of the query vertices.

More importantly, these approaches exploit knowledge of the

complete query graph to compute auxiliary data structures and an

effective matching order. Although this strategy is reasonable in the

traditional querying paradigm, it is infeasible in our visual querying

paradigm as construction and processing of query components are

interleaved. Hence, cap index construction needs to proceed with

partial knowledge of the bph query. Besides, it is impractical to

demand a user to formulate a bph query by following the most

effective matching order.

5.3 Deferment-based Construction (DC)

Observe that the ic strategy is effective if the sequence of formulated

edges E is iteratively processed within the available gui latency.

However, as remarked earlier, processing of an edge eq = (qi ,qj)
can be expensive if |Vqi | and |Vqj | are very large and eq .upper is
large as well (Lemma 5.5). Consequently, when a query involves

such expensive edges, the cap index construction may take sig-

nificantly longer time than the available gui latency. For exam-

ple, consider the query in Example 5.7. Suppose instead of formu-

lating the edge (q1,q3) at the end, a user formulates it first (e.g.,

E : (q1,q3) → (q2,q3) → (q1,q2)). Assume that |Vq1 | and |Vq3 | are
large. Then, (q1,q3) may be an expensive edge and it may take con-

siderably more time than the available gui latency to construct the

index. Observe that this has a cascading impact on the subsequent

construction and maintenance of the cap index as the processing

of subsequent edges are delayed even though (q2,q3) and (q1,q2)
can be efficiently processed, leading to larger srt. On the other

hand, when (q1,q3) is formulated at the end (e.g., Example 5.7), the

sizes of matching vertices of q1 and q3 may reduce significantly

due to the removal of isolated vertices in prior steps. Furthermore,

as it is formulated at the end, it does not delay processing of other

edges in the query. How can we ensure that such expensive edges

do not adversely impact the blending of bph query formulation and

processing? We present a novel deferment-based construction (dc)

strategy to address it.

We need to first determine whether a newly-constructed edge is

potentially expensive. Second, if an expensive edge is not processed

immediately, we need to have a strategy to determinewhen it should

be subsequently processed. LetTest be the estimated time to process

an edge e in QB . Then, e is an expensive edge if:

Test > tlat (1)

where tlat is theminimum gui latency time available for processing

e . Hence, to determine whether an edge is expensive we need to

address the following two questions: (a) How do we estimate Test ?
and (b) How do we estimate tlat ? We now elaborate on them.

Estimation of Test . It is worth noting that the cost of processing

an edge in a bph query depends on the topology of the underlying

data graph, which may vary widely. Our estimation ofTest must be

performed fast so that the gui latency is not wasted for this activity.

Recall from Section 4, we have already computed the average edge

Algorithm 3 Algorithm ConstructCAP (Defer-to-Run)

Require: gui action a, action stream str eam, C = (VC , EC), G = (V , E, L), QB =
(VB , EB , L, λ), edge pool pool , average edge processing time tavд , P;

Ensure: C, edge pool pool ;
1: if IsNewVertex(a) = true then
2: qi ← GetNewVertex(a)
3: Vqi ← {v : v ∈ V , L(v) = L(qi)}

4: C← UpdateCAPVertex(C, Vqi)

5: else if IsNewEdge(a) = true then
6: (qi , qj), upper ← GetNewEdge(a)

7: if upper ≤ 2 or |Vqi | × |Vqj | × tavд ≤ tlat then

8: C← ProcessEdge(C, (qi , qj), upper, G, QB , P)
9: else
10: pool ← Insert(pool, (qi , qj))
11: end if
12: else
13: while pool � ∅ do
14: (qi , qj), upper ← GetMinEdge(pool)

15: C← ProcessEdge(C, (qi , qj), upper, G, QB , P)
16: pool ← Remove(pool, (qi , qj))
17: end while
18: end if

processing time tavд in a given data graph G empirically while

preprocessing it. Hence, we utilize this to compute Test of a query
edge e = (qi ,qj) as follows: Test = |Vqi | × |Vqj | × tavд .

Estimation of tlat . Let qi be the constructed query graph frag-

ment at i-th step during visual query formulation using the class

of gui described in Section 3.2. Note that qi is processed (including
construction and maintenance of the cap index) by utilizing the

gui latency available during the successor step i + 1. Specifically,
the successor step can be (a) construction of a query vertex or (b)

construction of an edge connecting an existing vertex pair. Let

us denote the time taken to perform these two actions as Tnode
and Tedдe , respectively. Hence, tlat =min(Tnode ,Tedдe). In order

to add a vertex, a user may undertake Steps 1-3 described in Sec-

tion 3.2. Let us refer to the time taken to complete Steps 1, 2, and 3

as movement time (denoted by tm), selection time (ts), and drag time

(td), respectively. Then Tnode = tm + ts + td . On the other hand,

construction of an edge involves Steps 5 and 6. Let us refer to the

time taken to complete these steps as edge construction time (te)
and bound formulation time (tb), respectively. ThenTedдe = te + tb .
Note that in the case e .upper = 1 (default value), tb = 0 (the default

bounds on an edge can be set to [1, 1]). Consequently, minimum

value of Tedдe is te . Then, the minimum gui latency time available

ismin(tm + ts + td , te). Since (tm + ts + td) > te [3], tlat = te .
Consequently, Equation 1 can be rewritten as follows.

|Vqi | × |Vqj | × tavд > te (2)

In summary, we can use Equation 2 to determine efficiently

whether a query edge e = (qi ,qj) is expensive to process.

Definition 5.8. [Expensive Edge] Given a BPH query QB =

(VB ,EB ,L, λ) on data graph G , an edge e = (qi ,qj), e ∈ EB is expen-

sive if |Vqi | × |Vqj | × tavд > te and e .upper ≥ 3.

Next, we describe two strategies for deferring processing of

expensive edges, namely Defer-to-Run and Defer-to-Idle.

Defer-to-Run Strategy. This strategy defers processing of ex-

pensive edges until the Run icon is clicked. The intuition is that by

efficiently processing all inexpensive edges early by utilizing the

gui latency, we can reduce the sizes of Vqi and Vqj by removing

isolated vertices, leading to more efficient processing of expensive

edges. Furthermore, since the expensive edges are processed after

Algorithm 4 Algorithm ConstructCAP (Defer-to-Idle)

Require: gui action a, action stream str eam, C = (VC , EC), G = (V , E, L), QB =
(VB , EB , L, λ), edge pool pool , tavд , P;

Ensure: C, edge pool pool ;
1: tidle ← tlat
2: if IsNewVertex(a) = true then
3: Lines 2-4 of Algorithm 3
4: tidle ← UpdateIdleTime(tidle)
5: C, pool ← ProbePool(str eam, C, pool, G, QB , tavд, P, tidle)
6: else if IsNewEdge(a) = true then
7: Lines 6-11 of Algorithm 3
8: tidle ← UpdateIdleTime(tidle)
9: C, pool ← ProbePool(str eam, C, pool, G, QB , tavд, P, tidle)
10: else
11: Lines 13-17 of Algorithm 3
12: end if

the formulation of complete query, this strategy prevents unneces-

sary delay in evaluating inexpensive edges.

Algorithm 3 describes the Defer-to-Run strategy. An edge pool

(denoted by pool) is used to keep track of expensive edges that

have not been processed yet. We use a priority queue to implement

it. Then, when a new edge (qi ,qj) is added, it is added to pool if
upper ≥ 3 and |Vqi | × |Vqj | × tavд > te (Line 10). Finally, after the

Run icon is clicked, it processes the edges in the pool iteratively. In

each iteration, the least expensive edge is removed from pool and
processed using the procedure ProcessEdдe (Lines 13 to 17).

Note that even though the entire query graph is connected, the

order in which expensive edges in the pool is processed may result

in an intermediate structure of a cap index comprised of multiple

connected components where edges in each component are only

processed edges of the query. As edges are processed, these compo-

nents merge and eventually become a single connected component

when the index construction is completed. In Section 6, we shall

discuss how this feature is utilized to handle query modification.

Defer-to-Idle Strategy. Observe that in Defer-to-Run strategy

all expensive edges are processed after clicking of the Run icon.

However, expensive edges may reduce to inexpensive ones with

the addition of new query edges during query formulation as can-

didate vertices Vqi and their related aivs may reduce significantly

in size. Let us elaborate further. Consider a sequence of edges

E : e1 = (q1,q3) → e2 = (q2,q3) → e3 = (q1,q2) constructed
by a user during query formulation. Assume that e1 is an expen-

sive edge. Then according to the Defer-to-Run strategy, it will be

processed after the entire query is formulated. Now assume that

e2 is an inexpensive edge and takes t ′ � tlat time. That is, it

takes significantly less time than the available gui latency to pro-

cess e2. Further, it prunes many isolated vertices in Vq3 . Conse-
quently, our query blender framework is now “idle” as there is no

new vertices or edges to process and existing inexpensive edges

have already been processed. Now assume that after processing

e2, e1 is no more an expensive edge as the size of Vq3 has reduced
significantly after the removal of isolated vertices. In particular,

|Vq1 | × |Vq3 | ×tavд < tlat −t
′. Then, it is possible to process e1 now

by leveraging on the idle time instead of waiting for the complete

query to be formulated. Clearly, this will reduce the number of ex-

pensive edges waiting to be processed after the Run icon is clicked,

leading to superior srt. We refer to this as Defer-to-Idle strategy.

Algorithm 4 outlines the Defer-to-Idle strategy. Instead of pro-

cessing edges in pool after Run icon is clicked, it probes the pool

after processing a new vertex (Line 5) or a new edge (Line 9). The

UpdateIdleTime procedure (Lines 4, 8) keeps track of the time avail-

able for processing an edge in pool by subtracting the processing

time of current edge/vertex from the available gui latency (i.e.,

tlat − t ′). During pool-probing, it checks if a new gui action has

joined the stream and terminates the probing to handle any new

action. Prioritizing new gui action processing over edge processing

in pool allows us to further reduce the size of Vqi and the aivs

where applicable, reducing Test of edges in pool . Suppose stream
has no new action. It selects the topmost edge for processing if its

Test ≤ tlat − t ′. Otherwise, it terminates the pool-probing to await

the next gui action since edges in pool are still too expensive to be

processed.

5.4 Generation of Result Subgraphs

Once the complete query is formulated, a user may click the Run
icon to execute it. This triggers the evaluation of unprocessed edges

(if any) and completion of the cap index construction. Then, we can

utilize it to generate and visualize the matching results (i.e., result

subgraphs) satisfying the bph query. We describe this step now.

Upper bound-constrained matching results. Recall that a

partial-matched vertex set VP in a cap index represents vertices

of a matching result of the query that satisfy the upper bound

constraints. Hence, first we traverse C to extract the set of partial-

matched vertex sets VΔ. The original matching order M is first

reordered in increasing order of |Vqi | to ensure efficient traversal of

C. Next, it identifies VP by traversing the cap index using depth-

first-search (dfs) starting from the first query vertex q1 in M . In

particular, it retrieves the set of candidates vertices Vcandidate for

matching the next query vertex qnext by identifying vertices in

query matched vertices Qmatched that are adjacent to qnext . A
partial-matched vertex setVP is successfully obtained and added to

VΔ when all the query vertices have been matched. In the event that

a query vertex qnext is not matched, it backtracks and traverses

the next branch of the cap index. The matching process terminates

when cap index traversal is completed. The time complexity of this

step is O(|VC | + |EC |).
Visualization-friendly, just-In-time lower bound checking.

In the final step, the results (result subgraphs) of a bph query is

generated and visualized on the Results Panel of the gui. Specifi-

cally, first we take a visualization-friendly approach. As remarked

earlier, it is challenging to visualize result subgraphs (ranked or

otherwise) on a large data graph as the node-link diagram of the

underlying data graph looks like a “hairball” even when it contains

a few hundred vertices. In fact, Ware and Mitchell reported that

it is visually challenging to comprehend graphs containing tens

of vertices in 2D [31]. Hence, the traditional approach of result

subgraph visualization on the underlying data graph or on the

maximum match [14]6 is not a palatable solution. In Boomer, we

deploy small region-based visualization scheme of matching results

where we only iteratively show a small subgraph of the underlying

data graph containing a result match. That is, a user may iterate

through VΔ and for each VP ∈ VΔ we show a small subgraph of G
containing it by color coding the result subgraph. Second, we take

a just-in-time approach to evaluate the lower bound constraints

6The maximum match SM captures all vertices that match a pattern query P (with Vp vertices)

in a networkG . Since |SM | ≤ |V | |VP | [14], it is visually challenging to comprehend matches in

SM .

Algorithm 5 Procedure Deletion

Require: Action stream str eam, C = (VC , EC), deleted query edge eq = (qi , qj), edge pool
pool ,G = (V , E, L),QB = (VB , EB , L, λ), tavд ;

Ensure: (Partial) cap index C = (VC , EC), edge pool pool ;
1: Qc = (Vc , Ec) ← GetConnectedComponent(QB , C, qi , qj)
2: for vertex qk ∈ Qc do
3: Vqk ← ∅

4: RemoveAIVS(qk)
5: for vertex {v |L(v) = L(qk)} ∈ G do

6: Vqk ← Vqk
⋃
{v }

7: end for
8: end for
9: for edge ek ∈ Ec \ {eq } do

10: pool ← pool
⋃
{ek }

11: end for
12: C, pool ← ProbePool(str eam, C, pool, G, QB , tavд, tidle)

and to generate the result subgraph involving VP . Given a VP , we
check whether there exists a path satisfying the edge bounds by

utilizing the pml index (Section 4). Briefly, Boomer finds a shortest

path of a given query edge that satisfies the lower bound constraint

(i.e., dist(vi ,vj) ≥ e .lower). If dist(vi ,vj) < e .lower , it “detours”
to a neighbour of vi (vp) to increase the path length between vi
and vj and then attempts to use a shortest path from vp to vj if
dist(vp ,vj) + d ≥ e .lower where d is the number of detours taken.

Note that if e .lower = 1, we do not need to perform any checking

as e .lower ≤ e .upper .
For example, reconsider Figure 2. Consider VP = {v3,v8,v12}

in Figure 2(c). Boomer first checks the shortest path between v3
andv8 inG . Since dist(v3,v8) ≥ 1, the shortest path is selected. For

the second and third edges, the shortest paths are also greater than

the lower edge bounds (i.e., dist(v8,v12) ≥ 1 and dist(v12,v3) ≥ 1,

respectively). Hence, the shortest paths for these edges are also

selected. The final visualized result subgraph is highlighted in grey

in Figure 2(b). Note that if the edge bound of (q1,q3) is modified to

[3,3], then Boomer needs to take a “detour” tov6 fromv3 instead of
taking the shortest path (v3 → v8 → v12). At v6, it then checks if

dist(v6,v12)+ 1 ≥ 3. If so, the shortest path from v6 to v12 is taken.
Otherwise, additional detours are required. The time complexity

for the lower bound checking isO(|EB | × θmax × S) where θmax is

the maximum degree of a vertex in G and S is the time complexity

of shortest path computation for a given pair of vertices.

6 QUERY MODIFICATION

In this section, we examine how a cap index is maintained when we

allow query modifications. In particular, we consider the following

types of modifications in our setting: (a) deletion of an existing edge

and (b) alteration of bounds of an existing query edge. We shall

first discuss our technique in the context of Defer-to-Idle strategy

and then highlight how it can be extended to other strategies. An

example of query modification is given in Appendix C.

Deletion of an edge. Deletion of an edge is handled as follows

depending on the feature of the edge. For an unprocessed edge, no

change is required on the cap index and Boomer simply removes

the unprocessed edge from the edge pool. Algorithm 5 describes

deletion of a processed edge. Briefly, it performs a “rollback” by

reconstructing the affected region (i.e., connected component) in

the cap index. The GetConnectedComponent procedure in Algo-

rithm 5 identifies this connected component (Line 1). Note that

only processed edges that are connected to the modified edge in

the cap index are affected. The reconstruction steps involve: (a)

Figure 4: Template bph queries. The default order for edge construction is given by the number in the filled circle (e.g., e1 is
the first edge processed inQ1). The default bounds are shown as labels on the edges. Favд denotes the average qft. The values

in curly braces show the min and max result size of all query instances across all datasets for a given template query.

 1
 100

 10000
 1x106

Q1 Q2 Q3 Q4 Q5 Q6

DBLP

S
R

T(
m

s)

3-strategy 1-strategy

Figure 5: 3-Strategy vs 1-Strategy for IC.

Removal of Vqi (Line 3) and aivs (Line 4) of all affected vertices; (b)

Retrieval of the relevant Vqi (Lines 5 to 7); and (c) Addition of the

affected edges (except deleted edge) to the edge pool. Observe that

the ProbePool procedure ensures that where possible, edges in the

pool are being handled.

Alteration of lower bound. Recall from Section 5.1 that the

cap index construction during query formulation considers only

the upper bound. Hence, when the lower bound is altered, there is

no change in the structure of a cap index.

Alteration of upper bound. Upper bound modification can

be made to either a processed or an unprocessed edge e and the

modification can either tighten or loosen the bound. For clarity, we

denote the original and new upper bound as e .upper and e .upper ′,
respectively. When e is unprocessed, Boomer updates the bound of
the unprocessed edge in the edge pool. Note that no modification is

required on the cap index. On the other hand, if e is processed and

the upper bound is modified to be stricter (i.e., e .upper > e .upper ′),

a vertex vj ∈ V
qj
qi (vi) may not satisfy the constraint dist(vi ,vj) ≤

e .upper ′. Hence, we have to examine every pair of (vi ,vj) ∈ Vqi ×
Vqj to reassess whether the upper bound constraint is satisfied

and remove those that violate the constraint. Observe that removal

of (vi ,vj) may result in some vertices becoming isolated. Hence,

we need to perform pruning steps subsequently to remove these

isolated vertices (if any).

Conversely, when the upper bound is loosened (i.e., e .upper <
e .upper ′), a vertex vj that satisfies the upper bound constraint

dist(vi ,vj) ≤ e .upper ′ may not be in the existing V
qj
qi (vi). For

a processed edge, modification to looser bounds is handled very

similarly to deletion (Algorithm 5). The only difference is that the

edge with loosened bound will be added back to the connected

component (i.e., Ec \ {eq } in Line 9 is replaced with Ec). Note
that unlike the case of tighter upper bound where the edges are

processed immediately, for processed edges, we have to add them

in the edge pool as there is insufficient gui latency to process them.

Handling Immediate and Defer-to-Run strategies. For cap

index construction based on ic strategy, no edge is deferred for

processing. Hence, the corresponding query of the constructed cap

index is a single connected component. Consequently, handling

Figure 6: Effect of pruning on (a) srt and (b) cap index size.

of the modification of the upper bound corresponds to the pro-

cessed edge with stricter and looser bound whereas edge deletion

corresponds to that of deletion of a processed edge. For Defer-to-

Run approach, expensive edges are processed only after Run icon
is clicked. Hence, similar to Defer-to-Idle, edges can be processed

or unprocessed and query modification follows the approach of

Defer-to-Idle.

Lemma 6.1. GivenG = (V ,E,L) andQB = (VB ,EB ,L, λ), the time

complexity for query modification in the worst case is

O(
∑
qi ∈VB |Vqi | +

∑
e(qi ,qj)∈Ene |Vqi | × |Vqj | +n) where qi ,qj ∈ VB ,

Ene is the set of inexpensive edges in the pool that can complete

processing within idle time and n is the number of pruning steps.

7 PERFORMANCE STUDY

We have implemented Boomer in Java with JDK1.7. The construc-

tion of pml index [1] is realized in C++. In this section, we inves-

tigate the performance of Boomer and report the key results. All

experiments are performed on a 64-bit Windows desktop with Intel

Xeon CPU E5-1630 (3.70GHz) and 32GB of main memory.

7.1 Experimental Setup

Datasets.We use the following three real datasets. (a) TheWordNet

dataset (|V | = 82K , |E | = 125K) consists of nouns, verbs, adjectives
and adverbs of the English language that is grouped into cogni-

tive synonyms differentiating various concepts. In particular, the

synonyms sets are given as noun, verb, adjective, adjective satel-

lite and adverb which are represented as character code n, v , a, s
and r , respectively. We use these character codes as labels. (b) The

DBLP dataset (|V | = 317K , |E | = 1.1M) is a dblp co-authorship

network where vertices represent authors and two vertices are

connected if the authors publish at least one paper together. We

generate 100 labels and randomly assign each vertex to a label. (c)

The Flickr dataset (|V | = 1.8M , |E | = 23M) describes relationship

between images from Flickr where vertices represent Flickr images.

We generate 3000 labels and randomly assign each vertex to a label.

 1

 100

 10000

 1x10
6

Q2 Q3 Q4

WordNet

S
R

T
 (

m
s)

 1

 100

 10000

 1x10
6

Q1 Q5 Q6

DBLP

 1
 100

 10000
 1x106

Q1 Q2 Q3 Q4 Q5 Q6

Flickr

S
R

T
 (

m
s)

BU IC DR DI

Figure 7: Avg. srt for BU, IC, DR, and DI.

 1

 100

 10000
 1x106

Q1 Q2 Q3 Q4 Q5 Q6

WordNet

T
im

e(
m

s)

 1

 100

 10000

Q1 Q2 Q3 Q4 Q5 Q6

Flickr

T
im

e(
m

s)

IC DR DI

Figure 8: Avg. cap construction time for IC, DR, and DI.

Algorithms. To the best of our knowledge, there is no existing

framework that can evaluate bph queries using the proposed visual

querying paradigm. Note that the work in [20] focuses on substruc-

ture search queries on large networks and not on p-hom queries.

Specifically, as remarked in Section 1, the index structure in [20]

can only support edge-to-edge mapping but not edge-to-path as

demanded by bph queries. On the other hand, as remarked earlier

the seminal work in [13] is based on traditional setting which is

orthogonal to this visual querying paradigm. Furthermore, they do

not seek to find all matches to a 1-1p-hom query (i.e., given a pair of

graphs, the goal is to find a p-hommapping). Hence, we develop the

following baseline referred to as Boomer-unaware evaluation (BU).

It generates partial matches without utilizing the cap index after

the Run icon is clicked by following the reordered matching order

(Section 5.4). For each new vertex qj and associated edge added to

the query, it checks whether upper bound constraints are satisfied

using the pml index. If the condition is satisfied, qj is joined with

previously matched portion to form the new partial match. Alter-

natively, if a new edge is drawn to connect existing query vertices,

then it checks each partial match for upper bound constraint and

prunes away those that fail the check. Note that BU represents

evaluation of bph query without using the Boomer framework. In

the sequel, we compare it with the Immediate, Defer-to-Run, and

Defer-to-Idle strategies, denoted as IC, DR, and DI, respectively.

Query set: It is impractical to generate a large number of visual bph

queries for experimental study as they are formulated by real users.

In fact, visual formulation of too many queries strongly deters end

users to participate in the study. Furthermore, there is no bench-

mark queryset for bph queries. However, in practice, graph pattern

queries are often small; 56.5% of real-life sparql queries consists of

a single edge (rdf triple) whereas 90.8% uses at most 6 edges [5].

Hence, we select small-sized template bph queries (Figure 4) whose

topology can be found in real-life queries such as cycles (Q1,Q2,Q4),

stars (Q5), and flowers (Q3,Q6) [5]. All these templates are formu-

lated on each dataset (i.e., 18 queries) by modifying the vertex labels.

We also modified the bounds associated with them to generate new

queries in order to evaluate our framework from various aspects.

In total, 103 unique bph queries are generated on the three datasets.

 1

 10

 100

 1000

Q1 Q2 Q3 Q4 Q5 Q6

WordNet

S
iz

e
(M

B
)

 0.1

 1

 10

Q1 Q2 Q3 Q4 Q5 Q6

Flickr

S
iz

e
(M

B
)

IC DR DI

Figure 9: Avg. cap index size for IC, DR, and DI.

In the sequel, unless mentioned otherwise, we follow the default

bounds and edge formulation orders mentioned in Figure 4.

Participants profile. Twenty unpaid volunteers (ages from 21 to

27) participated in the experiments in accordance to hci research

that recommends at least 10 users [16, 23]. None of them are authors

of this paper. They were first trained to use the gui of Boomer. For

every query, the participants were given some time to determine

the steps that are needed to formulate the query visually. Note that

the faster a user formulates a query, the lesser time Boomer has for

cap construction. Each query was formulated four times by four

different participants selected. Hence, a total of 412 queries (103 × 4)

are executed. Each participant formulated on average 20.6 queries.

The average query formulation time (qft) for each template query

(with different bounds) by all participants is shown in Figure 4.

Parameter settings. In order to determine the edge construction

time te (Equation 2), each participant was tasked to formulate five

edges in random queries using our gui. The edge construction

times are recorded for all participants and all trials. Then, te is set to
average of these times, which is around 2 sec. Hence, tlat = te = 2s .

7.2 Experimental Results

Exp 1: 3 Strategies vs 1 Strategy for IC. First, we evaluate the

effect of adopting three different strategies (i.e., neighbour search,

two-hop search and large upper search) vs using only large upper

search for populating the aivs in IC. We use the DBLP dataset

and measure the average system response time (srt) for all queries.

Specifically, the srt measures the duration between the time a user

clicks on the Run icon and the upper-bound constrained match-

ing results generation (i.e., user waiting time). Figure 5 reports

the results. Observe that using three strategies resulted in signifi-

cantly smaller srt for all queries. Hence, adoption of our proposed

3-strategy approach is better than single strategy for IC. The re-

sults onWordNet and Flickr are qualitatively similar. In subsequent

experiments, we shall adopt the 3-strategy IC approach.

Exp 2: Pruning vs No Pruning. Next, we evaluate the impor-

tance of pruning isolated vertices in terms of the average cap index

size and the average srt. Figure 6 reports the results for the DBLP

dataset. Observe that pruning of isolated vertices results in signifi-

cantly smaller srt (Figure 6(a)) and yields a more space-efficient

cap index (Figure 6(b)) in practice due to the reduction in |Vqi |.
Exp 3: Comparison Between BU, IC, DR, and DI. In this set of

experiments, we investigate (1) the srts of BU, IC, DR and DI; and

(2) cap construction for IC, DR and DI. We set the maximum limit

on the srt at 2 hours and use new query instances by modifying the

upper bounds on the edges of the template queries in the following

ways. For WordNet (resp. Flickr), we modify e1.upper of all queries
but Q5 (resp. all queries) to 5. InWordNet, e1.upper of Q5 is set to 4.

We set e2.upper in Q1 and Q5 to 1 forWordNet. We modify it to 5

 1

 100

 10000

 1x10
6

 1 3 5 10
Q6 (DBLP)

Upper bound

IC

 1

 100

 10000

 1 3 5 10
Q5 (Flickr)

C
A

P
 t

im
e

(m
s
)

Upper bound

DR DI

Figure 10: Effect of upper bound on cap construction.

 1

 100

 10000

 1x10
6

 1 3 5 10
Q2 (DBLP)

Upper bound

BU IC

 1

 100

 10000

 1x10
6

 1 3 5 10
Q6 (Flickr)S

R
T

 (
m

s
)

Upper bound

DR DI

Figure 11: Effect of upper bound on srt.

for all queries in Flickr. For both datasets, we modify e3.upper for
Q3 andQ5 to 1. Lastly, e5.upper and e6.upper are modified to 1 and

2, respectively, for Q6 for both datasets. DBLP uses the same edge

bound as Flickr for all queries except Q5 where e3.upper is set to 3.

Figure 7 plots the results for representative queries on the three

datasets. Observe that the srt of BU is at least one order of magni-

tude slower than IC, which in turn, is at least one magnitude slower

than DR and DI forWordNet and DBLP. Note that BU did not finish

execution for Q2 and Q4 inWordNet within 2 hrs. This highlights

the benefit of the visual querying paradigm in comparison to tra-

ditional evaluation. For cap construction, the results on DBLP are

qualitatively similar toWordNet. Observe that the effect of the de-

ferment strategy is most obvious inWordNet where such strategy

resulted in superior cap construction time (Figure 8, WordNet) and

index size (Figure 9,WordNet). This is due to large |Vqi | forWordNet

which resulted in some expensive edges benefiting from deferment.

For instance, in Q2, |Vq1 | = 5501 and |Vq2 | = 63099 and (q1,q2) is
an expensive edge that is deferred to be processed after Run icon is

clicked. In comparison, all edges in Q2 for Flickr are inexpensive

and are processed immediately. Hence, the cap construction times

for Q2 on Flickr are similar. Note that even though the same ex-

pensive edges are deferred in DR and DI, majority of them in the

latter are processed before Run is clicked.

Exp 4: Varying upper bound. We examine the effect of varying

the upper bound constraints on average srt and cap construction

time (impact on cap size is discussed in Appendix D). We use

the template queries Q2, Q5, and Q6 on DBLP and Flickr. In real-

world networks, due to ultra-small world property [8] the average

node-to-node distance is approximately 5 [30]. Hence, we vary the

upper bound constraints to {1, 3, 5, 10} in the following ways. For

DBLP, we vary the upper bounds of e1 and e2 in Q2. For Q6 we set

e5.upper = e6.upper = 2 and vary the upper bounds of e1 and e2.
Similarly, for Flickr, we set e3.upper = 1, e4.upper = 2 and vary

upper bound of e2 forQ5. ForQ6 , we set e4.upper = 2, e5.upper = 2,

e6.upper = 1, and vary the upper bounds of e1 and e3.
Figures 10 and 11 plot the results. Naturally, cost increases as we

explore larger part of the data graphs. However, as can be seen the

increase flattens out in all cases as upper bound increases. This is

likely due to the pruning of isolated vertices that arise from stricter

bounds associated with neighbouring query edges. Specifically, the

deferment strategies are found to be useful in reducing srt and

cap construction time especially for higher bounds in DBLP. In

addition, DI has either the same or shorter srt in a majority of test

cases, highlighting the superiority of this strategy. Observe that

both these strategies are orders of magnitude faster than BU.

Other results. We have conducted additional experiments that

are reported in Appendix D and [29]. In summary, we observe

the followings: (a) It typically takes less than 5 sec to check for

lower bound to visualize result subgraphs. (b) Query modification

can be realized efficiently. (c) The srt is insensitive to the query

formulation sequence (qfs) due to the deferment-based schemes.

8 RELATEDWORK

Fan et al. is the first to study the problem of p-homomorphic and

1-1 p-homomorphic matching in [13]. In contrast to our bph query,

they matched vertices based on a similarity matrix and matched an

edge to a path of arbitrary length. In [14], they examine the problem

of p-hom pattern matching in polynomial time using bounded simu-

lation [15]. There are also efforts that investigate pattern matching

using distance-join queries [35, 38] in traditional setting. [38] speci-

fies only a global upper bound for the query. [35] examines bounded

query processing in a distributed environment. In particular, they

consider only upper bounds and find vertex matches without enu-

merating all vertices along the paths. In contrast, Boomer considers

both upper and lower bounds and enumerates all path embeddings

of the results. More importantly, all these work follow the conven-

tional query processing paradigm where the formulation (visual or

textual) of a query is independent of its evaluation.

Majority of incremental algorithms for graphs [10–12] focus

on incremental update of graph query results in response to the

changes in the underlying graph. In contrast, given a data graph

we focus on updating partial results as the p-hom query fragment

evolves during formulation in a visual graph querying environment.

The seminal efforts by Jin et al. [21, 22] investigated this vi-

sual querying paradigm in the context of substructure search over

a large collection of small or medium-sized data graphs. In [20],

it is extended to large networks. These efforts focus on subgraph

isomorphism-based queries instead ofmore generic 1-1p-homomorphic

queries. Furthermore, they focus on edge-to-edgemapping and each

visually constructed edge is immediately processed by exploiting

the gui latency. In contrast, Boomer focuses on edge-to-path map-

ping and the processing of a constructed edge may be deferred to a

more opportune time due to the expensive nature of edge-to-path

mapping in bph queries.

9 CONCLUSIONS

In this paper, we present a novel indexing scheme called cap to effi-

ciently support a visual graph querying framework that efficiently

blends a generic but complex type of graph pattern query (bph

query) that is derived from 1-1 p-hom mapping [13]. This is pri-

marily due to the deployment of a novel deferment-based blending

strategy that facilitates efficient construction and maintenance of

the cap index. Experimental studies on real data graphs validated

the merit of our proposed technique.

Acknowledgments. Y. Song, S. S. Bhowmick and H. E. Chua are

supported by the AcRF Tier-2 Grant MOE2015-T2-1-040. B. Choi

is supported by HK-RGC GRF 12201315 and 12232716. S. Zhou is

supported by National Natural Science Foundation of China (NSFC)

under grant No. U1636205.

REFERENCES
[1] T. Akiba, Y. Iwata, Y. Yoshida. Fast exact shortest-path distance queries on large

networks by pruned landmark labeling. In SIGMOD, 2013.
[2] S. S. Bhowmick, B. Choi, C. Li. Graph Querying Meets HCI: State of the Art and

Future Directions. In SIGMOD, 2017.
[3] S.S. Bhowmick, H.-E. Chua, B. Choi, C. Dyreson. ViSual: Simulation of Visual

Subgraph Query Formulation To Enable Automated Performance Benchmarking.
In TKDE, 29(8), 2017.

[4] F. Bi, L. Chang, X. Lin, L. Q, W. Zhang. Efficient subgraph matching by postponing
cartesian products. In SIGMOD, 2016.

[5] A. Bonifati, W. Martens, T. Timm. An Analytical Study of Large SPARQL Query
Logs. In VLDB, 2017.

[6] N. Buchan and R. Croson. The boundaries of trust: own and others actions in
the US and china. Journal of Economic Behavior and Organization, 55(4):485–504,
2004.

[7] D.H. Chau, C. Faloutsos, H. Tong, J.I. Hong, B. Gallagher, T. Eliassi-Rad.
GRAPHITE: A visual query system for large graphs. ICDM Workshop, 2008.

[8] R. Cohen, S. Havlin. Scale free networks are ultrasmall. Phys.Rev. Lett. 90, 2003.
[9] C.V. Dang, E.P. Reddy, K.M. Shokat, L. Soucek. Drugging the ‘Undruggable’ Cancer

Targets. Nat. Rev. Cancer, 17:502-508, 2017.
[10] C. Demetrescu, D. Eppstein, Z. Galil, G. F. Italiano. Dynamic Graph Algorithms.

In Algorithms and theory of computation handbook. Chapman & Hall/CRC, 2010.
[11] W. Fan, C. Hu, C. Tian. Incremental Graph Computations: Doable and Undoable.

In SIGMOD, 2017.
[12] W. Fan, X. Wang, Y. Wu. Incremental Graph Pattern Matching. TODS, 38(3), 2013.
[13] W. Fan, J. Li, S. Ma, H. Wang, Y. Wu. Graph homomorphism revisited for graph

matching. In VLDB, 2010.
[14] W. Fan, J. Li, S. Ma, N. Tang, Y. Wu, Y. Wu. Graph pattern matching: from

intractable to polynomial time. In VLDB, 2010.
[15] W. Fan, J. Li, S. Ma, N. Tang, Y. Wu. Adding regular expressions to graph

reachability and pattern queries. In ICDE, 2011.
[16] L. Laura Faulkner. Beyond the five-user assumption: Benefits of increased sample

sizes in usability testing. Behavior Research Methods, Instruments, & Computers,
35(3), 2003.

[17] F. Haag, S. Lohmann, S. Bold, T. Ertl. Visual SPARQL Querying based on Extended
Filter/flow Graphs. In AVI, 2014.

[18] W.-S. Han, J. Lee, J.-H. Lee. TurboISO: towards ultrafast and robust subgraph
isomorphism search in large graph databases. In SIGMOD, 2013.

[19] K. Huang, S. S. Bhowmick, S. Zhou, B. Choi. PICASSO: Exploratory Search of
Connected Subgraph Substructures in Graph Databases. PVLDB, 10(12): 1861-
1864, 2017.

[20] H. H. Hung, S. S. Bhowmick, B. Q. Truong, B. Choi, S. Zhou. QUBLE: Towards
Blending Interactive Visual Subgraph Search Queries on Large Networks. VLDB
J. 23(3), 2014.

[21] C. Jin, S. S. Bhowmick, X. Xiao, J. Cheng, and B. Choi. Gblender: towards
blending visual query formulation and query processing in graph databases. In
ACM SIGMOD, 2010.

[22] C. Jin, S. S. Bhowmick, B. Choi, S. Zhou. prague: A Practical Framework for
Blending Visual Subgraph Query Formulation and Query Processing. In ICDE,
2012.

[23] J. Lazar, J. H. Feng, H. Hochheiser. Research Methods in Human-Computer Inter-
action. John Wiley & Sons, 2010.

[24] R. Pienta, A. Tamersoy, A. Endert, S. Navathe, H. Tong, D. H.Chau. VISAGE:
Interactive Visual Graph Querying. In AVI, 2016.

[25] R. Pienta, F. Hohman, A. Tamersoy, A. Endert, S. B. Navathe, H. Tong, D. H. Chau.
Visual Graph Query Construction and Refinement. In SIGMOD, 2017.

[26] R.L. Perlman. Mouse Models of Human Disease: An Evolutionary Perspective.
Evol. Med. Public Health 2016(1):170-176, 2016.

[27] D.D. Shaye, I. Greenwald. OrthoList: a compendium of C. elegans genes with
human orthologs. PloS one 6(5):e20085, 2011.

[28] B, Schr �oder. Ordered Sets: An Introduction with Connections fromCombinatorics
to Topology. Springer International Publishing, 2016.

[29] Y. Song, H. E. Chua, S. S. Bhowmick, B. Choi, S. Zhou. BOOMER: Blending
Visual Formulation and Processing of P -Homomorphic Queries on Large Net-
works. Technical Report, 2017. Available at http://www.ntu.edu.sg/home/assourav/
TechReports/boomer-TR.pdf.

[30] F.W. Takes and W.A. Kosters. Determining the diameter of small world networks.
In CIKM, 2011.

[31] C. Ware, P. Mitchell. Visualizing Graphs in Three Dimensions. ACM Transactions
on Applied Perception (TAP), 5(1), 2008.

[32] S. Yang, Y. Xie, Y. Wu, T. Wu, H. Sun, J. Wu, X. Yan. SLQ: A User-friendly Graph
Querying System. In SIGMOD, 2014.

[33] M.A. Yıldırım, K.I. Goh,M.E. Cusick, A.L. Barabási, M. Vidal. Drug-target Network.
Nat. Biotechnol., 25(10):1119-1126, 2007.

[34] H. Yu, N.M. Luscombe, H.X. Lu, X. Zhu, Y. Xia, J.D.J. Han, N. Bertin, S. Chung,
M. Vidal, M. Gerstein. Annotation transfer between genomes: protein-protein
interologs and protein-DNA regulogs. Genome Res., 14(6):1107-1118, 2004.

[35] X. Zhang, L. Chen, M. Wang. Efficient parallel processing of distance join queries
over distributed graphs. TKDE, 27(3): 740-754, 2015.

[36] P. Zhao, J. Han. On graph query optimization in large networks. In VLDB, 2010.
[37] G. Zhu, X. Lin, K. Zhu et al. TreeSpan: Efficiently Computing Similarity All-

Matching. In SIGMOD, 2012.

[38] L. Zou, L. Chen, M.T. �Ozsu. Distance-join: Pattern match query in a large graph
database. In VLDB, 2009.

APPENDIX A PROOFS

Proof of Lemma 5.2. In the worst case, the data graph is fully

connected and the upper bounds are high. Hence, all vertices inVqi
and Vqj are connected and no pruning occurs, resulting in a worst

case space complexity of O(
∑
qi ∈VB |Vqi | +

∑
e(qi ,qj)∈EB |Vqi | ×

|Vqj |).

Proof Sketch of Lemma 5.3. During an out-scan, the neighbour-

hood of vi is scanned linearly resulting in a cost equivalent to

the degree of vi (deд(vi)). Further, it checks the existence of every
neighbour vertex vj having label L(vj) = L(qj) in the set Vqj . The
cost of such checks is O(loд |Vqj |) if Vqj is stored in order. Since

this operation has to be performed deд(vi) × P(vj |L(vj) = L(qj))
where P(vj |L(vj) = L(qj)) is the probability of a vertex in G hav-

ing the same label as qj and denoted as PL(qj), cost for the out-

scan is Costout = O(deд(vi) + deд(vi) × PL(qj) × loд(|Vqj |)). Dur-

ing in-scan, it checks whether every vertex vj ∈ Vqj having la-

bel L(vj) = L(qj) is adjacent to vi . The cost of such a check is

O(loд(deд(vi)). Since this search is performed |Vqj | times, the over-

all cost is Costin = O(|Vqj | × loд(deд(vi))).

Proof Sketch of Lemma 5.4. During an out-scan, let the 2-hop

neighbourhood of vi be TwoHop(vi). Then, the cost of a linear

scan for the 2-hop neighbours of vi is TwoHop(vi). The remain-

der of this proof follows that in Lemma 5.3 and the cost for the

out-scan is Costout = O(TwoHop(vi) + TwoHop(vi) × PL(qj) ×

loд(|Vqj |)). During in-scan, it checks whether every vertexvj ∈ Vqj
having label L(vj) = L(qj) is within 2 hops of vi . This can be

achieved by looking for common neighbours existing between

the 1-hop neighbourhoods of vi and vj using a merge-join-like

algorithm (O(deд(vi) + deд(vj)) worst case time complexity) as-

suming the neighbourhoods are sorted. Hence, taken together,

Costin = O(|Vqj | × (deд(vi) + deд(vj))).

Proof Sketch of Lemma 5.5. For a given pair of vertices vi and
vj , pml can compute the 2-hop cover in O(|C(vi)| + |C(vj)|) time

using a merge-join-like algorithm [1] where C(vi) is the distance-
aware 2-hop cover ofvi . Since, there are |Vqi | |Vqj | pair of vertices to
consider, the worst case time complexity isO(|Vqi | |Vqj | × (|C(vi)|+
|C(vj)|)).

Proof Sketch of Lemma 5.6. For every vertex qi , the maximum

number of vertices that can be removed is |Vqi |. Hence, the maxi-

mum number of pruning step is
∑
qi ∈VB |{v |L(v) = L(qi),∀v ∈ V }|.

Proof Sketch of Just-in-Time lower bound checking. The

lower bound checking involves performing DetectPath on every

query graph edge. In the worst case,DetectPath requires lower times

of “detours” and each detour requires checking all neighbours and

performing a shortest path computation. Since lower can be con-

sidered as a constant value that is usually relatively small, the time

complexity isO(θmax ×S)where θmax is the maximum degree of a

vertex in the data graphG and S is the time complexity of shortest

path computation for a given pair of vertices. Shortest path com-

putation using 2-hop index has time complexity of O(
√
|E |) [38].

Hence, the time complexity of Just-in-Time lower bound checking

can be rewritten as O(|EB | × θmax ×
√
|E |).

Proof Sketch of Lemma6.1. In theworst case, querymodification

cap for Defer-to-Idle occurs on the first edge and all previously

constructed query edges have been processed, yielding a single

connected component for cap. During deletion or loosening of

bound for first edge, the entire cap index is destroyed and during

“roll-back”, |Vqi | is recomputed (O(
∑
qi ∈VB |Vqi |)) and the affected

edges are added to the pool (O(1)). In the worst case, there are

inexpensive edges that can be processed in the pool when its probed.

Hence, the edge processing cost is (O(
∑
e(qi ,qj)∈Ene |Vqi | × |Vqj |))

where Ene is the set of inexpensive edges in the pool that can be

processed within the idle time. Hence, for deletion and loosening

of bounds, the worst case time complexity is O(
∑
qi ∈VB |Vqi | +∑

e(qi ,qj)∈Ene |Vqi | × |Vqj | + n) where n is the number of pruning

steps. In contrast, during tightening of bound, every pair of (u,v) ∈
Vqi ×Vqj has to be checked again and theworst case time complexity

is O(|Vqi | × |Vqj | + n). Hence, the worst case time complexity for

query modification occurs during deletion and loosening of bounds.

APPENDIX B PSEUDOCODE

B.1 Pseudocode for Immediate Strategy

Algorithm 6 Procedure ProcessEdдe

Require: (Partial) C = (VC , EC), new query edge eq = (qi , qj), eq eq .upper , G =

(V , E, L),QB = (VB , EB , L, λ), P;
Ensure: (Partial) cap index C;

1: for vi ∈ Vqi do

2: V
qj
qi

(vi) ← ϕ

3: end for
4: for vj ∈ Vqj do

5: V
qi
qj

(vj) ← ϕ

6: end for

7: C← UpdateCAPEdge(C, V
qj
qi

, V
qi
qj

)

8: C← PopulateVertexSet(C, (qi , qj), upper, G, P) /* Algorithm 8*/

9: for vertex vi ∈ Vqi do

10: if V
qj
qi

(vi) = ∅ then

11: C′ ← Prune(C′, vi , Vqi , QB)
12: end if
13: end for
14: for vertex vj ∈ Vqj do

15: if V
qi
qj

(vj) = ∅ then

16: C′ ← Prune(C′, vj , Vqj , QB)

17: end if
18: end for

Algorithm 7 Procedure Prune

Require: (Partial) cap index C = (VC , EC), current cap index vertex (vk) and the candidate
vertex set it belongs toVqk , bph queryQB ;

Ensure: (Partial) cap index (C);
1: Vqk ← Vqk \ {vk }

2: for qj ∈ Neighbour(qk , QB) do

3: for vj ∈ V
qj
qk

(vk) do

4: V
qk
qj

(vj) ← V
qk
qj

(vj) \ {vk }

5: if V
qk
qj

(vj) = ∅ then

6: C← Prune(C, vj , Vqj , QB)

7: end if
8: end for
9: end for

Algorithm 8 Procedure PopulateVertexSet

Require: (Partial) cap index C = (VC , EC), new edge eq = (qi , qj), upper bound of eq
eq .upper , data graphG = (V , E, L), pml index P;

Ensure: (Partial) cap index after adding eq ;

1: Vqi ← GetCandVertexFromCAP(qi)

2: Vqj ← GetCandVertexFromCAP(qj)

3: if upper = 1 then
4: C← NeighborSearch(Vqi , Vqj , G)

5: else if upper = 2 then
6: C← TwoHopSearch(Vqi , Vqj)

7: else
8: for vertex vi ∈ Vqi do

9: for vertex vj ∈ Vqj do

10: if Distance(vi , vj , G, P) ≤ upper then

11: V
qj
qi

(vi) ← V
qj
qi

(vi)
⋃
{vj }

12: V
qi
qj

(vj) ← V
qi
qj

(vj)
⋃
{vi }

13: end if
14: end for
15: end for
16: end if

Algorithm 9 Procedure NeiдhborSearch

Require: Candidate vertex setsVqi andVqj , data graphG = (V , E, L);

Ensure: (Partial) cap index C = (VC , EC);
1: for vertex vi ∈ Vqi do

2: Costout ← deд(vi) + deд(vi) × pL(qj) × loд(|Vqj |)

3: Costin ← |Vqj | × loд(deд(vi))

4: if Costout < Costin then
5: for vertex vj ∈ Neighbour(vi , G) do

6: if L(vj) = L(qj) and vj ∈ Vqj then

7: V
qj
qi

(vi) ← V
qj
qi

(vi)
⋃
{vj }

8: V
qi
qj

(vj) ← V
qi
qj

(vj)
⋃
{vi }

9: end if
10: end for
11: else
12: for vertex vj ∈ Vqj do

13: if vj ∈ Neighbour(vi , G) then

14: V
qj
qi

(vi) ← V
qj
qi

(vi)
⋃
{vj }

15: V
qi
qj

(vj) ← V
qi
qj

(vj)
⋃
{vi }

16: end if
17: end for
18: end if
19: end for

B.2 Pseudocode for Deferment-based Strategy

Algorithm 10 Procedure ProbePool

Require: gui action a, action stream str eam, cap index C = (VC , EC), data graph G =
(V , E, L), bph queryQB = (VB , EB , L, λ), edge pool pool , average edge processing time
tavд , pml index P, idle time tidle ;

Ensure: (Partial) cap index C, edge pool pool ;
1: tmax ← tidle
2: while tmax > 0 and str eam has no FreshAction and pool � ϕ do
3: (qi , qj), upper ← GetMinEdge(pool)

4: if |Vqi | × |Vqj | × tavд ≤ tmax then

5: C← ProcessEdge(C, (qi , qj), upper, G, QB , P)
6: pool ← Remove(pool, (qi , qj))
7: tmax ← UpdateTime(tmax)
8: else
9: tmax ← 0
10: end if
11: end while

Algorithm ProbePool. The procedure is outlined in Algorithm 10.

It checks if a new gui action has joined the action stream and

terminates the probing to handle any new action (Line 2). Note

that prioritizing new gui action processing over edge processing

in pool allows us to further reduce the size of Vqi and the aivs

where applicable, reducing Test of edges in pool . Suppose stream
has no new action, then it selects the topmost edge for processing

Figure 12: Query modification.

if its Test ≤ tmax (Lines 3 to 7). Otherwise, it terminates the pool-

probing to await the next gui action since edges in pool are still too
expensive to be processed (Line 9).

B.3 Pseudocode for Result Subgraphs
Generation

Upper bound-constrained matching results.

Algorithm 11 Algorithm PartialVertexSetsGen

Require: bph queryQB , matching orderM : q1 → · · · → q |VB | and cap index C;

Ensure: VΔ = {VP1 , · · · , VP |VΔ |
};

1: VΔ ← ∅
2: M ← Reorder(M, C)
3: for vertex v ∈ Vq1 do

4: Qmatched ← {q1 }
5: VP ← {v }
6: VΔ, Qmatched ← DFS(QB , M, VΔ, VP , Qmatched , q2)
7: end for

Algorithm 12 Procedure DFS

Require: bph query QB , matching order M : q1 → · · · → q |VB | , VΔ , partial-matched vertex

setVP , matched query verticesQmatched , next query vertex to match qnext ;
Ensure: VΔ ,Qmatched ;

1: Vcandidate ← Vqnext
2: for vertex qk ∈ Qmatched do

3: if (qk , qnext) ∈ EB then

4: Vcandidate ← Vcandidate
⋂
V
qnext
qk

(vk)

5: end if
6: end for
7: Qmatched ← Qmatched

⋃
{qnext }

8: for vertex vnext ∈ Vcandidate do

9: VP ← VP
⋃
{vnext }

10: if qnext = q |VB | then

11: VΔ ← VΔ
⋃
VP

12: else
13: VΔ, Qmatched ← DFS(QB , M, VΔ, VP , Qmatched , qnext)
14: end if
15: VP ← VP \ {vnext }
16: end for
17: Qmatched ← Qmatched \ {qnext }

Visualization-friendly, just-In-time lower bound checking.

Algorithm 13 Algorithm FilterByLowerBound

Require: Partial-matched vertex set VP , bph query QB = (VB , EB , L, λ), matching order M ,
data graphG ;

Ensure: Bounded 1-1 p-hom result subgraph H ;
1: H ← ∅
2: for e ∈ EB do
3: (vi , vj) ← GetDataGraphEdge(VP , e, M)

4: P ← ∅
5: H ← H

⋃
DetectPath(vi , vj , e, 0, P)

6: end for

Algorithm 14 Algorithm DetectPath

Require: Current source vertex vc , target vertex vj , query edge e , recursion counter step , list

of vertices along path from vi to vj path;

Ensure: Qualified path path;
1: if step + dist (vc , vj) > e .upper then

2: Return path
3: end if
4: Mark vc as visited
5: path ← path

⋃
vc

6: if vc = vj then

7: if step < e .lower then
8: Mark vc as unvisited
9: path ← path \ {vc }
10: end if
11: Return path
12: end if
13: Assign S0 : ∀v ∈ Neighbour(vc), dist (v, vj) = dist (vc , vj) − 1
14: Assign S+ : ∀v ∈ Neighbour(vc), dist (v, vj) � dist (vc , vj) − 1
15: if step+dist (vc , v) ≥ e .lower then
16: S ← ConcatenateSet(S0, S+)
17: else
18: S ← ConcatenateSet(S+, S0)
19: end if
20: for p ∈ S do
21: DetectPath(p, vj , e, step + 1, path)
22: end for
23: Mark vc as unvisited
24: path ← path \ {vc }
25: Return path

B.4 Pseudocode for Query Modification

Algorithm 15 Procedure StricterUpperMod

Require: (Partial) C = (VC , EC), new query edge eq = (qi , qj), new upper bound of eq
eq .upper

′,G = (V , E, L),QB = (VB , EB , L, λ);
Ensure: (Partial) cap index C;

1: for vertex vi ∈ Vqi do

2: for vertex vj ∈ V
qj
qi

(vi) do

3: if Distance(vi , vj , G) > upper ′ then

4: V
qj
qi

(vi) ← V
qj
qi

(vi) \ {vj }

5: V
qi
qj

(vj) ← V
qi
qj

(vj) \ {vi }

6: end if
7: end for
8: end for
9: Prune isolated candidate vertices inVqi andVqj as per Line 9-18 in Algorithm 6

APPENDIX C EXAMPLE OF QUERY
MODIFICATION

Figure 12 (top) shows examples of processed (solid lines) and un-

processed edges (dotted lines) and two connected components

{q1,q2,q3} and {q4,q5,q6,q7} during formulation of a bph query.

The tighter bound for (q4,q5) illustrates the cap index modification

for alteration of upper bound. On the other hand, the vertices q4,
q5, q6 and q7 are identified due to looser bound for (q4,q5). Then,
Vq4 ,Vq5 ,Vq6 andVq7 are recomputed and the edges (q5,q6), (q4,q7)
and (q4,q5) are added to the edge pool. Lastly, consider the deletion

 0.1

 10

 1000

 1 3 5 10

Q6 (DBLP)

Upper bound

IC

 0.01
 0.1

 1
 10

 1 3 5 10

Q5 (Flickr)

S
iz

e
 (

M
B

)

Upper bound

DR DI

Figure 13: Effect of upper bound on CAP index size.

 1

 100

 10000

 1 2 3

Flickr

Lower bound

Q2 Q5 Q6
 1

 100

 10000

 1 2 3

WordNet

J
IT

 t
im

e
(m

s
)

Lower bound

Q2 Q5 Q6

Figure 14: Effect of varying lower bound.

of (q4,q5). The deleted edge is not added back to the connected

component {q4,q5,q6,q7} (shaded in gray).

APPENDIX D ADDITIONAL EXPERIMENTAL
RESULTS

Exp 4: Upper bound vs cap size. Figure 13 depicts the effect of

upper bound on cap size for Flickr and DBLP. As expected, increase

in upper bound yields large number of matches and hence an in-

crease in cap size. Importantly, observe that the cap size is modest

and can easily fit in a modern machine.

Exp 5: Cost of lower bound check. In this set of experiments,

we examine the cost of checking whether the edges of a result

subgraph involvingVP ∈ VΔ satisfy lower bound constraints greater

than 1 (Section 5.4). Specifically, we compute the average time

taken by 10 random VP s for checking this constraint for three

representative queries (Q2, Q5, and Q6) over WordNet and Flickr

datasets by varying the lower bounds between 1 and 3. Figure 14

reports the results. We observe that the effects of varying the lower

bounds depends on the dataset and query graph. InWordNet, the

average time is relatively constant at around 100ms for all queries

whereas in Flickr, it ranges between 87ms to 4584ms. Nevertheless,

it is still less than 5 sec, which is acceptable.

Exp 6: Query modification cost. We examine the effect of

three types of query modification, namely, deletion of the first edge

(to simulate worst case deletion scenario), tightening and loosening

of edge bound (e3 to e6, if any). We use the queries Q4, Q5, and

Q6 on theWordNet and Flickr datasets and assume DI strategy for

this experiment. In the experiments, we tighten the bound from

[1,2] to [1,1] and loosen it to [1,3]. Table 1 reports the average time

cost of maintaining the cap index due to each modification. We can

make the following observations. First, the cost of tightening of

bounds is cognitively negligible compared to loosening of bounds

and edge deletion. This is natural as additional distance queries

need to be executed for loosening of bounds. However, the cost is

reasonable (within 4 sec). Second, it is more expensive on WordNet

than on Flickr. This is because |Vqi | is significantly larger in the

former. Hence, the modification cost is not very sensitive to the

size of input data graphs.

Exp 7: Impact of QFS. Users can construct a given bph query

by following different query formulation sequences (qfs) by con-

structing the edges in different order7. Here we investigate the

7The vertex processing time is relatively constant (∼ 10ms). Hence, we define the qfs in terms of

query edges instead of query vertices.

Dataset Query Delete Tightened Bound Loosened Bound
e1 e3 e4 e5 e6 e3 e4 e5 e6

WordNet Q4 2661 17 1 17 - 2474 1952 3863 -
Q5 424 32 17 - - 1776 1749 - -
Q6 2096 1 1 1 1 1893 2234 1752 1963

Flickr Q4 591 1 1 1 - 509 345 846 -
Q5 514 1 1 - - 189 141 - -
Q6 654 1 2 1 2 434 455 501 606

Table 1: Query modification costs (msec).

QFS Q1 Q6

S1 e1 → e2 → e3 e1 → e2 → e3 → e4 → e5 → e6
S2 e2 → e1 → e3 e4 → e1 → e2 → e3 → e5 → e6
S3 e3 → e2 → e1 e2 → e3 → e4 → e1 → e5 → e6
S4 e5 → e6 → e2 → e3 → e4 → e1

Table 2: QFS of Q1 and Q6.

 1

 100

 10000

 1x10
6

Q1,S1 Q1,S2 Q1,S3 Q6,S1 Q6,S2 Q6,S3 Q6,S4

WordNet

T
im

e
 (

m
s)

 1

 10

 100

 1000

Q1,S1 Q1,S2 Q1,S3 Q6,S1 Q6,S2 Q6,S3 Q6,S4

Flickr

T
im

e
(m

s)
IC DR DI

Figure 15: Effect of qfs on cap construction time.

 1

 100

 10000

 1x10
6

Q1,S1 Q1,S2 Q1,S3 Q6,S1 Q6,S2 Q6,S3 Q6,S4

WordNet

S
R

T
 (

m
s)

 1

 10

Q1,S1 Q1,S2 Q1,S3 Q6,S1 Q6,S2 Q6,S3 Q6,S4

Flickr

S
R

T
 (

m
s)

IC DR DI

Figure 16: Effect of qfs on srt.

 1

 10

 100

Q1,S1 Q1,S2 Q1,S3 Q6,S1 Q6,S2 Q6,S3 Q6,S4

WordNet

S
iz

e
(M

B
)

 1

 10

 100

Q1,S1 Q1,S2 Q1,S3 Q6,S1 Q6,S2 Q6,S3 Q6,S4

Flickr

S
iz

e
(K

B
)

IC DR DI

Figure 17: Effect of qfs on cap index size.

effect of qfs (Table 2) for two queries, namely, Q1 and Q6. Fig-

ures 16, 15 and 17 depict the effect of qfs on average srt, cap

construction time and index size, respectively. The results on DBLP

are qualitatively similar to WordNet. Observe that for WordNet, qfs

in general do not affect the deferment-based strategies (DR and DI).

On the other hand, for IC, when expensive edges are constructed

early (Q1S1, Q6S1 and Q6S2), the average srt (Figure 16, top), cap

construction time (Figure 15, top) and index size (Figure 17, top) are

much greater (∼ 2 folds) than if they are constructed later. Hence,

another advantage of our deferment-based strategy is that it is

insensitive to qfs as it reorders the processing order of edges in-

ternally by postponing processing of expensive edges regardless of

the order they are formulated.

