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ABSTRACT

Visual graph query interfaces (a.k.a gui) widen the reach
of graph querying frameworks across different users by en-
abling non-programmers to use them. Consequently, several
commercial and academic frameworks for querying a large
collection of small- or medium-sized data graphs (e.g., chem-
ical compounds) provide such visual interfaces. Majority of
these interfaces expose a fixed set of canned patterns (i.e.,
small subgraph patterns) to expedite query formulation by
enabling pattern-at-a-time in lieu of edge-at-a-time construc-
tion mode. Canned patterns to be displayed on a gui are
typically selected manually based on domain knowledge.
However, manual generation of canned patterns is labour
intensive. Furthermore, these patterns may not sufficiently
cover the underlying data graphs to expedite visual formula-
tion of a wide range of subgraph queries. In this paper, we
present a generic and extensible framework called Catapult
to address these limitations. Catapult takes a data-driven
approach to automatically select canned patterns, thereby
taking a concrete step towards the vision of data-driven
construction of visual query interfaces. Specifically, it first
clusters the underlying data graphs based on their topologi-
cal similarities and then summarize each cluster to create a
cluster summary graph (csg). The canned patterns within a
user-specified pattern budget are then generated from these
csgs by maximizing coverage and diversity, and minimizing
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cognitive load of the patterns. Experimental study with real-
world datasets and visual graph interfaces demonstrates the
superiority of Catapult compared to traditional techniques.
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1 INTRODUCTION

Large collections of small- or medium-sized data graphs
are prevalent nowadays in a variety of domains such as
cheminformatics, bioinformatics, drug discovery, and com-
puter vision. For example, more than a million chemical com-
pounds and drugs are publicly available from sources such
as DrugBank (https://www.drugbank.ca/), eMolecules (https:
//www.emolecules.com/), and PubChem (https://pubchem.
ncbi.nlm.nih.gov/). Subgraph search (a.k.a substructure search)
is a popular query primitive for querying these data graphs.
In this search paradigm, a set of data graphs containing ex-
act or approximate match of a user-specified query graph
(i.e., subgraph query) is retrieved from the underlying data
graphs [36]. As such data graph repositories continue to
grow rapidly in size, frameworks to support the formulation
and processing of subgraph queries have become increas-
ingly important. In this paper, we focus on the subgraph
query formulation problem.
A number of declarative query languages have been pro-

posed for graphs (e.g., sparql, Cypher) which can be utilized
to formulate subgraph queries in textual form. All these lan-
guages assume that a user has programming and debugging
expertise to formulate queries correctly. Unfortunately, this
assumption makes it harder for non-programmers to take
advantage of a graph querying framework. A popular ap-
proach to alleviate this problem is to provide a user-friendly
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Figure 1: Visual graph query interface in PubChem.

visual query interface (a.k.a gui) for interactive construction
of queries. For instance, PubChem provides a visual query
interface for structure-based chemical compound search (Fig-
ure 1). Similarly, DrugBank allows end users to draw a sub-
graph search query using a visual interface1. Interestingly,
both these data sources do not expose interfaces to formulate

textual queries using a graph query language, highlighting the
reluctance of end users to use such programming languages.
A core component of many real-world visual subgraph

query interfaces is a panel containing a set of canned patterns
(i.e., small subgraph patterns) to facilitate fast query formu-
lation [6]. Specifically, a canned pattern (pattern for brevity)
enables a user to construct multiple nodes and edges in a
subgraph query by performing a single click-and-drag action
(i.e., pattern-at-a-time mode) in lieu of iterative construction
of edges one-at-a-time (i.e., edge-at-a-time mode). For exam-
ple, the gui in Figure 1 provides a library of canned patterns
such as benzene ring and carboxyl group. Observe that ex-
position of canned patterns on a gui potentially decrease
the time taken to finish a visual query formulation task by
reducing the number of formulation steps. Consequently,
this enhances the usability of graph querying frameworks.
A recent study revealed that the selection of canned pat-

terns for visual interfaces is typically performed manually
based on domain knowledge [6]. Consequently, they suf-
fer from two main drawbacks. First, manual selection of
canned patterns is labour-intensive especially for a large
graph repository. Second, it is very challenging even for a
domain expert to garner a comprehensive knowledge of dif-
ferent topological structures in the underlying data graphs
for canned pattern selection. As a result, the selected patterns
may not be topologically diverse enough to expedite formu-
lation of a wide range of subgraph queries. Consider the
following example scenario that highlights these limitations.

Example 1.1. Urea derivatives such as those in Figure 2
have a wide range of applications. For instance, dcmu is an
algicide whereas tmad is an agent for Mitsunobu reaction

2.
1https://www.drugbank.ca/structures/search/small_molecule_drugs/structure
2
Mitsunobu reaction is an important organic reaction that converts an alcohol into

various functional groups [8].
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Figure 2: Skeletal structures of some urea derivatives

and related canned patterns (best viewed in color).

Diaryl urea derivatives such as sorafenib and linifanib are
important cancer drugs that act as EGFR inhibitors [22].

Consider the canned patterns P1 and P2 in Figure 2, which
are structurally similar to the urea functional group (red
highlighted parts in urea derivative). Note that in these pat-
terns single and double bonds are both represented as un-
weighted edges. Observe that P1 can be used in its entirety
to partially construct a subgraph query for retrieving data
graphs containing dcmu and tmad whereas P2 can be uti-
lized for constructing queries seeking information related
to sorafenib, linifanib, and dcmu. For instance, consider a
subgraph query for tmad. It can be visually constructed by
undertaking the following three steps.
• Step 1: Select and drag P1 to the query construction
canvas (qcc) in the gui (P1a ).
• Step 2: Select and drag P1 to qcc (P1b ).
• Step 3: Construct an edge between P1a and P1b .

Unfortunately, the canned pattern set of PubChem (Figure 1)
does not contain patterns related to urea functional group3.
In fact, it exposes a very limited and fixed set of canned pat-
terns on its gui for query formulation. Furthermore, vertices
in these patterns are unlabeled. Consequently, in order to
visually formulate the above query in the PubChem gui, one
may need to undertake the following steps.
• Step 1: Select and drag P3 to qcc (P3a ).
• Steps 2-6: Label all vertices in P3a .
• Step 7: Select and drag P3 (P3b ) to connect to the vertex
N in P3a .
• Steps 8-11: Label all remaining vertices in P3b .
• Steps 12-17: Select and drag three vertices labelled C to
qcc. Connect these vertices to the partially constructed
tmad.

Notice that it takes 17 steps instead of 3 steps to visually
formulate the aforementioned query in PubChem due to the
lack of availability of P1 in the canned pattern set. This natu-
rally increases the task complexity of the PubChem interface
as it may take a longer time to formulate a query.

3This is also the case for the DrugBank gui.

https://www.drugbank.ca/structures/search/small_molecule_drugs/structure


Is it possible to automatically select a superior collection of

canned patterns that can expedite formulation of a wide vari-

ety of visual subgraph queries? In this paper, we answer to
this question affirmatively by presenting a novel framework
called Catapult (Canned pAttern selecTion for fAst graPh
qUery formuLaTion) that takes a data-driven approach to
the canned pattern selection problem. Given a graph data-
base D, a visual graph query interface I, and a pattern budget

b (i.e.,minimum and maximum size of canned patterns, num-
ber of patterns to display on I), Catapult automatically
selects canned patterns from D satisfying b by ensuring that
these patterns not only have high coverage of D but also are
highly diverse. Furthermore, it preferentially selects patterns
that have potentially low cognitive load on end users. This
is important as research in the information visualization
community reveal that large and dense graphs overload the
human perception and cognitive systems, resulting in poor
performance of relatively complex tasks such as identifying
relationship in graphs [20]. Comprehension of such relation-
ships in canned patterns is a critical step during visual query
formulation as a user needs to visually search these patterns
to select relevant ones. Consequently, a pattern with high
cognitive load may adversely impact the visual search time.

Catapult emphasizes the need to strive a balance between
coverage, diversity, and cognitive load for selecting canned
patterns.We advocate that this is important to the goal of effi-
cient visual query formulation. To elaborate further, a single
unlabeled edge as a canned pattern has complete coverage of
any graph repository. However, such a canned pattern may
not facilitate efficient visual query formulation due to edge-
at-a-time construction mode. On the other hand, the pattern
P1 in Figure 2 has significantly lower coverage and higher
structural diversity than an unlabelled edge. It also enables
efficient formulation of the subgraph query in Example 1.1.

The canned pattern selection problem is NP-hard. Figure 3
depicts the architecture of Catapult to tackle it. Briefly,
it comprises of three key components, namely small graph

clustering, cluster summary graph (csg) generator, and canned
pattern selector. Given D, the small graph clustering module
performs clustering of the data graphs using features such
as frequent subtrees [10] and maximum (connected) common

subgraphs [36]. Then, each cluster is summarized as a cluster
summary graph (csg) by “integrating” all data graphs in
that cluster. Finally, the canned pattern selector component
greedily generates candidate patterns from summarized csgs
in lieu of the underlying data graphs as the number of csgs
is significantly smaller than the number of data graphs. In
particular, a pattern score that is sensitive to the coverage,
diversity, and cognitive load of patterns is employed to select
suitable patterns within the budget b for display on a gui.
Catapult also has a sampler component (eager and lazy

sampler) to tackle very large repositories. As we shall see
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Figure 3: The Catapult framework.

in Section 6, our experimental study with real-world visual
graph query interfaces reveals that Catapult can reduce the
number of steps taken for query formulation by up to 85.7%
and as a result makes query formulation more efficient.

It is worth noting that the benefit of Catapult is not lim-
ited to faster query formulation time. Due to its generic and
extensible architecture, it can be easily utilized to automati-
cally generate canned patterns for any domain-specific graph
querying application (e.g., drug discovery, computer vision)
centered around a collection of small- or medium-sized data
graphs. This naturally enhances the portability of Catapult
across different visual graph query interfaces. Furthermore,
it can be extended to support incremental maintenance of
canned patterns as the underlying data graphs evolve.

In summary, this paper makes the following contributions.
(a) We describe Catapult, an end-to-end canned pattern
selection framework that can be utilized to populate the
set of canned patterns in any visual graph query interface
independent of domains and data sources. (b) To the best of
our knowledge, we are the first to formally propose the novel
canned pattern selection problem by analyzing the desired
properties of a “good” canned pattern set and propose a novel
system to mine them from the underlying data graphs. (c)
Using real-world data graph repositories and visual graph
query interfaces, we show the superiority and applicability
of our proposed framework compared to state-of-the-art
canned pattern selection techniques.
The rest of the paper is organized as follows. Section 2

introduces preliminary concepts. We formally define the
canned pattern selection problem in Section 3. We present
details of the Catapult framework in Sections 4 and 5. Sec-
tion 6 details the experimental results. Related research is
discussed in Section 7. Section 8 concludes the paper. Formal
proofs of theorems and lemmas are given in Appendix A.

2 BACKGROUND

We denote a graph asG = (V ,E), whereV is a set of vertices
and E ⊆ V × V is a set of (directed or undirected) edges.
Vertices and edges can have labels as attributes. Let l be
the mapping function of G for labels of vertices or edges.
That is, l(v) and l(u,v) are the labels of vertex v ∈ V and
edge (u,v) ∈ E, respectively. In this paper, we assume that
G (data or query graph) is a connected graph with at least
one edge. The size of G is defined as |G | = |E |. For ease of



O

C P

G1 O

C P

G2

S

O

C S

G3

O

C S

G6

N

O

C S

G9

N

O

C P

G12

S

(a)

{1}

{1}

{1}

{ɛ}

O{1}

C{1} S{1}

ɛ{ɛ}

(b)

{1}

{1}

{1}

{ɛ}

O{1}

C{1} S{1}

ɛ{ɛ}

{2}

{2}

{ɛ}

{2}

O{2}

C{2} S{2}

N{2}

(c)

{1,2}

{1,2}

{1}

{2}

O{1,2}

C{1,2} S{1,2}

N{2}

(d)

Figure 4: (a)A cluster containing six graphs (G1,G2,G3,G6,G9,G12); (b) extended graph ofG1; (c)mapping of extended

graphs of G1 and G2 (dotted line denotes mapping of the vertex pair); (d) closure graph of G1 and G2.

presentation, we assume data graphs and visual subgraph
queries as undirected simple graphs with labeled vertices.
A graph G = (V ,E) is a subgraph of another graph G ′ =
(V ′,E ′) if there exists a subgraph isomorphism fromG toG ′,
denoted by G ⊆ G ′. We may simply say that G ′ contains G.
We focus on a graph database or repository containing

a set of small- or medium-sized data graphs. Given such a
database D, we assign a unique index (i.e., id) to each data
graph. A data graph G with index i is denoted as Gi .
Maximum (Connected) Common Subgraph. Graph

similarity can be assessed using feature-based or structure-
based measures. The former cannot capture the global struc-
tural information of graphs. Hence, structure-basedmeasures
such as those based onmaximum common subgraph (mcs) [7]
and maximum connected common subgraph (mccs) [36] are
considered superior alternatives. Given two graphs G1 and
G2,G is a common subgraph ofG1 andG2 ifG ⊆ G1,G ⊆ G2.
G is an mcs if there exists no other common subgraph of G1
and G2 larger than G.

Since mcs does not require a common subgraph to be con-
nected, it is possible to have poor similarity match where
vertices in one graph are mapped to those in another that are
positioned very distant from each other [36]. The maximum

connected common subgraph (mccs) addresses this by impos-
ing an additional constraint that an mcs must be connected.

Given two graphs G1 and G2, let Gmcs (resp. Gmccs) be the
mcs (resp. mccs) of G1 and G2. The maximum common sub-

graph similarity (resp.maximum connected common subgraph

similarity) between G1 and G2 is defined as ωmcs(G1,G2) =
|Gmcs |

Min( |G1 |, |G2 |)
(resp.ωmccs(G1,G2) =

|Gmccs |
Min( |G1 |, |G2 |)

) whereMin(.)

is the minimum operator. It is known that mcs and mccs
computation are both np-complete [36].
Closure Graph. A closure graph is a generalized graph

generated by performing a union on the structures of a set
of graphs [19]. We first review two related concepts, namely,
graph extension and graph mapping. Graph extension allows
“integration” of graphs of varying sizes into a single graph
referred to as extended graph (denoted by G∗ = (V ∗,E∗)) by
inserting dummy vertices or edges with a special label ε such
that every vertex and edge is represented inG∗. For instance,
consider the set of graphs in Figure 4(a). G1 is extended to

G∗1 in Figure 4(b) by adding a dummy vertex ε and an edge
that connects vertex C with it. Given two extended graphs
G∗1 and G∗2 , a generalized graph (Figure 4(c)) can be obtained
by mapping their vertices and edges using the approach
in [19]. Formally, given two extended graphs G∗1 = (V

∗
1 ,E

∗
1)

and G∗2 = (V
∗

2 ,E
∗
2), the graph mapping between G∗1 and G∗2

is given as a bijection function ϕ : G∗1 → G∗2 where (i) ∀v ∈
V ∗1 ,ϕ(v) ∈ V

∗
2 and at least one of v and ϕ(v) is not dummy,

(ii) l1(v) = l2(ϕ(v)) if both v and ϕ(v) are not dummy, and
(iii) ∀e = (v1,v2) ∈ E

∗
1,ϕ(e) = (ϕ(v1),ϕ(v2)) ∈ E

∗
2 and at least

one of e or ϕ(e) is not dummy.
Given two extended graphs G∗1 and G

∗
2 and a mapping ϕ

between them, a vertex and an edge closure can be obtained
by performing an element-wise union of the attribute val-
ues of each vertex and each edge in the two graphs, respec-
tively. Then the closure graph ofG∗1 andG

∗
2 is a labelled graph

Gc = (Vc ,Ec )whereVc is the vertex closure ofV ∗1 andV ∗2 and
Ec is the edge closure of E∗1 and E∗2 . The labels take the form
ofA{i1, · · · , in} for vertices and {j1, · · · , jm} for edges where
A is a vertex name, {i1, · · · , in} is a set of indices of graphs
containing vertex A, and {j1, · · · , jm} is a set of indices of
graphs containing edges of connected vertex pairs. For ex-
ample, in Figure 4(c), vertex C{1} in G∗1 is mapped to vertex
C{2} in G∗2 . In the closure graph (Figure 4(d)), these vertices
are replaced by a vertex C{1,2}. Note that these closures may
contain attribute values ε corresponding to a dummy vertex
or edge. We remove dummy labels from closure graphs. For
example, in Figure 4(c), vertex ε{ε} is mapped to vertex N{2}.
In the closure graph (Figure 4(d)), these vertices are replaced
by a vertex N{2}.

3 CANNED PATTERN SELECTION

PROBLEM

In this section, we formally define the canned pattern selection
problem and present an overview of the Catapult frame-
work to address it. We begin by highlighting the desired
characteristics of canned patterns.

3.1 Desired Characteristics

Intuitively, the goal of canned patterns P in a gui I is to aid
users to visually formulate queries quickly. An ideal set of



canned patterns efficiently facilitates construction of a wide
variety of query graphs. However, selection of P is challeng-
ing not only because it is hard to find an optimal solution (see
Theorem 3.2) but also due to the limited availability of space
in I. It is impractical to display a large number of canned
patterns as not only it will make I overly complex but also a
user will need to search a long list of these patterns in order
to determine which ones are best suited for her query. Hence,
the number of canned patterns should be sufficiently small
and should satisfy the following desirable characteristics.

(1) High coverage. A pattern p ∈ P covers a data graph
G ∈ D if G contains a subgraph s that is isomorphic
to p. The pattern set P should ideally cover as many
data graphs in D as possible. This ensures that a large
number of subgraph queries on D can be visually con-
structed by utilizing P. Furthermore, due to the small
size of P, not all vertex/edge labels of D can be made
available in the patterns4. Nevertheless, it is desirable
for P to have high label coverage of D as well.

(2) High diversity. As remarked in Section 1, high cov-
erage of patterns is insufficient to support fast visual
query formulation. Let Q be a subgraph query con-
structed by a user using P. If P contains very similar
patterns, then only a very few of them can be utilized
to formulate Q . Given that the display space in I is
limited, clearly P makes suboptimal use of this space
as highly similar patterns can be replaced with struc-
turally diverse ones serving a larger variety of queries.

(3) Low cognitive load.Cognitive load refers to themem-
ory demand or mental effort required to perform a
given task [20]. As remarked in Section 1, a large and
complex pattern may demand substantial cognitive ef-
fort from a user to interpret [20, 25] and to determine
if it can be used for constructing a particular query
graph. Hence, it is desirable for canned patterns to
impose low cognitive load on a user.

These features will guide us in our canned pattern selec-
tion process. We re-state two key differences from canned
pattern selection in traditional visual graph query interfaces.
First, canned patterns are manually selected in traditional
interfaces. Second, they are not selected by maximizing cov-
erage and diversity and minimizing cognitive load.

3.2 Problem Definition

Intuitively, given a graph databaseD, a visual graph query in-
terface I, and a pattern budget b, the canned pattern selection
problem aims to select a set of patterns P satisfying b fromD

4In a gui, there can be a separate panel that lists all unique labels of vertices and edges
in a data source.

to display on I by maximizing coverage and diversity and min-
imizing cognitive load of P. We consider two types of cover-
age, namely subgraph coverage and label coverage for patterns
and vertex/edge labels, respectively. The subgraph coverage

of a pattern p ∈ P is defined as scov(p,D) = |Gp |

|D | where
Gp ⊆ D is a set of data graphs containing p. Consequently,
the subgraph coverage of a set of canned patterns P is given
as scov(P,D) = |

⋃
p∈P Gp |

|D | . On the other hand, labelled data
graphs may contain a variety of different vertex/edge labels5.
Let L(e,D) be a set of graphs in D containing edges having
same label as e and L(EP ,D) =

⋃
ei ∈EP L(ei ,D). Then the

label coverage of P w.r.t D is given as lcov(P,D) = |L(EP,D) |
|D | .

We measure the diversity of a pattern by utilizing graph
edit distance (ged) [32]. That is, given a candidate pattern p
and a set of canned patterns P, the diversity of p w.r.t P is
defined as div(p,P \p) =min{GED(p,pi )} where pi ∈ P \p
and GED(.) is the graph edit distance operator.
Lastly, given a pattern p = (Vp ,Ep ), the cognitive load of

p is defined as coд(p) = |Ep | × ρp where ρp = 2 |Ep |
|Vp |( |Vp |−1) is

the density of p. Recall that the cognitive load increases with
denser graphs as users tend to spend more time to identify
relationships between different vertices [20]. Kobourov et
al. [25] recently demonstrated that increase in edge cross-
ing hamper graph interpretation-related tasks in terms of
both time taken and accuracy. These results inspired us to
measure cognitive load using graph density as it provides
an estimate on the degree of edge crossings in a pattern.
Specifically, a large dense pattern is more likely to contain a
larger number of edge crossings than a small sparse pattern.
Experimental justification of this density-based definition is
given in Appendix C (Exp 10).

Definition 3.1. Given a graph database D, a graph query

interface I, and a pattern budget b = (ηmin ,ηmax ,γ ) where
ηmin (resp. ηmax ) is the minimum (resp. maximum) size of a

pattern and γ is the number of patterns to be displayed on I,
the goal of canned pattern selection problem is to find a

set of canned patterns P from D that satisfies the followings:

max scov(P,D) max lcov(P,D)

max div(p,P \ p) min coд(p)

s.t. p ∈ P,p ⊆ G,G ∈ D

where |P | = γ and
γ

ηmax−ηmin+1 is the maximum number of

patterns for each k-sized pattern, k ∈ [ηmin ,ηmax ], ηmin > 2.

Remark. Observe that our canned pattern selection prob-
lem is defined as amixture ofminimization andmaximization
of objective functions [12]. Also, it aims to find patterns of
size greater than 2. Patterns of smaller size (e.g., labelled
5In graphs where only vertices are labelled, an edge label can be considered as con-
catenation of labels of the end vertices.



Algorithm 1 Catapult.
Require: Graph database D , pattern budget b = (ηmin, ηmax , γ );
Ensure: Canned pattern set P;

1: Ccoarse ← CoarseCluster inд(D) /* Algorithm 2*/
2: Cf ine ← F ineCluster inд(Ccoarse ) /* Algorithm 3*/
3: S← ClusterSummaryGraphSet (Cf ine )
4: elw← GetEdдeLabelW eiдht (D)
5: cw← GetGraphClusterW eiдhts(Cf ine )
6: P ← F indCannedPatternSet (elw, cw,S,b) /* Algorithm 4*/

edge6, 2-path) are provided as basic patterns in our gui [23]
and is computed after the generation of canned patterns.
Specifically, in our gui we select top-m basic patterns based
on their support and is detailed in [23].

Theorem 3.2. The canned pattern selection problem is NP-

hard.

3.3 Overview of CATAPULT

It is prohibitively expensive to iteratively evaluate subgraphs
in each data graphG ∈ D w.r.t coverage, diversity, and cogni-
tive load in order to compute P. At first glance, it may seem
that frequent subgraphs [31] can be utilized as canned pat-
terns as these subgraphs may have high coverage. However,
subgraph queries are not necessarily frequent in nature as
users may frequently pose infrequent subgraph queries [6].
For example, in Example 1.1 patterns P1 and P2 are not fre-
quent subgraphs in the underlying database.
Algorithm 1 outlines the Catapult approach to tackle

this problem. It first clusters D based on their feature and
topological similarities (Lines 1-2) and then constructs a clus-
ter summary graph (csg) S ∈ S for the data graphs in each
cluster by utilizing the notion of closure graph [19] (Line
3). Next, it maintains two types of weights related to each
cluster and labelled edges, namely, cluster weight (cw) and
edge label weight (elw) (Lines 4-5). The former is a ratio of
the number of graphs in a cluster to that in the database and
is a measure of the importance of a cluster and its csg. A
pattern that is derived from a csg with large cluster weight
is more likely to achieve a higher coverage compared to one
derived from a csg with small cluster weight. The latter mea-
sures the global occurrence of a labelled edge in the database.
Lastly, Catapult automatically selects canned patterns P
(Line 6) from csgs within pattern budget b by first generating
weighted csgs using elw, and then selecting patterns from
them by considering subgraph coverage (based on cw), la-
bel coverage, diversity, and cognitive load. Intuitively, these
features are utilized as follows.

Subgraph Coverage. Coverage of a canned pattern set
P ′ increases if for every subsequent pattern pi added to
P ′, it is derived from graphs in D that are not yet covered
by any existing pattern pj ∈ P

′. For example, consider P ′
and a graph database D partitioned into mutually exclusive

6A labelled edge is an edge with labelled vertices.

graph clusters C = {C1,C2,C3,C4,C5,C6} where ∀Ci ∈ C,
|Ci | = 10 (i.e., every cluster contains 10 graphs), and D = C.
Then the cluster weight (cw) is cwi =

|Ci |
|D | =

10
60 (identical for

all 6 clusters). Suppose P ′ covers C1,C2,C4 in D. Consider
two candidate patterns p ′1 and p ′2 covering C1,C2,C3 and
C2,C3,C5, respectively. Catapult preferentially selects p ′2 to
be added to P ′ since it would increase the subgraph coverage
to 5 clusters7 as opposed to 4 if p ′1 is chosen.

Label Coverage. Intuitively, we add patterns in P that
result in a higher label coverage. For example, let the set of
unique edge labels of P ′ and D be {(0, 1), (0, 2), (1, 3)} and
{(0, 1), (0, 2), (0, 3), (0, 4), (1, 2), (1, 3), (2, 3), (3, 4)}, respectively,
where (l(vi ), l(vj )) are labels of (vi ,vj ). Consider two candi-
date patternsp ′1 andp

′
2 having unique edge labels {(0, 1), (0, 3),

(0, 4), (1, 3), (1, 4)} and {(0, 1), (0, 2), (0, 3), (1, 2), (1, 3)}, respec-
tively. Then Catapult preferentially selects pattern p ′1 as P

′

covers 6 unique labels as opposed to 5 if p ′2 is selected.
Diversity. Given a pattern set P ′ containing three pat-

terns p1,p2,p3 and two candidate patterns p ′1 and p ′2, let
div(P ′,p ′1) = min{GED(p ′1,p1),GED(p

′
1,p2),GED(p

′
1,p3)} =

5 and div(P ′,p ′2) = min{GED(p ′2,p1),GED(p
′
2,p2),

GED(p ′2,p3)} = 7. Then, p ′2 has a greater pattern set diversity
compared to p ′1 and is preferentially selected.

Cognitive Load. Given two candidate patterns p1 and p2,
p1 is preferred over p2 if p1 has lower cognitive load than p2.

Lastly, to tackle very large graph databases, we extend the
framework by sampling data graphs judiciously and then
generate canned patterns from it (Section 4.3).

Remark. Recall from Section 1, patterns with high cov-
erage do not necessarily support efficient visual query for-
mulation. Hence, we reemphasize that the goal of Catapult
is to automatically select canned patterns having low cog-
nitive load and are sufficiently diverse enough to expedite
formulation of a variety of visual subgraph queries by a va-
riety of users. Since users may formulate both frequent and
infrequent queries in practice, Catapult does not make any
restrictive assumption on the type of queries it supports or
their results size. Hence, it selects patterns (frequent and
infrequent) that can frequently assist in formulating queries.
Furthermore, Catapult is query log-oblivious as such

log data may be unavailable especially in “cold start” cases.
For instance, query log may be unavailable for some remote
public data source (e.g., aids) and cannot be exploited when
a user downloads it to formulate queries over it. Addition-
ally, there has to be a sufficient volume of such log data to
be effective in canned pattern selection. Nevertheless, our
canned pattern selection step (Line 6) can be extended to
incorporate frequency of patterns in past subgraph queries.

7Since all clusters contain the same number of graphs, we can count number of clus-
ters instead of number of graphs.



Algorithm 2 CoarseClusterinд.
Require: Graph database D ;
Ensure: A set of graph clusters C;

1: Tall ← GenerateF requentSubtrees(D);
2: Tsel ← Select F requentSubtrees(Tall );
3: for Gi ∈ D do

4: Initialize Ri as a |Tsel |-dimensional zero vector;
5: for Subtree Tj ∈ Tsel do
6: if Gi contains Tj then
7: Update jth position of vector Ri to 1;
8: end if

9: end for

10: end for

11: C ← Cluster inд(R, D) /* R = {R1, · · · , R |D | }*/;

4 CLUSTER SUMMARY GRAPH (CSG)

GENERATION

A large collection of small- or medium-sized data graphs
is likely to contain groups of graphs having similar topol-
ogy. These groups can be obtained via clustering and each
group can be represented by a cluster summary graph (csg).
Subsequently, we aim to design techniques that enable us to
select relevant canned patterns from these csgs instead of
directly computing them from D, which is computationally
untenable. Here we describe the csg generation process. In
the next section, we shall elaborate on how canned patterns
can be generated from these csgs.

4.1 Small Graph Clustering

We aim to partitionD into a set of graph clusters C = {C1,C2,
. . . ,Cd }, whereCi ⊆ D,Ci ∩Cj = ∅ ∀i , j , and it maximizes
a clustering property objective function f : C → R, i.e., find
any C in arдmaxC f (C) = {C|∀C′ : f (C′) ≤ f (C)}. Unfortu-
nately, majority of graph clustering approaches focus on iden-
tifying “related” vertices in a single large graph [34]. There
is scant research on clustering a set of small- or medium-
sized graphs (i.e., small graph clustering) [18, 35] and they
can be categorized into two classes: feature vector-based and
graph structure-based. The former uses graph properties or
subgraph occurrences as a feature vector in a standard clus-
tering algorithm. In contrast, the latter uses graph structures
such as mcs or mccs directly resulting in clusters that are
more intuitive and interpretable. However, these techniques
are expensive. Hence, in Catapult we explore a hybrid tech-
nique that integrates these two approaches to achieve high
quality clusters in reasonable time.

Given D, Catapult first assigns each data graphG ∈ D to
an appropriate graph clusterC based on the distance between
the frequent subtree8-based feature vector ofG and that of the
feature vector representative of C (i.e., clustering property)
where |C | = k (coarse clustering, Line 1 of Algorithm 1). Then,
if |C | is larger than a threshold N , C is further decomposed
into smaller clusters where each sub-cluster has size less than

8Compared to frequent graphs, frequent subtrees describe crucial topology of graphs
but demand lower computational cost.
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N and intra-cluster graphs have smaller topological distances
measured using mccs (i.e., clustering property) compared to
inter-cluster data graphs (fine clustering, Line 2). Observe that
coarse clustering is a feature vector-based approach whereas
fine clustering is based on graph topology. Also note that
the reason we further decompose “larger” clusters using fine
clustering is because it reduces the size of csgs and their
generation cost in the subsequent step by operating on a
smaller collection of similar data graphs. We now elaborate
on the coarse and fine clustering.

Coarse clustering. Coarse clustering (Algorithm 2) lever-
ages frequent subtrees as feature vectors, which are connected
acyclic subgraphs with support greater than or equal to a
threshold value. In Catapult, frequent subtrees are gener-
ated (Line 1) using the approach in [10] and are represented
as canonical strings in two steps: (1) canonical tree gener-
ation via normalization and (2) conversion of the tree to
the canonical string. Normalization of a labeled rooted tree
is a bottom-up procedure based on the tree isomorphism
algorithm in [1]. Given the original tree, it is performed
level-by-level bottom up, using orders among subtrees at
each level until the canonical form is obtained. An exam-
ple of normalization is given in Figure 5. Note that sub-
trees that are “equal” (e.g., branch {B,D,E}) are combined
in the intermediate steps. The canonical string is obtained
by scanning the canonical tree top-down level-by-level in
a breadth-first manner. Symbols $ and # are used to parti-
tion families of siblings and the end of the canonical string,
respectively. Hence, the canonical string of the tree in Fig-
ure 5 is A$1B1B1B$1C1D$1D$1F1G$1E$1E#, assuming that
all edges have label of 1.
Observe that a set of frequent subtrees may contain sub-

trees that are highly similar to others. Hence, the selection
of frequent subtree set (Line 2) can be further optimized
using maximization of the uncapacitated facility location

function [21] (Appendix B). Here, frequent subtrees are fa-
cilities and the facility cost is the similarity of a subtree to
other subtrees in the set. This function is a monotone sub-
modular function and can achieve a near-optimal solution
by applying greedy search where the selected subtrees are
able to achieve at least 1− 1

e ≈ 63% discriminative power for
clustering [17]. We model the problem of selecting a greedy



Algorithm 3 FineClusterinд.
Require: A set of graph clusters C;
Ensure: A set of graph clusters C with size≤ N ;

1: Initialize N with the default maximum cluster size;
2: Clarдe ← GetLarдeClusters(C, N ); /*Contains Ci where |Ci | > N */
3: C ← C\Clarдe ;
4: Cnew ← ϕ ;
5: while |Clarдe | > 0 do

6: Cf ir st ← RemoveF ir stCluster (Clarдe );
7: Seed1← SelectRandomGraph(Cf ir st );
8: C ′ ← Inser t IntoSet (C ′, Seed1);
9: for Graph G ∈ Cf ir st \{Seed1} do
10: ωG ← GetSimilar ity(G, Seed1);
11: end for

12: Seed2← SelectDissimilarGraph(Cf ir st \{Seed1}, ω);
13: C† ← Inser t IntoSet (C†, Seed2);
14: for G ∈ Cf ir st \{Seed1, Seed2} do
15: ω′G ← GetSimilar ity(G, Seed2);
16: if ωG > ω′G then

17: C ′ ← Inser t IntoSet (C ′, G);
18: else

19: C† ← Inser t IntoSet (C†, G);
20: end if

21: end for

22: Clarдe , Cnew ← ClusterUpdate(Clarдe , Cnew , C ′, N );
23: Clarдe , Cnew ← ClusterUpdate(Clarдe , Cnew , C†, N );
24: end while

25: C ← C
⋃
Cnew ;

set of frequent subtree as features using the minimization
of the dissimilarity between subtrees. This problem can be
recast as a maximization of similarity between subtrees as
follows. Given two subtrees i and j represented as canon-
ical strings, the subtree similarity of i and j is defined as
σsubtree (i, j) =

|lcs(i, j) |
max ( |i |, |j |) where |i | is the size of i , lcs(i, j)

is the longest common subtree between i and j andmax(.)
is the maximum operator. Formally, the submodular func-
tion is defined as: q(Tsel ) =

∑
i ∈Tall maxj ∈Tsel (σsubtree (i, j))

where Tall is the set of all frequent subtrees and Tsel is the set
of near-optimal frequent subtrees. Next, Catapult iterates
through each graph Gi ∈ D to determine its feature vector.
For clarity, the feature vector is a |Tsel |-dimensional vector.
The jth position of the vector is one ifGi contains the subtree
Tj ∈ Tsel , and zero otherwise (Lines 3-10). Finally, clustering
(Line 11) is performed using Tsel as feature vectors. In par-
ticular, Catapult uses the k-means clustering with k seeds
selected using the k-means++ algorithm [4]. We set k as |D |N
where N is the maximum cluster size.

Fine clustering. In fine clustering (Algorithm 3), Cata-
pult further breaks down large clusters into smaller ones. It
organizes a given set of graphs Cf ir st into two new clusters
(C ′ and C†) according to the mccs similarity of the graph
G ∈ Cf ir st and seed graphs Seed1 and Seed2 corresponding
to C ′ and C†, respectively. The first seed graph Seed1 is se-
lected randomly from Clarдe (Line 7) whereas the second
one Seed2 ∈ Clarдe is selected such that it is most dissimilar
to Seed1 (Lines 9 to 12). After the clustering process, Cat-
apult performs an update of Clarдe and Cnew by checking
the size of the newly-generated clusters. A new cluster will

be inserted into Clarдe if its size is larger than N . Otherwise,
it will be inserted into Cnew (Lines 22 to 23). We adopt the
McGregor algorithm [27] to compute mccs.
Example 4.1. Given a graph dataset D = {G1, · · · , G17},

let N = 6 and the number of k-means clusters be K = 3.
Suppose the clusters are C1 = {G1,G2,G3,G6,G9,G12}, C2 =

{G4,G7,G8,G13,G14,G15,G17} and C3 = {G5,G10,G11, G16}

after the coarse clustering phase. Then, the size ofC2 exceeds
N and is subjected to fine clustering. A seed (e.g., G8) is ran-
domly selected from C2 and is inserted into the first new
cluster C′. Then, mccs similarities are computed betweenG8
and remaining graphs in C2. The graph having the greatest
mccs dissimilarity is selected as the second seed (e.g., G15)
and inserted into the second new cluster C†. For the remain-
ing graphs (i.e., C2R = C2 \ {G8,G15}), mccs similarities are
computed between each graph Gi ∈ C2R and G8 (denoted as
ωGi ), and betweenGi andG15 (denoted as ω ′Gi

). Comparison
is made betweenωGi andω ′Gi

. A largerωGi implies thatGi is
more similar to G8 compared to G15, and Gi is inserted into
the first new cluster. Fine clustering splits C2 into two new
clusters C ′2 = {G7,G8,G13} and C†2 = {G4,G14,G15,G17}.
Hence, at the end of the small graph clustering phase, four
clusters, namely, C1, C ′2, C

†
2 and C3, are generated.

Remark. The worst case time complexity of small graph
clustering is exponential in cost due to the k-means algo-
rithm [3] (See Appendix A). Note that the Catapult frame-
work is orthogonal to the choice of a feature vector-based
clustering approach as k-means can be replaced with an al-
ternative clustering algorithm. Furthermore, the small graph
clustering step is a one-time cost and is only invoked when
D is a new dataset. Hence, such a tradeoff is appropriate.

Lemma 4.2. Small graph clustering achieves
1
2+(α−

1
2 )min_f r -

approximation of optimum clustering where min_f r is the

support of frequent subtree and α is the probability that correct

clustering occurs given that the mccs of a pair of graphs (in

the same cluster under optimum clustering) contains frequent

subtrees of D.

4.2 Generation of CSGs

Once the set of graph clusters C are generated, Catapult
summarizes each cluster Ci ∈ C into a closure graph (recall
from Section 2). We refer to it as cluster summary graph

(csg). In particular, it iterates through each cluster Ci ∈ C

and performs graph closure [19] by considering a pair of
data graphs at a time. Briefly, graph extension of a pair of
data graphs is mapped and the closure graph is found by
performing edge closure on the extended graph9. The csg
S for a cluster Ci is obtained when all data graphs in the
cluster have been integrated into the closure graph.

9Catapult skips the vertex closure step since edge labels are needed subsequently.



Lemma 4.3. The time and space complexities of the csgs gen-

eration process areO(|D | |Vmax |d
2loд(|Vmax |)) andO(|D |(|Emax |+

|Vmax |)), respectively, where d is the maximum degree of ver-

tices and Gmax = (Vmax ,Emax ) is the largest graph in D.

4.3 Handling Larger Graph Databases

Small graph clustering can be computationally expensive for
large D. To alleviate this challenge, Catapult follows a two-
level sampling approach (eager sampling and lazy sampling)
as depicted in Figure 3. Intuitively, the eager sampling is
performed prior to the small graph clustering phase and the
lazy sampling is performed after the coarse clustering phase.
As we shall see in Section 6, this sampling approach achieves
a good balance between the quality of canned patterns and
the runtime performance of Catapult.

Eager sampling. Eager sampling refers to random sam-
pling from D. First, it generates a random sample of data
graphs fromD. Given an error bound ϵ and a maximum prob-
ability ρ for the error that exceeds ϵ , the size of the random
sample (|Seaдer |) is determined by |Seaдer | ≥ 1

2ϵ 2 ln
2
ρ [38].

For example, given D and sampling parameters ρ = 0.01
and ϵ = 0.02, |Seaдer | = 1

2(0.02)2 ln
2

0.01 = 6623. Observe that
|Seaдer | is independent of |D |. Then, the sample Seaдer is
used to find a frequent subtree set (recall from the coarse

clustering phase). For a subtree t , the probability that the
error e(t , Seaдer ) > ϵ is at most ρ. Note that e(t , Seaдer ) =
| f r (t) − f r (t , Seaдer )| where f r (t) and f r (t , Seaдer ) are the
frequencies of t in D and Seaдer , respectively. Hence, by
setting low_f r < min_f r , the potential frequent subtrees
found with lower support low_f r for the sample are less
likely to miss any frequent subtrees found with support of
min_f r for the original dataset. Catapult performs count-
ing on this potential frequent subtree set using the original
support threshold (i.e.,min_f r ) to retrieve the final set of
frequent subtrees. The frequent subtree set is then used as
feature vectors in the coarse clustering phase.

Lemma 4.4. Given a frequent subtree set X , a random sam-

ple Seaдer , a probability parameter φ, the probability that

x ∈ X is missed is at most φ when low_f r < min_f r −√
1

2 |Seaдer | ln
1
φ where low_f r andmin_f r are the lower sup-

port threshold and the original support threshold, respectively [38].

Note thatmin_f r is a user-specified support value of frequent
subtree set and low_f r is a lower support threshold for the

frequent subtree set due to sampling.

Lazy sampling. After coarse clustering, some clusters
may still be too large for efficient processing. Catapult
performs stratified random sampling of large clusters to
further reduce their sizes (referred to as lazy sampling). For
example, suppose after coarse clustering of a dataset of 50K
data graphs, cluster C1 contains 1000 data graphs. Let the

Algorithm 4 FindCannedPatternSet .
Require: Edge label weight elw, cluster weight cw, a set of csgs S, pattern budget

b = (ηmin, ηmax , γ );
Ensure: A set of canned patterns P;

1: P ← ϕ ;
2: S← GetW eiдhtedGraph(S, elw);
3: while |P | < γ do

4: Pc ← ϕ ;
5: Π ← GetPatternSizeRanдe(b, P);
6: for S ∈ S do
7: for Pattern size η ∈ Π do

8: L ← ϕ ;
9: for iteration i=0 to x /*x =max no. of random walks*/ do
10: pcp← GeneratePCP (G, η);
11: L ← L

⋃
{pcp};

12: end for

13: fcp← GenerateFCP (L);
14: Pc ← Pc

⋃
{fcp};

15: end for

16: end for

17: s ← GetPatternScore(Pc , P, cw);
18: pbest ← GetBestPattern(s, Pc )
19: P ← P

⋃
{pbest };

20: cw← UpdateClusterW eiдht (cw, pbest , S);
21: elw← UpdateEdдeLabelW eiдht (elw, pbest );
22: end while

sampling parameters be p = 0.5, Z α
2
= Z 0.95

2
and e = 0.03.

Then |Slazy | = ( 1.652×0.52

0.032 /50000)× 1000 = 15.13 (Lemma 4.5)
and C1 can be further reduced by taking a sample of 15
graphs. Note that fine clustering still needs to be performed
if |Slazy(C) | > N .

Lemma 4.5. Given a set of data graphs D containing |C|

clusters, the size of a random sample set Slazy(C) required to
estimate a cluster C ∈ C is defined as

|Slazy(C) | =
|Ssample |∑
Ci ∈C |Ci |

× |C | (1)

where Ssample is the sample for D. Here |Ssample | =
Z 2pq
e2

where Z 2
is the abscissa of the normal curve that cuts off an

area α at the tails (1-α is the desired confidence level, e.g., 95%),

e is the desired level of precision, p is the estimated proportion

of a graph being sampled in D, and q = 1 − p.

5 SELECTION OF CANNED PATTERNS

Given a set of csgs S, Catapult follows a greedy iterative
approach for selecting canned patterns for a gui. In each
iteration, candidate patterns are generated from each csg
S ∈ S and the “best” pattern for that iteration is added to the
partial canned pattern set P ′. Weights related to coverage
are assigned to the csgs to ensure that in each subsequent
iterations, candidate patterns are derived from csgs that are
not yet covered by P ′. Catapult performs random walks on
these weighted csgs and leverages on the statistics obtained
from the walks to propose a candidate canned pattern (final
candidate pattern) for each size in the range [ηmin − ηmax ]

(i.e., pattern budget b). A pattern score based on coverage,
diversity, and cognitive load is computed for each candidate
pattern and utilized to select the next best pattern to be added
into P ′. Weights of the csgs are then updated based on the



selected pattern. These steps are repeated until either the
required number of canned patterns are discovered or when
no new pattern can be found. We now describe the algorithm
(Algorithm 4) in detail.

Weighted csg construction (Line 2). The csg S of a
cluster C is a summarized representation of data graphs
contained inC . Each edge e in S is assigned aweightwe based
on its label coverage in the dataset (i.e., global occurrence)
and in the cluster (i.e., local occurrence) as follows: we =

lcov(e,D) × lcov(e,C) where lcov(e,X ) = |L(e,X ) |
|X | .

Weighted random walk for candidate pattern gen-

eration (Lines 6 to 16). We adopt a random walk-based
approach for candidate generation as each random walk
starts afresh in each iteration and has the potential to cover
different regions of the csgs, thus producing diverse candi-
date patterns. Given a weighted csg S , Catapult performs
random walk to generate a variety of potential candidate
patterns (pcp) from which a final candidate pattern (fcp) is
derived. These pcps collectively form a candidate library L.
We elaborate on the generation of pcp and fcp.

Each random walk to generate a pcp starts with a seed

edge (i.e., edge with largest weight). In every iteration, the
pcp is “grown” by adding an adjacent edge until the required
number of edges is achieved or when no more edges can
be added. An adjacent edge is selected as follows [16]: (a)
Find all adjacent edges (referred to as candidate adjacent
edges (cae)) of the partial pcp. (b) Multiply all cae with the
least common multiplier (lcm) of denominators of weights
of the cae. Hence, these cae now have integer weights. (c)
Replace each cae (u,v) with integer weight k by k cae (u,v)
of weight 1. (d) Randomly select a cae. At the end of each
random walk, a pcp is added to the candidate library L.

Generation of the fcp starts with the first edge (i.e., most
frequent edge in L). Similar to the pcp, the fcp is “grown” an
edge at a time. In order to ensure that the fcp is a connected
subgraph, the next added edge selected is the most frequent
edge in L that is also connected to the previous added edge.

Pattern score computation (Line 17). The pattern score,
which selects the best candidate (i.e., candidate with the high-
est score), is computed by combining scov(), lcov(·), div(·),
and coд(·). Observe that the scov computation is extremely
expensive when |D | is large. Hence, we estimate scov in
terms of the cluster coverage ccov . That is, scov(P,D) ≃
ccov(P, cw,C)where C is a set of clusters of D and cw is the
clusterweight vector such that cwi =

|Ci |
|D | and ccov(P, cw,C) =∑

i ∈C cwi × Ii where Ii = 1 if the csg of Ci contains a sub-
graph isomorphic to p ∈ P and Ii = 0 otherwise. Hence,
given D with clusters C, a pattern p = (Vp ,Ep ), and a canned
pattern set P, the pattern score of p is:

sp = ccov(p, cw,C) × lcov(p,D) ×
div(p,P \ p)

coд(p)
(2)

Notice that as recommended by [37], we combine scov ,
lcov , div , and coд using multiplicative utility function as we
do not have prior knowledge of the trade-off rate (i.e., x units
of criterion A is equivalent to y units of criterion B) between
these criteria (more details in [23]). Also, sp increases when
ccov or div increases or when coд decreases. Hence, given
two candidate patterns p1 and p2, p1 is considered superior
to p2 if sp1 > sp2 .

Recall that ged is used to compute the pattern set diversity
(Section 3.2), which is known to be computationally expen-
sive [32]. Hence, Catapult uses a pruning step based on
the lower bound of ged to reduce the number of exact ged
computation.
Definition 5.1. Given two graphs GA = (VA,EA) and GB =

(VB ,EB ), the lower bound ged is given as GEDl (GA,GB ) =

|V | + |E | where L(VA) is the set of labels of vertices in VA,
|V | = | |VA | − |VB | | + Min(|VA |, |VB |) − |L(VA)

⋂
L(VB )| and

|E | = | |EA | − |EB | |.

Observe that the lower bound computes the exact number
of vertex modification (|V | in Definition 5.1) and the mini-
mum number of edge modifications (|E |) that are necessary.
Lemma 5.2. Given two graphs GA = (VA,EA) and GB =

(VB ,EB ), the worst case time complexity of computing the lower

bound of ged is O(|VA |loд |VA |) where |VA | ≥ |VB |.

The lower bound can be exploited to compute geds as
follows: (a) Compute lower bound of ged (gedl ) of candi-
date patterns pc with each canned pattern p in P ′. (b) Order
canned patterns in P ′ in increasing gedl and store the list
as Y . (c) Iterate through Y . In each iteration, (1) compute
ged(p,pc ) wherep ∈ Y , (2) update gedmin if ged(p,pc ) <gedmin
and (3) remove all p from Y with gedl >gedmin .
Updating weights (Lines 20 to 21). In this step, the clus-

ter weight and edge label weight (recall from Section 3.3)
are updated after each selection of a new canned pattern
p by utilizing the multiplicative weights update method [2]
as follows: (a) Cluster weight update: if the csg of a cluster
C contains subgraph isomorphic to p, then the new cluster
weight of C is w ′C = (1 − n) ×wC where wC is the original
cluster weight. We set n = 0.5 according to [2]. (b) Edge
label weight update: if an edge e has label corresponding to
that of an edge in p, then the new edge label weight of e is
w ′e = (1−n)×we wherewe is the original edge label weight.

Remark. Observe that the above algorithm results in
higher chance of covering frequently occurring edge labels
since there are more edges containing these labels and a
walk is likely to pass through one or more such edges. These
edges are likely to occur in frequent queries. In contrast,
edge labels with low frequency are more likely to occur in
infrequent queries. Hence, Catapult balances the number
of frequent and infrequent patterns by using the aforemen-
tioned weighted random walk approach.
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Figure 6: Canned pattern selection consisting of gen-

erating (a) weighted csg; (b) pcp; and (c) fcp.

Furthermore, Catapult follows a uniform distribution
in generating P to ensure that the sizes of canned patterns
are evenly distributed (Definition 3.1). However, it can be
easily modified as follows to accommodate a different size
distribution by allowing the canned patterns per size to vary
in the range [1-k] where k < γ : (1) change pattern budget to
b = (ηmin ,ηmax ,Ψdist ,γ ) where Ψdist is the desired pattern
size distribution, and (2) modify the GetPatternSizeRanдe
procedure (Line 5) to generate the range of required size
based on Ψdist for each while-loop iteration.

Example 5.3. Figure 6 illustrates the canned pattern selec-
tion process. Let γ = 9, ηmin = 3 and ηmax = 5. Catapult
first generates the weightwe for each csg (Figure 6(a)). For
example, wCO = lcov(CO,D) × lcov(CO, SC1) = 0.99. Then,
random walks are performed to derive a library of pcps for
each pattern size. Figure 6(b) illustrates an instance of ran-
dom walk to generate a pcp of size 3 for weighted csg SC1,
starting at seed edge (C,O) (largest weight). A set of caes
is obtained by converting edge weights to integers. For in-
stance, the cae of (C,N) consists of 47 copies of (C,N). A
cae (e.g., (C,N)) is then randomly selected and added to the
partial pcp. This process is repeated until the pcp is fully con-
structed. The constructed pcp (e.g., {(C,O), (C,N), (C, S)}) is
then added to the library. Next, Catapult proceeds to iden-
tify the fcp from the pcp library based on the frequency of
labelled edges occurring in the library. Figure 6(c) illustrates
the steps of finding a fcp of size 3 from SC1. Based on 100
random walks, the most frequent edge is identified as (C,O),
which forms the first edge in the fcp. The second edge (i.e.,
(C,N)) in the fcp is the most frequent edge in the library
that is connected to (C,O). Catapult continues to identify
the next edge until the fcp is constructed. Note that in every
iteration, each csg “proposes” a fcp for each pattern size.
The pattern score for each fcp is computed. The fcp (e.g.,
P1 = {(C,O), (C,N), (C, S)}) with the largest pattern score is

then selected as the best candidate pattern and added to the
set. The cluster weights are updated by first identifying all
csgs containing subgraphs that are isomorphic to P1 andmul-
tiplying their cluster weights by 0.5. The weights of (C,O),
(C,N) and (C, S) in edge label occurrence are updated as well
by multiplying their initial weights by 0.5. Catapult repeats
these steps for selecting subsequent canned patterns.

Theorem 5.4. The worst case time and space complexities of

canned pattern selection (Algorithm 4) areO(|VSmax |!|VSmax | |S|+
|P |(|VP (max ) |

3+xη2
max |S| |ESmax |)) andO(|S|(|ESmax |+η

2
max )+

|D | |Emax |), respectively, where Smax is the largest csg in the

set of csgs S and x is the number of random walk iterations.

Remark. Our data-driven approach for selecting canned
patterns enables an end user to customize her interface by
specifying the pattern budget. Also, notice that the worst
case time complexity of canned pattern selection is mainly
due to subgraph isomorphism test necessary for checking
cluster coverage. In this work, we use the vf2 algorithm [14].

6 PERFORMANCE STUDY

Catapult is implemented in Java with JDK1.8. Small graph
clustering is realized in C++ using the Boost library. We now
investigate the performance of Catapult and report the
key results. Additional results and gui details are discussed
in Appendix C and [23]. All experiments are performed on
a 64-bit Windows desktop with Intel Xeon CPU E5-1630
(3.70GHz) and 32GB of main memory.

6.1 Experimental Setup

Datasets. We use the following datasets. (a) The aids an-
tiviral dataset10 has 40,000 (40K) data graphs. We use it and
its subset containing 10K graphs, referred to as aids40k and
aids10k, respectively. (b) The PubChem dataset11 consisting
of 23,238 (23K); 250,000 (250K); 500,000 (500K); and 1 million
(1M) chemical compound graphs. Unless otherwise stated,
PubChem refers to the 23K dataset. (c) eMolecule dataset12
consisting of 10K chemical compounds (referred to as eMol).

Competitors.We compare our data-driven approachwith
two commercial visual subgraph query interfaces (PubChem
and eMol) where the canned patterns are manually selected.
We also compare Catapult with a frequent subgraph-based
canned pattern selection strategy as a baseline (Appendix C).

Query set. We generate subgraph queries by randomly
selecting connected subgraphs from the dataset. For each
dataset, 1000 subgraph queries with sizes in the range of
[4–40] are randomly generated.

Parameter settings. Unless specified otherwise, we set
ηmin = 3, ηmax = 12, N = 20, k = |D |N , and |P | = γ = 30.
10https://wiki.nci.nih.gov/display/NCIDTPdata/AIDS+Antiviral+Screen+Data
11ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/
12https://www.emolecules.com/info/plus/download-database



Performancemeasures.We use the following measures
for performance: (a) Clustering time: Time taken to perform
clustering in the small graph clustering phase. (b) Pattern
generation time (pgt): Time taken to select canned pattern set
P (Algorithm 4). (c) csg compactness (denoted as ξt ): Given
a graph cluster C and a threshold t , the csg compactness

of a csg SC = (VSC ,ESC ) of C is ξt = |Et |
|ESC |

where every
edge e ∈ Et ⊆ ESC is contained in at least t × |C | graphs
in C . Intuitively, it measures the compactness of a csg of a
cluster. (d) Missed percentage (mp): Percentage of query set
containing no canned patterns.MP = |QM |

|Q | × 100% where Q
is the query set andQM ⊆ Q does not contain subgraphs that
are isomorphic to any p ∈ P. (e) Reduction ratio (denoted as

µ): Given a subgraph queryQ , µ is the ratio of the number of
steps reduced when P is used for constructingQ to the total
number of steps needed for constructing it using the edge-
at-a-time mode (steptotal ). That is, µ =

steptotal−stepP
steptotal

where
stepP is the minimum number of steps required to construct
Q when P is used. Note that a step refers to addition of a
vertex/edge/pattern or relabelling a vertex label.

We assume a canned pattern p ∈ P can be used in Q iff
p ⊆ Q . Further, when multiple patterns are used to construct
Q , for simplicity we assume that their corresponding isomor-
phic subgraphs inQ do not overlap. Then, givenQ and P, the
problem of finding a collection of canned patterns PQ ⊆ P
that maximally covers Q can be modelled as a maximum
weighted independent set problem [33] where each pattern
p ∈ PQ is contained inQ and theweight ofp is the number of
vertices in it. The maximum weighted independent set is PQ
and each pattern p ∈ PQ is treated as a single step. Note that
PQ is strictly a bag as it may contain multiple instances of p
if there are multiple non-overlapping subgraphs inQ that are
isomorphic top. Hence, stepP = |PQ |+ |VQ \VPQ |+ |EQ \EPQ |.

6.2 Experimental Results

Exp 1: Small graph clustering. First, we evaluate the ef-
fect of our small graph clustering strategy in terms of clus-
tering time and csg compactness. Figure 7 reports the perfor-
mance on aids10k and aids40k for the following scenarios:
(a) coarse clustering only (CC), (b)mccs-based fine clustering
only (mccsFC), (c) mcs-based fine clustering only (mcsFC),
and (d) coarse and fine clustering (i.e., hybrid) with mccs
(mccsH) and mcs (mcsH). As expected, CC is generally faster
but produces csgs with low compactness. Occasional clus-
ters with a large number of data graphs can result in csgs
with poor compactness due to the large variability in topol-
ogy of the data graphs in a cluster. In our experiments, the
largest cluster produced in aids40k contains 14000 graphs.
In contrast, mccs-based fine clustering (mccsFC) produces
more compact csgs but is much slower. Interestingly, our
proposed hybrid approach mccsH produces csgs that are
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Figure 7: Small graph clustering phase.
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Figure 9: Effect of sampling on the clustering phase.

most compact for both datasets at a reasonable clustering
time. This justifies the need for hybrid strategy for small graph

clustering. In subsequent experiments, we shall use mccsH.
Exp 2: Sampling vs No sampling.Next, we evaluate the

effect of sampling using aids dataset in terms of pgt, mp, and
µ. For eager sampling, we set ρ = 0.01 and ϵ = 0.02 whereas
for lazy sampling, p = 0.5, Z α

2
= Z 0.95

2
and e = 0.03. From

Figure 8, we observe that there are no significant differences
for both aids10k and aids40k in terms of µ and mp. But the
pgt differs by up to 2 orders of magnitude. We also exam-
ine the effect of sampling on the quality of graph clusters.
Figure 9 depicts that csg compactness did not change signif-
icantly whereas the clustering time increases by up to one
fold. Hence, the sampling approaches in Catapult reduce run-

ning time significantly without affecting the quality of selected

canned patterns significantly. In the subsequent experiments,
we shall use these sampling parameters.

Exp 3: Comparison with commercial gui.We compare
Catapult with PubChem (Figure 1) and eMol (https://reaxys.
emolecules.com/). Canned patterns on the gui that are of
size 3 or larger are extracted for our study. Specifically, the
PubChem gui has 12 patterns with size in the range [3-8],
of which 11 contain no vertex labels (referred to as unla-
belled patterns). On the other hand, eMol gui has 6 unlabelled
patterns with size in the range [3-8]. Hence, we generate

https://reaxys.emolecules.com/
https://reaxys.emolecules.com/


Table 1: Queries used for user study. cid is the unique

identifier of the PubChem repository.

Query PubChem CID (PubChem) PubChem CID (eMol)

Q1 7809 ( |E |=18) 57491213 ( |E |=12)
Q2 769013 ( |E |=29) 98037 ( |E |=17)
Q3 169132 ( |E |=34) 52426 ( |E |=23)
Q4 22749902 ( |E |=39) 17081 ( |E |=33)
Q5 63559561 ( |E |=40) 10097586 ( |E |=35)
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Figure 10: User study.

12 and 6 patterns in the size range [3-8] in Catapult for
comparison with PubChem and eMol, respectively. Query
sets for PubChem and eMol are generated according to Sec-
tion 6.1. Furthermore, we redefine the reduction ratio as
follows: µG =

stepP(gui)−stepP(catapult)
stepP(gui)

where stepP(X ) is the
number of steps required to construct a subgraph query
when P obtained from X is used.

Since majority of canned patterns in PubChem and eMol

are unlabelled graphs, in order to compute mp and µ, we per-
form a vertex relabelling step before computing these mea-
sures. Specifically, we map unlabelled canned patterns to
labeled subgraph queries. The queries are first relabelled
such that all vertices have same label (e.g., C) and all ver-
tices in unlabelled canned patterns are assigned this label
as well. Note that the vertex relabelling step is favorable
to performances of these two guis as it underestimates the
number of steps for stepP(gui). In PubChem and eMol guis,
when unlabelled patterns are used, a user undertakes any
one of the following steps to label its vertices: (1) 2-step la-
belling: Select a vertex label (step 1), then click an unlabelled
vertex to assign the label (step 2). (2) 1-step labelling: Click
on an unlabelled vertex to assign the label.
Note that 2-step labelling is used if currently no vertex

label is selected or if the previously selected label does not
match the label of the current vertex whereas 1-step labelling
is used otherwise. For example, a user first specifies a vertex
label (e.g., C) by choosing from the gui (Figure 1) and then
click on a vertex v1 she wishes to assign the label. Suppose
the remaining vertices also have the same label C. Then she
simply clicks on the remaining vertices in turn to assign the
label. Hence, a total of two additional steps are needed to
label vertex v1 and one additional step to label remaining
ones. Consequently, stepP(gui) = stepP(gui) + |VPl | where
|VPl | is the total number of vertices in unlabelled canned
patterns used to construct the subgraph query assuming the
optimistic case of 1-step labelling.
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First, we observe that the average coд of canned patterns is
lowest in Catapult (coд(eMol) = 2.05 vs coд(Catapult) =
1.83; coд(PubChem) = 2.53 vs and coд(Catapult) = 2.01).
The average diversity (div) of Catapult-derived patterns
are high with values 9 (eMol) and 7.4 (PubChem). Second,
patterns in Catapult have superior µG compared to eMol

gui, having maximum and average µG of 0.86 and 0.18, re-
spectively. There are also fewer subgraph queries in Cat-
apult that cannot be formulated using canned patterns
(mpCatapult=14.4 vs mpeMolgui=29.4). Third, PubChem has ex-
tremely low mp (mpPubChemgui=0.2 vs mpCatapult=18.6) due
to the lack of vertex labels (which relax vertex mapping)
and the topological variety of patterns. However, Catapult-
generated patterns still perform superior to PubChem having
max. and avg. µG 0.79 and 0.03, respectively. In summary,

Catapult has the best performance.
Exp 4: User study.We conducted a user study to inves-

tigate the impact of data-driven canned pattern selection
on query formulation time (qft). We compare Catapult
with PubChem and eMolecule (referred to as P(gui)) for a
set of user-formulated queries. For each dataset, we select 5
queries (Table 1) of size in the range [12-40] from respective
repositories. These queries span a variety of structures (cy-
cles, carbon chains, etc.) and contain different vertex labels
(i.e., L(VQ )={C, Cl, H, N, O, S}). 25 unpaid volunteers (ages
from 20 to 30) took part in the study in accordance to hci
research that recommends at least 10 participants [15, 26].
56% and 20% of the volunteers have taken undergraduate
chemistry/chemical engineering and biology courses, respec-
tively. None of them are authors of this paper. They are
trained to use the three guis. For every query, they were
given some time to determine the steps needed to formulate
it visually and are informed to use canned patterns as much
as possible. Every querywas formulated 5 times by 5 different
participants. Recall that the vertices of P(gui) are unlabelled.
Hence, as in Exp. 3, these vertices are assigned a common
label that is not in L(VQ ) and participants have to relabel
them to the correct vertex label during query formulation.
The qft and the number of steps taken are recorded.

Figure 10 reports the avg. readings for each query. Note
that qfts include the search time for relevant patterns. Clearly,
the canned patterns generated by Catapult facilitate more
efficient (shorter qft and lesser number of steps) query for-
mulation than those obtained from the other guis. In par-
ticular, Catapult’s patterns achieve up to 78% (resp. 81%)



and 74% (resp. 75%) reduction in terms of qft and number
of steps, respectively, for PubChem (resp. eMol) queries.

Exp 5: Coverage. We examine the coverage of P using
scov and lcov (See Section 3.2) and compare them with the
coverage of top-|P | frequent edges. Figure 11 plots the re-
sults for aids40k and PubChem. Results are qualitatively
similar for other datasets. We observe that scov increases
as |P | increases. This highlights that additional canned pat-
terns added to the set are topologically distinct from existing
ones, resulting in increase of coverage. Naturally, the top-|P |
frequent edges have higher scov than Catapult’s canned
patterns due to their small size and greater chance to occur
in a data graph. For smaller |P |, Catapult’s canned patterns
tend to have slightly higher lcov compared to the top-|P |
frequent edges since canned patterns are larger and there
is higher likelihood of having more unique edges compared
to the frequent edges. However, as |P | increases, this ef-
fect is reversed. This is due to Catapult’s canned patterns
having a relatively stable set of unique edges generated by
our random walk-based algorithm which tends to favour
paths with greater support. In contrast, distinct edge labels
of top-|P | frequent edges grow as |P | increases. In particular,
scov (resp. lcov) of top-|P | frequent edges and Catapult’s
canned patterns vary in the range [0.98-1] (resp. [0.98-1])
and [0.91-0.98] (resp. [0.98-1]), respectively. Recall that the
edge-at-a-time mode is inefficient as it may require more
steps than the pattern-at-a-time mode. Hence, Catapult’s
patterns not only have good coverage (scov ∼ 94% on average

for all datasets) but also support efficient query formulation.
Exp 6: Scalability.We examine the scalability of Cata-

pult using PubChem with dataset sizes in the range {23K ,
250K , 500K , 1M}. Similar to Exp 3, 12 canned patterns of
size in the range [3-8] are extracted using Catapult. Fig-
ure 12 reports the results. As expected, clustering time and
pgt increase as |D | increases. In particular, the increase
is about an order of magnitude when |D | increases from
23K to 1 million data graphs. The larger datasets also re-
sulted in lower mp and negative average relative reduction
ratio µDS where µDS =

stepP(PubChemDS )−stepP(PubChem23K )
stepP(PubChemDS )

,
DS ∈ {23K , 50K , 500K , 1M} and stepP(PubChemx ) is the num-
ber of steps required to construct a subgraph query based
on canned patterns generated by Catapult for PubChem
dataset of x size. The negative µDS implies that on aver-
age, stepP(PubChemDS ) < stepP(PubChem23K ) whenDS > 23K .
That is, the quality of canned patterns improves with the
dataset size. Interestingly, improvements in terms of mp and
µDS show an anti-monotonic trend where the best results
are obtained when |D | = 250K . µDS and mp improve by
21.2% and 43%, respectively, when compared to |D | = 23K .
Comparatively, pgt and clustering time are 8.43 and 2.93
times slower. This is likely due to two competing effects: (a)
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larger dataset improves quality of canned patterns but (b)
sampling degrades the pattern quality. Specifically, when the
dataset size increases from 23K to 250K the effect of former
is dominant but subsequently the latter has greater impact.
Hence, we can generate high quality canned patterns without

processing the entire dataset (e.g., 250K instead of 1M).
7 RELATEDWORK

The vision of data-driven construction of visual graph query
interfaces was laid out by Bhowmick et al. in [6] and a demo
presented in [40]. Our work builds upon these high-level
ideas. In particular, [40] neither incorporates frequent tree-
based clustering nor sampling strategies to handle larger
graph databases. Furthermore, canned patterns are gener-
ated greedily using breadth-first-search by maximizing an
objective function that is based on the size of candidate pat-
terns and their coverage within a csg. That is, it ignores label
coverage, diversity, and cognitive load of canned patterns.
Also, candidate pattern generation and selection are treated
as two separate phases. In contrast, candidate pattern genera-
tion and selection are intertwined in Catapult by utilizing a
random walk-based strategy. More recently, Zhang et al. [41]
demonstrated the idea of precision interfaces with the vision
of generating interactive analysis interfaces from query logs.
This work is primarily focused on structured data (e.g., sql)
and does not address the canned pattern selection problem.
8 CONCLUSIONS

In this paper, we take a concrete step towards realizing the vi-
sion of data-driven visual graph query interface construction.
We focus on the problem of automatic selection of canned
patterns, which is at the core of expediting visual query for-
mulation. We present a novel framework called Catapult
to this end. Specifically, we propose a small graph clustering
strategy to summarize topologically similar data graphs into
csgs and a random walk-based strategy to select canned pat-
terns with high coverage, high diversity, and low cognitive
load from them. Our experimental study demonstrates su-
periority of the Catapult framework to manually-selected
canned patterns in traditional visual graph query interfaces.
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A PROOFS

Proof of Theorem 3.2 (Sketch). Multi-objective optimiza-
tion problem has complexity at least as hard as any of its
single objectives since additional objectives introduce addi-
tional constraints on the solutions and optimizing a single
objective may result in solutions that are sub-optimal with
regards to other objectives. In the canned pattern selection
problem, which optimizes four objectives, the maximum sub-
graph coverage objective is akin to the maximum set cover
problem where given a number k and a collection of sets
S = {S1, S2 · · · , Sm}, the goal is to select at most k of these
sets such that the maximum number of elements are covered.
Here, k is the number of canned patterns allowed in the gui
and S is the set of candidate patterns where each pattern
covers a certain number of graphs in the graph repository
D. The maximum set cover problem is np-hard and a greedy
algorithm achieves an approximation of (1 − 1

e ) [24]. Hence,
the canned pattern selection problem is also np-hard.
Time complexity of small graph clustering (Sketch).

In small graph clustering, frequent subtrees in coarse clus-
tering (Algorithm 2, Line 1) are obtained using the approach
in [10] which has worst-case time complexity of O(b |D |l2 +
c |D |l 1.5 |Vmax |

loдl ) [39] where b is the maximum number of trees
a graph can contain; |D | is the number of graphs considered;
l is the number of leaves removed; and c is the number of

http://www.ntu.edu.sg/home/assourav/TechReports/catapult-TR.pdf
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candidate frequent trees. Refinement of the set of frequent
subtrees (Line 2) is achieved by maximizing a submodular
function. In the worst-case, the entire set of frequent subtrees
is selected (i.e., |Tsel | = |Tall |) and the worst-case time com-
plexity is O(|Tall |2(3|Vmax |)

2) since the largest breadth-first
canonical string is 3|Vmax | [9]. The generation of the feature
vectors (Lines 3 to 10) iterates through each pair of Gi ∈ D
and Tj ∈ Tsel . In the worst case, |Tsel | = |Tall | and the time
complexity is O(|D | |Tall |). Seed selection using k-means++
and graph clustering using k-means (Line 11) have worst-
case time complexities of O(k |D | |Tall |) [5] and O(2Ω(

√
|D |))

[3], respectively.
In the fine clustering phase (Algorithm 3), cluster size

checking (Line 2) takes O(k) time since there are k clusters.
For each cluster-splitting step, the worst-case time complex-
ity of measuring similarity based on mccs takes
O(

∑
i ∈ |D |

( |VSeed1 |+1)!
( |VSeed1 |− |Vi |+1)!) ) [13] whereas that for selecting a

dissimilar graph (Line 12) takes O(loд(|Cf ir st | − 1)) time. In
general, O(

∑
i ∈ |D |

( |VSeed1 |+1)!
( |VSeed1 |− |Vi |+1)!) ) ≫ O(loд(|Cf ir st | − 1)).

Hence, in the worst case, after k-means clustering, k-1 clus-
ters contains 1 graph each and the remaining cluster contains
|D |−k−1 graphs. Assuming |Vseed | = |Vmax | and |D |−k−1 >
N (i.e., fine clustering is required), the fine clustering phase
takesO(

∑ |D |−N−k−1
i=1 (|D |−k−1−i) ( |Vmax |+1)!

( |Vmax |− |Vi |+1)!) )where the
last cluster produced by the fine clustering phase contains N
graph whereas every other cluster (those generated by the
fine clustering phase) contains one graph.

Taken together, the small graph clustering phase hasworst-
case time complexity ofO(b |D |l2+

c |D |l 1.5 |Vmax |

loдl +(|Tall | |Vmax |)
2+

k |D | |Tall |+2Ω(
√
|D |)+ (|D |−N−k−1)×

∑
i ∈ |D |

( |Vmax |+1)!
( |Vmax |− |Vi |+1)! ).

The worst-case time complexity reduces to O(2Ω(
√
|D |)) for

large dataset.
Proof of Lemma 4.2 (Sketch). Given a dataset of graphs

D = {G1,G2, · · · ,Gn}, we denote the optimum clustering of
D intok disjoint, nonempty clusters asCOPT = {C1,C2, · · · ,Ck }.
We further denote the clustering obtained by small graph
clustering as C = {C ′1,C

′
2, · · · ,C

′
k ′}. The misclassification

error distance of C with respect to COPT is essentially |D
′ |

|D |
where D ′ is the set of misclassified graphs based on COPT
[29]. We assume fine clustering based on mccs produces
COPT . In the worst case small graph clustering performs
coarse clustering only (frequent subtree-based feature vec-
tor clustering) when sizes of all generated clusters are less
than or equals to N . Let A denote correct classification ofGi ,
B denote that the frequent subtree set of D contains mccs
of two graphs Gi and Gx . Observe that the probability of
B denoted as Pr (B) is equivalent tomin_f r (Theorem 4.4).
Then, Pr (A) = Pr (A

⋂
(B

⋃
B)) = Pr (A

⋂
B) + Pr (A

⋂
B) =

Pr (A|B)Pr (B) + Pr (A|B)Pr (B) = Pr (A|B)min_f r + 1
2 (1 −

min_f r ) where Pr (A|B) = 0.5 since in the worst case, there
is random chance of correct classification given B. Pr (A|B)
is the probability of correct classification given B and this
is likely to occur when Cm = {m |maxj ∈GC mccs(Gi , j),m ∈
GC } andCm = {m |maxl ∈GC subtree(Gi , l),m ∈ GC } where
subtree(Gi , l) is the similarity of the frequent subtree vec-
tor of Gi and l . Hence, the small graph clustering achieves
1
2 + (α −

1
2 )min_f r -approximation of COPT where Pr (A|B) =

α .
Proof of Lemma 4.3 (Sketch). The worst-case time com-

plexity to form a closure graph is O(|Vmax |d
2loд(|Vmax |))

[19] where d is the maximum degree of vertices. In the worst-
case, therewill be |D |−N−k−1 clusters and the resulting time
complexity is O((|D | − N − k − 1)|Vmax |d

2loд(|Vmax |)). For
large dataset, |D | ≫ N and |D | ≫ k . Hence, the worst-case
time complexity is reduced to O(|D | |Vmax |d

2loд(|Vmax |)).
Space complexity: The worst-case space complexity for

storing the graph clustersC isO(|D |(|Emax |+|Vmax |))whereas
that for storing the set of closure graphs is O(|C|(|Emax | +

|Vmax |)). In addition, the worst-case space complexity for
generating a graph closure isO(|Vmax | + |Emax |) [19]. Taken
together, the worse-case space complexity for generation of
csg is O(|D |(|Emax | + |Vmax |)) since |D | ≫ |C|.
Proof of Lemma 4.5 (Sketch). Each graph clusterC can

be considered as a strata. Under proportional stratified sam-
pling, the sample size of a strata is given as |SC | = |SG | |NC |

|NG |

[28] where |SC | and |SG | are the sample sizes for cluster C
and the set of graphs G, respectively; and |NC | and |NG | are
the population size ofC andG , respectively. Further, for large
population, a representative sample size can be obtained as
|Ssample | =

Z 2pq
e2 where Z 2 is the abscissa of the normal

curve that cuts off an area α at the tails (1-α is the desired
confidence level, e.g., 95%), e is the desired level of precision,
p is the estimated proportion of a graph being sampled in
the dataset and q = 1 − p [11].

Proof of Lemma 5.2 (Sketch). The worst case time com-
plexity of computing the lower bound ged is due to the iden-
tification of common vertex labels in L(VA) and L(VB ). This
can be done via sorting both label lists and then comparing
them which yields complexity of O(|VA |loд |VA |).

Proof of Theorem5.4 (Sketch). Findingweights of edges
in the closure graphs requireO(|S| |ESmax |) time in the worst
case where Smax ∈ S is the largest closure graph. Generating
pcp requiresO(xη2

max |S| |P | |ESmax |) timewherex is the num-
ber random walk iterations. Catapult utilizes edge occur-
rence from the randomwalk to identify the fcp. For every pcp
library, computing edge occurrence requires O(xηmax ) time
while fcp generation takesO(ηmax |ESmax |) time. Computing
pattern score requires subgraph isomorphism test for each
closure graph to find ccov (O(|VSmax |!|VSmax |) [14]) and |P ′ |
times of graph edit distance computation (O(|VP (max ) |

3) [32]



where P(max) is the largest pattern inP) to finddiv , yielding
O(|VSmax |!|VSmax | |S| + |P | |VP (max ) |

3) worst case time com-
plexity for each fcp. Updating of cluster weights and edge
label occurrence require O(|VSmax |!|VSmax | |S|) and O(ηmax )

time, respectively. Taken together, the pattern mining and se-
lection phase haveworst-time complexity ofO(|VSmax |!|VSmax | |S|+
|P |(|VP (max ) |

3 + xη2
max |S| |ESmax |)).

Space complexity: There are |P | canned patterns. Since
we expect canned patterns to be subgraphs of D, their sizes
should be less thanO(|Vmax |+ |Emax |). Hence, storage space
needed for candidate patterns is O(|P|(|Vmax | + |Emax |)). In
addition, Catapult allocates weights to each closure graph
and this requiresO(|S| |ESmax |) space. In the worst case, main-
taining the elw requires O(|D | |Emax |) space assuming that
every edge in each graph in D has a unique label. For each
pcp library,O(xηmax ) space is needed where x is the number
of random walk instances. During each iteration, there are
ηmax −ηmin +1 candidate canned patterns per closure graph.
Hence, in the worst case, Algorithm 4 has space complexity
O(|P|(|Vmax | + |Emax |) + |S| |ESmax | + |D | |Emax | + η

2
max |S|)

since xηmax ≪ |D | |Emax | in a large graph repository. This
can be further reduced toO(|D | |Emax |+ |S|(|ESmax |+η

2
max ))

since |D | ≫ |P| and in the worst case, Gmax is a strongly
connected graph where |Emax | > |Vmax |.

B UNCAPACITATED FACILITY

LOCATION PROBLEM

Given the cost for opening facilities and the cost for connect-
ing cities to facilities, the uncapacitated facility location prob-

lem seeks a solution that minimizes the cost of connecting
each city to an open facility [21]. Formally, given a bipartite
graph with bipartition (F ,C) where F is the set of facilities
and C is the set of cities, let fi be the cost of opening facility
i and ci j be the cost of connecting city j to (opened) facility
i . The uncapacitated facility location problem seeks to

min
∑

i ∈F , j ∈C
ci jxi j +

∑
i ∈F

fiyi

s.t. ∀j ∈ C :
∑
i ∈F

xi j ≥ 1,∀i ∈ F , j ∈ C : yi − xi j ≥ 0

∀i ∈ F , j ∈ C : xi j ∈ {0, 1},∀i ∈ F : yi ∈ {0, 1}

(3)

where yi and xi j are indicator variables denoting whether
facility i is open and whether city j is connected to facility i ,
respectively. Note that the first constraint ensures that every
city is connected to at least one facility whereas the second
constraint ensures that this particular facility must be open.

C ADDITIONAL RESULTS

Exp 7: Size of |P |. We examine the effect of varying |P |.
We observe that varying |P | do not have significant effect on
µ (Figure 13). As expected, pgt increases as |P | increases and
this effect is most noticeable in the larger dataset (aids40k).

 0

 50

 100

5 10 20 30 40
|P|

M
a
x 

µ%

 0

 50

 100

5 10 20 30 40
|P|

A
ve

 µ
%

 0
 5

 10
 15
 20

5 10 20 30 40
|P|

M
P

%

 0
 1
 2
 3
 4
 5

5 10 20 30 40

|P|

P
G

T
 (

m
in

)

AIDS10k AIDS40k PubChem eMol

Figure 13: Effect of varying |P |.
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Figure 14: Effect of varying ηmin .
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Figure 15: Effect of varying ηmax .

In addition, improved coverage of the query set is observed as
the number of canned patterns is increased. In particular, mp
displays a downward trend where there is ∼ 50% reduction
when |P | is increased from 10 to 40. The average coд of
patterns in P for all dataset varies in the range [1.65–1.97],
highlighting low cognitive load of the patterns.

Exp 8: Varying pattern size. In this set of experiments,
we examine the effect of varying the pattern size. We first set
ηmax = 12 and vary ηmin in the range [3−9]. From Figure 14,
we observe that the increase in ηmin results in increasing mp
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Figure 17: Catapult vs frequent subgraph patterns.

and correspondingly, decreasing average µ. This is due to the
fact that the probability of a query graphQ containing a large
canned pattern is comparatively lower than that of a small
canned pattern. As expected, pgt decreases as ηmin increases
since there are fewer pcps generated in Algorithm 4.
Next, we set ηmin = 3 and vary ηmax in the range [5 −

12]. We observe that varying ηmax has little impact on mp
(Figure 15) as compared to varying ηmin . In particular, when
ηmax is varied, mpmax -mpmin varies in the range [3.5 − 4.3].
In contrast, when ηmin is varied, mpmax -mpmin varies in the
range [84.2 − 89.9]. Due to the relatively small effect on mp,
maximum and average µ remain relatively constant when
ηmax is varied. pgt increases as ηmax increases due to the
generation of larger number of pcps.
Finally, we examine the effect of varying ηmin , ηmax and
|P | on div and coд for aids10k. We observe that increasing
|P | resulted in decreasing div (Figure 16). This is expected as
it is more likely to find a similar graph in a large dataset than a
small one.Whenηmin increases, we observe increasingdiv as
there tend to be greater diversity between larger patterns. In
contrast, coд remains relatively constant (coд ∈ [1.59−2.36]).
Results are qualitatively similar in other datasets.

Exp 9: Comparison with frequent subgraph-based

technique.We use the aids10k for this experiment. We gen-
erate frequent subgraphs (denoted as F ) using gaston [30].
In particular, we set |F | = 30 where every frequent subgraph
has size in the range [3 − 12] and the maximum number of
patterns per size is |F |

(12−3+1) . We vary the support threshold
in the range {4%, 8%, 12%}. Similar to Exp 3, we redefine
the reduction ratio as follows: µF =

stepF−stepP
stepF

. Note that
for this experiment we cannot simply choose the randomly
generated query set. This is because such query set may
be unduely biased towards containing frequent subgraphs
as they occur more often. In real-world applications user
queries can be frequent or infrequent subgraphs. Hence, we
generate query setQx where x is the fraction of queries that
are infrequent. We set |Qx | = 50.
Figure 17 plots the results. Observe that when x = 0, the

queries are all frequent. Naturally, Catapult performs worse
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Figure 18: Comparison of coд metrics.

as its canned patterns contain a mixture of frequent and
infrequent patterns. However, when x > 0, Catapult’s per-
formance improves and outperforms the frequent subgraph-
based technique when x = 0.3. Specifically, mp for Catapult
remains relatively constant whereas it increases linearly for
F (4% and 12%). Furthermore, the div of Catapult is higher
than F (7.4 vs 1.74). In summary, patterns generated by Cat-

apult are superior to frequent subgraph-based patterns.

Exp 10: Cognitive load. Finally, we evaluate three pu-
tative measures (F1 to F3) for determining cognitive load.
Given a pattern p = (Vp ,Ep ), F1 = |Ep | × 2 |Ep |

|Vp |( |Vp |−1) (Recall
from Section 3.2), F2 =

∑
v ∈Vp deд(v) = 2|Ep | where deд(v)

is the degree of vertex v , and F3 = 2 |Ep |
|Vp |

. Observe that F2 is
a degree-based measure. We conducted a user study with 15
participants on two datasets where each participant is given
a pattern p and a query Q pair one at a time on a gui and
asked to determine if p ⊆ Q (i.e., whether p is useful for for-
mulatingQ) by clicking a yes/no button. The time taken from
viewing p to clicking the button is recorded. For each dataset,
6 queries (size in range [18-39]) and 6 patterns of different
topologies and cognitive load are given to each participant
in random order. In particular, |V | and |E | of a pattern vary
in the range [4-13] and [3-13], respectively. Note that not
all p ⊆ Q and an incorrect decision on a (p,Q) pair from a
participant is ignored (97.2% decisions are correct). This is to
minimize cases where a participant clicks the button with-
out checking. For each dataset, the patterns are ranked in
increasing time for each participant, where the smallest rank
indicates shortest time taken and implies lowest cognitive
effort needed to perform the task. Then, for a pattern pi , an
average rank is obtained by averaging the ranks assigned to
pi . Finally, the overall rank (Actual rank) of the pattern set
for a given dataset is obtained by ordering the patterns in
increasing average rank. Note that we do not use the average
time taken to perform the overall rank as rank reversal may
occur due to outliers (e.g., extremely long time taken by a
participant). Further, the patterns are given another set of
ranking in increasing F1 (corr. for F2 and F3). Figure 18 plots
the Kendall rank correlation coefficient of the actual ranks
w.r.t. the ranks obtained using F1, F2 and F3. Observe that F1
(avg. 0.8) is a more effective measure compared to F2 (avg. 0.28)
and F3 (avg. 0.78). Interestingly, users required the longest
time on average for a clique pattern (e.g., |V | = 4, |E | = 6)
due to increased edge crossings leading to more decision
making time [25].
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