
NEURON:Query Execution Plan Meets Natural
Language Processing For Augmenting DB Education

Siyuan Liu Sourav S Bhowmick Wanlu Zhang Shu Wang
Wanyi Huang Shafiq Joty

School of Computer Science & Engg., Nanyang Technological University, Singapore
sliu019|assourav|zh0012lu|wang1004|hu0011yi|srjoty@ntu.edu.sg

ABSTRACT

A core component of a database systems course at the un-
dergraduate level is the design and implementation of the
query optimizer in an rdbms. The query optimization pro-
cess produces a query execution plan (qep), which represents
an execution strategy for an sql query. Unfortunately, in
practice, it is often difficult for a student to comprehend a
query execution strategy by perusing its qep, hindering her
learning process. In this demonstration, we present a novel
system called neuron that facilitates natural language in-
teraction with qeps to enhance its understanding. neuron
accepts an sql query (which may include joins, aggregation,
nesting, among other things) as input, executes it, and gen-
erates a simplified natural language description (both in text
and voice form) of the execution strategy deployed by the
underlying rdbms. Furthermore, it facilitates understanding
of various features related to a qep through a natural lan-
guage question answering (nlqa) framework. We advocate
that such tool, world’s first of its kind, can greatly enhance
students’ learning of the query optimization topic.

ACM Reference Format:

Siyuan Liu, Sourav S Bhowmick, Wanlu Zhang, Shu Wang, Wanyi Huang,
Shafiq Joty. 2019. NEURON: Query Execution Plan Meets Natural Language
Processing For Augmenting DB Education. In 2019 International Conference
on Management of Data (SIGMOD ’19), June 30–July 5, 2019, Amsterdam,
Netherlands. ACM, NewYork, NY, USA, 4 pages.
https://doi.org/10.1145/3299869.3320213

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5643-5/19/06. . . $15.00
https://doi.org/10.1145/3299869.3320213

Figure 1: Query 4 in tpc-h benchmark dataset.

1 INTRODUCTION

The database systems course is widely offered in major uni-
versities as part of the undergraduate computer science de-
gree program. A core component of this course is the topic of
query optimization. Specifically, the query optimization pro-
cess produces a query execution plan (qep), which represents
an execution strategy of an sql query. Given an sql query,
a student enrolled in a database systems course would typi-
cally like to understand how it is executed on the underlying
rdbms by studying the associated qep. Unfortunately, every
commercial database vendor has its own secret sauce for the
implementation of the query optimizer. Consequently, com-
prehension of a qep not only demands deep knowledge of
various query optimization-related concepts but also vendor-
specific implementation details. We advocate that this is an
unrealistic expectation from an undergraduate student learn-
ing database systems for the first time.
Example 1.1. Bob is an undergraduate student majoring

in computer science and is currently enrolled in a database
course, which uses PostgreSQL 9.6 to teach various concepts.
He wishes to understand the qep of the sql query in Fig-
ure 1 on a tpc-h benchmark dataset1. Figure 2 (partially)
depicts the qep generated by PostgreSQL for this query. Un-
fortunately, Bob finds the textual description of the qep is
not only verbose but it also contains unfamiliar terms (e.g.,
hash semijoin, bucket, width). Hence, he decided to switch to

1http://www.tpc.org.

https://doi.org/10.1145/3299869.3320213
http://www.tpc.org

Figure 2: A qep in PostgreSQL (Enlarged view at [5]).

the visual tree representation of the qep [5] for better com-
prehension. Although relatively succinct visually, it simply
depicts the sequence of operators (e.g., hash → hash semi
join → sort → aggregate → limit) used for processing the
query, hiding additional details about the query execution.
In fact, Bob needs to manually delve into details associated
with each node in the tree for further information.

Clearly, an easy and intuitive natural language-based in-
terface can greatly enhance Bob’s comprehension of qeps for
sql queries. However, the majority of natural-language inter-
faces for rdbms [2–4, 7] have focused either on translating
natural language sentences to sql queries or narrating sql
queries in natural language to naïve users. Scant attention
has been paid for the natural language description of qeps.
In this demonstration, we present a novel system called

neuron (Natural LanguagE Understanding of QueRy Exe-
cutiOn PlaN) to facilitate natural-language interaction (nli)
with qeps in PostgreSQL. Given the qep of an sql query,
neuron analyzes it to automatically generate a simplified

natural language description (both text and voice form) of
the key steps undertaken by the underlying rdbms to exe-
cute the query. Furthermore, it supports a natural language
question answering (nlqa) system that allows a user to seek
answers to a variety of concepts and features associated with
a qep.
In this demonstration, we will present a walk-through

of the neuron tool, and explain how it provides a natural
language interface to understand qeps of an rdbms. We will
then show how it can be used to facilitate understanding of
various concepts related to qeps through an nlqa framework.
For example, one may ask questions such as “What is a hash

semi join?”, “How many tuples are left after Step 5?”, and
“What is the most expensive operation?”.

2 SYSTEM OVERVIEW

neuron is implemented using Python on top of PostgreSQL
9.6. Figure 3 depicts the architecture of neuron and mainly
consists of the following modules.

Figure 3: Architecture of neuron.

Panel 2

Panel 3 Panel 4

Panel 5

Panel 1

Figure 4: The gui of neuron (Enlarged view at [5]).

The GUI module. Figure 4 is a screenshot of the visual
interface of neuron. Panel 1 enables a user to connect to the
underlying relational database. Panel 2 shows the schema
of the underlying database. A user formulates an sql query
(which may include aggregation, nesting, joins, among other
things) in textual format on this database in Panel 3. Upon
clicking the Generate button, the query is executed and
the corresponding execution plan is generated in a natural
language (i.e., English) and displayed in Panel 4. Note that
neuron generates both textual as well as vocal forms of
an execution plan. A user can click on the Pause or the
Replay buttons to interact with the vocalized form of a plan.
Clicking on the View Plan button, retrieves the original qep
as generated by PostgreSQL. Panel 5 allows a user to pose
questions related to a qep in a natural language.
The Parser module. The goal of this module is to parse

and transform the qep of an sql query into an operator tree,
which is exploited by subsequent modules. Once a user for-
mulates and executes an sql query in Panel 3, it first invokes
the PostgreSQL api (using the Psycopg adapter) to obtain the
corresponding qep in json format. Then, the plan is parsed
and an operator tree is constructed. Specifically, each node
in an operator tree contains relevant information associated
with a plan such as the operator type (e.g., hash join), name
of the relation being processed by the node, alias given to
intermediate results (e.g., subqueries), column(s) used for

grouping or sorting, name of the index being processed by
the node, subplan ids, filtering conditions used during a join
or a table scan, conditions used for index-based search, and
the number of rows left after an operation. Note that this
module ignores information in the original qep that is not
useful for realizing the neuron framework such as plan
width and whether a node is parallel aware.
The Plan-to-Text Generator module.Thismodule takes

an operator tree as input and generates a textual description
of the qep represented by a sequence of steps (e.g., Panel 4
in Figure 4). At first glance, it may seem that we may simply
perform a postorder traversal on the operator tree and trans-
form the information contained in each node into a natural
language format. However, this naïve approach may gener-
ate a verbose description of a qep containing irrelevant and
redundant information. This is because some nodes in an
operator tree may not carry any meaningful information as
far as textual description of a qep is concerned. For instance,
the node Result is used in PostgreSQL to represent an inter-
mediate relation for storing temporary results. Hence, this
module first removes Result nodes from an operator tree.
The modified operator tree contains now two categories

of nodes, namely critical and non-critical nodes. The former
nodes represent important operations (e.g., hash join, sort)
in a qep and may contain a large amount of information.
The latter nodes are located near critical nodes (e.g., parent,
child) but do not carry important information on its own
in comparison to the critical ones. Hence, we reduce the
modified operator tree further bymerging non-critical nodes
with corresponding critical nodes. Some examples of such
merge operation are as follows: (a) The Hash Join node and
its child Hash are merged. (b) TheMerge Join node and its
child Sort are merged. (c) The Bitmap Heap Scan node and
its child Bitmap Index Scan are merged. (d) The Aggregate
node and its child Sort are merged. (e) The Unique node and
its child Sort are merged.

An important issue here is the handling of subqueries in an
sql query. PostgreSQL creates a corresponding subplan for
each subquery in a qep whose return value can be referred
to from other parts of a plan. It assigns a temporary name to
this subplan for future referral. However, such name should
not appear in the natural language representation of a qep.
Thus, we use a dictionary to keep track of subplan names
and their corresponding relation names so that when other
steps mention the output of a subquery, the referred name
will be replaced by the corresponding relation name(s).

Based on the aforementioned strategies, this module tra-
verses the tree in a postorder fashion to generate a sequence
of steps (identified by step ids) describing a qep. Each node
in the reduced operator tree generates a step and each step
is represented as a text description of the node’s content
based on its type. Specifically, we leverage different natural

language templates for different node types to generate mean-
ingful statements. In this context, each intermediate result is
assigned an identifier to ensure unambiguous reference from
a parent operator to its children’s results. Filter and join con-
ditions are parsed and converted to human-readable natural
language representations. For example, an Index Scan node
is converted to the following step: “Perform index scan on

table X (and filtering on X.b = 1) to get intermediate table A”.
Figure 4 depicts an example output of this module (in Panel
4) for the qep in Figure 2.

The Vocalizer module. The goal of this module is to vo-
calize the natural language description of a qep by first per-
forming text-to-speech conversion utilizing Google’s Text-
to-Speech (gtts) api and then playing it using the Pygame

package (https://www.pygame.org/).
The Indexer module. This module is exploited by the

question-answering (qa) framework of neuron. The qa sub-
system accepts a user query as input and returns an answer
as output (Panel 5). Note that not all queries related to a qep
can be answered by analyzing a qep. For example, “what is a
bitmap heap scan?” cannot be answered simply by analyzing
a qep. To address this challenge, this module first extracts
definitions of sql keywords and query plan operators from
relevant Web sources2 as well as comments associated with
the source code of PostgreSQL (https://github.com/postgres/
postgres/blob/master/src/include/nodes/plannodes.h). Then
a set of documents containing these definitions is indexed
using an inverted index (we use the Whoosh Python library)
where each document contains the definition of a single sql
keyword or a query operator. The words in the documents
are lemmatized and stop words are removed during this pro-
cess.

The Question Processor module. Once a user enters
a question related to a qep through Panel 5, the goal of
this module is to classify the question, and extract the part-
of-speech (pos) tags and keywords in it. Consequently, it
consists of the following three submodules.

The Question Classifier submodule. The current implemen-
tation of neuron supports five categories of questions: (a)
definitions of various sql keywords and query plan opera-
tors; (b) the number of tuples generated at a specific step; (c)
the list of operators used to evaluate a query; (d) the amount
of time taken by specific step(s) in a qep; and (e) finding
the dominant (i.e., most expensive) operator in a qep. Hence,
given a user’s question, its category needs to be identified
first before it can be answered. The goal of this submodule is
to classify a user’s question into one of these five categories.
To this end, it adopts a Naive Bayes classifier. A set of train-
ing questions (67 questions) is prepared manually together
2https://www.postgresql.org/docs/10/static/sql-commands.html, http:
//use-the-index-luke.com/sql/explain-plan/postgresql/operations, https:
//www.postgresql.org/message-id/12553.1135634231@sss.pgh.pa.us

https://www.pygame.org/
https://github.com/postgres/postgres/blob/master/src/include/nodes/plannodes.h
https://github.com/postgres/postgres/blob/master/src/include/nodes/plannodes.h
https://www.postgresql.org/docs/10/static/sql-commands.html
http://use-the-index-luke.com/sql/explain-plan/postgresql/operations
http://use-the-index-luke.com/sql/explain-plan/postgresql/operations
https://www.postgresql.org/message-id/12553.1135634231@sss.pgh.pa.us
https://www.postgresql.org/message-id/12553.1135634231@sss.pgh.pa.us

with their true categories. The features used in the classifier
are the unigrams (bag of words).
Given a user’s question, the unigram features are gener-

ated and the category is determined by applying the classifier.
The Part-of-speech (POS) Tagger submodule. This submod-

ule extracts the part-of-speech (pos) tags in a question (using
the TextBlob Python library). pos tags are used to find the
step id (i.e., id of a step in Panel 4) inside a question related
to Categories (b) and (d).

The Keyword extractor submodule. To answer questions re-
lated to Category (a), it is paramount to identify keywords
in the question so that we know what is being asked. This
submodule extracts the keywords by first removing stop
words. The list of English stop words is obtained from the
nltk Python library (http://www.nltk.org/). The word “only”
is excluded as it is one of the keywords for query operators
(e.g., Index Only Scan). The remaining words are lemmatized
and duplicate words are eliminated.

The Answer Generator module. This module aims to
retrieve the correct answer based on the question category
by exploiting the following different submodules.

The Concept Definition submodule. If a question belongs
to Category (a) then it uses keywords extracted from it to
retrieve the relevant document containing the definition
using the index.

The Row Count submodule. To answer questions regarding
the number of rows after a certain step (Category (b)), the
step id must be supplied to the question. Note that questions
in the form of “number of rows left after joining relations A
and B” (i.e., without step id) are not supported as two or
more joins on same relations but different columns may be
performed in a single query, leading to ambiguity.

The submodule extracts the step id by finding word with
the pos tag CD (cardinal number) in a question. After that,
the operator tree is traversed to find the node that the step
id belongs to. The number of rows is then retrieved from the
Actual Rows element associated with this node.

The Operator List submodule.The operator tree is traversed
to retrieve the distinct list of operators used in a qep (Cate-
gory (c)).

The Total Time submodule. To answer questions regarding
Category (d), similar to Category (b) questions, the step id
must be supplied to a question. It traverses the operator tree
to retrieve the total time of a specific step, which is calculated
based on the Actual Total Time element of the corresponding
node and its children.

The Dominant Operator submodule. To find the most ex-
pensive operator in a qep (Category (e)), neuron computes
the total time taken by each operator and returns the one
with longest time.

Note that the answers are formatted using natural lan-
guage templates to generate meaningful statements.

3 RELATED SYSTEMS AND NOVELTY

Natural language interfaces to relational databases have been
studied for several decades [1, 3, 4, 6, 7]. Given a logically
complex English language sentence as query input, the goal
of majority of these work is to translate it to sql. On the
other hand, frameworks such as Logos [2] explain sql queries
to users using a natural language. neuron compliments
these efforts by providing a natural-language explanation
of the qep of a given sql query. It further supports an nlqa
framework that enables users to ask questions related to a
plan.
4 DEMONSTRATION OBJECTIVES

Our demonstration will be loaded with tpc-h benchmark
(we use the tpc-h v2.17.3) and dblp datasets. For dblp, we
download the xml snapshot of the data and then store them
in 10 relations. Example sql queries on these datasets will
be presented. Users can also write their own ad-hoc queries.
The audience will be requested to formulate a sql query

or select one from the list of benchmark queries using the
neuron gui. Upon execution of the query, one will be able
to view as well as hear the natural language description of
the qep. She may pause and replay the natural language
description as she wishes. By clicking on the View Plan
button, one can view the original qep generated by Post-
greSQL and appreciate the difficulty in perusing and com-
prehending plan details, highlighting the benefits of natural-
language interaction brought by neuron. Lastly, the audi-
ence can pose the aforementioned types of questions related
to a qep through the neuron gui and get accurate answers
in real-time. Such qa session aims to facilitate further nat-
ural language-based clarification regarding the execution
strategy deployed by the underlying query engine. A short
video to illustrate these features of neuron is available at
https://youtu.be/wRIWuYbU2F0.

Acknowledgments. Sourav S Bhowmick and Shafiq Joty are
supported by AcRF Tier-1 Grant 2018-T1-001-134.
REFERENCES

[1] F. Basik, et al. DBPal: A Learned NL-Interface for Databases. In SIGMOD, 2018.
[2] A. Kokkalis, P. Vagenas, A. Zervakis, A. Simitsis, G. Koutrika, Y. E. Ioannidis.

Logos: A System for Translating Queries into Narratives. In SIGMOD, 2012.
[3] F. Li, H. V. Jagadish. NaLIR: An Interactive Natural Language Interface for

Querying Relational Databases. In SIGMOD, 2014.
[4] F. Li, H. V. Jagadish. Constructing an Interactive Natural Language Interface for

Relational Databases. PVLDB, 8(1), 2014.
[5] S. Liu, et al. NEURON: Query Optimization Meets Natural Language Processing

For Augmenting Database Education. https://arxiv.org/pdf/1805.05670.pdf.
[6] A.-M. Popescu, O. Etzioni, H. A. Kautz. Towards a Theory of Natural Language

Interfaces to Databases. In IUI, 2003.
[7] D. Saha, A. Floratou, et al. ATHENA: An Ontology-Driven System for Natural

Language Querying over Relational Data Stores. PVLDB, 9(12), 2016.

http://www.nltk.org/
https://youtu.be/wRIWuYbU2F0
https://arxiv.org/pdf/1805.05670.pdf

	Abstract
	1 Introduction
	2 System Overview
	3 Related Systems and Novelty
	4 Demonstration Objectives
	References

