LATTE: Visual Construction of Smart Contracts

Sean Tan* Sourav S Bhowmick*

Huey Eng Chua* Xiaokui Xiao®

*School of Computer Science and Engineering, Nanyang Technological University, Singapore
$School of Computing, National University of Singapore, Singapore
assouravlhechua@ntu.edu.sg,xkxiao@nus.edu.sg

ABSTRACT

Smart contracts enable developers to run instructions on
blockchains (e.g., Ethereum) and have broad range of real-
world applications. Solidity is the most popular high-level
smart contract programming language on Ethereum. Coding
in such language, however, demands a user to be proficient in
contract programming and debugging to construct smart con-
tracts correctly. In practice, such expectation makes it harder
for non-programmers to take advantage of smart contracts.
In this demonstration, we present a novel visual smart con-
tract construction system on Ethereum called LATTE to make
smart contract development accessible to non-programmers.
Specifically, it allows a user to construct a contract with-
out writing Solidity code by manipulating visual objects in
a direct manipulation-based interface. Furthermore, LATTE
interactively guides users and makes them aware of the cost
(in units of Gas) of visual actions undertaken by them during
contract construction.

ACM Reference Format:

Sean Tan, Sourav S Bhowmick, Huey Eng Chua, Xiaokui Xiao. 2020. LATTE:
Visual Construction of Smart Contracts. In 2020 International Conference
on Management of Data (SIGMOD ’20), June 14-June 19, 2020, Portland, OR,
USA. ACM, NewYork, NY, USA, 4 pages.
https://doi.org/10.1145/3318464.3384687

1 INTRODUCTION

With the increasing commercial and research interests on
blockchains, several blockchain-based technologies have
emerged in recent times such as smart contracts. Specifically,
a smart contract (contract for brevity) enables developers
to run instructions on blockchains. A contract can encode

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SIGMOD’20, June 14—19, 2020, Portland, OR, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6735-6/20/06...$15.00
https://doi.org/10.1145/3318464.3384687

any set of rules using a programming language. Accordingly,
it can carry out and conditionally transfer digital assets or
tokens between parties in a transparent, conflict-free way
while avoiding the services of a middleman. Ethereum is a
popular example of a public, blockchain-based decentralized
platform that provides a low-level bytecode language called
Ethereum virtual machine (EvM) to execute smart contracts.
Each Ethereum contract holds some virtual coins (Ether),
has its own private storage, and is associated with a prede-
fined executable code. Recently, Ethereum’s smart contract
framework has seen steady adoption supporting thousands
of contracts [2]. The most popular smart contract program-
ming language on Ethereum is Solidity (a Javascript-like
language), which is compiled into EvM code. Some examples
of smart contracts written in Solidity are given in [7].

Solidity has stringent coding requirements for contract
programming. Consequently, it demands a user to have profi-
ciency in contract programming to construct smart contracts
correctly. In practice, such expectation makes it challenging
for a non-programmer to design a usable smart contract.
Many blockchain platforms are geared toward expert users
and lack the support needed for easier use by non-experts.

In this demonstration, we present a novel tool called LATTE
(VisuaL SmArt ConTracT BuildEr) to visually construct a
smart contract in Ethereum using a direct-manipulation in-
terface [5]. LATTE facilitates formulation of simple smart con-
tracts by manipulating visual objects instead of writing Solid-
ity code. Specifically, it automatically generates the Solidity
code from a visually-constructed contract. Furthermore, the
unique characteristics of the (Ethereum) blockchain strongly
influence the way a smart contract has to be developed com-
pared to common developmental approaches. Accordingly,
LATTE is Gas-aware and guides users on the Gas usage of a
contract during its construction. Intuitively, each instruction
executed by EvM has a predefined cost, which is expressed
in units of Gas. Hence, Gas can be considered as the cost to
run smart contracts on Ethereum. Note that this feature is
paramount in smart contract development as execution of
contracts cost real money to users.

In our demonstration, we shall highlight various inno-
vative features of LATTE and show how it can be used to
visually construct a Solidity contract. We believe that LATTE

https://doi.org/10.1145/3318464.3384687

will make smart contract development accessible to non-
programmers. Nevertheless, it can also be used by contract
programmers to develop complex contracts by first generat-
ing the Solidity code of the core features of a contract using
LATTE and then augmenting it by coding complex features
(e.g., bit operations, hashing). Note that LATTE is designed to
make contract construction easier. Issues related to security
and testing of contracts [2] are orthogonal to this tool.

2 DESIGN PHILOSOPHY

The design of LATTE is based on the following key principles.

Construct core features without coding. LATTE should
enable users to effortlessly create a single smart contract
without writing Solidity code. To this end, it should allow
visual construction of following Solidity features: basic vari-
able types, structs (known as entities in LATTE), functions,
variable assignments, mapping variable types and nested
mappings, conditional statements and loops, events, require
statements, and transfer functions. Note that these are core
features of Solidity and can be used to create a variety of con-
tracts. Bit operations, assembly functions, hashing, encoding
and decoding are not supported as these are designed for
programmers. Also, modifiers (to improve readability) and
self destruct are not supported as they are not required to cre-
ate a functioning smart contract. Note that these advanced
features can be added by programmers by first transform-
ing a visually formulated contract to Solidity code in LATTE
and then augmenting it with relevant codes. Lastly, since we
aim to create a single contract instead of multiple modular
contracts, the support of libraries is orthogonal to our goal.

Towards Gas-aware formulation. Since execution of a
contract in Solidity costs real money, LATTE should support
Gas-aware interactions. First, it should provide fine-grained
variable storage choices (e.g., declaring a variable as 8 or
256 bits have substantial impact on Gas usage). Second, it
should explicitly warn users on the implication of assign-
ing a variable to Storage instead of Memory. The former is
written permanently to a blockchain and incurs significant
Gas compared to the latter, which will disappear when a
function call ends. Hence, users need to carefully consider
the usage of storage or memory keyword when declaring
variables. Third, a unique feature of Solidity is that it differen-
tiates between functions that write to a blockchain and those
that only perform read tasks. A function can be declared
as read-only by adding a view keyword. A view function
can optimize the Gas usage since it does not incur any Gas
when it is invoked. Hence, LATTE should detect and assign a
function as view if it does not write to a blockchain. Finally,
users are able to view the total Gas usage by a contract at
any time during formulation so that relevant modifications
can be performed (if necessary).

LATTE

I "

; Visual Interface Build Page
actions

Code C?Jrr:]t?ar::t Contract Storage Gas
Generator | solidity Repository [y Manager Advisor Tracker

code file

Connection
Page

Visual

Gas table

Figure 1: Functional architecture of LATTE.

Events

Lvent Name ADD +

Entities

ADD +

Figure 2: Global state tab.

Function Inputs

m proposal Text ~ N =

Checking Phase

voler details of message snot - 0

E sender’s weight

voter details of message is - faise
sender's voted

Has no right o vote

Already voted

Action Phase VIE AS USAGE A
Nodes
Assignment Node
Event Node
New Fnfity Nocle

te count of proposal > Faise

Transfer Node winning vote count

1
Retum Node -~
————— ssgnment voters voe - True
Conuitionial Node I
e

Assignment: winning vote count = vole count of proposal

_—
Assignment: winning proposal name = proposal E

Figure 3: Build tab.

3 SYSTEM OVERVIEW

Figure 1 depicts the architecture of LATTE. It consists of the
following components.

The Visual Interface Module. The visual interface of
LATTE consists of two key pages, namely connection and
build. The connection page is the landing page when a user in-
vokes LATTE. Once a user has connected to a valid blockchain
through the connection page, she will be transferred to the
build page. The build page consists of two components, the
global state tab (GsT) and the initial state tab (1ST).

The global state tab enables formulation of details of a
smart contract that are not tied to any functions such as
events and entities. Figure 2 shows a screenshot of the GsT
component. The Events box is used to declare events by speci-
fying the event names. One can add and customise an event’s

) Gas Usage
New Assignment Node
Current gas usage: 1245715

Gas Usage History:

Variable Name Is v

Assigned Value

Store Locally

Figure 4: Storage Advisor and Gas Tracker modules.

parameters. The Entities box enables formulation of struct
data structure by simply declaring the attributes and types.

The 1T enables one to visually construct the functions
of a smart contract. Each function is associated with a tab
(referred to as build tab) having name corresponding to the
function name. Each build tab (i.e., function) consists of the
function input, the checking phase, and the action phase to
visually specify details related to a Solidity function. Figure 3
depicts an example of the build tab.

The function input allows one to specify function param-
eters for each function as well as their types. The checking
phase allows a user to specify necessary conditions that need
to be satisfied before a function is executed. If these condi-
tions are not met, a user-specified failure message is returned.
The action phase allows a user to specify the content of a
function by drawing an action graph in the Action panel
(bottom right panel). The panel has a default start node to
indicate start of the function body. A user may choose a type
of node she wants to add to an action graph from the left
panel and drag and drop it on the Action panel. The node
types supported by LATTE and their correspondence to So-
lidity code are given in Table 1. A modal box will appear
that takes specific input from the user before adding the
node to an action graph. Each node has ports. The incoming
port is on the left and the outgoing port is on the right. One
needs to connect an outgoing port of a node to an incoming
port of another node. This enables us to specify a sequence
of statements in a function body. Note that a Conditional
Node has 4 ports to capture an if/else statement. The input
ports are at the left and top and the output ports are at the
right and bottom. Figure 3 shows an action graph. Note that
LATTE supports fine-grained choices of variable types and all
variable fields are free text to allow a user to create variables
using natural language. A variable mapping is maintained to
map a free text field to an internal variable representation.
The Code Generator Module ensures the correct translation of
user-defined variables to Solidity code by using the mapping.

The Contract Manager Module. This module allows a
user to save the current progress of smart contract formula-
tion at any time and load it again later. When the Save button
is clicked, the entire state of the Build page is stringified and
dumped into a JSON file. When the Load button is clicked,
the state of the Build page is reverted to the saved content.

Table 1: Node types in an action graph.

Name Function in Solidity Color

Assignment Node | Assignment of value to a variable. Red

Event Node Emit a previously declared event. Green

Entity Node Create an instance of a previously declared | Dark green
struct and assign it to a variable.

Transfer Node Transfer an amount of ether to an address. Pink

Return Node Complete the function and return the value | Orange
provided.

Conditional Node | Branching functionality with true and false | Purple
conditions.

This module is also responsible for deploying a smart
contract to the blockchain. When a user clicks on the Deploy
button, it compiles the smart contract code and leverages
web3 to deploy it onto the blockchain. If the deployment is
successful, the transaction hash and address of the smart
contract will be shown.

The Code Generator Module. This module generates
the Solidity code of the visual formulation actions under-
taken by a user. It comprises of two components, BuildParser
and CodeBuilder.

The BuildParser submodule is responsible for parsing the
action graphs to generate the code of the functions in a smart
contract. It parses an action graph using two loops. The first
loop looks for variables, infers their types, and adds their
names and types to a lookup table. In particular, it checks the
Assignment, Entity and Transfer Nodes as they provide infor-
mation about variable types. In the second loop, it traverses
the action graph from the start node. At each node, it parses
all variables involved in it and generates the code by utilizing
the lookup table. If the node is a Return Node, it updates the
return variable type in the function declaration. If it encoun-
ters a Conditional Node, it will traverse each path associated
with it separately and fill in the if/else conditions. If there
is a loop (cycle in the action graph), it appends a while loop
to the code. Note that the BuildParser also identifies certain
natural language keywords in a user’s input and convert
them to Solidity code. For example, “message sender”, “msg
sender”, “sender”, “function caller” keywords are converted
to msg. sender in Solidity code (i.e., address of the person
that called the function). Similarly, “message value”, “msg
value”, “value” keywords are converted to msg.value (ie.,
incoming amount of ether sent to the function).

The CodeBuilder submodule is responsible for generating
the complete code. It is invoked when a user clicks on the
Generate Code button. LATTE leverages a contract code tem-
plate and places the variables, structs, events, parameters
and the code formed by the BuildParser into it to generate a
syntactically correct Solidity smart contract. Note that LATTE
automatically detects view functions by analyzing the code.
Lastly, all state variables are transformed to private instead
of public so that sensitive information is not unintentionally
revealed to the blockchain users. To allow public access, one
needs to create a function to expose a state variable.

The Storage Advisor Module. This module advises users
on storage of variables that may lead to reduction in Gas us-
age. It allows a user to define how many bytes or bits will be
used to store a variable. Also, when initialising a new Entity
Node or using the Assignment Node, it prompts a user to
decide if she wishes to store a variable locally or globally.
If she chooses the latter, it warns her that the Gas usage is
significantly higher. Figure 4 (left) depicts an example.

The Gas Tracker Module. This module tracks the poten-
tial Gas usage of a contract during its visual formulation. It
is invoked by clicking the View Gas Usage tab in the Action
panel, and displays a plot of the total Gas used to visual action
increase during contract formulation (Figure 4 (right)). A Gas
table, which contains the amount of Gas that are required in
order to execute several basic computation operations (e.g.,
addition) on the EVM, is utilized to this end. The current im-
plementation of LATTE utilizes the estimated values provided
by web3 via the estimateGas function.

4 RELATED SYSTEMS

There are visual programming editors such as Google Blocky [1]
to facilitate interactive programming. However, these editors
are not designed specifically for smart contracts. Weingart-
ner et al. [6] develop a mapping process to transform the
graphical representation of Blocky to Solidity. Mao et al. [4]
automatically generate the basic functions of specialized
templates for contract coding using machine learning and
provides a visual page editor based on Google Blocky [1] to
help users write smart contracts. None of these tools are Gas-
aware. The DB community has shown increasing interest in
blockchain technologies [3] but to the best of our knowledge
there is no effort towards visual construction of contracts.

5 DEMONSTRATION OVERVIEW

LATTE is implemented using the Electron and React frame-
works. In addition, the solc compiler, Ganache CLI (to sim-
ulate full client blockchain behaviour) and web3 packages
are used. Our demonstration will be loaded with a few real
smart contracts (e.g., [7]). Users can also visually formulate
their own ad-hoc contracts through our Gur.

The key objective of the demonstration is to enable the
audience to interactively formulate a contract without writ-
ing Solidity code. An audience may formulate a preloaded or
ad-hoc contract using the visual interface of LATTE. She can
also experience first-hand how LATTE guides users toward
Gas-aware formulation of contracts through the Storage Ad-
visor and Gas Tracker modules. We illustrate this experience
by visually creating a voting contract using LATTE.

Voting is a smart contract written to ensure transparency
and fairness of an election. It contains a Voter struct to cap-
ture voter objects. A chairperson will deploy the smart con-
tract and is in charge of overseeing the voting process. The

chairperson is assigned in the constructor of the contract (i.e.,
constructor()), which is invoked when she deploys the smart
contract onto a blockchain node. She can add proposals to
the contract and give others the right to vote by invoking
the addProposal and giveRightToVote functions, respectively.
The vote function can be called by anyone with the right to
vote. The delegate function allows a voter to give her vote to
someone else to vote in place of her. The winningProposal (a
view function) function can be invoked by anyone to find out
the winning proposal. A video of the formulation of this con-
tract in LATTE is available at https://youtu.be/2aD37KTM80Q.

The Gst in Figure 2 is used to declare a Voter entity. Specif-
ically, four attributes are formulated: (a) weight: weight of
the vote of the voter; (b) voted: whether the voter has already
voted; (c) delegate: who the voter delegated her vote to; (d)
vote: the name of the proposal the voter voted for. Next, the
1sT (Figure 3) is invoked to create the constructor and other
functions of the smart contract. Due to space constraints, we
describe the formulation of the vote function.

A user has to provide the proposal name she is voting for
when she invokes the vote function. Hence, (1) a proposal is
added in function input. (2) In the checking phase, specify that
the voter has the right to vote and has not voted yet. Next, in
the action phase, (3) the voter details of the message sender
is assigned to a voter variable. (4) Set the voted attribute
to True. (5) Assign the vote attribute to the proposal she
is voting for. (6) Update the voteCount by adding the vote
weight to the proposal she is voting for. (7) Drag a Condi-
tional Node to the Action panel to check if the vote count
for this proposal is the highest. (8-9) If it is, then update
winning vote count and declare this proposal as the current
winning proposal. Figure 3 depicts these steps. Observe that
Steps 3-6, 8, and 9 are realized using the Assignment Node.
LATTE allows a user to set a new variable as local or global
when it is configured. Also, a user can track Gas usage of the
formulated contract any time by clicking on the View Gas
Usage tab in the Action panel.

Once the construction is completed, clicking on the Gen-
erate Code button generates the Solidity code. The audience
may then compare the generated code with the original So-
lidity code to appreciate the benefits of using our tool.

REFERENCES

[1] L Culic, et al. Auto-generating Google Blockly visual programming elements
for peripheral hardware. In RoEduNet Int. Conf.-Netw. Educ. Res., 2015.

[2] L.Luu, D.-H. Chu, et al. Making Smart Contracts Smarter. In ACM CCS, 2016.

[3] S.Maiyya, V. Zakhary, et al. Database and Distributed Computing Foundations
of Blockchains. In SIGMOD, 2019.

[4] D.Mao, F. Wang, Y. Wang, Z. Hao. Visual and User-Defined Smart Contract De-
signing System Based on Automatic Coding. IEEE Access, 7: 73131-73143, 2019.

[5] B.Shneiderman, C. Plaisant. Desigining the User Interface: Strategies for Effec-
tive Human-Computer Interaction. 5th Ed., Addison-Wesley, 2010.

[6] T. Weingértner, et al. Smart Contracts Using Blockly: Representing a Purchase
Agreement Using a Graphical Programming Language. In CVCBT, 2018.

[7] Solidity by Example - Solidity 0.5.5 documentation. Available at: https://solidity.
readthedocs.io/en/latest/solidity-by-example.html#simple-open-auction.

https://youtu.be/2aD37KTM80Q
https://solidity.readthedocs.io/en/latest/solidity-by-example.html#simple-open-auction
https://solidity.readthedocs.io/en/latest/solidity-by-example.html#simple-open-auction

	Abstract
	1 Introduction
	2 Design Philosophy
	3 System Overview
	4 Related Systems
	5 Demonstration Overview
	References

