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ABSTRACT

Several visual graph query interfaces (a.k.a GuI) expose a set of
canned patterns (i.e., small subgraph patterns) to expedite subgraph
query formulation by enabling pattern-at-a-time construction. Un-
fortunately, manual generation of canned patterns is not only labour
intensive but also may lack diversity to support efficient visual for-
mulation of a wide range of subgraph queries. Recent efforts have
taken a data-driven approach to select high-quality canned patterns
for a gur automatically from the underlying graph database. How-
ever, as the underlying database evolves, these selected patterns may
become stale and adversely impact efficient query formulation. In
this paper, we present a novel framework called Mipas for efficient
and effective maintenance of the canned patterns as the database
evolves. Specifically, it adopts a selective maintenance strategy that
guarantees progressive gain of coverage of the patterns without
sacrificing their diversity and cognitive load. Experimental study
with real-world datasets and visual graph interfaces demonstrates
the effectiveness of Mipas compared to static GUIs.
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1 INTRODUCTION

Visual graph query interfaces (a.k.a ur) for interactive construction
of subgraph queries encourage non-programmers to take advan-
tage of graph querying frameworks. Several commercial querying
frameworks (e.g., PubChem [5], Drugbank [2]) for querying a large
collection of small- or medium-sized data graphs (i.e., graph data-
base) provide direct-manipulation interfaces [36] for visual query
formulation. Specifically, they expose a set of canned patterns (i.e.,
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Figure 1: A GUIL

small subgraph patterns), which is beneficial to visual querying in
at least three possible ways. First, they can potentially decrease
the time taken to visually construct a query. Specifically, a canned
pattern (pattern for brevity) enables a user to construct multiple
nodes and edges in a subgraph query by performing a single click-
and-drag action (i.e., pattern-at-a-time mode) in lieu of iterative
construction of edges one-at-a-time (i.e., edge-at-a-time mode). Sec-
ond, they can facilitate “bottom-up” search when a user does not
have upfront knowledge of what to search for. She observes the
key patterns that exist in a dataset through a diverse set of canned
patterns that may provoke further inquiries. Third, HCI research
shows that users may become frustrated if a large number of small
atomic actions (e.g., repeated edge construction) is necessary to
accomplish a higher-level task (e.g., subgraph query) [36]. Naturally,
patterns may ease such frustration.

Example 1.1. Consider the curt in Figure 1 to query a chemical
compound database (e.g., PubChem). Figure 2(a) depicts examples
of patterns of size 3 or larger in it (Panel 4) to facilitate visual query
formulation. Suppose John, a chemist, constructs a query graph of
boronic acid (Panel 2). In pattern-at-a-time mode, it would take him
20 steps (102 sec) by dragging-and-dropping relevant patterns and
editing them if necessary. In particular, John uses p4 and p; patterns;
removes a H and its associated edge from p4; add 7 vertices 3 H, 1 C,
1 B and 2 O); and 10 edges. On the other hand, if he had constructed
it using the edge-at-a-time mode, it would have consumed 41 steps
(145 sec). Consequently, it is paramount to select the canned pattern
set judiciously so that it can support efficient visual formulation of
a large number of different subgraph queries.

Observe that John may not necessarily have the complete query
structure “in his head” during query formulation. He may find p4
interesting while browsing the pattern set, which may initiate his
bottom-up search for boronic acid. It is worth noting that without
the existence of a pattern set, such bottom-up search is infeasible. Il
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Figure 2: Canned pattern sets.

Manual selection of canned patterns is not only labour-intensive
but the selected patterns may not be diverse enough to expedite for-
mulation of a wide range of subgraph queries [12]. CATaPULT [23]
is the first effort that systematically selects canned patterns in a
data-driven manner. Given a graph database D and a pattern budget
(i.e., minimum and maximum size of patterns, number of patterns
on the Gu1), it selects canned patterns that exhibit high coverage and
high diversity. Although coverage of patterns is intuitive, diverse
patterns ensure efficient usage of the limited display space on the
GUI by not displaying very similar patterns. Furthermore, it pref-
erentially selects patterns that have potentially low cognitive load
(i.e., mental load to visually interpret a pattern’s edge relationships
to determine if it is useful for a query) on end users as patterns with
high load may adversely impact query formulation time (QFT) [23].
To this end, CATAPULT first partitions D into a set of clusters and
summarizes each cluster to a cluster summary graph (csG). Then,
it selects the canned patterns with aforementioned characteristics
from these csGs using a weighted random walk approach.

Observe that these patterns are selected from D at a particular
time point. However, real-world graph repositories are dynamic in
nature. A study [47] reported that approximately 4,000 new struc-
tures were added daily to the SCI finder database (www.cas.org/
products/scifinder). Similarly, new compounds are added to the Pub-
Chem (pubchemdocs.ncbi.nlm.nih.gov/submissions-getting-started)
and Drugbank (dev.drugbank.com/guides/fags) daily. Consequently,
these patterns may grow stale quickly over time and adversely
impact efficient visual query formulation.

Example 1.2. Reconsider Example 1.1. Chemical compounds are
discovered at an exponential rate [28]. Suppose that the patterns
are regenerated (Fig. 2(b)) after PubChem added a new group of
6375 compounds called boronic esters which is characterized by the
functional group outlined in Fig. 1. In particular, some patterns (e.g.,
p3) have become stale and are replaced by new patterns (e.g., p3)
relevant to boronic esters. John only requires 14 steps (70 sec) now
to formulate the query by using py, p1 and p5; removing a H vertex
and its associated edge from py4; adding 3 H vertices and 7 edges.
That is, the refreshed pattern set led to more efficient formulation
compared to its stale version. Also, existence of the new p; pattern
may trigger bottom-up search for boronic ester-based compounds
that may not be possible if the stale cur is used. |

The aforementioned example motivates the need for maintaining
the canned pattern set as the underlying graph repository evolves in

order to support efficient visual query formulation. Unfortunately,
as we shall see in Section 7, the straightforward approach of execut-
ing CATAPULT repeatedly as D evolves to maintain the pattern set
can be extremely inefficient. Hence, in this paper we present MI-
DAs (Malntenance of canneD pAtternS) for effective and efficient
canned pattern maintenance as the underlying database evolves.
It is built on top of CaTAPULT. Specifically, it seeks to update the
existing canned patterns # in a ur I to $’ due to evolution of D
such that ’ continues to have high coverage, high diversity, and
low cognitive load. In particular, MIipAs guarantees that the quality
of P’ is at least the same or better than $. We assume the database
changes as a batch of graph insertions and deletions. This assump-
tion is reasonable as unlike large networks (e.g., social) where data
may continuously appear in streaming mode, as remarked above,
several real-world databases of small- or medium-sized data graphs
are updated periodically (e.g., daily).

The canned pattern maintenance (CPM) problem introduces sev-
eral non-trivial challenges. First, it is NP-hard. Second, not every
modification to D demands maintenance of . Consider a modifi-
cation involving deletion of a data graph Gy in a cluster C. Suppose
Gs € C contains a subgraph isomorphic to Gj. Since the csGs are
generated by integrating the data graphs in a cluster (e.g., G1, Gs),
there is no change to the csG of C from which canned patterns are
selected. Hence, P does not need to be maintained. On the other side
of the spectrum, suppose a large number of data graphs are added
to D. Such a modification is likely to cause drastic changes to the
clusters and warrants maintenance of . Third, CATAPULT utilizes
frequent subtrees as feature vectors for clustering. Although this
is reasonable when P is constructed from static data, it makes effi-
cient maintenance of the clusters a challenging task due to the lack
of closure property (detailed in Section 4.1). Hence, more efficient
data structure needs to be considered for the cpm problem.

Mipas addresses the aforementioned challenges as follows. It
exploits degree of changes to graphlet frequency distribution in D
to selectively maintain . Second, it replaces frequent subtrees with
frequent closed trees (FCT) [11] as feature vectors for clustering. Intu-
itively, a frequent tree is closed if none of its proper supertrees has
the same support as it has. That is, f’ is a proper supertree of f if
f’ is a supertree of f but f # f’. Importantly, rcTs display closure
property [11], paving the way for efficient maintenance of the clus-
ters. Third, P is updated opportunely using a novel multi-scan swap-
ping strategy that guarantees progressive gain of coverage without
sacrificing diversity and cognitive load. To this end, we leverage on
a coverage-based pruning strategy and two indices, namely, frequent
closed tree index (FcT-Index) and infrequent edge index (IFE-Index), to
facilitate pruning of unpromising candidate patterns for selecting
new patterns for . Our experimental study reveals that Mipas
is up to 80 times faster than maintenance-from-scratch approach.
Importantly, it can reduce the number of formulation steps and QFT
by up to 50% and 42%, respectively, compared to “static” Guis.

In summary, this paper makes the following contributions. (a)
To the best of our knowledge, we are the first to formally pro-
pose the novel canned pattern maintenance problem and present
a holistic strategy to address it (Section 3). (b) We describe Mi-
DAS, an end-to-end framework that can support efficient and high
quality maintenance of canned patterns in any visual graph query
interface independent of domains and data sources (Sections 4-6).
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Table 1: List of key notations.

Notation Description
G,D a graph, a graph database
p.P. P a pattern, a pattern set, updated pattern set
b, Ymin/Tmax,Y | pattern budget, min/max pattern size, number of displayed patterns
scov(), Icov() subgraph coverage, label coverage
cog() cognitive load
GED(), div() graph edit distance, diversity
C.C a graph cluster, a set of graph clusters
AT(A7), AD insertion (deletion) of graphs, updates of graphs
FCT,IFE frequent closed trees, infrequent edges
CSG closure summary graph
€ evolution ratio threshold
K, A swapping thresholds
PMT pattern maintenance time
MP, 1 missing percentage, reduction ratio
QFT, VMT query formulation time, visual mapping time

Figure 3: A sample graph database.
(c) Using real-world data graph repositories and Guis, we show
the superiority and applicability of MiDAs in comparison to static

Guis (Section 7). Formal algorithms and proofs of all theorems and
lemmas are given in [24].

2 BACKGROUND

In this section, we begin by introducing some graph concepts. Then,
we briefly describe the characteristics of canned patterns. Lastly
we summarize the CATAPULT framework [23] to address the canned
pattern selection (cps) problem. Table 1 lists the key notations and
acronyms used in this paper.

2.1 Graph Terminology

Let G = (V,E) be a simple graph where V is a set of vertices and
E C V XV is a set of edges. We assume that the data graphs and
visual subgraph queries are undirected simple graphs with labeled
vertices. The label of vertex v € V is denoted as [(v). The label of
an edge (u,v) is given as I(e) = I(u).l(v). The size of G is defined
as |G| = |E|. Given two graphs G = (V,E) and G’ = (V/,E’), G is a
subgraph of G’ if there exists a subgraph isomorphism from G to
G’ and it is denoted by G € G’. In this work, we focus on a graph
database or repository containing a large collection of small- or
medium-sized data graphs (denoted as D). A unique index (i.e., ID)
is assigned to each data graph in D. We denote a data graph with
index i as G; € D. Figure 3 depicts a sample graph database.

2.2 Characteristics of Canned Patterns

Since it is impractical to display a large number of patterns in a
visual Gul I, the number of patterns should be small and these
patterns satisfy certain desirable characteristics as follows [23].
High coverage. A pattern p € P covers a data graph G € D if G
contains a subgraph s that is isomorphic to p. In particular, two
types of coverage are considered, namely, subgraph coverage and
label coverage. The subgraph coverage of a pattern p = (Vp, Ep)
is given as scov(p, D) = |Gp|/|D| where G, C D is a set of data
graphs containing p. The label coverage of an edge e of D is given
as Icov(e,D) = |L(e,D)|/|D| and L(e, D) is the set of graphs in
D containing edges having same label as e. Intuitively, a canned

(@) (c)
Figure 4: (a) Extended graph of G; (Figure 3); (b) mapping of
extended graphs of G, and Gy; (c) closure graph of G, and G4.

pattern set should cover a large number of data graphs in D (i.e.,
subgraph coverage) and has as many unique vertex labels as possible
(i.e., label coverage). Hence, coverage of a canned pattern set % is
given as fscou(P) = |Gp|/ID| and ficoo(P) = U L(ep, D)|/ID|
where Gp C D is a set of data graphs containing at least one pattern
in P and ep is an edge in at least one pattern in .

High diversity. In order to make efficient use of the limited dis-
play space on I, every pattern p should ideally be diverse from
every other pattern in #. This will enable # to potentially serve
a larger variety of queries. Given the patterns p, p1, and pa, we
say p1 is more diverse from (resp. similar to) p compared to py if
GED(p1,p) > GED(p2,p) (resp. GED(p1,p) < GED(p2,p)) where
GED(.) is the graph edit distance [32]. Consequently, diversity of
p, denoted as div(p, P \ p) = min{GED(p, p;)} where p; € P \ p.
Similarly, diversity of P is given as fg;,,(P) = minyep div(p, P \p).

Low cognitive load. Cognitive load refers to the memory demand
or mental effort required to perform a given task [25]. A relatively
large and complex pattern may demand substantial cognitive effort
from an end user to decipher it and to decide if it can aid in her
query formulation [13, 23]. Hence, it is desirable for the patterns to
impose low cognitive load on the end user. We adopt the measure
in [23] to quantify cognitive load of a pattern p: cog(p) = |Ep| X pp

|Ep|
|Vp|(|{/)p [-1)
intuition that the cognitive load increases with density as users
tend to spend more time identifying relationship between different
vertices in denser graphs [25, 41]. Cognitive load of P is given as

feog(P) = maxpep cog(p).
2.3 The CATAPULT Framework

The CatapuLt framework comprises of the following three steps [23].
Small Graph Clustering. A 2-step clustering approach is used
to partition D into a set of graph clusters C = {C1,Co,...,
Ci}, where C; € D and Vi # j,C; N C;j = 0. The first step (coarse
clustering) is a feature vector-based approach that uses frequent
subtrees of D as feature vector for k-means clustering where the
k seeds are chosen using the k-means++ algorithm [8]. Since the
generated clusters (referred to as coarse clusters) may still be large
and expensive for generating cluster summary graphs (csGs), the
second step (fine clustering) is performed on those coarse clusters
that exceed the maximum cluster size threshold N. In particular, it
leverages maximum connected common subgraph (mccs) [35] as the
clustering property. That is, fine clustering replaces a large coarse
cluster with smaller clusters Cr;,e = {C{,- - ,C},} where VC; €

where pp, =2 is the density of p. This follows from the

Cfinev|cl{| < N, opees(Gm, Gn) 2 wmces(Gms Gp), Gm, Gn € C,
. . G\ACCS
Gp € Cj'., CJ’. € Crine and i # j, and wyccs(G1, G2) = m

is Mmccs similarity.
Cluster Summary Graph (CSG) Generation. CATAPULT sum-
marizes each cluster C; € C into a csG by performing graph closure



iteratively on pairs of data graphs in the cluster. A closure graph [22]
integrates graphs of varying sizes into a single graph referred to as
extended graph (denoted by G* = (V*, E¥)) by inserting dummy ver-
tices or edges with a special label ¢ such that every vertex and edge
is represented in G*. Given two extended graphs G} and G and a
mapping ¢ between them, a vertex and an edge closure can be ob-
tained by performing an element-wise union of the attribute values
of each vertex and each edge in the two graphs, respectively. Then
the closure graph of G} and G; is a labelled graph G. = (V¢, Ec)
where V. is the vertex closure of V" and V' and E. is the edge
closure of EJ and E. Note that attribute values ¢ corresponding to
a dummy vertex or edge are removed from G,. Figure 4 illustrates
the notion of closure graphs.

Canned Patterns Selection. Finally, CATapuLT follows a greedy
iterative approach based on weighted random walks for selecting
canned patterns from csas. First, each edge in every csG is as-
signed a weight based on its label coverage in the dataset and in
the cluster. In particular, the weight w, of an edge e is given as
we = lcouv(e, D) X Icov(e, C) where Icov(e, X) = |L(e, X)|/|X|. Next,
it performs random walks on these weighted csGs. Given a weighted
csG S, for each size in the range [7min — Nmax] (i.e., pattern budget
b), it leverages on the statistics obtained from the random walks to
propose a variety of potential candidate patterns (pcp) from which
a final candidate pattern (rcp) is derived. In particular, an Fcp of a
particular size n; for a csG is found by retrieving a connected sub-
graph of size n; with the most frequently traversed edges. A pattern
score is computed for each rcp based on the following definition.

Definition 2.1. Given D with clusters C, a Fcp p and a canned
pattern set P, the pattern score of p is defined as sp = ccov(p, cw, C)x

lcov(p, D) % % where cw; = % and ccou(p,cw,C) =
Diec cwi X I; such that I; = 1 if the csG of C; contains a subgraph

isomorphic top € P, otherwiseI; = 0.

The candidate pattern with the largest pattern score is selected
as the best pattern to be added to . Weights of the cscs are then
updated using the multiplicative weights update approach [7]. These
steps are repeated until either the required number of patterns are
discovered or when no new pattern can be found.

3 THE CPM PROBLEM

In this section, we first define the canned pattern maintenance (CPm)
problem. Next, we introduce the technical challenges and our strate-
gies to tackle them. Lastly, we provide an overview of MiDas.

3.1 Problem Definition

Intuitively, the canned pattern maintenance (cpMm) problem seeks to
update existing canned patterns # in a ur I to £’ due to evolution
of D such that P’ continues to have high coverage, high diversity
and low cognitive load.

We consider w.Lo.g the following unit updates.

e graph insertion: insertion of a new data graph in D.
o graph deletion: deletion of a data graph in D.

A batch update AD to D is a sequence of unit updates. We denote
insertion of a set of data graphs in AD as A* and deletion of a set
of data graphs as A™. Also, D @ AD denotes a graph database after
applying AD to D.

Definition 3.1. The canned pattern maintenance (CPM) prob-
lem is stated as follows.

e Input: A graph database D, a visual graph query interface [
with canned pattern set P, a pattern budgetb = (Nmin, Nmax>Y)
where §min (resp. Ymax) is the minimum (resp. maximum)
size of a pattern and y is the number of patterns to be displayed
on 1, and updates AD to the input graph database D.

® Output: Let f3;5,(P’), feog(P’), fscoo(P’) and fcon(P) be
the diversity, cognitive load, subgraph and label coverage of
P’, respectively. Then, the output is an updated set of canned
patterns P’ on1 for modified database D & AD that

max f:scov(P/)’flcov(P’)’ fdiv(P’)» _fcog(P/)
subject to |P'| =y, P’ €U

where P’ is the solution; U is the feasible set of canned pattern
sets in D ® AD; §min > 2; r’]max_qmin+1] is the maximum
number of patterns for each k-sized pattern; k € [Nmin, Nmax]-

Remark. Observe that cpm is a multi-objective optimization
problem where infinite number of Pareto optimal solutions may
exist, making it hard to decide on a single suitable solution [29].
Furthermore, it is rare to find a feasible solution that optimizes all
objective functions simultaneously. We address this by converting
cpM into a single-objective optimization problem using a multiplica-
tive score function [37] (detailed in Section 6). Note that here we
focus on maintenance of patterns with #7,,;, > 2. The maintenance
of patterns with i, < 2 is straightforward and is given in [24].

THEOREM 3.2. The cpm problem is NP-hard.

3.2 Design Challenges

Recall that CaTaPuLT utilizes frequent subtrees as feature vectors
for coarse clustering in the small graph clustering phase. Observe
that the evolution of D may impact the content of the graph clusters
generated by this phase. Unfortunately, frequent subtrees make
efficient maintenance of these clusters a challenging task due to the
lack of closure property. If we utilize frequent subtrees, we need to
mine them again from scratch on D@® AD, which is time-consuming.
Note that the closure property of a data structure plays a pivotal
role in designing efficient maintenance strategies [11]. Hence, we
need a data structure with closure property for the cpm problem.
Second, batch updates to D may result in different degree of
evolution of the graph clusters. Naturally, this may impact the
structures of csGs from which patterns are selected. However, as
remarked in Section 1, not all modifications to D demand refreshing
of existing canned pattern set # as the updated version should not
sacrifice the characteristics of canned patterns w.r.t coverage, diver-
sity and cognitive load. Hence, we need to maintain P opportunely.

3.3 Scaffolding Strategy

We tackle the first challenge using scaffolding. In particular, we
adapt the existing CATAPULT framework by replacing the frequent
subtrees (rs) with frequent closed trees [11] (FcT). Given D and a
threshold supmin, let f be a subtree in D and sup(f) be the support
of f. The subtree f is a frequent closed tree (FcT) if sup(f) > supmin
and there exists no f’ € D such that f’ is a proper supertree of f

and sup(f) = sup(f).
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Figure 5: Frequent closed trees, frequent and infrequent edges, FCT-Index, and IFE-Index.

Example 3.3. Consider a graph database containing G; to Gg in
Figure 3. Let supmin = %. The tree f3 in Figure 5(b) is a FCT since
sup(fy) = % and none of its supertrees (e.g., Gg, a supertree of f3
has support of %) has the same support as it. Similarly, the edge fi
in Figure 5(b) is also a FCT. |

Note that the set of FcTs forms the basis from which all Fs can
be generated [11]. Hence, it is closely related to rs. Furthermore,
there are fewer closed trees than frequent ones in general [11].
Consequently, FcTs significantly reduce the number of frequent
structures being considered. More importantly, the closure prop-
erty of rct facilitates efficient incremental maintenance as the
underlying database evolves.

LEMMA 3.4. If a subtree f'is closed in either D or AD, it must be
closed in D @ AD.

For example, consider the sample graph database in Figure 3.
Suppose AD contains Gio to Gi2 and supmin = 3/9. Then fio (resp.
f7) in Figure 5(b) is infrequent (resp. closed) in D containing G; to
Gy and in D ® AD, although it is frequent (resp. not closed, since
f7’s proper supertree f, has the same support as it) in AD. Hence,
without scanning D @ AD and testing subgraph isomorphism, we
cannot determine whether the frequent subtrees generated from D
or AD are frequent in D & AD. In contrast, we can conclude that
the closed subtrees generated from D or AD are closed in D & AD
(Lemma 3.4). This advantage is captured by closure property of FcT
(detailed in Section 4.1), which greatly alleviates the computational
demand of maintaining graph clusters. In addition, similar graphs
have similar rcTs [27].

Finally, we add two indices, namely, frequent closed tree index
(FcT-Index) and infrequent edge index (IFE-Index) to facilitate prun-
ing of unpromising candidate patterns and fast estimation of the
pattern score. In the sequel, we shall refer to this extension of CAT-
APULT as CATAPULT++.

3.4 Selective Maintenance Strategy

To address the second challenge, MipAs considers two types of
modifications to D that are identified by exploiting changes to
graphlet frequencies in D. Graphlets are small network patterns
and their frequencies have been found to characterize the topology
of a network [31]. Intuitively, D can be logically viewed as a single
network consisting of many disconnected subgraphs. Then, mod-
ifications to graphlet frequencies in D may provide an indication
of the degree of topological changes in D as graphlets character-
ize network topology. Consequently, we focus on the degree of
modifications to graphlet frequencies to determine the strategy for

maintaining the canned patterns. Specifically, we identify the type
of modification by comparing the Euclidean distance between the
graphlet frequency distributions (denoted as /) of D and D & AD,
denoted as dist(Yp, YpeapD)- Note that the larger the distance, the
more likely D has undergone significant changes. Also, the choice
of alternative distance measures do not have significant impact on
the performance as reported in [24].

The rationale for using graphlet frequencies to determine the
maintenance strategy is based on the observation that any canned
pattern p € P consists of one or more graphlets and edges (Lemma 3.5).
Observe that size-3 patterns are essentially 3-node and 4-node
graphlets and larger patterns are grown from them. Hence, changes
to graphlet frequency distributions may impact the current set
of canned patterns #. To elaborate further, let the graphlets in
D be g1,92, . . ., g, and their frequencies be fi, f2,. .., fr, where
fi = fo>...> fr. After database modification, let the frequencies
in D & AD be fl',fz’, .. ,fk’ It is indeed possible that for i < j,
fi = fibut f/ < fj’ . Since canned patterns are generated using
a random walk-based approach, the probability that a particular
candidate pattern is selected as a canned pattern is highly depen-
dent on the frequencies of its edges and graphlets. Hence, a canned
pattern containing graphlets whose frequencies have drastically
reduced after database modification may no longer be relevant for
D @ AD, and needs to be updated.

LEMMA 3.5. Any canned pattern p; € P contains one or more
graphlets and edges.

Based on the above discussion, we can classify the degree of
modifications into the following two types.

e Major modification (Type 1): This occurs when graphlet
frequency distributions undergo significant changes. A mod-
ification is deemed major if dist(Yp, Ypeap) = € where €
is the evolution ratio threshold.

e Minor modification (Type 2): In minor modification, changes
to D do not impact the current set of canned patterns #. That
is, none of the patterns in # needs to be replaced. A modifi-
cation is considered minor if dist(Yp, YpeaD) < €.

3.5 The MIDAS Framework

Algorithm 1 outlines the Mipas framework. First, it assigns all
newly added graphs to existing clusters in D (Line 1) and removes
all graphs marked for deletion (Line 2). The affected clusters are
denoted as C* and C~, respectively. Note that for cluster assign-
ment (Line 1), M1DAs first computes the Euclidean distance between
the Fct feature vector of a newly added graph G and that of the



Algorithm 1 The Mipas Algorithm.

Require: D,AD,b = (min, Jmax- Y), initial canned pattern set ¥, existing clusters C, exist-
ing csG set S, existing FcT set F, FcT support threshold supp, ip, evolution ratio threshold
€;
Ensure: Updated canned pattern set P’;
1: (C*, C) « AssioNToCLusTER(C, AD)
2: (C7, C) « RemoveFrRoMCLUSTER(C, AD)
¥p « GETGRAPHLETDISTRIBUTION(D)
YpaeaD — GETGRaPHLETDISTRIBUTION(D @ AD)
F — MAINTAINFCT(F, AD, supmin)
S « MAINTAINCLUSTERSET(C™, C, S)
S « MAINTAINCSGSET(S, C, Ct, C7)
: if DiSTANCE(Y D, YpeAD) > € then
(IpcT, ITFpg) < GerINDICES(D, SUpmin)
10: P’ «— MajorMobrrication(Ct, C7, S, b, P, IrcT, ITFE)
11: endif
12: (IpcT, I1pE) < MataInpices(D, AD, P, P, supmin. IrcT. IIFE)

R A A

centroid of every cluster, then assigns G to the cluster which re-
sults in the smallest distance. Then, it calculates graphlet frequency
distributions for D and D @ AD (Lines 3 and 4). Next, it performs
FCT maintenance (Line 5) (Section 4.2). The modified clusters and
CsGs are maintained in Lines 6 (Section 4.3) and 7 (Section 4.4),
respectively. In Line 8, Mipas computes the Euclidean distance
between the graphlet distributions of D and AD to determine the
type of modification and corresponding action. For major modifica-
tion (Lines 9-12), MIDAS generates candidates patterns from csGs
of newly-generated and modified clusters (Section 5). Finally, the
existing canned patterns ¥ are updated using a multi-scan swapping
strategy (Section 6). In the case of minor modification (i.e., Type 2),
no pattern maintenance is required. However, observe that we do
maintain the underlying clusters and csas (Line 12) to ensure that
they are consistent with D @ AD.

Observe that our framework is query log-oblivious as most
publicly-available graph repositories do not make such data avail-
able. Nevertheless, MIDAS can be easily extended to accommodate
query logs by considering the weight of a pattern based on its
frequency in the log during multi-scan swapping.

4 MAINTENANCE OF CLUSTERS & CSGS

In this section, we present how existing graph clusters and csGs are
maintained due to AD. We begin by introducing the closure property
of rcts and how it is utilized to maintain FCTs in CATAPULT++.

4.1 Closure Property of FCT

According to [11], a subgraph is maximal in D if it is common, and
it is not a subgraph of any other common subgraph of the graphs in
D. The intersection of a set of graphs D, denoted as G1 (- - ( Gn,
is the set of all maximal subgraphs in D. The closure of a cT f for
D is the intersection of all graphs in D containing f (denoted as
Qp(f)). The following propositions and corollaries established in
[11] related to closed trees (cT) are also applicable to FcT since the
latter is essentially a subset of cT (Section 3.3).

PROPOSITION 4.1. Adding (resp. deleting) a graph G containing a
cr f to (resp. from) a graph dataset D does not modify the number of
ct for D.

PROPOSITION 4.2. Let D1 and Dy be two graph datasets. A tree
f is closed for D1 \J Dy if and only if it is in the intersection of its
closures Qp, (f) and Qp, (f).

COROLLARY 4.3. Let D1 and Dy be two graph datasets. A tree f is
closed for D1 \J D3 if and only if (1) f is a cT for D1, or (2) f isacT

for Dy, or (3) f is a subtree of a cT in D1 and a cT in Dy and it is in
Qp, U,

PROPOSITION 4.4. A tree f is closed if f is in the intersection of
all its closed supertrees.

As we shall see later, Corollary 4.3 and Proposition 4.4 can be
exploited as checking conditions for closure when graphs are added
to D and removed from D, respectively.

4.2 Maintenance of FCT

In CATAPULT++, FCTs are represented using the canonical form
of frequent trees in CATAPULT [23] where canonical trees are first
generated via normalization and then converted to canonical strings.
We now describe the maintenance of rcTs. We begin by briefly
describing how they are generated in CATAPULT++. We generate a
set of closed tree (cT) by leveraging the TREENAT approach in [9].
Briefly, TREENAT uses a recursive framework to identify the set of
cT (denoted as ¥) in D. At each iteration, the support of all new
subtrees ¥, that are extensible from f in one step, are checked.
Recursive calls to TREENAT are made for all subtrees f” € ¥’ where
sup(f’) > supmin. Note that f is added to F only if there is no f’
s.t sup(f) = sup(f’). In addition, checks are done on ¥ to identify
F’ that are subtrees of f where sup(f) = sup(f”’) and f”" € F"'.
Observe that existence of f”” violates the definition of ct [9]. Hence,
they are removed from 7. In addition, ¥ has to be maintained as
the dataset evolves.

Mibas takes the following steps to maintain ¥ . First, it relaxes
the condition for FcT by using a lower minimum support threshold
supmin/2. Note that this avoids missing out on closed trees that
may become frequent after modification to D (Lemma 4.5). For A~
(resp. AT), the relevant FcT Fa- (resp. Fa+) is found by utilizing
the TREENAT approach in [9]. Fa- (resp. Fa+) is then integrated
with ¥ using the approach in [10] (referred to as CTMININGDELETE
(resp. CTMININGADD) procedure). Briefly, the CTMININGDELETE
(resp. CTMININGADD) procedure identifies the integrated set of cT
by checking every cT common to # and Fa- (resp. Fa+) in size-
ascending order to determine whether its subtrees remain closed
after the deletion (resp. addition) operation by leveraging Prop. 4.4.
For the cT that remains closed, its support and the support of all its
subtrees are updated (Prop. 4.1). In addition, those subtrees that are
closed in Fa+ but not in F are added to the set of cT in accordance
to Corollary 4.3. Finally, the threshold supmin is restored to its
original value and cT t in ¥ with sup(t) < supmin are pruned to
obtain the final set of FcT.

LEMMA 4.5. Halfing the mingyy prevents missing out of frequent
closed trees after modification to D.

LEMMA 4.6. The worst case time and space complexities of FCT
maintenance are O(|D||Epqx|) and O(| D)), respectively, where Gpax =
(Vinax»> Emax) is the largest graph in D.

Example 4.7. Consider the graph database D in Example 3.3.
Figure 5(b) shows the FcTs (fi to f5). Suppose AD involves addition
of Gyo to Gi2 (Figure 3) to D. The FcTs are maintained as follows:
(1) relax supmin to 0.17; (2) identify Fa+ which consists of fi, f2,
Gy and five other cTs. The supports for fi, f> and Gy are %, %
and % respectively. For the remaining cTs, they are all % Observe
that only fi and f; are cTs common to ¥ and Fa+; (3) compute the



support of f; and f> and their subgraphs for D@ AD (i.e., updated to
% and %, respectively). The support of subgraphs of f; (i.e., edge
(C,S)) are updated to 1% as well. The edge (C, S) is not considered a
CT as f3, its supertree has the same support. After the update, there
is no change in the rcT set. However, (C, S) is now a frequent edge.

Now consider a new batch update involving deletion of G4 and
Ge. Fa- is found to be fo, G¢ and three other cTs. f, and G have
support of % and %, respectively, whereas that of the remaining cTs
are all % Only f; is a cT common to ¥ and Fa-. Hence, its support
is updated to % whereas those of its subgraphs (C, O) and (C, S)
are updated to % and %,
corresponds to fj continues to be a FcT after the update. |

respectively. In particular, (C, O) which

4.3 Maintenance of Graph Clusters

The clusters are maintained as follows using Algorithm 1: (1) As-
sign each newly added graph to an appropriate cluster (Line 1). (2)
Remove graphs marked for deletion from existing clusters (Line 2).
(3) Perform fine clustering (Section 2.3) on clusters that exceed the
maximum cluster size (Line 6). Observe that fine clustering results
in new clusters. In major modification, numerous graph additions
and removals on a given cluster C may yield a csG that is distinct
from a csG derived from the original C. These csGs in turn may yield
new candidate patterns and should be considered during candidate
pattern generation (Section 5).

LEMMA 4.8. Worst case time and space complexities of maintaining

|A+|_N 0 (leax|+1)!
clu_sters are O(%;_, (At - l)m) and O((|IC*| +
[ICT)(Vinax| + |Emax]|), respectively, where Gmax = Vimax> Emax)

is the largest modified graph and N is the maximum cluster size.

4.4 Maintenance of CSG Set

Given graph insertions and deletions (A* and A™), Mipas takes the
following steps to update the csGs.
(1) For every G* = (V*,E*)in A", retrieve the csG S = (Vs, Es)
associated with the cluster that G* is assigned to and update
S by adding the 1D of G* to the labels of all edges e € E* () Es.
Further, Ve € E* \ Eg, the edge e together with its label  is
added to Es where I(e) is the 10 of G*.
(2) For G~ = (V7,E™), retrieve the csG S = (Vs, Eg) associated
with the cluster that G~ is removed from. If frequency of
edge e € E™ in the graph cluster associated with S is 1,
update S by removing e. Otherwise, update I(e) by removing
the D of G™.

LEMMA 4.9. The worst case time and space complexities of main-
taining csGs are O(|Emax |X(|AT|+|A7])) and O((|A*|+|A™)(|Emax |+
[Vinax|)), respectively.

5 CANDIDATE PATTERN GENERATION

For Type 1 modification (i.e., major), MIDAS proceeds to generate
candidate canned patterns and then replaces existing “stale” pat-
terns in P with these candidate patterns according to a swap-based
strategy. These two steps are encompassed by the MajorRMoDI-
FICATION procedure in Algorithm 1 (Line 10). In this section, we
elaborate on the candidate pattern generation process. In Section 6,
we shall elaborate on the swap-based strategy. We begin by in-
troducing two indexes, frequent closed tree index (FcT-Index) and
infrequent edge index (1Fe-Index), to facilitate these steps.

5.1 FCT-Index and IFE-Index

Intuitively, the FcT-Index enables us to efficiently keep track of the
existence of specific FcTs and frequent edges in data graphs and
canned patterns whereas the 1re-Index keeps track of infrequent
edges. In particular, the FcT-Index is constructed from the canonical
forms of FcTs and frequent edges. Figure 5(c) depicts the canonical
forms of rcTs and frequent edges in Figure 5(b). The canonical
string is obtained by performing a top-down level-by-level breadth-
first scan of the canonical tree. Note that the symbol $ is used to
separate families of siblings (e.g., O and S in f3).

Definition 5.1. [FCT-Index] Given a set of FcTs ¥ and a set
of frequent edges E¢,¢q in D, the FCT-Index IrcT constructed on
F U Efreq consists of the following components:

e A TrieT = (V1,ET) where v € V1 corresponds to a token of
the canonical string of the FCTs and frequent edges. An edge
e = (u,v) € Er exists if the corresponding tokens of u € Vr
and v € Vr are adjacent in the canonical strings.

e Vol € Vy where o' is the terminating token in a canonical
string, there exists a graph pointer and a pattern pointer. The
graph pointer (resp. pattern pointer) of v points to an array
containing the number of embeddings of FcTs and frequent
edges in each data graph (resp. pattern) over D (resp. P).

Observe that the two array structures can be represented by a
|F U Efreql X |D] matrix and a |F U Efreq| X |P| matrix, respec-
tively. We refer to the former as trie-graph matrix (TG-matrix) and
the latter as trie-pattern matrix (TP-matrix).

We illustrate the construction of the rcT-Index using Figure 5.
First, the FcT set & = {fi, f2, f3. fa, f5, f} and frequent edges
Efreq = {f7. f3, fo} are selected from D in Figure 3. Then, the
canonical strings of every FcT and frequent edge are inserted into
a trie as shown in Figure 5(d). Finally, for every node in the trie
representing the terminating token, a graph pointer (resp. pattern
pointer) pointing to the row in the TG-matrix (resp. TP-matrix) is
created. For instance, in the TP-matrix, pattern P3 in Figure 5(a) has
two embeddings of fi, and one embedding each of f3, fi and fo.

Definition 5.2. [IFE-Index] Given D containing a set of infre-
quent edges E;, ¢, IFE-Index Ijpg constructed on E;pr consists of
|Einf| X |D| edge-graph matrix (EG-matrix) and |E;y | X |P| edge-
pattern matrix (EP-matrix) that store the number of embeddings for
all infrequent edges over D and over canned patterns P, respectively.

An example of 1FE-Index is given in Figure 5(e) where the infre-
quent edge fi1 = (C, N) is found in G and Gs.

Observe that the aforementioned matrices are sparse. Hence,
Mipas stores only non-zero entries to reduce space usage. That
is, given a sparse matrix, let x; ;) be the value of the entry in the
ith row and j*" column. ¥x(;,j) > 0, MIDAS stores i, j and x(; ;) in
vectors drow, Acolumn aNd Ay qiyes respectively. Note that insertion
and deletion occur as a tuple (i, j, x(, j)).

LEMMA 5.3. The time and space complexities for index construction
are O(|ID| X |Vinax|!|Vmax|) and O(|D|(|1F] + |Einfreq| + |Efreq|) +
(n X m)), respectively, where Gmax = (Vmax,Emax) is the largest
graph in D, m is the maximum depth of the trie and n is the number
of unique vertices in the trie.



Remark. The exponential time complexity is due to the sub-
graph isomorphism checks for FcTs in D and $. We use the vF2
algorithm [17] to this end. In practice, as we shall see in Section 7,
the cost is low due to small size of rcTs. This also applies to subse-
quent Lemmas 5.7 and 6.4.

Index Maintenance. Given an updated set of FcT and frequent
edges, the trie is updated by inserting new vertices and edges and
removing deleted vertices and edges [30]. For all new rcT and
frequent edges, a corresponding graph and pattern pointers are
added and set to null initially. The matrices in FcT and IFE indices
are maintained as follows: (1) When new FcTs or frequent edges
(resp. infrequent edges) are added, new rows are added to TG- and
TP- (resp. EG- and EP-) matrices. (2) When existing FCTs or frequent
edges (resp. infrequent edges) are removed, corresponding rows are
removed from TG- and TP- (resp. EG- and EP-) matrices. (3) When
new graphs (resp. patterns) are added, new columns are added to
TG- (resp. TP-) and EG- (resp. EP-) matrices. (4) When existing graphs
(resp. patterns) are removed, corresponding columns are removed
from TG- (resp. TP-) and EG- (resp. EP-) matrices.

Note that the indices are maintained after database modification
as well as when the canned pattern set is updated.

LEMMA 5.4. The worst case time and space complexities of main-
taining the indices are O(| D®AD||Epax|) and O(|DS®@AD|X(|Fpgap |+
| freq|))’ respectively, where Gmax = (Vmax> Emax) is the largest

graph of D @ AD.

5.2 Pruning-based Candidate Generation

The candidate generation step in CATAPULT does not exploit any
pruning technique to filter unsuitable candidates early (Section 2.3).
Since in the cpm problem we can exploit the knowledge of existing
canned pattern set P, can we eliminate “unpromising” candidates
early? To this end, MIDAs exploits a novel coverage-based pruning
strategy to guide the FCP generation process towards candidates
that are deemed to have greater potential of replacing some existing
patterns in P (referred to as pattern swapping).

Intuitively, a new pattern p’ is a promising rcp if it covers a
large number of data graphs that is not covered by # (i.e., high
marginal subgraph coverage), since p’ is likely to improve upon the
pattern score. A swapping threshold (k) sets the minimum marginal
subgraph coverage that is desired. The value of k is updated based
on the swap-based strategy. We use coverage-based pruning as
it is monotonic. That is, given patterns p and p’, if p contains p’,
then scov(p’) > scov(p). Note during canned pattern maintenance
(Section 6), the candidate patterns are further assessed w.r.t pattern
score that is derived from cognitive load and diversity. In particular,
we deliberately refrain from integrating cognitive load-based prun-
ing here as it allows us the flexibility to incorporate any alternative
cognitive load measure in the pattern maintenance phase. Note that
such measure may not be monotonic.

Definition 5.5. [Promising FCP] Given D, P and swapping thresh-
old x, p. is a promising FCP if Fp € P,

|gscov(pc)\Upe¢’ gsco‘u(p)| 2 (1+K)|gscov@)\Up’e¢’,p’:ﬁp gscov(p’)|

where k € [0,1]; Gscou(x) € D is a set of graphs containing x.

Mipas seeks to generate promising Fcp efficiently by terminating
the generation process early if p. is unlikely to have high subgraph
coverage. Since the Fcp is constructed iteratively by adding the most
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Figure 6: CCP generation.

frequently traversed edge that is connected to the partially con-
structed Fcp (denoted as pl), Mipas can perform early termination
by considering the marginal subgraph coverage of the next edge e
that is to be added to p. It terminates FCP generation if e satisfies
the following criteria (i.e., low marginal subgraph coverage):

|gsco‘u(e)\ U gsco‘u(p)l < (1+K) mln(lgscuv(p)\ U gscov(p )l)
pepP P'EP.p'Ep
@

In particular, we utilize the rcT-Index and 1rE-Index to compute
Gscou(e)- If € is a frequent edge, Gcou(e) is computed using the
TG-matrix of FcT-Index. Otherwise, it can be computed using the
EG-matrix of 1FE-Index. The subsequent generation of ccp and Fcp
is similar to the CATAPULT framework (Section 2.3).

Example 5.6. Reconsider Example 3.3. Suppose |D & AD| =
1000, y = 9, nmin = 3 and §max = 5. Let C; = {Gy1, G2, Gg, Gs,
Gy, G12} be a cluster. The weighted csG of C; (Figure 6(a)) is gen-
erated by computing the weight w, for each csG. Then, Mipas
generates a library of pcps for each pattern size by performing ran-
dom walks on the weighted csGs. Next, it identifies the rcps from
the pcp library. Figure 6(b) depicts generation of a size-4 Fcp from
Sc,- Construction of the Fcp starts from (C, O), the most frequent
edge (based on 100 random walks). At each step, MipAs checks if
the current Fcp ought to be pruned by considering the condition
imposed by Equation 2. In Figure 6(b), early termination of rcp
generation occurs after adding e since it satisfies Equation 2.

LEMMA 5.7. The worst case time and space complexities of finding
ccps and Fcps are O(|Vs, .. |1|Vs, . IS|+|P|(IVp,, . 13+ xr]fnax|S|
IES 0 ) and OUSI(ES,,.. | + Nags) + IDI|Emax]). respectively
where Spmax is the largest csG in the set of csGs S whose clusters
have evolved, x is the number of random walk iterations, Pmqy is the
largest pattern and Gmax = (Vmax»> Emax) is the largest data graph.

6 CANNED PATTERN MAINTENANCE

In this section, we present the algorithm for maintaining the canned
pattern set. We begin by adapting the pattern score utilized in
CATAPULT to suit the cPM problem.

6.1 Pattern Score

The pattern score s, (Def. 2.1) of CaTapuLT is modified by (1)
replacing cluster coverage (ccov) with subgraph coverage (scov) and
(2) using a tighter bound GED in computing diversity div(p, P \ p).
We denote the modified score as s;,

Cluster Coverage vs Subgraph Coverage. In the cPM problem,
cluster size may change due to AD. Since ccov (Def. 2.1) is sensi-
tive to cluster weights, we replace ccovy, with scovp, = |Gpl|/|D|.

That is, 53, = fscoo(P) X fieoo(P) X fd’“( g Similarly, s, =

scov(p, D) X lcov(p, D) x %,é’)\p) where p € P. Note that scov



computation can be prohibitively expensive for large D. We address
it by generating a sampled database Ds C D using the lazy sampling
technique in [23] and then computing scov over Ds. In addition,
we leverage Ircr and Ijpg for computing scov. Observe that if a
pattern p is contained in a graph G, then the corresponding column
entries for p in TP-matrix must be smaller than or equal to that of
G in TG-matrix. Hence, the pairs (p, G), where p may be contained
in G, can be found by utilizing it. In Figure 5(d), p3 contains 2 fi,
1 f2,1 f3 and 1 fo (TP-matrix). From TG-matrix, Gs and Gy have
corresponding cell entries that are greater than or equal to that
of p3. Hence, only 2 (i.e., (p3, Gg), (p3, G9)) instead of 9 subgraph
isomorphism checks are performed for ps .

Tighter Bound GED. Observe that diversity of a pattern is
computed using a lower bound of GED (denoted as GED;) to reduce
the number of exact GED computation. In MipAs, we leverage a
pattern-feature matrix (PF-matrix) to further tighten Gep;. Given a
FCP pc = (V, E), each row of the matrix represents an edge e € E
whereas each column represents a subtree feature instance (i.e., FCT,
frequent and infrequent edge). Since a FCP may contain multiple
embeddings of a subtree feature f, these embeddings are presented
as multiple columns in the pr-matrix. This is in contrast to the
EG-matrix and EP-matrix where every column corresponds to a
graph or a pattern instead of their embeddings. Hence, an entry
X(;,j) in PF-matrix is 1 if G contains the jth feature (denoted as
fi= (Vf,Ef)) ande; € V) Vf. Otherwise, it is 0. The PF-matrix of
canned pattern ps in Figure 5(a) is given in Figure 7. p3 contains
two embeddings of fi (i.e, fi(1) and f1(2) in the PF-matrix) and
one embedding each of f3, fi and fo. We denote the embedding set
of p3 as Bp,. For example, x5 5 and x(3 5) are 1 as p3 contains an
embedding of f; and edges e; and e3 are in f3.

Observe that if a graph G1 contains ps, then By, C Bg,. Consider
the case of another graph G, with one embedding of f; and one
embedding each of f3, fi and fo. G2 does not contain p3 since
Bp, ¢ Bg,. Suppose an edge e; of p3 is “relaxed” (i.e., e; is not
taken into consideration when p3 is being matched to another
graph), then the relaxed embedding set B;,S C Bg,. That is, Gy
contains p3 when e; is “relaxed”. In general, when matching two
given graphs G; = (V;, E;) and Gj = (V}, Ej) where |E; (N Ej| > 0
and |Ej| > |E;|, G; can be matched to G; by progressively relaxing
more and more edges. The upper bound for the number of matching
edges is |E;| — n where n is the number of relaxed edges. Hence,
GED; can be tightened further as GED] = GED; + n.

LemMA 6.1. [Tighter lower bound for GED] Given two graphs

= (V4,E4) and Gg = (VB, EB), the tighter lower bound GED

is given as GED;(GA, Gp) = |V|+|E| where L(V4) is the set of labels of

vertices inVa, |V| = |[Va|=|VB||+Min(|Val, [VB]) = L(Va) N L(VB),
|E| = ||EA| — |EB|| + n and n is the number of relaxed edges.

6.2 Swap-based Pattern Maintenance

Observe that maximum coverage (Mc) problem is a sub-problem
of the cpm problem. However, greedy solutions typically find the
maximum cover from scratch and hence cannot be effectively ex-
ploited in our problem setting. Recent works [33, 43] that address
the mc problem in the context of streaming scenario use swap-based
updating techniques instead. Specifically, they ensure that with each
swap, the new cover set can outperform the cover set prior to the
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Figure 7: Pattern-feature matrix.
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Figure 8: Swap-based pattern maintenance.

swap. However, these techniques are oblivious to diversity and cog-
nitive load. Hence, we cannot adopt them directly. MiDAs realizes
a multi-scan swapping strategy which allows progressive gain of
coverage without sacrificing diversity and cognitive load. We begin
by introducing the loss and benefit scores to facilitate exposition.

Definition 6.2. [Loss & Benefit Scores] Given P and D, the loss
scoreof a patternp € P is defined asS.(p, P, D) = X pep scov(p, D)—
Zprep\p Scov(p’, D). The benefit score of a pattern pc ¢ P is de-
fined as Sg(pe, P, D) = Xy epup, scov(p’, D) = X pep scov(p, D).

Mipas swaps an existing p € P with a proposed Fcp p, if there
is no significant change for pattern size distribution of  and # \
{p} U{pc} and the following swapping criteria are satisfied:

e swl: Sg(pc, P, D) > (1 +«)SL(p, P, D)
sw2: si’,c >(1+ A)s;,
sw3: f110(P \ {p} ULpe)) > furo(P)
sw4: fcog(P) 2 fcog(so \ {p} U{pc})
SW5: ficoo (P \ {p} U{Pe}) 2 ficoo(P)
where k and A are swapping thresholds. Note that k here is the
same as that in Equation 2 and we use Kolmogorov-Smirnov test
to assess if pattern size distributions are similar. sw3-sw5 are
to maintain quality of the updated canned pattern set (i.e., en-
sure optimization of s’P). Additional requirements by users such
as faio(P \ {p} U{peh) = (1 + a)faio(P), feog(P)1 + a2) 2
feog(P\{p} Ulpe}) and fieoo (P \ {p} Uipe}) 2 (1+@3) ficou (P)

where a; > 0 can be easily handled.

Mipas ranks all the Fcps in decreasing sl’, and stores them in a
priority queue (i.e, PQp ). Existing canned patterns are ranked in
increasing 31,7 and stored in another priority queue (i.e., PQp). Then,
it pops the Fcp with the highest sl’7 and compares it with a pattern
with lowest sj’, in PQp. A swap occurs only if the swapping crite-

ria are met. Swapping is repeated until either the PQp_ becomes
empty or when the second swapping criterion (sw2) is not met.
Observe that comparison based on sw2 can be used to terminate
the swapping process. Finally, the swapped patterns are displayed
on the GUI in a single update. MiDAs leverages the state-of-the-
art SWAP, approach in [40] for setting k. Although the following
lemma in [40] is proposed for a different problem (i.e., diversified
top-k subgraph matching), we can exploit it as each canned pattern
can be cast as an embedding of a query graph. Lastly, we set A same
as k for reasons discussed in Section 7.

LEMMA 6.3. Given an initial result set P, let k; be the value of x
used for the t'h scan of the multi-scan swap algorithm and o; be the



lower bound for the approximation ratio of the result set in the "

scan. At the tt" scanning of SWAP,, if or—1 < 0.5, then by setting
kKt = 1 — 2041, the approximation ratio of the result set after the
scanning is lower bounded by o; = O.ZS(ﬁ).

. fscov(P)
Remark. Lemma 6.3 dictates FooeaPor)

tth scanif o;_1 < 0.5and k; = 1—20;_1. That is, the coverage of P
is lower bounded by 0.25 times the subgraph coverage of the optimal
pattern set and this coverage tends towards 0.5 fscou (Popr)- The
diversity, cognitive load and label coverage of # are at least as good
as the original pattern set due to sw1 - sw5.

LEMMA 6.4. The worst case time and space complexities of swap-
based pattern maintenance are O(y |Ds||Vimax |'|Vimax |+ P VP, .. 1*)
and O(y (VB | + |Ep, e ) + 1D ® ADI X (Fpeapl + B}, 1) +

= 0.25(1=5—) at the

(Mmin + qmax)|C¢|M), respectively, where Gpax =
(Vinax> Emax) is the largest data graph, Pmax = (Vp,, .. » EPpax)
is the largest canned pattern and Dg C D.

Example 6.5. Lety = 6, Imin = 3, Imax = 4and k = 1 = 0.3.
Suppose P has 6 patterns (Figure 8) and 20 rcps (i.e, |Pc| = 20)
are generated. Note that the Fcps are stored in a priority queue
PQp, = [pcs,pe11>Pesspe17, -+ -] while the canned patterns are
stored in a priority queue PQp = [ps, ps. P2, P1, P3, P4). Suppose Sp,
Sr, 51,16 and sl’,CS are found to be 0.8, 0.7, 0.61, 0.85, respectively. Since
Sp < (1+x)Spands, . > (1+1)s,,. pe is not swapped with pcs. Next
Sg, St and 31,%11 are found to be 0.8, 0.6, 0.79, respectively. Hence,
Sg > (1+x)Sy and 51,76 > (1+ A)sl’,m. Mipas swaps pg with pe11. In
the next iteration, Sg, Sg, 81,75 and s;,cs are found to be 0.7, 0.65, 0.63,
0.73, respectively. Since Sg < (1+x)Sy and sl’,5 < (1+A)sl’,cg,p5 isnot
swapped with pcg. The scan is also terminated since s},s <1 +/1)s;,c8
(peg is similar to ps). Consequently, the set of canned patterns after

maintenance is {p1, p2, P3, P4, P5, Pcil}-

7 PERFORMANCE STUDY

Mipas is implemented with Java (JDK1.8). In this section, we inves-
tigate the performance of Mipas and report the key findings. Addi-
tional results are discussed in [24]. All experiments are performed
on a 64-bit Windows desktop with Intel(R) Core(TM) i7-4790K CPU
(4GHz) and 32GB of main memory.

7.1 Experimental Setup

Datasets. We use the following datasets: (a) The AIDs antiviral
dataset [1] with 40,000 (40K) data graphs. (b) The PubChem dataset [4]
containing chemical compound graphs. Unless otherwise stated,
PubChem refers to the 23K dataset. Other variants used are 250K,
500K and 1 million. (c) eMolecule dataset [3] consisting of 10K chem-
ical compounds (i.e., eMol). We use variants of various datasets and
they are denoted as <Y><X> where Y and X refer to the dataset
name and the number of graphs used, respectively (e.g., ATDS25k
refers to AIDs dataset with 25K data graphs).

Baselines. We compare MIpas against (1) maintenance from
scratch using CATAPULT (denoted as CATAPULT), (2) maintenance
from scratch using CatapuLT++ (denoted as CATAPULT++), (3) ran-
dom swapping instead of multi-scan swap (denoted as Random),
and (4) canned pattern set from CATAPULT with no maintenance (de-
noted as NoMaintain). Canned pattern set derived by an approach
X is denoted as Pyx.
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Figure 9: User study on PubChem.
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Figure 10: User study with user-specified queries.

Query set. The query set is generated by randomly selecting
connected subgraphs from the dataset. Similar to [23], for each
dataset, 1000 subgraph queries with sizes in the range of [4-40]
are generated. We balance the query set such that queries from
AT are represented. In particular, when |A*| > 0, 500 queries are
derived from A* and the rest from D\ A~. Otherwise, all queries are
obtained from D @ AD. We denote a batch addition (resp. deletion)
of graphs as +Y% (resp. —Y%) where Y = % %X 100% and M is the

number of graphs randomly added (resp. removed).
Parameter settings. Unless specified otherwise, we set 7 = ™

I
o
—

Nmin = 3, Bmax = 12, |P| =y = 30, supmin = 0.5, €
Kk = A = 0.1. We use the default settings in [23] for CATAPULT.
Performance measures. We use the following measure to as-
sess the performance of MIDAs: (a) Pattern maintenance time (PMT):
Time taken to maintain canned pattern set £ (Algorithm 1). (2)

Missed percentage (mp): Percentage of query set containing no

canned patterns. MP = % X 100% where Q is the query set

and Qpr € Q does not contain subgraphs that are isomorphic to
any p € P. (3) Reduction ratio (denoted as p): Given a subgraph

_ Sstepx—StepPmipas
query Q’ H= W

minimum number of steps required to construct Q when # derived
from approach X and MIDAs are used, respectively. Note that g > 0
implies that # derived from X required more steps compared to
Mibas. For simplicity in automated performance study, we assume:
(1) a canned pattern p € P can be used in Q iff p C Q; (2) when
multiple patterns are used to construct Q, their corresponding iso-
morphic subgraphs in Q do not overlap. In the user study, we shall
jettison these assumptions by allowing users to modify the canned
patterns and no restrictions are imposed.

7.2 User Study

The most pertinent question related to Mipas is whether canned
pattern maintenance expedites visual query formulation? We perform
a user study to address it. Note that we focus the study on this
question. Additional issues and a case study are reported in [24]. 25
unpaid volunteers (ages from 20 to 39) took part in accordance to
HCI research that recommends at least 10 participants [21, 26]. These
volunteers are students or researchers within different majors. They
displayed a range of familiarity and expertise with subgraph queries
according to a pre-study survey. We use the cur of Carapurr [13].
We first presented a 10-min scripted tutorial of the cur describing
how to visually formulate queries. We then allowed the subjects to
play with the cut for 15 min.

For PubChem23K, A1Ds25K and eMol5K, we added 6K, 10K and
3K data graphs, respectively. Then, for each dataset, 3 sets of 5

where stepx and stepymipas are the
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Figure 11: Effect of varying ¢, A and «.

subgraph queries with size in the range [19-45] are selected. Query
set 1 (i.e., s 1) consisted of 5 queries derived from D; Query set
2 (i.e.,, Qs 2) consisted of 2 queries derived from D and 3 derived
from A*; Query set 3 (i.e.,, Qs 3) consisted of 5 queries derived from
A”. We measured the query formulation time (QFT), the number of
steps required to formulate a query, and also the visual mapping
time (vMT) which is the time required to browse and select a canned
pattern for use. Unless specified otherwise, we set |P| = 30.

To describe the queries to the users, we provided printed visual
subgraph queries. A subject then draws the given query using a
mouse in our GUL The users are asked to make maximum use of
the patterns to this end. Each query was formulated 5 times by
different participants. We ensure the same query set is constructed
in a random order (the order of the query and the approach are
randomized) to mitigate effects of learning and fatigue.

Figure 9 reports the results for PubChem. Query formulation
using MIDAS is up to 29.5% faster and required up to 22.9% fewer
steps compared to NoMaintain (Figure 9). vMT of MIDAS is in the
range [6.4 - 8.5] and is comparable to other approaches [6.6 - 9.4].
Results on other data sets are qualitatively similar [24].

Lastly, we let users come up with their own queries. Specifically,
they can formulate queries of any size and topology. On average,
each user constructed 5 queries from each dataset with query size
in the range of [18-42]. Figure 10 reports the results. As expected,
Mipas took the least QFT, steps and vMT on average for all datasets.

It is interesting to observe that MIDAs is superior to CATAPULT.
In the latter, at each iteration, “best” pattern is added greedily to
the pattern set. The order in which patterns are added impact the
overall quality of the pattern set as CATAPULT does not guarantee
that at each iteration, the best candidate is the optimal one. Unlike
Mipas, there is no requirement that a candidate is added only if
the resultant pattern set has better quality than the old one.

7.3 Experimental Results

Exp 1: Setting the values of ¢, k and A. In this set of experiments,
we vary the evolution ratio and swapping thresholds on AIDs25k
with batch addition of 5K graphs. Figure 11 plots the results. pMT
and clustering time of MIDAs remain relatively constant when
€ < 0.1. A dip in these times when € = 0.2 is due to fewer clusters
requiring maintenance compared to smaller values of €. Importantly,
compared to CATAPULT++, MIDAS is up to two orders of magnitude
faster in terms of pPMT due to shorter time required to maintain the
clusters. This highlights the efficiency of cluster and csG maintenance
using MIDAS vs regeneration of clusters and csGs using CATAPULT++.
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Figure 13: Comparison with no maintenance on AIDS25K.

In particular, we set € as 0.1 since variations of scov, Icov and div
between Puiipas and Pcarapurr++ are less than 1% and there is an
improvement of 24% in terms of cog (coge [1.8, 2.3]).

Next, we vary the swapping thresholds (i.e., k, A € {0.05,0.1,0.2,0.4}).

We assess the performance based on PMT and pattern generation
time (pGT) ,which is the time required to generate candidate pat-
terns and swap with existing patterns. In particular, MIDAs is almost
one order of magnitude faster than CATapULT++ due to more effi-
cient cluster and csG maintenance since its PGT is similar to that
of CatapuLT++. Observe that the effect of varying « is similar to A.
Hence, we setk = A = 0.1.

Exp 2: Cost of indices and FCT. Next, we examine the cost of
using FcT and the indices Ircr and Ifpg. As expected, the costs
of mining FcT and index construction increase as the dataset size
increases (Figure 12, top left). In particular, IrcT requires longer
construction time and more memory than Ijpg due to additional
data structures. The total memory requirement for the indices is
49MB for PubChem 1M and is well within the limits of any modern
machine. The maintenance time of the indices increases with the
dataset size. In comparison, the FCT maintenance time increases
as the size of the graph modification increases. In particular, for
PubChem1M, maintenance of indices and FCT require around 3
and 16 minutes, respectively. Note that |FCT|/|D| of PubChem100K,
PubChem500K and PubChemIM are 0.01%, 0.001% and 0.0001%,
respectively. The results are qualitatively similar for other datasets.
Hence, constructing and maintaining the FcT and indices are fast and
consume a small amount of memory.

Exp 3: Comparison with baselines. We first compare Mipas
with NoMaintain on A1Ds25k (Figure 13). Observe that MP of Pyiipas
outperforms PnoMaintain Dy 61% on average. Further, Ppiipas ex-
hibits greater diversity of patterns and scov than Pnopaintain-

Next, we compare Mipas with CATAPULT, CATAPULT++ and Ran-
dom on AIDs25K (Figure 14) and Pubchem15K (Figure 15). In terms
of execution time, MIDAS is comparable with Random (fastest ap-
proach) and is up to an order of magnitude faster than CATAPULT.
In general, MIpas yields canned pattern set of comparable or better
(div, scov, lcov, cog) quality than CATAPULT and CATAPULT++. Note
that Icov on AIDS25K (resp. Pubchem15K) is approximately 1 (resp.
0.97) for all approaches and the average cog of Mipas, CATAPULT
and CATAPULT++ are 2.1, 2.2 and 2.5 (resp. 1.8, 2.3 and 2.6), respec-
tively. As for u, Pamipas outperforms Pcarapurr, Pcarapurr++ and
Pranvom- Furthermore, Pcarapurr and Pcarapurr++ have higher
average Mp compared to Ppipas. This highlights that Mipas can
efficiently maintain a set of canned patterns to ensure its relevance
(lowest average mp, highest average scov) across a range of graph
modifications without significant loss in pattern set quality. In com-
parison with random swapping, Mipas’s multi-scan swap approach
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has smaller mp (Figure 14, middle left, MipAs vs Random) and lower
4 (Figure 14, middle right, Mipas vs Random). This justifies the
multi-scan swap approach of MIpas.

Exp 4: Scalability. We examine the scalability of Mipas on
PubChem with the following dataset ps={200K,450K, 950K} where
50K data graphs are added to each (Figure 16). The pattern quality
varies in the range of [0.94-0.98], [0.94-0.97], [0.13-0.21] and [1.8-
3.3] for scov, lcov, div and cog, respectively. As expected, PMT and
PGT increase as dataset size increases. In this set of experiments, we
defined u = W where stepx is the minimum number
of steps required to construct Q when ¥ is derived from ps X. In
particular, y is -27.7, -6.5 and -25.9 for 250K, 500K and 1M dataset,
respectively. Note that negative y indicates greater step reduction.
Further, cluster maintenance of MiDAs is faster (~2.3 min) compared
to generation of cluster from scratch using CATAPULT (25 hours)
for PubChem 1M dataset (i.e., 642X). Similarly, there is a speed up
of 83X in terms of pmT for Mipas (18 min) compared to CATAPULT.

8 RELATED WORK

Most germane to this research is the canned pattern selection prob-
lem introduced in [13, 23, 44]. These approaches generate canned
patterns from a large static collection of small- or medium-sized data
graphs. In contrast, the cPm problem examines the maintenance of
canned patterns in a GuUI as the underlying database evolves.
There are prior work on closed frequent tree mining [9] and
maintenance [10, 11]. The former focuses on mining ordered and
unordered frequent closed trees whereas the latter examines the
issue of mining them on evolving data streams. Our work lever-
ages [9] and [10, 11] for mining and maintaining FCTs, respectively.
In particular, Mipas differs from these work in the following ways:
(1) M1pas involves key steps such as graph cluster and csG set main-
tenance, index-based candidate pattern generation, and swap-based
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Figure 16: Scalability study on PubChem.
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pattern maintenance that are not addressed by these work; (2) these
efforts do not deploy any indexing schemes.

Frequent paths, trees and graphs have been utilized as index-
ing features to facilitate graph database search [14, 15, 39, 45, 46].
GraphGrepSX [14] uses a path-based index stored in a suffix tree. In
contrast, C-Trees [45] and Tree+A [46] are tree-based and tree-and-
cycle-based indices, respectively. In C-Trees, subtrees are extracted
using frequent tree mining and a subset is selected and transformed
into canonical forms and stored in a prefix tree. Tree+A also uses
frequent subtrees up to a predetermined size and infrequent edges
as features stored in a hash table. gIndex [39] and FG-index [15]
are frequent subgraph-based indices. Specifically, FG-index utilizes
closed frequent subgraphs and infrequent edges and stores them in
an inverted-graph-index consisting of graph and edge arrays.

The frequent tree-based approaches lacks closure property. Hence,
they are unsuitable for efficient maintenance of clusters. In con-
trast to FG-index, our FcT-Index and 1FE-Index leverage frequent
closed subtrees [11], which is more efficient to extract compared to
frequent subgraphs [45]. Furthermore, FcT-Index consists of a trie
with pointers to matrices instead of inverted-graph-index. IFE-Index
consists of two matrices associated with data graphs and canned
patterns whereas the edge-index in [15] is a single matrix.

There are several recent efforts on incremental graph pattern
matching [18-20, 34]. These approaches examine the problem of
maintaining a set of subgraphs that are results of a given query
graph for an evolving data graph. Yuan et al. [42, 43] examined
the issue of updating subgraph features that are used for indexing
graph databases. The cpm problem is orthogonal to these work as
we maintain a set of canned patterns.

The incremental maintenance of frequent patterns (e.g., [6, 16,
38]) focus on performing incremental mining of frequent subgraphs
that maximizes support (single objective). Hence, they cannot be
applied to maintain canned patterns as they have to satisfy very
different multiple objectives specified in Definition 3.1.

9 CONCLUSIONS

Canned patterns enhance usability of visual subgraph query formu-
lation in direct-manipulation interfaces. However, these patterns in
existing interfaces are rarely updated when the underlying graph
repositories evolve. In this work, we show that the lack of mainte-
nance of patterns adversely impact efficient visual query formula-
tion. To alleviate this problem, we present Mipas, which takes a
data-driven approach to automatically and opportunely maintain
the canned patterns of a Gul. Our maintenance strategy ensures that
the updated patterns enjoy high coverage and diversity without
imposing high cognitive load on the users. Our experimental study
emphasize the benefits of maintaining canned patterns.
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