
LANTERN: Boredom-conscious Natural Language Description
Generation ofQuery Execution Plans for Database Education

Peng Chen
Xidian University

China
pchen97@stu.xidian.edu.cn

Hui Li
Xidian University

China
hli@xidian.edu.cn

Sourav S Bhowmick
Nanyang Technological University

Singapore
assourav@ntu.edu.sg

Shafiq R Joty
Nanyang Technological University

Singapore
srjoty@ntu.edu.sg

Weiguo Wang
Xidian University

China
wgwang@stu.xidian.edu.cn

ABSTRACT

The database systems course in an undergraduate computer science
degree program is gaining increasing importance due to the con-
tinuous supply of database-related jobs as well as the rise of Data
Science. A key learning goal of learners taking such a course is to
understand how sql queries are executed in an rdbms in practice.
An rdbms typically exposes a query execution plan (qep) in a visual
or textual format, which describes the execution steps for a given
query. However, it is often daunting for a learner to comprehend
these qeps containing vendor-specific implementation details. In
this demonstration, we present a novel, generic, and portable sys-
tem called lantern that generates a natural language (nl)-based
description of the execution strategy chosen by the underlying
rdbms to process a query. It provides a declarative framework called
pool for subject matter experts (sme) to efficiently create and ma-
nipulate the nl descriptions of physical operators of any rdbms.
It then exploits pool to generate the nl descriptions of qeps by
integrating a rule-based and a deep learning-based techniques to
infuse language variability in the descriptions. Such an nl genera-
tion strategy mitigates the impact of boredom on learners caused by
repeated exposure of similar text generated by a rule-based system.

CCS CONCEPTS

• Information systems→ Database query processing.

KEYWORDS

database education, query execution plan, natural language gener-
ation
ACM Reference Format:

Peng Chen, Hui Li, Sourav S Bhowmick, Shafiq R Joty, and Weiguo Wang.
2022. LANTERN: Boredom-conscious Natural Language Description Gen-
eration of Query Execution Plans for Database Education. In Proceedings

of the 2022 International Conference on Management of Data (SIGMOD ’22),

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA.

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9249-5/22/06. . . $15.00
https://doi.org/10.1145/3514221.3520165

June 12–17, 2022, Philadelphia, PA, USA. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3514221.3520165

1 INTRODUCTION

“Database education is at an inflection point’’ [8]. Due to the wide-
spread use of relational database management system (rdbms) in
the commercial world as well as the growth of Data Science as
a discipline, there is an increasing demand of database-related
courses in academic institutions. Learners from diverse fields as-
pire to take these courses, even with limited Computer Science
backgrounds [8]. Hence, learner-friendly tools that can facilitate
learning and understanding of database concepts have the potential
to augment the traditional modes of learning (i.e., textbook, lec-
ture). This is evident from recent activities in the data management
community such as research [11, 15], panels [8], and workshops
(e.g., https://dataedinitiative.github.io/).

One of the key goals for learners taking a database course is
to understand the execution strategies of sql queries in practice
by an rdbms. Given an sql query, the query engine in an rdbms
produces a query execution plan (qep), which represents the execu-
tion strategy of the query. Hence, such an understanding can be
gained by perusing the qeps of queries. Major database textbooks
introduce general (i.e., not tied to any specific rdbms) theories and
principles associated with qeps using natural language-based nar-
ratives and visual examples. This allows a learner to gain a general
understanding of sql query execution strategies.

Most database courses complement the text book-based learning
with hands-on interaction with an off-the-shelf commercial rdbms
(e.g., PostgreSQL) to infuse knowledge about database techniques
used in practice. A qep is exposed in a visual or a textual (e.g.,
json, xml) format in these systems. Unfortunately, comprehending
these formats in practice can be daunting for many learners as
they demand a knowledge of vendor-specific implementation de-
tails [11, 15]. This problem is further aggravated by the deployment
of physical operators with different names and functions by differ-
ent vendors. In fact, a recent survey with real-world learners reveals
that a natural language-based description of a qep (i.e., textbook
style) is highly desirable and complements the visual tree-based
format [15]. Hence, a learner-friendly tool that generates descriptions
of qeps in a natural language (nl) can enable learners to understand

the query execution steps of sql queries in practice.

https://doi.org/10.1145/3514221.3520165
https://doi.org/10.1145/3514221.3520165
https://dataedinitiative.github.io/

SME

Basic Operations

edit deletesearch add

ID name source description ... target Operations

1

2

3

4

...

seq scan postgresql perform... aggregate view edit ...

hash postgresql hash... hash join view edit ...

limit postgresql limit... view edit ...

index scan postgresql perform... view edit ...

...

ID name source description ... target Operations

1

2

3

4

...

seq scan postgresql perform... aggregate view edit ...

hash postgresql hash... hash join view edit ...

limit postgresql limit... view edit ...

index scan postgresql perform... view edit ...

...

configuring via the form

POEMs

POEM STORE

configured POEMs

operations

RULE-

LANTERN

NEURAL-

LANTERN

RDBMS

QEPParser

operator tree

query history

QEP

Step 1, perform sequential ...
Step 2, perform sequential ...
Step 3, perform sequential ...
Step 4, hash table T1 ...
...

NL,

LOT

Question

Processor

Answer

Generator

text plan

LANTERN for Learners

question

SQL

results answer

training data

LANTERN

view

LANTERN for SMEs

Boredom-cons.

DescGen

Presentation

Step 1, perform se ...
Step 2, perform se ...
Step 3, perform se ...
Step 4, hash table ...
...

Step 1, to get a T1 ...
Step 2, to get a T2 ...
Step 3, perform a ...
Step 4, hash table ...
...

paraphrasing

Figure 1: lantern: (a) Architecture (left). (b) GUI for learners (right).

In this demonstration, we present a novel, generic, and portable

system called lantern [15] (naturaL lANguage descripTion of
quERy plaNs) to support a user-friendly nl-based description of
the qep of an arbitrary sql query posed on an rdbms. In particular,
given an sql query, instead of a purely visual or semi-structured
format of the qep, lantern generates a multi-faceted nl-based
description of the steps in the qep. Under the hood, lantern in-
corporates a declarative framework called pool to empower subject
matter experts (smes) create and manipulate the nl descriptions
(i.e., labels) of physical operators, which are the building blocks of
qeps. It implements an nl description generation framework that
utilizes pool to integrate a rule-based and a deep learning-based
techniques in order to infuse language variability in the descrip-
tions opportunely. This strategy mitigates the impact of boredom
on learners that may arise due to repetitive statements in different
nl descriptions generated by a purely rule-based technique [15].

2 DESIGN PHILOSOPHY

lantern’s design is based on the following four principles:
(1) Portability and generalizability of lantern: The nl

generation framework should be generalizable. That is, it should be
easily deployable on any domain-specific applications (e.g., movies,
hospitals). Furthermore, it should be easily portable across different
rdbms (e.g., PostgreSQL, DB2, SQLServer). This will significantly
reduce the cost of its deployment in different learning institutes
where different application-specific examples and rdbms software
may be used to teach a database systems course.

(2) Rich support for sql of different complexities: lantern
should be able to generate an nl description of any read-only sql
statements posed by a learner. That is, it should be orthogonal to
the complexities of sql queries.

(3) Multi-faceted presentation of nl description: Different
learners may wish to view an nl description of a qep in different
modes. Some may simply view it in a text format while others
may wish to view it in a visual tree mode where the nodes are
annotated with corresponding nl descriptions. Hence, lantern
should support multi-faceted presentation of an nl description of a
qep to cater to different learners.

(4) Boredom-conscious nl description generation: A rule-
based nl description generation framework (e.g., neuron [11]) may
often result in learners feeling boredom1 after reading descriptions
of several queries due to the repeated exposure of same/similar text
to describe the qeps [15]. Some reported that they started skipping
several sentences in the descriptions [15]. This is, in fact, consistent
with research in psychology that have found that repetition of text
messages can lead to annoyance and boredom [4] resulting in pur-
poseful avoidance [6] and content blindness [7]. Hence, lantern
should be able to inject diversity in the nl descriptions judiciously
in order to mitigate the impact of boredom.

3 SYSTEM OVERVIEW

The architecture of lantern is outlined in Figure 1(a). Here we
briefly describe the key components. The reader may refer to [15]
for details.

3.1 The GUI Module

lantern exposes two visual interfaces, one for learners and an-
other for subject matter experts (sme). The former is for end users
who use lantern to view the nl descriptions of qeps. The latter is
for database experts who create and manipulate the nl descriptions
of various physical operators in different rdbms using a declarative
language. Figure 1(b) depicts a screenshot of the learner view. The
C1 panel displays the database schema of a specific application of
interest. A learner submits his/her query in the C2 panel. Upon
clicking on the Submit button, the C3 and C4 panels display the
nl description in different presentation modes. Clicking on the
Compare button shows the differences between nl descriptions
generated by a rule-based and a deep learning-based techniques.
The panel C5 shows some example queries for learners to explore.
Panels C6-C7 support the question-answering framework of neu-
ron [11], which is beyond the scope of this demonstration. The
C8 panel is used to receive feedbacks from learners. Clicking on
Switch DB (top-right corner) enables us to change the underlying
rdbms (e.g., from PostgreSQL to SQL Server). Clicking on POEM

1Watt and Vodanovich [16] describe boredom as a dislike of or repetition of routine.

takes us to the sme view (i.e., interface for smes), which we shall
discuss in the next subsection.

3.2 POOL Module

Creating a qep-to-nl description dataset to train a deep learning-
based framework for generating nl descriptions of arbitrary qeps is
challenging in practice as the nl labeling needs to be performed by
trained smes in order to ensure accuracy of the annotations. Given
that there can be numerous qeps in practice, it is prohibitively
expensive to deploy such experts for labeling qeps.

pool (Physical Operator Object Language) addresses this chal-
lenge by providing a declarative interface to enable smes to create
and manipulate the nl descriptions of physical operators in an
rdbms. All qeps are essentially constructed from this set of op-
erators, which is orders of magnitude smaller than a training set
containing qeps, making it viable to obtain the nl descriptions
(i.e., labels) from smes. The nl descriptions of operators in a qep
are stitched together automatically by the boredom-conscious nl

description generator module to generate the description of a qep.
The datamodel underlying pool is called poem (Physical Operator

ObjEct Model), which is a simple and flexible graph model where
all entities are objects. Each object represents a physical operator
of a relational query engine. Each object has a unique object identi-
fier (𝑜𝑖𝑑) from the type oid. Objects are either atomic or complex.
Atomic objects do not have any outgoing edges. Each object is
associated with the following attributes: source, name, alias, defn,
desc, type, cond, and target. The source refers to the specific rela-
tional engine that an operator belongs to. We can create different
operator objects for different rdbms by changing the source. The
name refers to the name of a physical operator in the source and
the type captures whether it is an unary or binary operator. Alias
is an optional alternative name for an operator. The defn attribute
stores the definition of an operator. The desc attribute stores an nl
description of the operation performed by an operator. There can
be multiple desc associated with an object. The cond attribute takes
a Boolean value to indicate whether a specified condition (e.g., join
condition) should be appended to the nl description of an operator.
Values of all attributes are taken from the atomic type string (pos-
sibly empty). There is a directed edge between an object pair (𝑝𝑎 ,
𝑝𝑐) iff 𝑝𝑎 is used to describe 𝑝𝑐 . For example, (𝑝hash, 𝑝hashjoin) of
PostgreSQL has a directed link as 𝑝hash is used to describe a hash
join. In this case, the target attribute value of 𝑝hash is ‘HASH JOIN’.

pool supports sql-like statements to manipulate the operator
objects. For example, the COMPOSE statement can be used to gen-
erate the nl description template of an operator. For instance, the
template of the HASH JOIN operator of PostgreSQL can be gener-
ated using it. Specifically, it combines the descriptions associated
with theHASH andHASH JOIN operators to generate the following
template: “hash <𝑇> and perform a hash join on table <𝑅> and <𝑇>

under condition (<𝐶>) to get the intermediate table <𝑇𝑁>” where
“hash <𝑇>” is the desc value associated with the HASH operator.
Note that each tag (e.g., <𝑇>, <𝐶>, etc.) in desc acts as a place holder
and has a specific meaning as reported in [15]. Particularly, this
makes lantern orthogonal to any specific application domain. A
place holder is replaced by a specific relation name, attribute name,
or a predicate associated with a query on a database schema to
generate an application-specific nl description.

Form-based interaction.We provide an interactive form that
encapsulates aforementioned features. It provides basic operations
over poem, such as search, edit, add, and delete. These operations
are converted internally into corresponding pool statements.

3.3 Boredom-conscious NL Description

Generator Module

Given an sql query 𝑄 from a learner, this module is responsible
for generating the natural language description of the qep of 𝑄 . To
this end, it realizes the following components.

QEPParser. When a user submits an sql query, this module
retrieves and parses the corresponding qep to construct a physical
operator tree (operator tree for brevity). A node in an operator tree
contains relevant information associated with it such as the physical
operator (e.g., HASH JOIN), the name(s) of the relation(s) being
processed by it, the alias given to the intermediate results (e.g.,
subqueries), the column(s) used for grouping or sorting, subplan
ids, access methods and predicates, and the number of rows left
after the operation. Next, it records the physical operators involved
in the qep (if an operator appears multiple times in a qep it is only
counted once).

rule-lantern. It realizes a rule-based framework that utilizes
the narration of various operators defined using pool to generate
an nl description of the qep of an sql query [15]. It first extends
the operator tree to a language annotated operator tree (lot) by
annotating the nodes with corresponding nl descriptions from the
poem store and assigning a unique identifier to the output of each
operator (i.e., intermediate results) so that it can be appropriately
referred to in the translation. Then, it traverses the lot in a post-
order manner to generate a sequence of steps containing the nl
description by replacing the place holders in nl templates with
corresponding values.

neural-lantern. Recall that the nl statements generated by
rule-lantern can be repetitive and lack variability that may cause
boredom among learners [15]. neural-lantern is a deep learning-
based framework designed to mitigate this challenge. To address the
paucity of training data, it adopts Kipf et al. [10] to generate a set
of sql queries given a particular schema and a database instance. A
collection of qeps corresponding to these queries is then generated.
Each qep is decomposed into a set of acts, each of which corresponds
to a set of operators in an operator tree (i.e., subtree). For each
act, rule-lantern is invoked to generate the corresponding nl
description. Then for each result, it infuses language variability in
the generated description by exploiting a group of paraphrasing
tools [1–3] and pretrained word embeddings (e.g., [5, 13]) to acquire
a set of synonymous sentences. As a result, the number of training
samples in our datasets is enlarged by approximately 3X.

The translation model of neural-lantern follows the Seq2Seq
structure [14]. The encoder rnn encodes each word in an act into
the corresponding hidden state using an lstm layer. It uses an lstm
decoder with an attention mechanism to let the decoder focus on
the relevant portion of the encoder while generating a token. It
adopts both static (Word2Vec and GloVe [12]) and contextual word
embeddings (ELMo [13] and BERT [5]) in the decoder.

Boredom-conscious nl description generator. This com-
ponent integrates the aforementioned components to implement
a boredom-conscious nl description generation framework for a

given qep 𝑃 . Specifically, the goal is to track the repetition rate of
physical operators in a user’s query history over𝑇 days (by default
𝑇 = 1) and select an appropriate nl description generation scheme
(either rule-lantern or neural-lantern) based on it. It computes
the ratio of the number of operators in 𝑃 to the total number of
operators contained in all qeps in a user’s query history. If the ratio
is below a predefined repetition threshold (40% by default), it invokes
rule-lantern to generate the nl description of 𝑃 . Otherwise, it
invokes neural-lantern to generate it, which infuses variability
in the description. This avoids a learner viewing repetitive text
after submitting several queries within 𝑇 days, thereby mitigating
boredom as reported in a user study in [15].

3.4 Presentation Module

Finally, this module is responsible for displaying the generated nl
description of a qep inmultiple modes as follows: (a)Document view:
The nl description is displayed as a text document (e.g., Panel C3 in
Figure 1(b)). (b) Annotated visual tree view: This mode integrates the
visual tree view of a qep with the nl description output. Specifically,
the visual operator tree is shown by default and the nl description
corresponding to each step is added as an annotation to the relevant
node in the tree (Panel C4). A user can view the nl description of an
operation by simply clicking on the corresponding node in the tree.
(c)Comparative view: In this mode, a learner can comparatively view
the differences between the document views generated by rule-
lantern and neural-lantern. The differences in the descriptions
are highlighted in the text.

4 RELATED SYSTEMS

The problem of translating natural language queries to sql has
been studied for decades [9]. lantern compliments these efforts by
providing a natural language description of a qep. Most germane to
this work is neuron [11], which is a rule-based system to generate
nl descriptions of qeps. Broadly, neuron only realizes the second
design principle in Section 2 whereas lantern achieves all four.
More specifically, lantern differs from it in the following key ways.
Firstly, instead of exploiting a purely rule-based solution that may
give rise to boredom among learners due to similar/same descrip-
tions, lantern integrates a rule-based and a deep learning-based
solutions to inject variability in the nl descriptions opportunely.
Secondly, neuron is tightly integrated with PostgreSQL and hence
is not portable across rdbms. lantern implements a declarative
framework called pool for labeling physical operators of different
rdbms to enhance its portability. Thirdly, [11] presented the nl
descriptions of queries in the document view mode only. lantern
is more flexible as it enables a multi-faceted view of the nl descrip-
tions. Consequently, all key modules of lantern are novel and
have not been demonstrated in any prior venues.

5 DEMONSTRATION PLAN

lantern is implemented in Python. Our demonstration will make
use of the tpc-h benchmark and imdb datasets as representatives of
two different applications. We shall use two different rdbms, Post-
greSQL and SQL Server, to demonstrate the portability of lantern.
By default, lantern uses PostgreSQL. The datasets are replicated
on both these rdbms for ease of demonstration. The audience can
pose their own ad-hoc queries on these datasets. The goal of our

demonstration is to allow the audience to experience the follow-
ing interactive features of lantern. A short video of lantern is
available at https://youtu.be/jv7kJe5Gxo0.

Boredom-conscious nl description generation and explo-

ration. An audience can generate and explore an nl description
of the qep of his/her query through the learner view (Figure 1(b)).
One can select a database schema in the C1 Panel and input an sql
query in C2. She may also select one from the example queries in
C5. The C3 Panel displays the nl description of the corresponding
qep in document view mode. In particular, the audience will be
encouraged to fire several queries and peruse the nl descriptions
to appreciate the generation of similar text by rule-lantern as
well as the injection of variability in these descriptions by neural-
lantern. One may click on the Compare button to visualize the
differences between rule-lantern and neural-lantern outputs.
One may also view the nl descriptions in annotated visual tree
mode (C4). One can click on the Switch DB link to switch to a
different rdbms (e.g., from PostgreSQL to SQL Server). We believe
all these interactions will trigger interesting discussions on the ben-
efits of multi-faceted presentation of nl descriptions to aid learning
as well as the impact of similar descriptions on boredom.

Label generation and portability using pool interface. We
demonstrate how one can declaratively create labels for physical
operators in a different rdbms (SQL Server) using the form-based
interface of pool. Specifically, clicking on the POEM link takes a
user to the poem gui. The audience can create andmanipulate nl de-
scriptions of different physical operator objects associated with the
specific rdbms either using the form-based interface or by directly
writing statements using pool. After this, we shall return back to
the learner view. We shall input queries on the database applica-
tions hosted on SQL Server now and generate the corresponding
nl descriptions of qeps. This will demonstrate the portability of
lantern across different rdbms.
Acknowledgements. Peng Chen and Hui Li are supported by National
Natural Science Foundation of China (No. 61972309), XD-Inspur DB Inno-
vation Lab grant, Key Scientific Research Program of Shaanxi Provincial
Department of Education (No. 20JY014). Sourav S Bhowmick, Shafiq Joty,
and Weiguo Wang are supported by AcRF Tier-1 Grant 2018-T1-001-134.

REFERENCES

[1] Paraphrasing tool. https://paraphrasing-tool.com/.
[2] Prepostseo paraphrasing tool. https://www.prepostseo.com/paraphrasing-tool.
[3] Quillbot paraphraser. https://quillbot.com/.
[4] J. T. Cacioppo and R. E. Petty. Effects of Message Repetition and Position on Cognitive Response,

Recall, and Persuasion. Journal of Personality and Social Psychology ,37, 1: 97-109, 1979.
[5] J. Devlin, M. Chang, K. Lee, K. Toutanova. Bert: Pre-training of Deep Bidirectional Transformers

for Language Understanding. ArXiv e-prints, 2018.
[6] M. R. Hastall and S. Knobloch-Westerwick. Severity, Efficacy, and Evidence Type as Determinants

of Health Message Exposure. Health Communication, 28, 4: 378-388, 2013.
[7] G. Hervet, K. Guerard, S. Tremblay, M. Saber Chtourou. Is Banner Blindness Genuine? Eye

Tracking Internet Text Advertising. Applied Cognitive Psychology, 25, 5: 708-716, 2011.
[8] Z. Ives, et al. VLDB Panel Summary: "The Future of Data(base) Education: Is the Cow Book

Dead?". SIGMOD Rec., 50(3), 2021.
[9] H. Kim et al. Natural Language to SQL: Where Are We Today? In PVLDB, 13(10), 2020.
[10] A. Kipf, et al. Learned Cardinalities: Estimating Correlated Joins with Deep Learning. In CIDR,

2019.
[11] S. Liu, et al. NEURON: Query OptimizationMeets Natural Language Processing For Augmenting

Database Education. In SIGMOD, 2019.
[12] J. Pennington, R. Socher, C. Manning. Glove: Global Vectors forWord Representation. In EMNLP,

2014.
[13] M. Peters, et al. Deep Contextualized Word Representations. In NAACL, 2018.
[14] I. Sutskever, et al. Sequence to Sequence Learning with Neural Networks. In NeurIPS, 2014.
[15] W. Wang, S. S. Bhowmick, et al. Towards Enhancing Database Education: Natural Language

Generation Meets Query Execution Plans. In SIGMOD, 2021.
[16] J. D. Watt , S. J. Vodanovich. Boredom Proneness and Psychosocial Development. The Journal

of Psychology, 133/3, pp. 303-314, 1999.

https://youtu.be/jv7kJe5Gxo0
https://paraphrasing-tool.com/
https://www.prepostseo.com/paraphrasing-tool
https://quillbot.com/

	Abstract
	1 Introduction
	2 Design Philosophy
	3 System Overview
	3.1 The GUI Module
	3.2 POOL Module
	3.3 Boredom-conscious NL Description Generator Module
	3.4 Presentation Module

	4 Related Systems
	5 Demonstration Plan
	References

