
129

A Framework for Privacy Preserving Localized Graph
PatternQuery Processing

LYU XU, Hong Kong Baptist University, China
BYRON CHOI∗, Hong Kong Baptist University, China
YUN PENG∗, Guangzhou University, China and Hong Kong Baptist University, China
JIANLIANG XU, Hong Kong Baptist University, China
SOURAV S BHOWMICK, Nanyang Technological University, Singapore

This paper studies privacy preserving graph pattern query services in a cloud computing paradigm. In such a
paradigm, data owner stores the large data graph to a powerful cloud hosted by a service provider (SP) and
users send their queries to SP for query processing. However, as SP may not always be trusted, the sensitive
information of users’ queries, importantly, the query structures, should be protected. In this paper, we study
how to outsource the localized graph pattern queries (LGPQs) on the SP side with privacy preservation. LGPQs
include a rich set of semantics, such as subgraph homomorphism, subgraph isomorphism, and strong simulation,
for which each matched graph pattern is located in a subgraph called ball that have a restriction on its size. To
provide privacy preserving query service for LGPQs, this paper proposes the first framework, called Prilo, that
enables users to privately obtain the query results. To further optimize Prilo, we propose Prilo∗ that comprises
the first bloom filter for trees in the trust execution environment (TEE) on SP, a query-oblivious twiglet-based
technique for pruning non-answers, and a secure retrieval scheme of balls that enables user to obtain query
results early. We conduct detailed experiments on real world datasets to show that Prilo∗ is on average 4x
faster than the baseline, and meanwhile, preserves query privacy.

CCS Concepts: • Information systems→Query optimization; • Security and privacy→Management
and querying of encrypted data; Privacy-preserving protocols; Hardware-based security protocols.

Additional Key Words and Phrases: Localized graph pattern query, database outsourcing, trusted execution
environment (TEE), query obliviousness

ACM Reference Format:
Lyu Xu, Byron Choi, Yun Peng, Jianliang Xu, and Sourav S Bhowmick. 2023. A Framework for Privacy
Preserving Localized Graph Pattern Query Processing. Proc. ACM Manag. Data 1, 2, Article 129 (June 2023),
27 pages. https://doi.org/10.1145/3589274

1 INTRODUCTION
Graph pattern queries have been proposed in the literature (e.g., [11, 38, 45]), and used inmany recent
applications, such as social network analysis, biology analysis, electronic circuit design, and chemical
compound search [40, 43, 44, 53, 57]. On one hand, graph patterns often have high computational
∗Corresponding Authors

Authors’ addresses: Lyu Xu, Hong Kong Baptist University, Hong Kong, China, cslyuxu@comp.hkbu.edu.hk; Byron Choi,
Hong Kong Baptist University, Hong Kong, China, bchoi@comp.hkbu.edu.hk; Yun Peng, Guangzhou University, Guang
Zhou, China and Hong Kong Baptist University, Hong Kong, China, yunpeng@gzhu.edu.cn; Jianliang Xu, Hong Kong
Baptist University, Hong Kong, China, xujl@comp.hkbu.edu.hk; Sourav S Bhowmick, Nanyang Technological University,
Singapore, assourav@ntu.edu.sg.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
2836-6573/2023/6-ART129 $15.00
https://doi.org/10.1145/3589274

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 129. Publication date: June 2023.

HTTPS://ORCID.ORG/0000-0002-8999-0623
HTTPS://ORCID.ORG/0000-0002-8381-336X
HTTPS://ORCID.ORG/0000-0001-6358-2333
HTTPS://ORCID.ORG/0000-0001-9404-5848
HTTPS://ORCID.ORG/0000-0003-1957-8016
https://doi.org/10.1145/3589274
https://orcid.org/0000-0002-8999-0623
https://orcid.org/0000-0002-8381-336X
https://orcid.org/0000-0001-6358-2333
https://orcid.org/0000-0001-9404-5848
https://orcid.org/0000-0003-1957-8016
https://doi.org/10.1145/3589274

129:2 Lyu Xu et al.

(a) An autophagy pattern (b) A PPI Network for Human Autophagy [5]
Fig. 1. Example of outsourcing LGPQ for biology analysis

complexities. On the other hand, different from matching the query to the whole data graph (e.g.,
graph simulation [38]), graph pattern results that span through small subgraphs can be preferred,
e.g., in applications where humans would interpret the results. Hence, localized graph pattern queries
(LGPQ), such as subgraph homomorphism query (hom) [26], subgraph isomorphism query (sub-iso)
[11], and strong simulation query (ssim) [37], whose semantics require a size restriction on the
matched patterns, have recently received much attention, e.g., [17, 21, 42, 52].

As data owners and query users may not always have the IT infrastructure to processing LGPQs
on the graph data, database outsourcing (such as to a service provider (SP) equipped with a cloud)
has advantages to both of them, including elasticity, high availability, and cost savings. Database
outsourcing inevitably has data privacy concerns. In particular, in the semi-honest model, the
SP may infer sensitive information from both the queries and their processing. In Example 1, we
illustrate the efficiency and query privacy challenges of this problem.

Example 1. Consider a biotechnology company whose competitive advantages are its biological
discoveries. The company has recently found a potentially valuable autophagy pattern of human cells,
as shown in Fig. 1(a). Autophagy is "the natural, conserved degradation of the cell that removes
unnecessary or dysfunctional components through a lysosome-dependent regulated mechanism"
[27]. To explore the autophagy patterns with the same or similar structures as the found one, the
company therefore uses an LGPQ to retrieve the subgraph data from an SP, who has a powerful IT
infrastructure to host a publicly known large protein-protein interaction (PPI) network for autophagy
interaction in human cells, as shown in Fig. 1(b). It may evaluate an LGPQ on small subgraphs, e.g.,
the solid box in Fig. 1(b). However, it neither evaluates the query on all the possible subgraphs

(
e.g., the

dotted boxes in Fig. 1(b)
)
nor exposes the autophagy pattern (i.e., the query structure) to the SP side.

Similar scenarios on other graphs, e.g., collaboration networks and social networks, can also be found
[16, 36, 52]. □

Existing works [16, 52] consider privacy preserving LGPQ under individual semantic, in particular,
sub-iso queries [16] and ssim queries [52], and propose optimizations that focus on either minimizing
the size of candidates to be matched or reducing the false positives of query results. Moreover,
almost all existing works determine only the existence of matches in the data graphs. Except a
trivial baseline [52], no previous work retrieves query matches as query results. In this paper, we
take the first step towards the first general framework for finding the matches of LGPQs with an SP.
However, there are two main challenges.
Challenge 1: To design general privacy preserving steps for LGPQs.
To address this challenge, we propose a privacy preserving framework, called Prilo, that comprises
three general steps, namely, candidate enumeration, query verification, and query matching. The

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 129. Publication date: June 2023.

A Framework for Privacy Preserving Localized Graph PatternQuery Processing 129:3

0

2

4

6

8

0 25 50 75 100

ru
n
ti
m

e
 (

s
e
c
o
n
d
s
)

percentage of candidates pruned

 by different techniques (%)

neighbor
path

our twiglet

(a) Average performance of oblivious pruning by
using different topologies: 3-hop neighbor’s label
[15], paths [52] and our twiglets of 4 labels

 0

 2

 4

 6

 8

 10

0 25 50 75 100s
p
e
e
d
u
p
 o

n
 r

e
s
p
o
n
s
e
 t
im

e

percentage of candidates after

 pruning (%)

Prilo*

(b) Speedup on Slashdot : the ratio of Prilo∗’s run-
time (the time to obtain the first result from SP) to
the runtime w/o Prilo∗’s optimizations

Fig. 2. The performance of Prilo∗ from experiments

privacy preserving computation in these steps is done one ball at a time [37], where a ball is a
subgraph of the graph defined by its center and radius, as the units (supersets) of LGPQ results.
Since a ball can be much smaller than the whole graph, its privacy preserving processing can be
efficient. The balls can also be precomputed, encrypted, and stored on the SP side.
To implement the privacy preserving processing on SP, we need to strike a balance between

the efficiency and security of cryptography tools being used. In particular, it has been known that
fully homomorphic encryptions (FHE) [18] and some partial homomorphic encryptions (PHEs), e.g.,
Paillier [41], can be inefficient. We adopt an efficient symmetric encryption scheme called cyclic
group based encryption (CGBE) [15] that is CPA-secure. In particular, to implement query verification,
we use CGBE in a query-oblivious manner to detect the violations of the LGPQ semantics on the
balls. Users then retrieve from SP the balls that have no violations. Users decrypt such balls, and
compute query matches using existing algorithms on plaintext.
Challenge 2: To propose privacy preserving optimizations for Prilo.

It is evident that there can be spurious balls on SP, i.e., balls that contain no matches or duplicated
matches, and they should be "pruned", i.e., users skip evaluating queries on them. Hence, we propose
Prilo∗ to optimize Prilo. In a nutshell, SP computes pruning messages to indicate whether balls are
spurious or not, and users decrypt them to recognize non-spurious balls and skip spurious ones.
More specifically, the first technique in Prilo∗ is to exploit the trusted execution environment

(TEE), e.g., the Intel software guard extensions (SGX) [12]. Despite its popularity for ensuring its
application’s security, to our knowledge, it has not been exploited in privacy preserving LGPQs.
We propose to enumerate some small tree structures of the user queries for pruning inside the
enclave of SGX. As it is known that SGX’s enclave has a limited memory space, we propose to use
bloom filters inside the enclave to compute pruning messages. The second technique is to propose a
small structure called twiglet for query-oblivious pruning under the ciphertext domain, which does
not need TEE. While previous work proposed simpler topologies for query-oblivious pruning, as
shown in Fig. 2(a), twiglet can further enhance computing pruning messages at the expense of an
additional runtime. To balance the pruning power and runtime, users can tune the size of twiglets.
The third technique optimizes the retrieval of non-spurious balls. We propose two kinds of

SP servers (called Players and Dealer), and importantly, they enable that the non-spurious balls
are securely returned to users early, while some dummy balls are also returned to make the ball
retrieval patterns query-oblivious to SP. Then, users can compute all the matches early, as opposed
to waiting the SP to finish its computation. From our preliminary experiments, we observe that
on average, only 15% candidate balls contain matches. Specifically, on the SP side, a special server
called Dealer uses pruning messages to generate sequences of balls mixed with dummy balls where
non-spurious balls are placed in the front, in a secure way. The other servers called Players conduct
LGPQ evaluation according to the sequences, without the knowledge of the balls’ pruning messages.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 129. Publication date: June 2023.

129:4 Lyu Xu et al.

These together result in the servers sending to users the balls that contain matches early, while
query’s privacy is preserved from SP. By using these optimization ideas, Prilo∗ can achieve a 4x
speedup on Slashdot for the runtime for the users to obtain the first match pattern

(
Fig. 2(b)

)
.

Contributions. The contributions of this paper are as follows.
• We propose the first secure general framework for LGPQ, called Prilo. Prilo has a unified encoding
to encrypt the queries online. Prilo includes three general steps for processing LGPQ, namely
candidate enumeration, query verification, and query matching.
• We propose an optimized framework called Prilo∗ that comprises i) a bloom filter checking that
is the first to exploit TEE for pruning for LGPQ, ii) twiglets for query-oblivious pruning without
the need of TEE, and iii) the first secure retrieval scheme that uses two kinds of servers in SP to
return the evaluated results of non-spurious balls to users early for computing matched patterns,
while existing works only check for their existence.
• We present the results of the privacy analyses and their corresponding proof sketches on Prilo∗.
For more detailed proofs, please refer to [51].
• Our experiments demonstrate that Prilo∗’s pruning techniques outperform the SOTA on the
pruning power with similar time cost and the query results are returned earlier than the baseline,
in particular, 4x, 5x, and 8x faster than the baseline on Slashdot , DBLP , and Twitter , respectively.
Our experiment with LDBC shows that Prilo is efficient for most of the queries and Prilo∗ furthers
optimizes Prilo in 5 out of 10 queries, while Prilo and Prilo∗ exhibit similar performance in the
other 5 queries.
Organization. The preliminaries and the problem statement are presented in Sec. 2. Sec. 3 presents
the Prilo framework. Prilo∗’s optimizations, the pruning techniques together with a secure scheme
for ball retrieval, are presented in Sec. 4. Sec. 5 reports the privacy analysis. Sec. 6 reports the
experimental results and Sec. 7 discusses the related work. This paper is concluded in Sec. 8.

2 PRELIMINARIES AND BACKGROUND
2.1 Notations of Graphs andQueries
This subsection presents some notations for describing LGPQ.
Graph. A graph is denoted by G = (VG , EG , ΣG , LG), where VG , EG , ΣG , and LG are the sets of
vertices, directed edges, and labels, and the function for matching a vertex to its label, respectively.
(u, v) denotes the directed edge from u to v , where u,v ∈ VG , and LG (u) denotes the label of u.
For graph G, the distance between u and v in G, denoted by dis(u,v), is the length of the shortest
undirected paths from u to v inG [37], and the diameter ofG , denoted by dG , is the largest distance
between any pairs of vertices of G.
Ball [37]. A ball, denoted by G[u, r], is a connected subgraph B = (VB , EB , ΣB , LG , u, r) of graph G
which takes u inG as center, and r as the radius, s.t. i) VB = {v |v ∈ VG , dis(u,v) ≤ r }, ii) EB has the
edges that appear in G over the same vertices in VB , and iii) ΣB = {LG (v)|v ∈ VB }.
Adjacency matrix. The adjacency matrix of graph G, denoted by MG , is a |VG | × |VG | matrix.
Given vertex u (resp. vertex v) that locates in the ith row (resp. the jth column) of a matrixM ,M(i, j)
is also denoted byM(u,v) for simplicity. Then,MG (i, j) = 1 if (u,v) ∈ EG . Otherwise,MG (i, j) = 0.
The ith row vector ofM is denoted byM(i). We may omit the subscript when it is clear from the
context.
Some popular query semantics of localized graph pattern queries, namely, subgraph homomor-

phism (hom), subgraph isomorphism (sub-iso), and strong simulation (ssim), can be readily expressed
by using matrices [15, 52]. We illustrate this with hom as follows.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 129. Publication date: June 2023.

A Framework for Privacy Preserving Localized Graph PatternQuery Processing 129:5

Query Graph a subgraph
Fig. 3. An example for a hom subgraph in G of Q

Definition 1. (Subgraph homomorphism (hom)) Given a connected query Q and a graphG,
a subgraph homomorphism of Q in G is a match functionH : VQ → VG that satisfies the conditions:
(1) ∀u ∈ VQ , LQ (u) = LG

(
H(u)

)
; and (2) ∀u,v ∈ Q ,MQ (u,v) = 1⇒MG

(
H(u),H(v)

)
= 1. □

Sub-iso can be defined by modifying the match functionH of Def. 1 with an injective function
[15].1 Due to space restrictions, we present the definition of ssim [52] in App. A.1 of the technical
report [51]. Given a query semantic F (e.g., hom, sub-iso, or ssim) and the vertex set {H(v)|v ∈
VQ }, an induced subgraph of the set in graph G is called a matching subgraph for Q under F .

Example 2. Consider the query Q and the graph G in Fig. 3. The induced subgraph of {v2, v3, v5,
v6} at the RHS of Fig. 3 is a matching subgraph ofG forQ under hom, whereH(u1) = v6,H(u2) = v2,
H(u3) = v5,H(u4) = v5, andH(u5) = v3.

It is evident from Def. 1 and Example 2 that each matching subgraph for a hom query exists in a
ball with a radius equal to dQ . We are ready to give the definition of the query studied in the paper.
Localized graph pattern query (LGPQ). Given a query semantic F , a localized graph pattern
query Q = (VQ ,EQ ,ΣQ ,LQ ,F) on a graph G is to find matching subgraphs for Q under F for each
ball G[u,dQ], where u ∈ VG and F ∈ {hom, sub-iso, ssim}.

2.2 Background on Cryptosystem and Trusted Execution Environment
The security tools used in the technical presentation are as follows.
Cyclic group based encryption (CGBE) [15]. CGBE is a CPA-secure symmetric encryption
scheme that supports the following homomorphic operations.

D
(
E(m1) + E(m2)

)
=m1 · r1 +m2 · r2 ; D

(
E(m1) · E(m2)

)
=m1 ·m2 · r1 · r2,

where i)m1,m2 ∈ Zp , ii) r1 and r2 are two random numbers, and iii) E(m) and D(m) denote the
encryption and decryption of messagem, respectively. CGBE’s homomorphic operations are used
to design the privacy preserving solution by computation of encrypted messages. Note that CGBE
requires m1 + m2 and m1 · m2 are smaller than a large public prime p, or there are overflow
errors [52].
Trusted execution environment (TEE). Secure co-processors have recently been found efficient
and effective in building secure applications. In particular, modern Intel CPUs have supported
the software guard extensions (SGX) [12], a set of x86 instruction set architecture extensions, to
construct a TEE. SGX provides users a secure and isolated hardware container called enclave. A
secure channel is established between users and the enclave. A user encrypts the query and sends
the encrypted query into the enclave for secure computation. The secure memory region in SGX is
approximately 128 MB [2, 3, 50]. However, the cost of interaction with the enclave is huge that it is
desirable to design space-efficient techniques when applying SGX for secure computation.

1In some existing works [26, 29], the match function H of hom (or sub-iso) also requires that the labels of the edges (u , v)
and

(
H(u), H(v)

)
are the same. For simplicity, we omit this requirement since it can be efficiently handled by transforming

each edge (u , v) into an intermediate vertex with (u , v)’s edge label.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 129. Publication date: June 2023.

129:6 Lyu Xu et al.

User

Service Provider (SP)

(DO)

Encrypted balls
. . .

. . .

Dealer

Players

Player1 Playeri Playerk

en
cr

yp
te

d
ba

lls

1

balls

1

E
nc

(Q
) to

Play
er

s

2

en
cr

yp
te

d
pr
un
in
g

3

candidate set S

4

8

. . .
sequence Si for LGPQ

6

ciphertexts of the existence of

7

offl
ine

offl
in

e

...

SGX

9 retrieve encrypted balls from Dealer for ball data

m
es
sa
ge
s

(P
M

s)

5 generate sequencesresults for B

&
decrypted

P
M

s

SGX SGX

secret key sk1

matching

matches for candidates in Si

decryption to compute the matching subgraphs

Si, 1 ≤ i ≤ k

...

...

...

...

...

...

...

...
. . .

(S
ec

s.
4.

1-
4.

2)

(Sec. 4.3)

(Sec. 3)

Owner
Data

Fig. 4. The system model of Prilo∗

2.3 Models and Problem Statement
This subsection presents the background of the system model and security model, and then presents
our problem statement.
System model. We extend the commonly used system model on outsourced databases [13, 30, 49]
that includes data owner, user, and service provider. Fig. 4 shows an overview of our system model.
• Data owner (DO). A data owner first generates a secret key sk and all balls of graph G with
various diameters offline. For each ball B of G, data owner 1 uses sk to encrypt B before sending
B or the encrypted B to two different kinds of cloud servers on the service provider, respectively.
Only authorized users can obtain sk .
• User. User 2 sends to the service provider a query encrypted by using the private key pk of
CGBE. After 3 receiving the encrypted pruning messages (PMs) of candidate balls, User decrypts
these PMs, and then 4 sends the decrypted PMs and ball identifier set S of candidate balls to
the service provider. After 8 receiving the ciphertext results about whether there exist matching
subgraphs in candidate balls, User decrypts these results to find the target ball identifiers and
then 9 retrieves the encrypted target balls from the service provider. Finally, User decrypts the
encrypted balls with sk and computes the matching subgraphs for the query.
• Service provider (SP). We extend the SP of the widely used system model [13, 30, 49], to allow
some optimizations enabled by SGX and to facilitate secure ball retrieval. Assume that SP consists
of two kinds of servers, namely k (k ≥ 2) player servers (Players) equipped with SGX and a dealer
server (Dealer), for ball retrieval. After 2 receiving the encrypted query from User, the Players
compute for each candidate ball B, under the ciphertext domain or inside SGX’s enclave, the PM
that indicates whether B may contain a match (a.k.a matching subgraph) of the query. Then, Players
3 send the PMs of candidate balls to User. After 4 receiving the set S of candidate ball’s identifiers
and their decrypted PMs from User, Dealer 5 generates a sequence Si of ball identifiers based on
the set S and PMs, and 6 sends Si to Playeri , 1 ≤ i ≤ k . For balls in Si , Playeri run secure matching
algorithms to generate a ciphertext result that indicates the existence of matching subgraphs.
Playeri 7 sends the ciphertext results of balls in Si back to Dealer and then, Dealer 8 sends the
ciphertext results of balls of S to User.
Security model. This paper assumes the SP is honest but curious, a.k.a. the semi-honest adversary
model [8, 9, 20, 33]. In a nutshell, SP performs the agreed computation protocol but may infer the
private information. We made a mild assumption on SP. As shown in Fig. 4, there are multiple
Players and a Dealer on SP. Unlike the existing multi-party computation (MPC) [6] where the
servers communicate with others, Players only communicate with Dealer and Players do not

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 129. Publication date: June 2023.

A Framework for Privacy Preserving Localized Graph PatternQuery Processing 129:7

Balls with various

Candidate Enumeration (Sec. 3.1)

1 choose label and

filter balls by

Candidate balls

...

Candidate mapping

Query Verification (Sec. 3.2)
2 enumerate

by

...

Ciphertexts about existence

...

 on the

...

 of matching subgraphs

3 query-oblivious

on each ...

matrices ()diameters in

of ,

of ball

...

...

...

candidates computation

Adjacency matrix consisted
of 's encrypted encodings

6 decrypt balls and

5 retrieve the

No

Yes
Query Matching (Sec. 3.3)

4 decrypt
the

Query

pre-

on the
compute matching

...

Encrypted ball data

process
encrypted
balls from

subgraphs

Query Initialization

Fig. 5. Overview of the Prilo framework

collude with each other, which is similar to a recent work [32]. Regarding the communications
between Players and Dealer, we adopt the commonly used collude-resistant model [13, 25, 34, 35]
that Dealer and Players do not collude. Regarding the attack model, we assume the servers on SP
adopt the chosen plaintext attack (CPA) [33], i.e., the adversaries can choose arbitrary plaintexts
to obtain their ciphertexts to gain sensitive information. The privacy targets of this paper are as
follows.
• Query privacy. The structural information of User’s query Q , i.e., the values of elements inMQ .
• Access pattern privacy.When querying on a graph, the access pattern privacy requires that
the access pattern and the values of involved data during the computation process have no relations
to the query privacy. That is, the computation process is query-oblivious.
Problem statement. Assume the system and security models presented in Sec 2.3. Given an LGPQ
Q = (VQ , EQ , ΣQ , LQ , F) and a graph G, the goal is to compute all the subgraphs of G that can be
matched to Q under F when preserving the privacy target.

3 THE Prilo FRAMEWORK
In this section, we propose a general framework called Prilo for handling LGPQs. Fig. 5 shows the
overview of Prilo. An LGPQ can be answered by three generic steps, namely candidate enumeration,
query verification, and query matching.
In the following subsections, we elaborate these steps with the hom query semantic, as an

example.2 For simplicity, we may use ball to refer to candidate ball, when it is clear from the
context.

3.1 Candidate Enumeration
In this subsection, we present how the candidate enumeration step enumerates all candidate
subgraphs of a ball in a query-obliviousmanner.We first propose two propositions to filter redundant
balls.

Proposition 1. Given a query Q with diameter dQ and label l (l ∈ ΣQ), for any subgraph Gs
of graph G, if Gs is a matching subgraph for Q under hom, there exists a vertex v in G such that
i) LG (v) = l , ii) Gs is a subgraph of G[v,dQ], and iii) v ∈ Gs .
2We remark that some LGPQ semantics may not require all three steps. Sub-iso can be extended with minor modifications
on Sec. 3.1. Ssim is a special case that has a straightforward candidate enumeration step [37].

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 129. Publication date: June 2023.

129:8 Lyu Xu et al.

Algorithm 1: Candidate Enumeration Algorithm (hom)

Input :A query Q with VQ , ΣQ , LQ and dQ , and a ball B = G[w , dQ]
Output :The set R1 of CMMs of all B’s candidate subgraphs
Procedure CanEnum(VQ ,w , B , i , C , CV):

1 if i = 0 then
2 C ← 0;
3 (Q , B) ← opt(Q , B); //opt():optimizations in [16]

4 foreach u ∈ VQ do
5 CV (u) ← ∅; //CV (u):B’s vertices having label LQ (u)
6 foreach v ∈ VB do
7 foreach u ∈ VQ do
8 if LQ (u) = LB (v) then
9 CV (u) ← CV (u) ∪ {v };

10 if i = |VQ | then
11 if ∀u ∈ VQ ,C(u ,w) = 0 then
12 return ∅; //w cannot be matched to any vertices of Q
13 return {C }; //C is a CMM

14 R1 ← ∅;
15 u ← the (i + 1)th vertex in VQ ;
16 foreach v ∈ CV (u) do
17 C(u , v) ← 1; //assign one 1 in the (i + 1)th row

18 R1 ← R1 ∪ CanEnum(Q ,w , B , i + 1, C , CV);
19 C(u , v) ← 0;
20 return R1 ;

By Prop. 1, candidate enumeration can choose arbitrarily a label l from ΣQ and consider as
candidate balls only those balls having centers of label l and diameters equal to dQ instead of all
balls (1 of Fig. 5). Then, we further derive Prop. 2.

Proposition 2. Given a query Q , a label l (l ∈ ΣQ), and a ball B = G[w,dQ] of graph G, if there
exists a subgraph Bs of B that Bs is a matching subgraph for Q under hom butw < VBs , there must
exist a ball B′ = G[w ′,dQ] of G that i) Bs is a subgraph of B′, ii)w ′ ∈ VBs , and iii) LG (w

′) = l .

Props. 1 and 2 is established by a simple proof by following the definition of the ball and the
LGPQ semantic. The proofs are presented in App. A.2 of [51]. With Props. 1-2, we can enumerate
for a ball B only the candidate subgraphs that contains B’s center. Moreover, if B’s center cannot be
matched to any vertices of the query, B can be considered as a spurious ball. Even if there can be
a matching subgraph of B that does not contain B’s center, it can be found from other balls. We
remark that Props. 1-2 can be also applied to sub-iso and ssim.
To illustrate the enumeration of all candidate subgraphs of B for Q (e.g., a hom query), we

introduce the candidate mapping matrix to represent the match function H that matches VQ to
VBc , where Bc is a candidate subgraph of B.

Definition 2. (Candidate mapping matrix (CMM)) A candidate mapping matrix from a
queryQ to a graphG , denoted byC , is a |VQ | × |VG | matrix that ∀u ∈ VQ , ∃ v ∈ VG satisfies i)C(u,v)
= 1, ii) LQ (u) = LG (v), and iii) ∀w ∈ VG − {v}, C(u,w) = 0.

Example 3. Consider the query Q and graph G in Fig. 3 and the match function H in Example
2. We locate vertex ui , 1 ≤ i ≤ 5 (resp. vj , 1 ≤ j ≤ 7) of Q (resp. G) on the i th row (resp. the jth

column) of the CMM. Then,H can be represented by the CMMC thatC(u1) = (0, 0, 0, 0, 0, 1, 0),C(u2)
= (0, 1, 0, 0, 0, 0, 0), C(u3) = (0, 0, 0, 0, 1, 0, 0), C(u4) = (0, 0, 0, 0, 1, 0, 0), and C(u5) = (0, 0, 1, 0, 0, 0, 0),
where C(ui , uj) = 1 represents matching ui to vj .

Then, we present the algorithm to enumerate all CMMs of candidate subgraphs. Taking a query
Q with VQ , ΣQ , LQ and the diameter dQ , and a ball B with the center w and radius dQ as inputs,
Alg. 1 returns the set R1 of CMMs of all B’s candidate subgraphs for hom queries as output. In Line

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 129. Publication date: June 2023.

A Framework for Privacy Preserving Localized Graph PatternQuery Processing 129:9

Algorithm 2: Query Verification Algorithm (hom)

Input :The encodingsMQe of query Q ’s adjacency matrix, the adjacency matrixMG for graphG and a CMM C for matching VQ
to VG

Output :An integer without factor q if C represents a valid match function under hom or a multiple of q , otherwise.
Procedure Verify(MQe , MG , C):

1 r ← 1; //result initialization

2 Mp ← C ·MG ·CT ; //Mp:G’s adjacency matrix projected by C
3 foreach i ∈ [1, |VQ |] do
4 foreach j ∈ [1, |VQ |] do
5 if Mp (i , j) = 0 then
6 r ← r · MQe (i , j); //matching violation aggregation

7 return r ;

2, CMMC is initialized as a zero matrix. The optimizations [16] for minimizing the size of query Q
(resp. ball B) on User (resp. Player) are applied in Line 3. ∀u ∈ VQ , Lines 6-9 generate a vertex set
CV (u) that contains the vertices of B having the same label as u’s label by comparing L(u) with
L(v), v ∈ VB . Then, Line 14 initializes a CMM set R1 as an empty set. Assume that vertex u of Q
locates in the ith row, 1 ≤ i ≤ |VQ |. Lines 16-17 enumerate all the possible mappings from vertices
of B to u by assigning value 1 in different columns in the ith row. Line 18 recursively calls Alg. 1 for
the (i + 1)th row’s enumeration. If each row of C has been assigned with a value 1 (Line 10), Line
13 returns C as a CMM and then, Line 18 adds C into R1. In particular, Line 11 checks in matrix C
whether B’s center w is mapped to any vertices of Q . If it is not, C is not a CMM of a candidate
subgraph so that Line 12 returns an empty set. Finally, Line 20 returns R1 as output.

Example 4. We illustrate Alg. 1 with the generation of the CMM C in Example 3. Lines 1-5 are
initialization. For each query vertex u, Lines 6-9 obtain the vertex set CV (u), i.e., CV (u1) = {v6},
CV (u2) = {v2,v4}, CV (u3) = CV (u4) = {v1,v5,v7}, and CV (u5) = {v3}. Lines 16-18 set C(u1,v6) = 1,
C(u2,v2) = 1, C(u3,v5) = 1, C(u4,v5) = 1, and C(u5,v3) = 1 in turn to obtain C . Lines 10-13 return C
as a CMM and Line 18 adds C into the set of all CMMs.

Analysis. Alg. 1 is query-oblivious since its execution is only dependent of the vertex set VQ
but independent of the edge set EQ . The detailed proof is presented in App. A.2 of [51]. For the
time complexity, Lines 6-9 take O

(
|VQ | · |VB |

)
time. Lines 16-19 enumerate O

(∑
v ∈VQ |CV (v)|

|VQ |
)

CMMs. The optimizations (Line 3) take negligible time compared to the whole enumeration process.

3.2 Query Verification
In this subsection, we present how to design a query-oblivious algorithm that verifies whether a
CMM represents a valid match function under an LGPQ semantic. The main ideas are as follows.
Given a query Q with an LGPQ semantic F , and a candidate subgraph Gc of graph G, the

verification for matchingVQ toVGc under F is to detect nomatching violation, i.e., the unsatisfaction
conditions w.r.t. F ’s definition. For example, for hom, a matching violation can be detected if there
exists at least one edge e in Q that no edges in Gc can be matched to e (unsatisfaction on condition
(2) of Def. 1). To detect the existence of such edges inQ on the Player side, we encode the existence
of edges in MQ as follows. We remark that this encoding is also applicable for sub-iso and ssim
queries.
Encoding ofMQ (MQe). ∀ i , j ∈ [1, |VQ |],

MQe (i, j) =

{
q, ifMQ (i, j) = 0; and
1, otherwise,

where q is a large prime number andMQ (i, j) = 1 −MQ (i, j). Then, we present the query-oblivious
verification algorithm for hom. (sub-iso can be supported with a minor modification [16].)

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 129. Publication date: June 2023.

129:10 Lyu Xu et al.

Taking as inputs the encodingsMQe of query Q’s adjacency matrix, the adjacency matrixMG
of graph G, and a CMM C for matching VQ to VG , Alg. 2 returns an integer without factor q if C
represents a valid match function under hom. Otherwise, an integer with factor q is returned. In
detail, Line 2 first computes the |VQ | × |VQ | adjacency matrixMp ofG that projects the vertices ofG
onto the vertices ofQ according toC , whereCT denotes the transpose matrix ofC . For each encoding
MQe (i, j) (Lines 3-4), if Mp (i, j) = 0 (Line 5), it may lead to a matching violation on condition (2)
of Def. 1 and Line 6 uses multiplication to aggregate MQe (i, j) into a result r . Line 7 returns r as
output.

Example 5. Consider the queryQ and graphG in Fig. 3 and theCMMC in Example 3. The encoding
MQe of MQ is as follows: MQe (u1) = (1, 1, 1, 1, 1), MQe (u2) = MQe (u3) = (q, 1, 1, 1, 1), and MQe (u4)
= MQe (u5) = (1,q, 1, 1, 1). In Alg. 2, Line 1 first set the value of r as 1. By using C and MG , Line 2
computes the projected adjacency matrixMp :Mp (u1) = (0, 0, 0, 0, 0),Mp (u2) = (1, 0, 0, 0, 0),Mp (u3) =
Mp (u4) = (1, 1, 0, 0, 0), and Mp (u5) = (0, 1, 0, 0, 0). For any i , j such that Mp (i, j) = 0 (i.e., Mp (ui ,uj)
= 0), Lines 3-6 aggregateMQe (i, j) into r by multiplication. Line 7 returns an r with value 1, which
means thatC represents a valid match function forQ under hom. Otherwise, a multiple of q is returned
indicating that C does not represent a valid match function.

Analysis. For any vertexui of the queryQ and any vertexvj of the graphG , we list all the possible
cases of matching ui to vj . The correctness of Alg. 2 can be proved by summarizing its outputs of
the matching cases that does not satisfy the requirements of the definitions of LGPQ semantics.
Moreover, Alg. 2 is query-oblivious since its execution (Lines 2-5) depends onC andMG , which are
independent of the edge set EQ . The detailed proofs are presented in App. A.2 of [51]. The encoding
ofMQ can be encrypted by CGBE to preserve the query privacy while the query-obliviousness of
Alg. 2 and the homomorphic computation supported by CGBE preserves the access pattern privacy.
For the time complexity, assume both the addition and multiplication take O(1) time. Then, the
matrix multiplication in Line 2 takes O

(
|VG |

3) time and Lines 3-6 take O
(
|VQ |

2) time. In practice,
|VG | equals the size of each candidate ball, which is limited by the diameter dQ of the query.

3.3 Query Matching
In this subsection, we present the query matching step by the overall algorithm (Alg. 3) of the Prilo
framework, as shown in Fig. 5.
• On Players. Taking a querywithVQ , ΣQ , LQ , diameterdQ and the adjacencymatrixME

Qe
consisted

ofQ ’s encrypted encodings, and all balls of graphG as inputs, Alg. 3 outputs the matching subgraphs
of G for Q . Recall that the candidate enumeration can choose arbitrarily a label l from ΣQ and
consider as candidate balls only those balls having centers of label l . Hence, as a simple optimization,
Player 1 first chooses a label l that maximizes the number of candidate balls in Line 2 after receiving
the query Q from User. Then, Player 1 filters balls of graph G by dQ and l (Lines 3-4). For each
candidate ball B, CMMs of all B’s candidate subgraphs are 2 enumerated in Line 5 (Sec 3.1) and 3
verified in Lines 6-7 (Sec. 3.2). Player sends to User the sets Rs of ciphertext results for all candidate
balls of G in Line 9. We remark that the evaluations of balls are independent of each other and
hence, can be readily parallelized.
• On User. The query matching step is as follows. User 4 decrypts the ciphertexts in the received
ciphertext result set R (Lines 11-12). For each ciphertext ri in R of ball Bi , if the decrypted ri
contains a factor q, Bi does not contain matching subgraphs forQ . Otherwise, User 5 retrieves the
encrypted data of Bi from Dealer (Line 13) and decrypts Bi ’s data by using the secret key sk sent
from DO (Line 14). Finally, User 6 computes the matching subgraphs of the retrieve balls for Q
under the plaintext domain (Line 15) (e.g., using any current state-of-the-art algorithms [23, 24, 37])
and outputs these subgraphs as query answers (Lines 16-17).

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 129. Publication date: June 2023.

A Framework for Privacy Preserving Localized Graph PatternQuery Processing 129:11

Algorithm 3: Overall Algorithm of Prilo (hom)

Input :A query Q with VQ , ΣQ , LQ , diameter dQ and matrix ME
Qe

consisted of MQ ’s encrypted encodings, and all balls of graph
G

Output :The matching subgraphs of G for Q
On the Player side:

1 R ← ∅;
2 l ← arg maxl ′∈ΣQ

{
| {v |v ∈ VG and LG (v) = l ′ } |

}
; //opt: choose label l

3 foreach vi ∈ {v |v ∈ VG and LG (v) = l } do // 1 :filter balls by l
4 Bi ← G[vi , dQ], ri ← 0; // 1 :filter balls by dQ
5 CSi ← CanEnum(Q , vi , Bi , 0, 0, ∅); // 2 :candidate enumeration

6 foreach C ∈ CSi do
7 ri ← Verify(ME

Qe
, MBi , C)+ ri ; // 3 :query verification

8 R ← R ∪ {ri };
9 send R to User;

On the User side after R is received from Players:
10 RH ← ∅;
11 foreach ri ∈ R do
12 if the decrypted ri does not have factor q then // 4 :decrypt ciphertexts
13 retrieve the encrypted ball Bi from SP (Dealer); // 5 :retrieve ball

14 decrypt Bi ’s data by using the sk sent from DO; // 6 :decrypt ball

15 compute matching subgraphs B′i s of Bi for Q ; // 6 :compute matches

16 RH ← RH ∪ {B′i s};
17 return RH ;

Example 6. Alg. 3 computes the match functionH in Example 3 as follows. Line 2 chooses B as the
label of l . Lines 3-8 evaluate those balls that i) have centers of label B, and ii) have diameters equal
to dQ = 3. Line 5 enumerates all the CMMs of ball B = G[v6, 3] by using Alg. 1. To compute ri that
indicates whether B contains valid match functions under hom, Lines 6-7 aggregate into ri the outputs
of Alg. 2 by addition for all the CMMs of B. In Example 5, Alg. 2’s output for the CMM of H is 1.
When taking as input the matrixME

Qe
of query Q consisted ofMQ ’s encrypted encodings but not the

encodingsMQe , the output ofH is rn , where r (resp. n) denotes the random value ofMQe (i, j) (resp.
the number of multiplication) in Line 6 of Alg. 2. Therefore, there exists a decrypted ri in Line 12 that
does not have factor q, which encodes 0 (Sec. 3.2). On the User side, Line 13 retrieves the encrypted
data of B, Line 14 decrypts the data, and Line 15 computes the matching subgraphs.

Analysis. For the query matching step, although Dealer knows the specific balls retrieved by User
(Line 13), Dealer cannot infer the edge information of the query from the encrypted ball data and
hence, the query matching step is query-oblivious.

4 THE OPTIMIZED Prilo FRAMEWORK
To optimize Prilo, we propose an optimized framework called Prilo∗ that i) enables Players to detect
as many as possible the spurious balls when preserving the privacy target and record them in the
pruning messages (PMs) of balls (Secs. 4.1-4.2), and ii) enables User to early obtain the balls contain
matching subgraphs by using these PMs (Sec. 4.3).

4.1 Bloom Filter of Trees in TEE (BF)
Different from existing works [16, 52] that compute the PMs by using simple graph topologies (e.g.,
neighbors and paths), our first pruning technique, called BF, uses the tree topology. As reported in
an analytical study of graph queries [7], for vertices of most queries, the average degree is smaller
than 4 and the maximal degree is not larger than 5. Hence, we propose the h-label binary trees for
detecting spurious balls.

Definition 3. (h-label binary tree) Given a height h, a graphG , and a vertex u ofG , the h-label
binary tree Tu ,h of G is a binary tree projected by the labels of nodes of an undirected binary subtree

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 129. Publication date: June 2023.

129:12 Lyu Xu et al.

0 1 2 2 1 2 2 2 2 2

ii iii iv vi xixviiiviivi
Fig. 6. h-label binary trees (h≤2) (labels omitted)

of G such that i) u is its root, ii) h is its height, and iii) For any two vertices v and v ′ of this subtree, v
, v ′⇒ LG (v) , LG (v

′).

We apply the undirected tree topology to detect more spurious balls since there may exist few
directed trees in the queries having small sizes. Fig. 6 shows 10 possible topologies of h-label binary
trees for h ≤ 2 and we denote the h-label binary trees of such topologies by using a superscript
i , i ∈ {i, ..., x}. For vertex u of the query in Fig. 3, Fig. 7 shows one T vii

u ,2 as an example. Then, we
propose the following proposition for pruning.

Proposition 3. Consider a height h, a query Q , and a ball with the center w . If there exists at
least one T i

v ,h , i ∈ {i, ..., x} where v is a vertex of Q but there does not exist T i
w ,h s.t. T i

v ,h and T i
w ,h are

isomorphic,w cannot be matched to v under sub-iso, hom and ssim.

Prop. 3 can be established by a simple proof by contradiction of the definition of the LGPQ
semantics. The detailed proof is presented in App. A.2 of [51]. Recall that B is spurious if B’s center
cannot be matched to any vertices of Q . Hence, for each vertex v of Q having the same label as B’s
center’s label, we check Prop. 3. We consider B as spurious if T i

v ,h does exist for all such vs and
record the existence in a ciphertext csдx as one of the PM of B. In the following, we first present an
algorithm to enumerate the 2-label binary trees and then present how BF securely computes the
csдx .

4.1.1 Enumeration of 2-label binary trees. In Fig. 6, topologies i-ii and v (resp. vi) show labels of
neighbors (resp. paths), whereas topology iv is a twiglet. For pruning purposes, we focus on four
complex topologies (vii-x), shown within the red dotted rectangle. The enumeration is as follows.
Taking graph G and a vertexw of G as inputs, Alg. 4 enumerates the cases of all subtrees with

root w and height 2 used to project T i
w ,2, i ∈ {vii, ..., x}. First, for each neighbor u of w , Lines

1-2 compute a label set L(u) = {LG (v) | v ∈ neighbors of u, LG (v) , LG (u), LG (v) , LG (w)} for
w’s neighbors by using a BFS. Then, Lines 3-5 enumerate all subtrees with root w by taking all
combinations of w’s neighbors as w’s two child nodes. In detail, for the left child u (resp. right
child v) ofw , Line 6 computes the number nu (resp. nv) of distinct labels of u’s neighbors (resp. v’s
neighbors). As topologies vii-x shown in Fig. 6, if nu = 1 (Line 7), only subtrees of topology vii
can be enumerated (Line 8). Otherwise (Line 9), the subtrees of topologies vii-x are enumerated
according to the value of nv (Lines 10-15). Given w , u, v , and topology i , i ∈ {vii, ..., x}, Line 16
enumerates G’s subtrees of topology i with height 2, which can be used to project T i

w ,2s.

Example 7. Take the graph G in Fig. 3 and G’s vertex v6 as inputs. The T vii
v6,2 in Fig. 7 can be

enumerated by Alg. 4 as follows. First, for v6’s neighbors v2, v4 and v5, Lines 1-2 compute LQ (v2) =

Canonical encoding:

Legend
Label Encoding

1
2
3
4

Fig. 7. Example of 2-label binary tree of topology vii of Q in Fig. 3

Fig. 8. Example of h-twiglet ofQ
in Fig. 3 (where h = 3):

[
B, A, [C ,

D]
]

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 129. Publication date: June 2023.

A Framework for Privacy Preserving Localized Graph PatternQuery Processing 129:13

Algorithm 4: Subtree Enumeration Algorithm

Input :The graph G and a vertexw of G
Output :The cases of enumerating subtrees of G for projecting T i

w ,2 , i ∈ {vii, ..., x}

1 foreach neighbor u ofw that LG (u) , LG (w) do
2 start a BFS from u to obtain the set L(u);
3 foreach neighbor u ofw that LG (u) , LG (w) do // u: w’s left child
4 foreach neighbor v ofw that LG (v) , LG (w) do // v: w’s right child
5 CaseEnum(u , v , L);

Procedure CaseEnum(u , v , L):
6 nu ← |L(u) − {LG (v)} |, nv ← |L(v) − {LG (u)} |;
7 if nu = 1 then
8 TreeEnum(u , v , vii); //enumerate subtrees for T vii

w ,2
9 if nu ≥ 2 then

10 foreach i ∈ {vii, viii} do
11 TreeEnum(u , v , i); //cases for T vii

w ,2 and T viii
w ,2

12 if nv = 1 then
13 TreeEnum(u , v , ix); //case for T ix

w ,2
14 if nv ≥ 2 then
15 TreeEnum(u , v , x); //case for T x

w ,2

Procedure TreeEnum(u , v , i):
16 enumerate subtrees of topology i by taking u asw ’s left child and v asw ’s right child ;

Table 1. Numbers of different 2-label binary trees for four distinct topologies of a ball B (dmax : the maximum
degree of vertices of B)

Topology Numbers of 2-Label binary trees
(
κ = min { |ΣQ |, dmax }

)
vii A3

κ−1
viii A2

κ−1 · C
2
κ−3

ix A3
κ−1 · C

2
κ−4

x C2
κ−1 · C

2
κ−3 · C

2
κ−5

{C,D}, LQ (v4) = {C} and LQ (v5) = {A}. By setting one neighbor (resp. another distinct neighbor) of
v6 as the left (resp. right) child u (resp. v) (Lines 3-4), Line 5 enumerates the Tv6,2s. Given v2 (resp. v5)
as u (resp. v), Line 8 enumerates the T vii

v6,2 shown in Fig. 7 since nv2 = 1 and nv5 = 0.

Analysis. In Table 1, we present the maximum number of distinct 2-label binary trees of topologies
vii-x in a ball, where C (resp. A) denotes the combination (resp. permutation) operator and dmax is
the maximum degree of vertices of this ball. Regarding the time complexity of Alg. 4, Lines 1-2
takeO(VG + EG) time for BFS. Line 5 calls CaseEnum forO(dmax

2) times. In CaseEnum, Lines 7-15 call
TreeEnum forO(1) times. For TreeEnum, Line 16 takes at mostO(dmax

4) time for enumerating subtrees
of topology x with height 2. Therefore, Alg. 4’s time complexity is O

(
max {dmax

6,VG + EG }
)
.

4.1.2 Computation of csдx . To compute the csдx of a ball, we adopt the bloom filter to build a time-
and space-efficient index used for securely checking the existence of query’s 2-label binary trees
by using the SGX. The 2-label binary trees are encoded as follows.
Canonical encoding of 2-label binary tree. Assume there is a canonical encoding of labels and
2-label binary trees such that if two trees are isomorphic, then their encodings are identical. Fig. 7
presents an example of converting oneT vii

u ,2 into encoding. For the queryQ in Fig. 3, where |ΣQ | = 4,
assume the encoding of labels A, B, C and D are 1, 2, 3 and 4, respectively. We propose further each
position in a topology has a unique index, as shown in Fig. 6’s topology x. From the label encoding
and the index, we can compute that the canonical encoding3 of the T vii

u ,2 in Fig. 7 is 1·40 + 3·41 +
4·42 = 77. Given a graph G, we can enumerate subtrees of topologies vii-x of G with height 2 by
Alg. 4, and hence compute the encodings of their projected 2-label binary trees.

3For any two label nodes of a h-label binary tree T that i) share the same parent, and ii) the unlabeled subtrees of T starting
from them are isomorphic, we always put the node with a larger label encoding on the left to ensure a unique encoding ofT .

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 129. Publication date: June 2023.

129:14 Lyu Xu et al.

Query-oblivious computation. BF computes csдx as follows.
• On User. Given a query Q , User computes η encodings of distinct T i

u ,2s, i ∈ {vii, ..., x} for each
vertex u of Q , where η is a parameter used to i) ensure the query-oblivious checking, and ii) tune
the false positive rates of bloom filters. If there are fewer than η encodings for u, User takes 0s as
the rest encodings. If there are more than η encodings, User uses η encodings only, which may
allow some false positives, so that some spurious balls cannot be detected. Such false positives do
not affect the correctness of the pruning. Then, User encrypts these encodings (e.g., by using AES)
and sends them into SGXs’ enclaves on Players by establishing secure channels.
• On Player outside the enclave. Given a ball B with the center w , Player i) computes the
encodings of T i

w ,2, i ∈ {vii, ..., x}, ii) constructs a bloom filter for B by using these encodings with
an encoding 0, and iii) transmits the bloom filter into the enclave.
• On Player inside the enclave. Inside the enclave, Q’s encodings are decrypted when received.
After B’s bloom filter has been transmitted into the enclave, for each vertex u ofQ having the same
label as that of w , BF uses B’s bloom filter to test whether u’s η encodings exist in B. The tested
results can be aggregated (e.g., by addition) into an integer rsдx . rsдx is encrypted as csдx of B.
Analysis. The privacy analysis of BF is presented in Sec. 5. Regarding the bloom filter, the number
of hash functions that minimizes its false positive rate (denoted by p) ism/n · ln 2, wherem and n
are the numbers of vector’s bits and trees, respectively. Since the data transmission into SGX is
known to be time-consuming, we focus on choosing the optimal value of parameterm. By some
simple arithmetics on the number of trees listed in Table 1, we have the following equation,

m = −
n lnp
(ln 2)2

< −4 ·
κ6

23
·

lnp
(ln 2)2

<
|VQ |

6 · lnp
−2 · (ln 2)2

(1)

With Eqa. 1, we can tune p to balance the data transmission cost and the pruning power of BF.

4.2 Query-Oblivious Twiglet Pruning
Without using the TEE, previous works check under the ciphertext domain the existence of simple
topologies, e.g., neighbors [15] and paths [52] of the query. If such topologies exist in the query
but do not exist in a ball, this ball is considered as a spurious ball (Sec. 3.1). In this subsection, we
propose using twiglets to compute a ciphertext cphe as another one of the PM of a ball.

First, we define h-twiglet as follows. Given a graphG , the h-twiglet ofG is a topology consisted of
labels of h+1 vertices of G, denoted by

[
LG (v1), ..., LG (vh−1), [LG (vh), LG (vh+1)]

]
, vi ∈ VG , which

satisfies the following: i) (vi ,vi+1) ∈ EG or (vi+1,vi) ∈ EG , 1 ≤ i ≤ h−2, ii) (vh−1,vh) ∈ EG and
(vh−1,vh+1) ∈ EG , and iii) ∀i, j ∈ [1,h + 1], i , j ⇒ LG (vi) , LG (vj). We denote such a topology as
a h-twiglet t starting from v1. Fig. 8 shows an example of 3-twiglet

[
A, B, [C , D]

]
starting from u1.

Then, we have the following proposition.

Proposition 4. Consider a query Q and a ball B with the center w . For any vertex u of Q that
having the same label asw ’s label, if there exists one h-twiglet in Q starting from u but there does not
exist such h-twiglet in B starting from w , w cannot be matched to u under hom, sub-iso, and ssim
semantics.

Prop. 4 can be proved by contradiction of the definition of the LGPQ semantics. The detailed
proof is presented in App. A.2 of [51]. For each vertex u of Q having the same label as the ball
centerw’s label, we check the matching fromw to u by using Prop. 4. Ifw cannot be matched to
any vertices of Q , this ball is spurious. We illustrate the query-oblivious step for computing the
cphe by the twiglet pruning algorithm (Alg. 5).
• On User. Given a length h, for each vertex u of Q , User enumerates all the possible h-twiglets
starting from u consisted of |ΣQ | labels and record them in a h-twiglet table of u. Take h = 3 and

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 129. Publication date: June 2023.

A Framework for Privacy Preserving Localized Graph PatternQuery Processing 129:15

Table 2. The 3-twiglet table T(u1) of u1 of query Q in Fig. 3, where Σ = {A,B,C,D} and L(u1) = B
3-twiglet t s in T(u1) ciphertext ct s plaintext meaning

[B, A,C] дx rq 0 exists
[B, A, D] дx rq 0 exists[

B, A, [C , D]
]

дx rq 0 exists
[B,C , A] дx r 1 not exists
B,C , D] дx r 1 not exists[

B,C , [A, D]
]

дx r 1 not exists
[B, D , A] дx r 1 not exists
[B, D ,C] дx r 1 not exists[

B, D , [A,C]
]

дx r 1 not exists

Algorithm 5: Twiglet Pruning Algorithm TwigletPrune

Input :The length h, the encrypted h-twiglet table T , and a ball B with the centerw
Output :The ciphertext cphe of B

1 Procedure TwigletPrune(T , MB):
2 r ← 0;
3 start a DFS fromw to find all h-twiglets in B and record them in a set R ;
4 foreach u in Q that LQ (u) = LB (w) do
5 r ′ ← 1;
6 foreach h-twiglet t in T(u) do
7 if t ∈ R then
8 r ′ ← r ′ · c1 ; // aggregate ciphertext of 1

9 else
10 r ′ ← r ′ · ct ; // if violation, u has t but w doesn’t

11 r ← r + r ′;
12 return r ;

vertex u1 in Fig. 8 as an example. Table 2 is a 3-twiglet table T(u1) of u1 where the first column
of T(u1) records all possible 3-twiglets starting from u1. If a h-twiglet t in T(u) exists in Q , t is
encoded and encrypted with 0 and дxrq, respectively, where д, r and q are the generator of cyclic
group, a random value and the predefined prime used in CGBE, respectively. The absence of t in Q
is encoded and encrypted in T(u) as 1 and дxr , respectively. User sends to Players the first two
columns of all Q’s vertices’ 3-twiglet tables together with Enc(Q) in 2 of Fig. 4.
• On Players.After receiving the h-twiglet tables T s, Player runs TwigletPrune (Alg. 5) to compute
the cphe for each ball. Taking h, T s, and a ball B with centerw as inputs, Alg. 5 outputs a ciphertext
r as the cphe of B. Line 3 first starts a DFS from w to find all the h-twiglets starting from w and
record them in a set R. For each vertex u of Q having the same label as w’s label (Line 4), Lines
5-11 aggregate into r the ciphertext r ′ for matching u tow . In detail, for each h-twiglet t in T (u)
(Line 6), if there also exists t starting from centerw in B (Line 7), Line 8 multiplies r ′ with a chosen
ciphertext of 1 (denoted as c1), which ensures the consistency of the power of the private key of
CGBE for each r ′ in Line 11. This is to ensure the correctness of CGBE’s decryption on User. If t
does not exist in B (Line 9), whether u matchesw depends on the existence of t in Q , and hence,
r ′ is multiplied by the ciphertext ct of t in T(u) (Line 10). Line 11 aggregates all the r ′s into a
ciphertext r , which indicates the existence of vertices of Q that may matchw . If r is a multiple of q
after decryption, no vertices of Q can matchw that B is spurious. Line 12 returns r as the cphe of B.

Example 8. Consider the query Q and graph G in Fig. 3. Taking length 3, the encrypted 3-twiglet
table T s of Q and the ball B′ = G[v6, 3] of G as inputs, Alg. 5 computes cphe of B′ as follows. Since
LQ (u1) = LG (v6) = B (Line 4), Lines 5-11 check whether u1 matches v6. Specifically, consider the first
twiglet [B,A,C] in T(u1) as shown in Table 2. Since [B,A,C] exists in B′, Line 8 aggregates c1 into r ′.
For the last twiglet

[
B,D, [A,C]

]
in T(u1),

[
B, D, [A, C]

]
does not exist in G[v6, 3] and hence Line 10

aggregates дxr in r ′. Finally, a ciphertext r ′, whose decrypted value has no factor q, is aggregated into
r by addition. Since the decrypted cphe of B′ (i.e., the decrypted r) has no factor q, B′ is not spurious.

Analysis. In Sec. 5, we present Alg. 5 meets the privacy targets. Regarding the value of h, h=3 is

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 129. Publication date: June 2023.

129:16 Lyu Xu et al.

 Early set =
Remarks:
1. Secure cutoff point (SCP):

the position in
2.

 set :

dummy set =

 = []

1) Set generation
step

2) Ordering
 step = []

{ }

2.i) Early case: 2.ii) Normal case:

{ } and

or

7 of Fig. 2: returns ciphertext result for each ball in once computed6 of Fig. 2: sends to

Fig. 9. Steps of SSG: 1) The set generation step (bottom) uses the BId set S to generate Si (1 ≤ i ≤ k), which
consists of the early set Ei and the dummy set Di . 2) The ordering step generates a sequence Si for Playeri
by using Ei and Di , and orders the BIds in Si . There are two cases of the ratio θ (middle) of the positives to
all balls in S : 2.i) early case (θ < 1/2), and 2.ii) normal case (θ ≥ 1/2).
used to covered label information of paths contained by topologies i-vi in Fig. 6. We assume 3 ≤ h
≤ 5 for efficiency. For the complexity, Line 3 takesO

(
|VB | + |EB |

)
time for DFS on ball B and hence,

O
(
(|VB | + |EB |) · dB

2) time to enumerate all h-twiglets, where dB is the maximum vertex degree
of B. The ciphertext aggregation (Lines 4-11) takes O

(
|VQ | · A

|ΣQ |−1
h−2 · C |ΣQ |−h+12

)
time in the worst

case, where C (resp. A) denotes the combination (resp. permutation) operator.

4.3 Secure Retrieval of Balls
Prilo∗ introduces a secure retrieval scheme into Prilo. The major steps of the scheme can be
summarized as follows: 1) Players first compute the PMs of balls by using the pruning techniques
in Secs. 4.1-4.2; 2) Dealer then generates sequences for Players to evaluate balls in their sequences,
using techniques in Secs. 3.1-3.2, to obtain ciphertext results; and 3) From Dealer, User receives
ciphertext results and retrieve the encrypted data of balls that contain matching subgraphs. We
elaborate on the scheme in relation to 3 - 9 of Fig. 4 below.
On User. After 3 receiving the encrypted PMs (Secs. 4.1-4.2) from Players, User decrypts them.
Given a PM = (csдx , cphe) of a ball B, if the plaintext of either csдx or cphe indicates that B is
spurious, B is denoted as negative. Otherwise, B is denoted as positive. The information of whether
B is negative 4 is sent from User to Dealer as B’s decrypted PM . User waits for Dealer to 8 send
the ciphertext results, and then decrypts them for 9 retrieving the encrypted data of balls that
contains matching subgraphs.
On Dealer. After 4 receiving the set S of the ball identifiers (BIds) with their decrypted PMs,
Dealer 5 generates for Playeri (1 ≤ i ≤ k , where k is the number of Players) a BId sequence Si by
using the PMs. Si consisted of a part of BIds in S . The BIds of positives are put in the front part of Si
in a query-oblivious manner. After Si 6 is sent to Playeri , Playeri conducts candidate enumeration
and query verification (Secs. 3.1-3.2) for balls in Si . For each ball B evaluated on Playeri , Playeri 7
sends B’s ciphertext result (ri in Line 7 of Alg. 3) to Dealer as soon as the evaluation on B finishes.
Dealer 8 sends the ciphertext results to User for decryption.

The scheme above enables User to i) find the balls containing matches among positives early, ii)
9 retrieve the encrypted data of such balls from Dealer early, and iii) start computing the matching
subgraphs early, while each Playeri may still be evaluating the rest of the balls in Si .

To ensure the privacy preservation of the retrieval scheme, the key is to generate secure sequences
of BIds, so that each Player is unaware of the time when all its positives have been evaluated.
Secure sequence generation (SSG). SSG has the set generation step and the ordering step, as
illustrated with Fig. 9.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 129. Publication date: June 2023.

A Framework for Privacy Preserving Localized Graph PatternQuery Processing 129:17

1) Set generation step. Given a BId set S and k Players, SSG i) generates a BId set Si for Playeri
(1 ≤ i ≤ k) that consists of two subsets, namely early set Ei and dummy set Di , and then ii) orders
the BIds in Ei and Di to obtain sequences Ei and Di , and hence the BId sequence Si = Ei | |Di ,
where | | is concatenation. The detailed generation of these two subsets can be described as follows.
• Early set (E). Assume there are |S |·θ (0 ≤ θ ≤ 1) BIds of positives in S . Note that θ can be derived
by the decrypted PMs and is unknown to Players. SSG partitions S into k early sets (Ei , 1 ≤ i ≤ k)
of the same size by assigning random |S |·θ/k BIds of positives to Ei .
• Dummy set (D). Given the early set Ei (1 ≤ i ≤ k), for each Playeri , SSG generates the dummy
set Di by assigning random |S |/k BIds in S − Ei to Di , s.t. i) ∀i ∈ [1,k], Ei ∩ Di = ∅, ii) ∀i, j ∈ [1,k]
(i , j), Di ∩ D j = ∅, and iii) D1 ∪ ... ∪ Dk = S . Note that SSG can simply generate Di = E(i+1) mod k ,
1 ≤ i ≤ k when k ≥ 2.
Next, we present how SSG orders the BIds in Ei and Di to obtain Si .
2) Ordering step. The length of sequence Si (1 ≤ i ≤ k) to be generated by SSG for Playeri is |Si |
= |Ei | + |Di | = 2·|S |/k . We denote the ⌈2θ ·|S |/k⌉th position in Si as the secure cutoff point (SCP) and
use SCP to help ordering BIds, such that all positives of Si would have been evaluated by Playeri
when Playeri finishes the evaluation of the ball located on SCP. The ordering has two cases.
• i) Early case (θ < 1/2). As Fig. 9 shows, SCP resides in the front half part of Si since ⌈2θ ·|S |/k⌉
< |S |/k⌉ = |Ei |. W.l.o.g, assume that y = ⌈2θ ·|S |/k⌉ and y is even. For Playeri (1 ≤ i ≤ k), SSG i)
randomly chooses y/2 BIds of negatives in Ei , ii) inserts into a set E ′i the chosen y/2 BIds together
with the BIds of all the y/2 positives in Ei , and iii) orders the BIds in E ′i

(
resp. (Ei−E ′i) ∪ Di

)
with a

random sequence to obtain the sequence Ei (resp. Di). Then, Si = Ei | |Di .
• ii) Normal case (θ ≥ 1/2). SCP resides in the rear half part of Si since ⌈2θ ·|S |/k⌉ ≥ |S |/k⌉ =
|Ei |. In this case, SCP cannot lead to an early return of positives’ ciphertext results to User. Hence,
SSG simply applies a random sequence generation (denoted by RSG), which i) randomly partitions
S into k subsets of the same size (for simplicity, assume |S | is divisible by k), and ii) randomly orders
the BIds in the subsets to obtain sequences for Players. Note that the value of θ depends on the
pruning power of our proposed pruning techniques in Secs. 4.1-4.2.

Example 9. Consider k = 3 Players and a BId set S = {b1, b2, b3, b4, b5, b6, b7, b8, b9} for an example
of SSG. Assume b5, b6 and b7 are BIds of positives. Hence, θ = 3/9 and SCP is the 2nd position. SSG
generates subsets E1 = {b8, b2, b5} = D2, E2 = {b6, b1, b9} = D3 and E3 = {b7, b3, b4} = D1. Then, SSG
generates BId sequences S1 = [b5, b8] | | [b9, b2, b1, b6], S2 = [b6, b1] | | [b4, b7, b9, b3] and S3 = [b3, b7]
| | [b2, b5, b8, b4]. Dealer can receive the ciphertext results of all positives when b8 in S1, b1 in S2, and
b7 in S3 have been evaluated by Player1, Player2, and Player3, respectively.

We remark that θ and SCP are not known to Players and Players have no way to identify the case
and therefore the positives. The privacy analysis of SSG is presented in Sec. 5. With the sequences
generated by SSG, User can receive the ciphertext results of all positives before the end of the
whole query processing of Prilo on Players. After decrypting the ciphertexts, User identifies the
balls containing matching subgraphs and sends to Dealer the BIds of these balls for retrieving their
encrypted ball data to decrypt and to compute the matching subgraphs.

5 PRIVACY ANALYSIS
Due to space restrictions, we present the main ideas of the privacy analysis in this section, and
provide the detailed proofs in App. B of [51]. We recall that the privacy target (Sec. 2.3) consists of
i) the query privacy, and ii) the access pattern privacy. We start with Prop. 5.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 129. Publication date: June 2023.

129:18 Lyu Xu et al.

Proposition 5. Given a query Q , i) the encrypted encodingsME
Qe

of Q’s adjacency matrix, ii) the
twiglet tables T s, and iii) the encrypted encodings of 2-label binary trees of Q ’s vertices are preserved
from SP against the attack model.

As ME
Qe

and T (resp. the encrypted encodings of Q’s 2-label binary trees) are encrypted by
CGBE (resp. AES), they are protected from Players. These encrypted messages are protected from
Dealer since Dealer i) does not have the private keys of CGBE and AES, and ii) cannot obtain these
messages due to the assumption that Dealer and Players do not collude (Sec. 2.3). Prop. 5 holds.
For the Prilo framework, we have i) Algs. 1-3 are query-oblivious (as shown in the analyses in

Sec. 3) that preserves the access pattern privacy, and ii) the encryption used in Algs. 1-3 preserves
the query privacy [15]. Hence, we can derive Prop. 6 as follows.

Proposition 6. Prilo preserves the privacy target from SP against the attack model.

Regarding the BF pruning, the bloom filter always tests O(η) encodings (η is a parameter set by
User) inside SGX’s enclave (Sec. 4.1.2). BF is query-oblivious since η is independent of the edge
set of the query. The enclave preserves the privacy of the plaintexts of these encodings. The size
of each bloom filter is smaller than 4KB under our experimental settings (Sec. 6.1). Hence, the
granularity of the memory access pattern attacks on the enclave becomes finer that "the attackers
become harder to get valid information" [22]. Putting these ideas together, we have Prop. 7.

Proposition 7. The BF pruning preserves the privacy target from SP against the attack model.

Regarding the twiglet pruning (in Sec. 4.2), let G(T , i)
(
resp. G(r)

)
be a function that returns

1 if SP can compute the corresponding plaintext of ciphertext cti of h-twiglet ti in T (resp. the
output ciphertext r of Alg. 5) and returns 0, otherwise. Then, we quantify the probability that SP
can attack r

(
i.e., G(r) = 1

)
after applying twiglet pruning, as presented in Prop. 8.

Proposition 8. After running TwigletPrune, Pr [G(r) = 1] ≤ 1/2n + ϵ , where n is the number of
ciphertexts ct s aggregated into r in Line 10 of Alg. 5 and ϵ is a negligible value.

Pr [G(r) = 1] equals the product of Pr [G(T , i) = 1] for the n ti s used in TwigletPrune. As ti s are
encrypted by CGBE (secure against CPA [15]), we have Pr [G(T , i) = 1] ≤ 1/2 + ϵ ′ (ϵ ′ is a negligible
value) which has a negligible difference from random guessing. Prop. 8 holds. Moreover, Lines 6-11
of Alg. 5 are independent of the edge set of the query that TwigletPrune is query-oblivious, we
have established Prop. 9.

Proposition 9. TwigletPrune preserves the privacy target from SP against the attack model.

For SSG (Sec. 4.3), Dealer knows i) the decrypted pruning messages (PMs) and ball identifiers
(BIds) of the balls sent from User, and ii) the ciphertext results sent from Players. However, Dealer
has only the encrypted ball data without i) the secret key for ball data’s decryption, and ii) the
private key of CGBE for decrypting ciphertext results. Dealer cannot infer the query structure by
using such information. For Players, each Playeri knows only the BId sequence Si without the
plaintexts of the PMs. The probability that Playeri can determine whether a ball in Si is spurious
is smaller than 1/2 + ϵ , where ϵ is a negligible value (see App. B.4 of [51] for details). Hence, the
access pattern privacy is preserved by SSG from Players. The query privacy is also preserved by
SSG from Players since each Playeri knows only the ball data and Si without the plaintexts of the
PMs when evaluating the balls in Si . With the assumption that Dealer and Player do not collude,
we have Prop. 10.

Proposition 10. The privacy target is preserved by SSG from SP against the attack model.

By putting Props. 5, 6, 7, 9 and 10 together, we have Theorem. 1.
Theorem 1. Prilo∗ preserves the privacy target from SP against the attack model.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 129. Publication date: June 2023.

A Framework for Privacy Preserving Localized Graph PatternQuery Processing 129:19

Table 3. Statistics of three real-world datasets
Graph G |VG | |EG | |ΣHG | |ΣSG |

Slashdot 82,168 948,464 100 64
DBLP 317,080 1,049,866 150 64
Twitter 81,306 1,768,149 100 64

Table 4. Statistics of candidate balls Bs for 10 random queries under the default setting

Graph Avg. no. of balls per
query avg. |VB | stddev. of |VB | avg. |EB | stddev. of |EB | Max. degree

Slashdot100 204 243 218 1085 1062 333
Slashdot64 3383 580 538 3324 3325 689
DBLP150 18 25 11 34 25 20
DBLP64 3001 45 38 66 64 38
Twitter100 378 245 245 822 854 214
Twitter64 5734 467 495 2113 2344 398

6 EXPERIMENTAL EVALUATION
In this section, we evaluate the efficiency of Prilo∗ and the effectiveness of Prilo∗’s optimizations.

6.1 Experimental Settings

Platform. We implemented the prototype of Prilo∗ in C++ using a machine with an Intel Core
i7-7567U 3.5GHz CPU and 32GB RAM running Ubuntu 20.04.4 LTS with Intel(R) SGX SDK4 to
test the performance for both User and SP (including multiple Players and a Dealer). CGBE was
implemented by using the GMP libraries.
Datasets and query sets. We used three real-world datasets, namely Slashdot, DBLP, and Twitter
[31], which are also used in [16, 48, 52, 54]. The vertices of these datasets do not have labels. Similar
to existing works [16, 37, 52], we generated a random label for each vertex to evaluate Prilo∗’s
performance. We focused on hom and ssim queries, but omitted sub-iso queries, as the performance
is similar to that of hom queries. Table 3 shows the statistics of these datasets, where |ΣHG | (resp.
|ΣSG |) is the size of label set for hom (resp. ssim) queries, whose value was set according to [16, 52].
Regarding the query sets, we used the same query generator QGen [52]. We generated 10 random
queries for each experiment. Taking a query size |VQ |, a diameter dQ and a graphG as inputs, QGen
returned random subgraphs ofG as output queries. The default values of |VQ | and dQ were 8 and 3,
respectively. Table 4 shows the statistics of balls evaluated on Players under the default setting. For
each ball B, we used the size of B’s vertex set, |VB |, as the ball size of B.
Default parameters. These parameters are described as follows:
• CGBE. The encoding q and random number r for CGBE were both of 32 bits and the public value
was of 4096 bits [52].
• Query. The default values of |VQ | and query diameter dQ were 8 and 3, respectively. We set dQ =
4 to investigate the pruning power of h-twiglet by varying h from 3 to 5.
• BF pruning (BF). For the parameter η used to ensure BF’s obliviousness, we set η = 256. In practice,
the number n of distinct 2-label binary trees starting from a ball’s center is much smaller than
|VQ |

6/2, in particular, n ≤ 10K for almost all our experiments. Hence, we set n = 10K and the
desired false positive rate p = 0.3, andm = 25K bits are required for the bloom filter by Eqa. 1.
Compared with passing 25K bits of data between the enclave and the application of SGX, BF’s online
construction of bloom filters for ball centers may take more time, especially for the enumeration
of subtrees of topology x (Lines 14-15 of Alg. 4). Hence, we used a threshold t for BF to balance
the efficiency and pruning performance. Specifically, for the ball center, if there exist more than t
neighbors whose L (Line 2 of Alg. 4) has size larger than 3, BF simply marked the ball as positive.
We varied t = 5, 15, or 25 for BF and denoted the algorithm as BFt . The default value of t was 15.
4https://github.com/intel/linux-sgx#license

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 129. Publication date: June 2023.

https://github.com/intel/linux-sgx#license

129:20 Lyu Xu et al.

All BF15 Twiglet3 Path3 BF15+Twiglet3

1

10
1

10
2

10
3

10
4

Hom Ssim

#
 o

f
c
a

n
d

id
a

te
 b

a
ll
s

204

3383

185

2736

22

403

23

415

22

326

(a) Slashdot

1

10
1

10
2

10
3

10
4

Hom Ssim

#
 o

f
c
a

n
d

id
a

te
 b

a
ll
s

18

3001

9

1579

4

347

4

348

3

260

(b) DBLP

1

10
1

10
2

10
3

10
4

Hom Ssim

#
 o

f
c
a

n
d

id
a

te
 b

a
ll
s

378

5734

200

3002

43

434

43

448

41

383

(c) Twitter
Fig. 10. Average number of candidate balls for algorithms

• Twiglet pruning (Twiglet). We pruned balls using i-twiglets, 3 ≤ i ≤ h, where the hop length h
ranged from 3 to 5. We use a h value to denote Twiglet as Twigleth . The default value of h was 3.
• Path-based pruning (Path) [52]. We used the existing path-based pruning technique as the baseline
for comparison. We denote Path using a h value as Pathh .
• Number of Players. The number of Player servers is denoted by k , where k = 4, 8, or 16. The
default value of k was 4.

6.2 Overall Performance

EXP-1. Performance on the User side. User i) generates the encrypted messages for queries, ii)
decrypts the pruning messages, and iii) decrypts the ciphertext results sent from Dealer.
• Preprocessing. Given a query Q , User generated the encrypted encoding ME

Qe
of Q’s adjacency

matrix, a twiglet table T and the encrypted encodings of 2-label binary trees for each vertex of Q .
The total preprocessing time was always less than 0.25s, including i) AES256’s encryption for the
encodings of 2-label binary trees to be sent to the enclave, and ii) CGBE’s encryption for theME

Qe
,

the T s, and the value 1 to obtain a chosen ciphertext c1 used for Twiglet (Line 8 of Alg. 5).
• Decryption. User decrypted the ciphertexts returned by BF (Sec. 4.1.2), Twiglet (Alg. 5) and Prilo
(Alg. 3). The total decryption time under our experiments was always less than 0.5s only.
• Message sizes. Given query Q and h used for Twiglet, User sent to Players i) η · |VQ | encodings
of 2-label binary trees encrypted by AES256, and ii) theME

Qe
and encrypted T s which contained

|VQ |
2 and |VQ | · P

|ΣQ |−1
h−1 · C

|ΣQ |−h
2 ciphertexts encrypted by CGBE, respectively. For Playeri , where

1 ≤ i ≤ k on the SP side, Algs. 4 and 5 returned O(Ni) ciphertexts to be sent to User, where Ni is
the number of balls evaluated on Playeri . Take the queries used for Twitter in EXP-2 as an example,
the size ofME

Qe
and encrypted T s under our experimental settings were at most k × 8MB, where k

is the number of Players. The size of encodings encrypted by AES256 is smaller than 10MB. The
total size of messages sent from Players to User was no larger than 20MB only.
EXP-2. Overall runtimes of BF15 and Twiglet3. We investigate the efficiency of BF and Twiglet
under the default setting. Due to space restrictions, we report only the results when the figures
and detailed analysis are presented in App. C of [51]. BF15 took hundreds of milliseconds for hom
queries and few seconds for ssim queries, respectively. The runtimes of BF15 on all datasets increase
as the ball sizes increase. The runtimes of Twiglet3 on Slashdot and Twitter increase slightly as the
ball sizes increase when Twiglet3’s runtime on DBLP is not sensitive to the ball size.
EXP-3. Overall performance of Prilo∗. The following average results were from 10 random
queries under the default setting. In Fig. 10, All denotes the average number of candidate balls,
which can be either positive or negative. Fig. 10 reports the average number of candidate balls after
pruning negatives by each method. Although BF15 pruned fewer negatives than Twiglet3 or Path3,
BF15 helped Twiglet3 to further prune negatives, especially for ssim queries.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 129. Publication date: June 2023.

A Framework for Privacy Preserving Localized Graph PatternQuery Processing 129:21

BF15 Twiglet3 Path3 SSG RSG

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

Hom Ssim

ti
m

e
 (

s
e

c
o
n

d
s
)

0.05

3

0.08

1.5

0.11

2.3

58

11.9

492.4

48.7

(a) Slashdot

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

Hom Ssim

ti
m

e
 (

s
e

c
o
n

d
s
)

0.003

0.6

0.008

1.1

0.01

1.72.9

0.2

14.7

2.6

(b) DBLP

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

Hom Ssim

ti
m

e
 (

s
e

c
o
n

d
s
)

0.1

6.8

0.15

2.4

0.22

3.6

96.2

7.5

868.7

63.8

(c) Twitter
Fig. 11. Average runtimes of various algorithms in Prilo∗

t=5 t=15 t=25

 0

 10

 20

 30

 40

50 150
250

350
450

550
650

750

Interval width: 100

Ball size range: x±50

ti
m

e
 (

m
ill

is
e
c
o
n
d
s
)

ball size interval center x
(a) Slashdot (|ΣG |=100)

 0

 1

 2

 3

 4

5 15 25 35 45 55 65

Interval width: 10

Ball size range: x±5

ti
m

e
 (

m
ill

is
e
c
o
n
d
s
)

ball size interval center x
(b) DBLP (|ΣG |=150)

 0

 10

 20

 30

 40

50 150
250

350
450

550
650

750

Interval width: 100

Ball size range: x±50

ti
m

e
 (

m
ill

is
e
c
o
n
d
s
)

ball size interval center x
(c) Twitter (|ΣG |=100)

Fig. 12. Per-ball runtimes by varying t for BFt
In Fig. 11, we denote Steps 5 - 7 of Fig. 4 of Prilo∗ by using SSG (resp. a baseline that applies RSG

for both cases of SSG) as SSG (resp. RSG), and denote the times for Dealer to obtain the ciphertext
results of positives as their runtimes. Fig. 11 shows the average total runtimes of (i) BF15, Twiglet3,
and Path3, and (ii) SSG and RSG for both the hom and ssim queries.5 First, it can be observed that
the runtimes of BF15, Twiglet3, and Path3 are very small. We can see that the runtimes of the
pruning methods (BF15, Twiglet3, and Path3) for hom queries are much smaller than the ones for
ssim queries due to fewer candidate balls. Next, by comparing the runtimes of SSG and RSG, we
can better present the performance of the optimization in Sec. 4.3. The runtime of SSG is often
one order of magnitude smaller than the runtime of RSG. Regarding the runtime for User to start
receiving from Dealer the ciphertext results of non-spurious balls,6 the runtime of Prilo∗ equals the
sum of the runtimes of BF, Twiglet and SSG while the runtime of Prilo equals that of RSG. For
example, the average runtimes of Prilo∗ and Prilo on Twitter are 6.8 + 2.4 + 7.5 = 16.7 and 63.8,
respectively. The runtimes of Prilo∗ was either much smaller than or similar to that of Prilo, which
verified the effectiveness of Prilo∗.

6.3 Effects of Varying Settings
To investigate the performance of the algorithms, we ran them by varying one parameter at a time
while keeping the other parameters to their default values. It is known that the numbers of balls to
be evaluated vary with queries. Hence, for ease of presentation, we used boxplots to present the
runtimes.7 The following figures do not display the outliers (fewer than 1%).
EXP-1. Varying t for BFt . Fig. 12 shows that BFt ’s runtimes increase as t increases until t ’s value
reaches 15. The reason is that most ball centers of these datasets have fewer than 15 neighbors vs
of the ball center that |L(v)| ≥ 3 and hence decreasing t ’s value can hardly reduce the runtime of

5To save the runtime, the balls that obviously involve numerous candidate enumeration simply bypass the pruning.
6We omitted the evaluation on User to compute the detailed subgraphs by using the state-of-the-art LGPQ matching
algorithms [23, 24, 37] under the plaintext domain.
7In x -axis, we grouped the balls according to their sizes. Only 1% of balls were beyond the x range. The box of each interval
was drawn around the region between the first and third quartiles, and a horizontal line at the median value. The whiskers
extended from the ends of the box to the most distant point with a runtime within 1.5 times the interquartile range. Points
that lie outside the whiskers were outliers.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 129. Publication date: June 2023.

129:22 Lyu Xu et al.

BF5 BF15 BF25

1

10
1

10
2

10
3

10
4

Hom Ssim

#
 o

f
c
a
n

d
id

a
te

 b
a
ll
s

186.8

2843

184.8

2736

184.5

2728

(a) Slashdot

1

10
1

10
2

10
3

10
4

Hom Ssim

#
 o

f
c
a
n

d
id

a
te

 b
a
ll
s

9.4

1675

8.7

1579

8.7

1577

(b) DBLP

1

10
1

10
2

10
3

10
4

Hom Ssim

#
 o

f
c
a
n

d
id

a
te

 b
a
ll
s

250.5

3809

208.4

3002

206.1

2931

(c) Twitter
Fig. 13. Average number of candidate balls by varying t for BFt

h=3 h=4 h=5

 0

 5

 10

 15

 20

 25

50 150
250

350
450

550
650

750

Interval width: 100

Ball size range: x±50

ti
m

e
 (

m
ill

is
e
c
o
n
d
s
)

ball size interval center x
(a) Slashdot (|ΣG |=100)

 0

 10

 20

 30

 40

 50

5 15 25 35 45 55 65

Interval width: 10

Ball size range: x±5

ti
m

e
 (

m
ill

is
e
c
o
n
d
s
)

ball size interval center x
(b) DBLP (|ΣG |=150)

 0

 10

 20

 30

 40

 50

50 150
250

350
450

550
650

750

Interval width: 100

Ball size range: x±50

ti
m

e
 (

m
ill

is
e
c
o
n
d
s
)

ball size interval center x
(c) Twitter (|ΣG |=100)

Fig. 14. Per-ball runtimes by varying h for Twigleth
Twiglet3 Twiglet4 Twiglet5

1

10
1

10
2

10
3

10
4

Hom Ssim

#
 o

f
c
a
n
d
id

a
te

 b
a
ll
s

20.9

423

11.9

339

10.3

326

(a) Slashdot

1

10
1

10
2

10
3

10
4

Hom Ssim

#
 o

f
c
a
n
d
id

a
te

 b
a
ll
s

5.4

719

5.4

713

5.4

713

(b) DBLP

1

10
1

10
2

10
3

10
4

Hom Ssim

#
 o

f
c
a
n
d
id

a
te

 b
a
ll
s

18.5

936

11.1

829

8.5

807

(c) Twitter
Fig. 15. Average number of candidate balls by varying h for Twigleth

Ssim (k=4) Ssim (k=8) Ssim (k=16)
Hom (k=4) Hom (k=8) Hom (k=16)

 0

 15

 30

 45

 60

 75

0 0.05 0.1 0.15 0.2

s
p
e

e
d

u
p

PPCR

(a) Slashdot

 0

 20

 40

 60

 80

 100

0 0.05 0.1 0.15 0.2 0.25

s
p
e

e
d

u
p

PPCR

(b) DBLP

 0

 20

 40

 60

 80

 100

0 0.04 0.08 0.12 0.16 0.2

s
p
e

e
d

u
p

PPCR

(c) Twitter
Fig. 16. Prilo∗’s speedup by varying PPCR

BFt when t ≥ 15. From Fig. 13, we see that BFt with a larger t prunes more negatives and t = 15
reaches a balance between the efficiency and pruning power of BFt .
EXP-2. Varyingh for Twigleth . As Fig. 14 shows, the runtimes of Twigleth increase ash increases
since a larger h requires more time for DFS in Twigleth to obtain the i-twiglets, 3 ≤ i ≤ h. In
Fig. 14(b), Twigleth ’s runtimes on DBLP vary a lot for balls of small sizes. This is because the
number of twiglets enumerated for small balls varies a lot.
Fig. 15 shows that Twigleth with a larger h can prune more negatives by using more twiglets.

However, the improvement in pruning is not obvious since there are few i-twiglets where i > 3. In
practice, h = 3 demonstrates a good balance between the efficiency and the pruning power.
EXP-3. Varying k for Players. In Fig. 11, we use the runtimes of SSG and RSG to present the
efficiency of Prilo∗. As shown in Sec. 4.3, the runtime of SSG is related to the value of θ , which

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 129. Publication date: June 2023.

A Framework for Privacy Preserving Localized Graph PatternQuery Processing 129:23

Ssim (k=4) Ssim (k=8) Ssim (k=16)
Hom (k=4) Hom (k=8) Hom (k=16)

10
-1

10
0

10
1

10
2

10
3

10
4

0 0.06 0.12 0.18 0.24

ti
m

e
 (

s
e

c
o
n

d
s
)

PPCR

(a) Slashdot

10
-3

10
-2

10
-1

10
0

10
1

10
2

0 0.09 0.18 0.27 0.36

ti
m

e
 (

s
e

c
o
n

d
s
)

PPCR

(b) DBLP

10
-1

10
0

10
1

10
2

10
3

0 0.05 0.1 0.15 0.2

ti
m

e
 (

s
e

c
o
n

d
s
)

PPCR

(c) Twitter
Fig. 17. Runtimes of SSG by varying PPCR

Prilo*-Hom Prilo-Hom Prilo*-Ssim Prilo-Ssim

10
-3

10
-1

10
1

10
3

10
5

W3 W4 W5 W6 W9 W11W12W13W15W19

ti
m

e
 (

s
e
c
o
n
d
s
)

workloads
(a) Efficiency comparison

0

20

40

60

80

100

W3 W4 W5 W6 W9 W11W12W13W15W19
P

P
C

R
 (

%
)

workloads
(b) Effectiveness comparison

Fig. 18. Performance of 10 workloads derived from LDBC

depends on the pruning power of BF and Twiglet. Note that θ is also defined as the predicted
positive condition rate (PPCR), i.e., (TP + FP) / (TP + TN + FP + FN), where TP (resp. TN) denotes
true positive (resp. true negative), and FP (resp. FN) denotes false positive (resp. false negative),
respectively. Thus, we use PPCR to present the pruning powers of our proposed methods.

In Fig. 16, we use the ratio of RSG’s runtime to SSG’s runtime (i.e., Prilo∗’s speedup) as the y-axis
and PPCR as the x-axis to present Prilo∗’s improvement in efficiency when varying the number k of
Players. For presentation purpose, we cap the speedup at 100. Given large PPCRs, we can observe
that the speedup is not sensitive to k . However, for small PPCRs, the speedup decreases when k
increases. This is because the number of positives is relatively small that increasing the number of
Players cannot return the positives’ results to User earlier. In Fig. 16(b), the speedup varies a lot for
hom queries on DBLP due to the variation in Prilo∗’s runtime on few candidate balls, where there
is only 1 positive for most queries.

Fig. 17 shows the runtimes of SSG for both hom and ssim queries when k varies. We can see that
SSG’s runtime decreases when k increases. When PPCR is small, more Players cannot decrease
SSG’s runtime as there are few positives. Similar to Fig. 16(b), in Fig. 17(b), SSG’s runtimes for hom
queries on DBLP vary a lot for small PPCRs.

6.4 Experiments on LDBCWorkloads
LDBC social network dataset.8 We used the value of tag-class as the label of each vertex. The
transformed graph with scale factor 1 has 3,156,275 vertices, 10,375,137 edges and 213 labels.
Queries. To derive LGPQ queries from practical LDBC workloads [1], we made a few simplifications:
We omitted the value predicates (e.g., date and name) of vertex label, reachability queries, negations,
trivial structures (e.g., single edge), and well-known relationships (e.g., between “city” and “country”).
We obtained the structures of 10 out of 20 business intelligence workloads. Some characteristics of
the workloads are reported in App. C of [51]. For each workload pattern, we generated a query by
randomly assigning a label to each query vertex by using the tag-class of LDBC [1].
For presentation clarity, we report the efficiency and effectiveness under hom and ssim in

Figs. 18(a) and 18(b). We can see from Fig. 18(a) that, forW3,W4,W5,W9 andW12, the runtimes of

8https://ldbcouncil.org/benchmarks/snb/

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 129. Publication date: June 2023.

https://ldbcouncil.org/benchmarks/snb/

129:24 Lyu Xu et al.

Prilo∗ and Prilo are similar. This is because these queries have simple patterns (e.g., 2-hop path)
that Prilo∗ detects few spurious balls. Their PPCRs are larger than 0.5 as shown in Fig. 18(b) and
hence, Prilo∗ applies RSG, as Prilo does. ForW6 under ssim, the PPCR is slightly smaller than 0.5
but Prilo∗’s speedup is larger since the sizes of the non-spurious balls are much smaller than that
of the spurious balls. For the rest queries, Prilo∗’s speedup is obvious due to small PPCRs.

7 RELATEDWORK
Privacy preserving queries. There have been works on privacy preserving query processing
[4, 13, 30, 48, 49, 55] in recent years. For graph pattern queries, three kinds of privacy models are
studied. These models differ in the privacy target about the following structure(s).
• Query and data graph: Cao et al. [8] studied tree pattern queries on encrypted XML documents by
predetermining the traversal order for each query. Cao et al. [9] proposed a filtering and verification
method to solve the sub-iso query over encrypted graph-structured data in cloud computing. Fan
et al. [15] also studied the sub-iso query and proposed the cyclic group based encryption scheme
(CGBE) to determine only the existence of matches. They did not consider ball retrieval.
• Data graph only: By utilizing the k-automorphic graph, Chang et al. [10] and Huang et al. [21]
studied the sub-iso query semantic, while Gao et al. [17] studied the strong simulation query [37].
In this model, users’ queries are known by SP.
• Query only: By using CGBE, Fan et al. [16] only answered Yes/No to the existence of matching
subgraphs for the sub-iso query, while Xu et al. [52] studied the problem of the ssim query and only
sketched a trivial baseline for retrieving the matching subgraphs.
Secure query framework. Fully homomorphic encryption (FHE) supports both addition and
multiplication computations on encrypted messages. However, we cannot adopt FHE due to the
known poor performance [18]. Goldreich et al. [19] introduced a compiler called oblivious RAM
simulator (ORAMs). ORAMs can transform algorithms in a way that the input-output behavior of
the original algorithm is preserved by the transformed algorithm. ORAMs cannot be adopted since
the query cannot be known to SP. GraphSC [39], GraphSE2 [28] and PeGraph [47] are frameworks
for privacy preserving query on encrypted graph data, which also need the query structure for the
matching process. The trusted execution environment is a recent solution [46, 50, 56]. The security
is guaranteed by the hardware.

8 CONCLUSION
This paper proposes Prilo∗ for the problem of privacy preserving localized graph pattern query
(LGPQ) processing in a cloud computing paradigm. Prilo∗ is a general framework that can handle
subgraph isomorphism, subgraph homomorphism, and strong simulation semantics, where their query
results are localized in subgraphs called balls. Moreover, Prilo∗ presents a BF pruning technique
that exploits a trusted execution environment and a twiglet-based pruning technique under the
ciphertext domain to securely compute the pruning messages of balls of the data graph. Based on
these pruning messages, Prilo∗ proposes a ball retrieval scheme to enable User to privately retrieve
from the service provider the balls that contain results early and hence, compute the query results
early. Privacy analysis results and proof sketches are presented. The experimental results have
shown the efficiency of Prilo∗. As for future work, we plan to apply Prilo∗ to other LGPQs, such as
p-homomorphism query [42] and conditional graph pattern (CGP) query [14].

ACKNOWLEDGMENTS
This work is supported by HKRGCGRFHKBU 12201119, 12201518, 12232716, and 12202221; HKRGC
C2004-21GF; NSFC 62072132, and 92067104; NSF of China for Joint Fund Project U1936218; GD-NSF
2019B1515130001, and 2023A1515030273.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 129. Publication date: June 2023.

A Framework for Privacy Preserving Localized Graph PatternQuery Processing 129:25

REFERENCES
[1] Renzo Angles, János Benjamin Antal, Alex Averbuch, Altan Birler, Peter Boncz, Márton Búr, Orri Erling, Andrey

Gubichev, Vlad Haprian, Moritz Kaufmann, et al. 2020. The LDBC social network benchmark. arXiv (2020).
[2] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin, Christian Priebe, Joshua Lind, Divya

Muthukumaran, Dan O’keeffe, Mark Stillwell, et al. 2016. SCONE: Secure linux containers with intel SGX. In Proceedings
of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI), Vol. 16. 689–703.

[3] Maurice Bailleu, Jörg Thalheim, Pramod Bhatotia, Christof Fetzer, Michio Honda, and Kapil Vaswani. 2019. SPEICHER:
Securing LSM-based key-value stores using shielded execution. In Proceedings of the 17th USENIX Conference on File
and Storage Technologies (FAST). 173–190.

[4] Johes Bater, Yongjoo Park, Xi He, Xiao Wang, and Jennie Rogers. 2020. Saqe: practical privacy-preserving approximate
query processing for data federations. Proceedings of the VLDB Endowment (PVLDB) 13, 12 (2020), 2691–2705.

[5] Christian Behrends, Mathew E Sowa, Steven P Gygi, and J Wade Harper. 2010. Network organization of the human
autophagy system. Nature 466, 7302 (2010), 68–76.

[6] Dan Bogdanov, Sven Laur, and JanWillemson. 2008. Sharemind: A framework for fast privacy-preserving computations.
In 13th European Symposium on Research in Computer Security (ESORICS). Springer, 192–206.

[7] Angela Bonifati, Wim Martens, and Thomas Timm. 2020. An analytical study of large SPARQL query logs. The VLDB
Journal (VLDBJ) 29, 2-3 (2020), 655–679.

[8] Jianneng Cao, Fang-Yu Rao, Mehmet Kuzu, Elisa Bertino, and Murat Kantarcioglu. 2013. Efficient tree pattern queries
on encrypted xml documents. In Proceedings of the Joint EDBT/ICDT 2013 workshops (EDBT/ICDT). 111–120.

[9] Ning Cao, Zhenyu Yang, Cong Wang, Kui Ren, and Wenjing Lou. 2011. Privacy-preserving query over encrypted
graph-structured data in cloud computing. In IEEE 31st International Conference on Distributed Computing Systems
(ICDCS). 393–402.

[10] Zhao Chang, Lei Zou, and Feifei Li. 2016. Privacy preserving subgraph matching on large graphs in cloud. In Proceedings
of the 2016 International Conference on Management of Data (SIGMOD). 199–213.

[11] Stephen A Cook. 1971. The complexity of theorem-proving procedures. In Proceedings of the third annual ACM
Symposium on Theory of Computing (STOC). 151–158.

[12] Victor Costan and Srinivas Devadas. 2016. Intel SGX explained. Cryptology ePrint Archive (2016).
[13] Ningning Cui, Xiaochun Yang, Bin Wang, Jianxin Li, and Guoren Wang. 2020. SVkNN: Efficient secure and verifiable

k-nearest neighbor query on the cloud platform. In IEEE 36th International Conference on Data Engineering (ICDE).
253–264.

[14] Grace Fan, Wenfei Fan, Yuanhao Li, Ping Lu, Chao Tian, and Jingren Zhou. 2020. Extending graph patterns with
conditions. In Proceedings of the 2020 International Conference on Management of Data (SIGMOD). 715–729.

[15] Zhe Fan, Byron Choi, Qian Chen, Jianliang Xu, Haibo Hu, and Sourav S. Bhowmick. 2015. Structure-preserving
subgraph query services. IEEE Transactions on Knowledge and Data Engineering (TKDE) 27, 8 (2015), 2275–2290.

[16] Zhe Fan, Byron Choi, Jianliang Xu, and Sourav S. Bhowmick. 2015. Asymmetric structure-preserving subgraph queries
for large graphs. In IEEE 31st International Conference on Data Engineering (ICDE). 339–350.

[17] Jiuru Gao, Jiajie Xu, Guanfeng Liu, Wei Chen, Hongzhi Yin, and Lei Zhao. 2018. A privacy-preserving framework
for subgraph pattern matching in cloud. In Database Systems for Advanced Applications: 23rd International Conference
(DASFAA). 307–322.

[18] Craig Gentry and Dan Boneh. 2009. A fully homomorphic encryption scheme.
[19] Oded Goldreich and Rafail Ostrovsky. 1996. Software protection and simulation on oblivious RAMs. Journal of the

ACM (JACM) 43, 3 (1996), 431–473.
[20] Haibo Hu, Jianliang Xu, Qian Chen, and Ziwei Yang. 2012. Authenticating location-based services without com-

promising location privacy. In Proceedings of the 2012 International Conference on Management of Data (SIGMOD).
301–312.

[21] Kai Huang, Haibo Hu, Shuigeng Zhou, Jihong Guan, Qingqing Ye, and Xiaofang Zhou. 2021. Privacy and efficiency
guaranteed social subgraph matching. The VLDB Journal (VLDBJ) (2021), 1–22.

[22] Qin Jiang, Yong Qi, Saiyu Qi, Wenjia Zhao, and Youshui Lu. 2020. Pbsx: A practical private boolean search using Intel
SGX. Information Sciences 521 (2020), 174–194.

[23] Hyunjoon Kim, Yunyoung Choi, Kunsoo Park, Xuemin Lin, Seok-Hee Hong, and Wook-Shin Han. 2021. Versatile
equivalences: Speeding up subgraph query processing and subgraph matching. In Proceedings of the 2021 International
Conference on Management of Data (SIGMOD). 925–937.

[24] Hyunjoon Kim, Yunyoung Choi, Kunsoo Park, Xuemin Lin, Seok-Hee Hong, and Wook-Shin Han. 2022. Fast subgraph
query processing and subgraph matching via static and dynamic equivalences. The VLDB Journal (VLDBJ) (2022),
1–26.

[25] Hyeong-Il Kim, Hyeong-Jin Kim, and Jae-Woo Chang. 2019. A secure kNN query processing algorithm using homo-
morphic encryption on outsourced database. Data & Knowledge Engineering (DKE) 123 (2019), 101602.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 129. Publication date: June 2023.

129:26 Lyu Xu et al.

[26] Jinha Kim, Hyungyu Shin, Wook-Shin Han, Sungpack Hong, and Hassan Chafi. 2015. Taming subgraph isomorphism
for RDF query processing. Proceedings of the VLDB Endowment (PVLDB) 8, 11 (2015), 1238–1249.

[27] Daniel J Klionsky. 2008. Autophagy revisited: a conversation with Christian de Duve. Autophagy 4, 6 (2008), 740–743.
[28] Shangqi Lai, Xingliang Yuan, Shi-Feng Sun, Joseph K Liu, Yuhong Liu, and Dongxi Liu. 2019. GraphSE2: An encrypted

graph database for privacy-preserving social search. In Proceedings of the 2019 Asia Conference on Computer and
Communications Security (AsiaCCS). 41–54.

[29] Jinsoo Lee, Wook-Shin Han, Romans Kasperovics, and Jeong-Hoon Lee. 2012. An in-depth comparison of subgraph
isomorphism algorithms in graph databases. Proceedings of the VLDB Endowment (PVLDB) 6, 2 (2012), 133–144.

[30] Xinyu Lei, Alex X Liu, Rui Li, and Guan-Hua Tu. 2019. SecEQP: A secure and efficient scheme for SkNN query problem
over encrypted geodata on cloud. In IEEE 35th International Conference on Data Engineering (ICDE). 662–673.

[31] Jure Leskovec and Andrej Krevl. 2014. SNAP datasets: Stanford large network dataset collection. http://snap.stanford.
edu/data.

[32] Yin Li, Dhrubajyoti Ghosh, Peeyush Gupta, Sharad Mehrotra, Nisha Panwar, and Shantanu Sharma. 2021. Prism:
private verifiable set computation over multi-owner outsourced databases. In Proceedings of the 2021 International
Conference on Management of Data (SIGMOD). 1116–1128.

[33] Yehuda Lindell and Jonathan Katz. 2014. Introduction to modern cryptography.
[34] An Liu, Kai Zhengy, Lu Liz, Guanfeng Liu, Lei Zhao, and Xiaofang Zhou. 2015. Efficient secure similarity computation

on encrypted trajectory data. In IEEE 31st International Conference on Data Engineering (ICDE). 66–77.
[35] Jinfei Liu, Juncheng Yang, Li Xiong, and Jian Pei. 2017. Secure skyline queries on cloud platform. In IEEE 33rd

International Conference on Data Engineering (ICDE). 633–644.
[36] Rongxing Lu, Xiaodong Lin, Zhiguo Shi, and Jun Shao. 2014. PLAM: A privacy-preserving framework for local-area

mobile social networks. In 2014 IEEE International Conference on Computer Communications (INFOCOM). 763–771.
[37] Shuai Ma, Yang Cao, Wenfei Fan, Jinpeng Huai, and Tianyu Wo. 2014. Strong simulation: Capturing topology in graph

pattern matching. ACM Transactions on Database Systems (TODS) 39, 1 (2014), 1–46.
[38] Robin Milner. 1989. Communication and concurrency.
[39] Kartik Nayak, Xiao Shaun Wang, Stratis Ioannidis, Udi Weinsberg, Nina Taft, and Elaine Shi. 2015. GraphSC: Parallel

secure computation made easy. In 2015 IEEE Symposium on Security and Privacy (S&P). 377–394.
[40] Miles Ohlrich, Carl Ebeling, Eka Ginting, and Lisa Sather. 1993. Subgemini: Identifying subcircuits using a fast subgraph

isomorphism algorithm. In Proceedings of the 30th International Design Automation Conference (DAC). 31–37.
[41] Pascal Paillier. 1999. Public-key cryptosystems based on composite degree residuosity classes. In Advances in Cryp-

tology—EUROCRYPT’99: International Conference on the Theory and Application of Cryptographic Techniques Prague
(EUROCRYPT). 223–238.

[42] Yinglong Song, Huey Eng Chua, Sourav S Bhowmick, Byron Choi, and Shuigeng Zhou. 2018. BOOMER: Blending
visual formulation and processing of p-homomorphic queries on large networks. In Proceedings of the 2018 International
Conference on Management of Data (SIGMOD). 927–942.

[43] Einat Sprinzak, Shmuel Sattath, and Hanah Margalit. 2003. How reliable are experimental protein–protein interaction
data? Journal of Molecular Biology (JMB) 327, 5 (2003), 919–923.

[44] Yuanyuan Tian and Jignesh M. Patel. 2008. Tale: A tool for approximate large graph matching. In IEEE 24th International
Conference on Data Engineering (ICDE). 963–972.

[45] Julian R Ullmann. 1976. An algorithm for subgraph isomorphism. Journal of the ACM (JACM) 23, 1 (1976), 31–42.
[46] Sheng Wang, Yiran Li, Huorong Li, Feifei Li, Chengjin Tian, Le Su, Yanshan Zhang, Yubing Ma, Lie Yan, Yuanyuan

Sun, et al. 2022. Operon: an encrypted database for ownership-preserving data management. Proceedings of the VLDB
Endowment (PVLDB) 15, 12 (2022), 3332–3345.

[47] Songlei Wang, Yifeng Zheng, Xiaohua Jia, and Xun Yi. 2022. PeGraph: A system for privacy-preserving and efficient
search over encrypted social graphs. IEEE Transactions on Information Forensics and Security (TIFS) 17 (2022), 3179–3194.

[48] Songlei Wang, Yifeng Zheng, Xiaohua Jia, and Xun Yi. 2022. Privacy-preserving analytics on decentralized social
graphs: The case of eigendecomposition. IEEE Transactions on Knowledge and Data Engineering (TKDE) 1 (2022), 1–15.

[49] Songrui Wu, Qi Li, Guoliang Li, Dong Yuan, Xingliang Yuan, and Cong Wang. 2019. Servedb: Secure, verifiable, and
efficient range queries on outsourced database. In IEEE 35th International Conference on Data Engineering (ICDE).
626–637.

[50] Cheng Xu, Ce Zhang, Jianliang Xu, and Jian Pei. 2021. SlimChain: scaling blockchain transactions through off-chain
storage and parallel processing. Proceedings of the VLDB Endowment (PVLDB) 14, 11 (2021), 2314–2326.

[51] Lyu Xu, Byron Choi, Yun Peng, Jianliang Xu, and Sourav S Bhowmick. 2023. Technical report: A framework for privacy
preserving localized graph pattern query processing. https://www.comp.hkbu.edu.hk/%7Ecslyuxu/prilo2023tr.pdf.

[52] Lyu Xu, Jiaxin Jiang, Byron Choi, Jianliang Xu, and Sourav S Bhowmick. 2021. Privacy preserving strong simulation
queries on large graphs. In IEEE 37th International Conference on Data Engineering (ICDE). 1500–1511.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 129. Publication date: June 2023.

http://snap.stanford.edu/data
http://snap.stanford.edu/data
https://www.comp.hkbu.edu.hk/%7Ecslyuxu/prilo2023tr.pdf

A Framework for Privacy Preserving Localized Graph PatternQuery Processing 129:27

[53] Xifeng Yan, Philip S Yu, and Jiawei Han. 2004. Graph indexing: a frequent structure-based approach. In Proceedings of
the 2004 International Conference on Management of Data (SIGMOD). 335–346.

[54] Can Zhang, Liehuang Zhu, Chang Xu, Kashif Sharif, Chuan Zhang, and Ximeng Liu. 2020. PGAS: Privacy-preserving
graph encryption for accurate constrained shortest distance queries. Information Sciences 506 (2020), 325–345.

[55] Yandong Zheng, Rongxing Lu, Yunguo Guan, Songnian Zhang, Jun Shao, and Hui Zhu. 2022. Efficient and privacy-
preserving similarity query with access control in eHealthcare. IEEE Transactions on Information Forensics and Security
(TIFS) 17 (2022), 880–893.

[56] Wenchao Zhou, Yifan Cai, Yanqing Peng, Sheng Wang, Ke Ma, and Feifei Li. 2021. Veridb: An sgx-based verifiable
database. In Proceedings of the 2021 International Conference on Management of Data (SIGMOD). 2182–2194.

[57] Lei Zou, Lei Chen, and M Tamer Özsu. 2009. Distance-join: Pattern match query in a large graph database. Proceedings
of the VLDB Endowment (PVLDB) 2, 1 (2009), 886–897.

Received October 2022; revised January 2023; accepted February 2023

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 129. Publication date: June 2023.

	Abstract
	1 introduction
	2 Preliminaries and Background
	2.1 Notations of Graphs and Queries
	2.2 Background on Cryptosystem and Trusted Execution Environment
	2.3 Models and Problem Statement

	3 The Prilo framework
	3.1 Candidate Enumeration
	3.2 Query Verification
	3.3 Query Matching

	4 The optimized Prilo framework
	4.1 Bloom Filter of Trees in TEE (BF)
	4.2 Query-Oblivious Twiglet Pruning
	4.3 Secure Retrieval of Balls

	5 privacy analysis
	6 Experimental Evaluation
	6.1 Experimental Settings
	6.2 Overall Performance
	6.3 Effects of Varying Settings
	6.4 Experiments on LDBC Workloads

	7 related work
	8 conclusion
	Acknowledgments
	References

