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Abstract

The evolving challenges in lifesciences research
cannot be all addressed by off-the-shelf bioin-
formatics applications. Life scientists need
to analyze their data using novel or context-
sensitive approaches that might be published
in recent journals and publications, or based
on their own hypotheses and assumptions.
The genomics Research Network Architecture
(gRNA) is a highly programmable, modular
environment specially designed to invigorate
the development of genomics-centric tools for
life sciences-research. The gRNA provides the
development environment in which new appli-
cations can be quickly written, and the de-
ployment environment in which they can sys-
tematically avail of computing resources and
integrate information from distributed biolog-
ical data sources.

1 Introduction

There is an increasing impetus in using computer-
based (‘in-silico’) techniques for modeling biological
behavior based on genomic and related information.
As with most scientific research, experimental ap-
proaches in genomics are not initially validated by
or have overall consensus within the entire scien-
tific community. To scientists working on such ap-
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proaches, development of applications ought to be
possible without needing considerable expertise in
software-development. Likewise, to software engineers
participating in lifesciences research, there ought to be
clear abstractions from the biological world that can
be used as building blocks.

When developing new functionality in bioinformat-
ics, scientists need to consider the following key issues:

e Most bioinformatics research rely on a combi-
nation of a wide set of related public and pri-
vate databases [19]. These databases can con-
tain rew information referring to the sequenced
genomic code of organisms [11], or the results of
new high-throughput techniques such as microar-
rays [25], or curated databases containing care-
fully scrutinized existing research, systematically
compiled by domain experts [33]. It is useful [17]
to correlate these databases with those contain-
ing medical records [32], information on disease
[28], databases on references to literature [10],
databases containing information on the proper-
ties of chemicals and their molecular structure
[40]. Therefore, useful queries do span through
a multitude of databases in the categories men-
tioned above [27].

e Most data pertaining to genomics and molecular
biology is characterized by highly evolving, semi-
structured data [23]. Moreover, genomic data
available from public and private repositories is
voluminous [34], highly heterogeneous, and not
consistently represented. The heterogeneity re-
sults from our evolving understanding of com-
plex biological systems; the numerous disparities
in modeling biological systems across organisms,
across tissue, in different environments and over
time; and disparities across the scientific com-
munity in their understanding of these systems.



Moreover, there continues to be a lack of common
standards in the representation of biological data

[6].

e Many of the publicly available or commercial
databases are the subject of detailed, often sub-
jective licensing conditions that the developer
must take into account [16].

e Successful data management and integration is
only part of typical bioinformatics problem-
solving. Productive and extensive application de-
velopment in the field is also hindered by the
scarcity of ‘bioinformaticists’ [41] - a term used to
refer to professionals that are equally proficient in
computer programming and in one or more bio-
logical domains including genetics, molecular bi-
ology, genomics and biochemistry. A majority of
application development must be guided by the
combining the expertise of domain experts and
computer scientists as a team.

e Bioinformatics applications rely heavily on a com-
bination of basic techniques ranging from the
analysis and comparison of genomic sequences
[35], gene-expression analysis [18], analysis of
molecular structures and common statistical tech-
niques such as clustering and hidden Markov mod-
els. In terms of providing domain-specific func-
tionality, there exist such programmable frame-
works as BioJava [1], BlioCORBA [2] and the Sys-
tems Biology Workbench [14].

e Finally, considering the voluminous nature of
much of genomic data, useful implementations of
bioinformatics applications should include visual
interfaces that can help to provide multi-modal
views of the wide variety of biological data and
the results of analysis [18].

The Genomics Research Network Architecture
(gRNA) was designed and developed at HeliXense Pte
Ltd, Singapore [5] to address these challenges by as-
suming each of them as the foundational requirements
in new bioinformatics applications. It was developed
with the ideology that new genomics-centric applica-
tions and algorithms be prototyped, developed, tested
and deployed using the same hypothesis-based way of
doing research that is characteristic of the lifesciences.

The gRNA provides a development environment
and a deployment framework in which to maintain
distributed warehouses, and to model, query and in-
tegrate disparate sources of data. It also provides
the mechanisms to account for the disparities in the
nomenclature and representation of data, as well as
the semi-structured nature of most types of data. In
the same context, the architecture strives to prevent
the introduction or imposition of new biases. By pro-
viding useful domain-specific abstractions and func-
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Figure 1: gRNA Development Platform.

tionalities, and related visual interfaces, the gRNA ef-
fectively minimizes the time, cost and degree of hu-
man expertise typically required in the bioinformatics
application-development process. In this paper, we fo-
cus our discussion on the following issues:

e We discuss the overall architecture of gRNA for
developing and deploying genomics-centric appli-
cations.

e We demonstrate the viability of the system using
an application constructed using the gRNA facil-
ities.

It is worth mentioning that the key inspirations
behind the gRNA methodology have been analo-
gies in other fields that have successfully established
themselves as the standard and effective approach
to develop new functionality. These include Matlab
[8], a programmable framework to quickly develop
new mathematical models, Maya [9], a programmable
framework used for developing new functionality in
3D animation and visual effects. In both these frame-
works, important contributions to the programmable
functionality are made by independent parties, which
are then made available as programmable interfaces
referred to as plugins and toolbozxes.

The rest of the paper is organized as follows: In
Section 2, we elaborate on the architecture of the ap-
plications development platform of gRNA. We illus-
trate how to develop applications using the facilities
provided by this platform in Section 3. In Section 4,
we present the deployment environment, of the gRNA.
We discuss our work with respect to the existing work



in bioinformatics in Section 5. Finally, the last section
concludes the paper.

2 The gRNA Development Platform

The genomics Research Network Architecture com-
prises of a development platform in which to prototype
and build new applications, and a deployment environ-
ment in which to provide access to distributed comput-
ing and data resources. In this section, we discuss the
development platform in detail. In the next section,
we present the gRNA deployment environment. We
begin by giving a brief overview of the components of
the development platform and then discuss some of
these components in detail.

2.1 Overview

The development platform consists of application pro-
gramming interfaces (APIs) designed to provide ab-
stractions for and the foundational basis for new func-
tionalities in bioinformatics applications.

Figure 1 shows an architectural overview of the de-
velopment environment. The APIs are inter-related,
yet decoupled. This means that the APIs can be used,
extended and improved independently.

Three of the APIs are focused on organizing, mod-
elling and querying biological data - these are the Data
Hounds API for transporting, wrapping, storing and
indexing external databases; the Data Services API to
provide object-relational abstractions built from mul-
tiple primary sources of data; the XomatiQ API to
provide a query language to systematically query and
correlate multiple warehouses of lifesciences data.

The gRNA consists of two domain dependent APIs
— these are the Genomics API, which provides spe-
cific abstractions and functionalities from the biolog-
ical world; and the Visual Component API, which
provides multi-modal displays for displaying biologi-
cal data and visual building blocks for typical experi-
ments.

The Workflow API, independent from all the oth-
ers, is meant to be a generic, configurable engine to
pipeline a set of tasks and data into a unified process.

Within the gRNA, we refer to the following as re-
sources - computers, computing clusters, data ware-
houses, implemented Data Hounds, implemented Data
Services, toolkits and Document Type Definitions
(DTDs). Accordingly, the gRNA maintains a cen-
tralized directory of various resources, their state and
properties. A Policy API allows for the imposition
of ownership and conditions for the use of various re-
sources. This means that owners of resources are al-
lowed to assign such conditions as ‘view only’, ‘read
only’, ‘write’ and ‘execute’ to various resources, where
applicable. Owners are also allowed to embed terms
and conditions to define the basis of agreement be-
tween a third party user wanting to use resource under
the given party’s ownership.

Lastly, the System and Grid API provides access
to underlying systemic tasks such as distributed pro-
gramming and access to centralized directories of avail-
able resources.

2.2 The gRNA Data Middleware

The gRNA Data Middleware is comprised of modular
mechanisms called the Data Hounds, Data Services
and a special query mechanism called XomatiQ). Be-
cause the kernel within the middleware has been de-
signed primarily for semi-structured data management
and querying, it is portable to a wide range of applica-
tion areas that require frequent change in the schema
of underlying data. We now describe these three com-
ponents.

2.2.1 Data Hounds

Apart from the obvious advantages of performance,
flexibility and availability, warehousing biological data
has a positive impact on the privacy of the relevant
information retrieval. Users interested in informa-
tion from biological sources are typically at the mercy
of web-sites and service providers that offer public
query interfaces [43] to the data. Moreover, many
service providers have the rights to monitor and in-
spect queries formulated on their data repositories [39].
In bioinformatics domain, there is a pressing need to
prevent the service providers to predict the objective
behind the formulation of a set of biological queries
by a user. The Data Hound API enables us to ef-
ficiently warehouse data locally. It is a third-party
programmable mechanisms to facilitate the transport,
wrapping and conversion of remotely located relational
tables and flat-files into local warehouses that are con-
ducive to semi-structured data management.

Most of the publicly accessible databases of in-
terest are accessible through internet protocols such
as FTP (File Transfer Protocol) and HTTP (Hyper-
text Transfer Protocol). Typically, updates to these
databases are also provided through pre-designated
locations through the same protocols. Data Hounds
must select one of these designated modes for physi-
cally transporting data from its original source. Once
the transport of the data is complete, the gRNA Data
Middleware takes over the storage, indexing and man-
agement of the resulting warehouse.

Figure 2(a) shows the functional overview of the
Data Hound. First, the XML-transformer module
harness data (flat files, relational tables, XML data
etc.) from disparate biological sources and then con-
vert them to XML data. This involves specifying a set
of DTDs for every kind of data in the remote biological
sources, and a mapping of the attributes in this data
to elements and attributes in the DTDs. For example,
one of the commonly used sources of data is the Eu-
ropean Molecular Biology Lab’s sequence repository
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[4, 43]. This is a large repository that is made avail-
able as flat files off its FTP site. Writing the XML-
transformer module for this database involves specify-
ing a set of DTDs for the data in the flat-files and a
mapping of attributes from these flat-files to elements
and attributes in the DTD.

The second component in Figure 2(a), i.e., the
XML2Relational-transformer converts the XML data
to relational tables and store them in the Sybase
RDBMS. For example, the XML data generated from
the EMBL database is transformed to relations and
stored in the RDBMS. Note that this module is moti-
vated by recent research in the area of storing, index-
ing and querying XML data in a RDBMS environment
[31, 37, 44].

Data Hound also has the capability to update the
data in the warehouse based on the changes to the
remote sources. Once the changes have been commit-
ted to the local warehouse, the Data Hound sends out
triggers to related application indicating changes to
the warehouse.

2.2.2 Data Services

The gRNA Data Services allow us to treat warehouses
as primary sources of data and build more useful, sec-
ondary databases based on conceptual object models.
Figure 2(b) gives a functional overview of the Data
Services.

Each Data Service must derive its initial data struc-
ture from existing classes of the Genomics API. As de-
scribed in Section 2.3, the data structure of all classes
in the Genomics API is maintained externally in XML
DTDs. This makes it simple for the Data Services
to import the DTD of the selected class. Thereafter,

Data Services allow incremental additions to be made
to this DTD trivially, on an ongoing basis, without dis-
turbing the integrity of data already stored within the
Data Service. Moreover, because the DTD is mapped
to a known class-specification, Data Services make it
feasible to create and then use object instances based
on on that class in an application.

As shown in Figure 2(b), a single Data Service
is typically populated by making queries to multiple
warehouses and then mapping the results to elements
in the Data Service’s DTD.

Alternately, data can be manually entered into the
Data Services. Because of the inherent support for
evolving DTD within the Data Service, there is the
provision of adding new types of annotations trivially.
Objects created from the Data Services are also bound
to generate their own data through computational
techniques. For example, the developer can choose to
create a Human Genome Data Service, to create a con-
ceptually simple object-relational repository of human
genome sequences. The DNASequence class from the
Genomics API provides an abstraction of the DNA Se-
quence, and has numerous built-in functionalities that
allow the developer to initialize it with some DNA se-
quence data, and then perform a range of sequence
analysis and other computations. The developer there-
fore creates the Data Service based on this class. Once
that is done, the user can populate the Data Service
by performing queries on the EMBL warehouse, in-
troduced in Section 2.2.1. The user might want to
restrict entries within the new Data Service to say,
sequences shorter than a certain length. The query
on the primary EMBL warehouse would be conducted
accordingly. Thereafter, the user would typically look
for patterns that indicate the existence of gene regula-
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tory patterns in some or all of these sequences, some-
thing that is usually provided by functionalities within
member methods of the DNA Sequence. The results of
these computations can be assigned as ‘annotations’ to
the respective sequences, therefore meant to be saved
persistently. Whereas some of the annotation types
might already exist within the schema of the Data Ser-
vice, others might have to be added incrementally by
editing the DTD. The Data Service provides a number
of convenience routines to enable editing of its DTD.

Data Services also maintain a listing of known ‘con-
trolled vocabularies’ used to represent biological data
and the semantic relationship between these vocabu-
laries, known as ontologies. A mapping between equiv-
alent terms across vocabularies is also maintained.
This makes it simpler to conduct queries that dont nec-
essarly specify elements as listed within the database,
but use ‘equivalent’ terms that the end-user might be
more familiar with.

Another advantage of packaging information into
Data Services is that they can be accessed from remote
clusters, as long as the user has the necessary rights
to accessing the Data Service.

2.2.3 XomatiQ

The XML structure of the underlying data makes it
conducive to using a XML query language. The Xo-
matiQ API provides an XML-based query language to
facilitate the querying of one of more, distributed or lo-
cal warehouses managed within the gRNA. Querying
of distributed warehouses is facilitated transparently
using the underlying Data Grid facility that is intro-
duced in Section 4.2. The syntax for the XomatiQ
language is based on the W3C XQuery specification

XML Document DTD Document
Containing Instance ||Representing Clas;
Information

Root Biological primitive
“BioObject”

Derived class

New Biological Abstraction
eg. Nucleotide Sequence

Figure 4: Genomics API

[15]. The XomatiQ API extends the syntax of the
XQuery specification by making provision for simple
unstructured queries, similar to those found in web-
based search engines. The extension simply allows the
user to specify keywords that are implicitly meant to
be located close to one another in the same XML doc-
ument. This language provides all the functionalities
and components required by biologists to analyze their
data in a biological meaningful way [36]. A screenshot
of the GUI for formulating queries using XomatiQ is
given in Figure 3(a).

Figure 3(b) gives a functional overview of the query
mechanism. Once a user formulates a query us-
ing XomatiQ (XQuery-like language), it is fed to
the XQ2SQL-transformer module which rewrites the
query to corresponding one or more SQL queries.
These queries are evaluated against the warehouse
where the data is stored in relational tables. The query
results returned by the warehouse is in the form of rela-
tions. Hence, the module Relation2XML-transformer
converts the relations to corresponding XML docu-
ments and return it to the user.
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We now give a simple example of a query using Xo-
matiQ. The detailed discussion on the syntax and se-
mantics of this query language is beyond the scope of
this paper. Consider the warehoused EMBL database
as introduced in Section 2.2.1. Suppose the user wants
to lookup all records within the warehouse that have
a certain attribute ‘molecule’ set to ‘RNA’, and have
a reference to another database called SWISS-PROT
[13]. This query can be expressed by the following
XomatiQ query:

FOR $a IN
document ("hlx_embl_seq.hum")
/hlx n_sequence

WHERE (($a//n_sequence global
_parameters/@molecule = "RNA"
AND ($a//db_reference/
@db_code = "SWISS-PROT") )
RETURN ($a//db_entry)
In the case of the gRNA, the document

“hlx_embl_seq.hum” could be located on any database
that is registered within in the same Data Grid (see
Section 4.2).

Note that the query evaluation to correlate multiple
warehouses in the gRNA is supported by efficient in-
dexing mechanism. Details of the indexing mechanism
are proprietary and therefore beyond the scope of this
paper.

2.3 Genomics API

The Genomics APIs aim to provide domain spe-
cific programmable functionalities specific to the fields
of genomics, molecular biology, cytology and genet-
ics. However, the objective in still naming it the
‘Genomics’ API is to indicate the strong bent for
genomics-centric way of research that the gRNA was
designed for. The Genomics APIs contain object-
oriented abstractions of biological primitives. This in-

cludes models of physical entities such as proteins and
nucleotides; and abstract, functional entities such as
‘genes’.

Typical attempts at creating such abstractions
within the biological world tend to introduce the fol-
lowing biases — the nomenclature of elements within
each primitive; the structural organization of informa-
tion representing primitives; the inclusion of specific
elements in association with specific primitives. For
example, the scientific community may differ widely
in terms of its definition of what a ’gene’ is [29]. Some
of these differences are trivial, and have to do with
nomenclature of constituent terminology. However,
even the inclusion of specific features within the se-
quence that should constitute a gene is under contin-
uous debate and evaluation.

To minimize such bias, all classes within the Ge-
nomics APT inherit from a basic class called the BioOb-
ject (see Figure 4). The BioObject does not contain
the data structure of elements that should represent
the particular primitive. Instead, it simply links to an
external XML based DTD that stores the entire repre-
sentation. It also links to an external XML document
that stores information regarding the particular object
instance of the class. All classes derived from BioOb-
jects are accessible from a centralized directory service
called the Class Resource Manager. By maintaining a
class hierarchy using this format, the data structure
of a primitive class can be extended by simply insert-
ing elements within the existing DTD of the class, and
then making the new class point to the new DTD.
Moreover, this makes object-instances of the class con-
ducive to easy storage within the database. All persis-
tent members of a class are always maintained within
the DTD. When we need to save the object-instance
persistently, the entire XML object pointed to by the
class is saved. Individual elements within the XML-
representation are made available through simple ac-
cessor and mutator methods , that also impose strictly
object-oriented methodology in accessing data mem-
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bers of classes; Alternately, one can choose to use the
XomatiQ language to make queries within the docu-
ment.

2.4 Other Components

The other programming interfaces include the Work-
flow and Visualization APIs, the Policy API, and the
Systems and Grid API. Whereas parts of the Systems
API, such as distributed programming, are explained
in the next section, we will provide a brief overview of
the remaining subsystems here.

The Visualization APT provides access to a num-
ber of visual displays that would constitute useful in-
terfaces in typical genomics-centric applications. This
includes multi-modal interfaces for displaying large se-
quence data, interfaces for annotations and sequence
analysis, displays for showing trees (such as phyloge-
netic trees) in various formats, displays for gene ex-
pression and microarray analysis, displays for showing
XML data, displays for annotating XML tree.

The Workflow API provides an interpreted exe-
cution environment within the gRNA, and the pro-
grammable interfaces to create new classes that can
run in this environment. This makes it possible to
build an ad-hoc pipeline of tasks in a configurable man-
ner. A generic drag-and-drop graphical interface pro-
vided to the end-user enables the visual construction
of complex pipelines consisting of tasks, queries and
data-sources. The Workflow API supports iterative
and conditional operations, and performs design-time
checking of new pipelines as they are constructed by
the end-user.

3 Application Development Using

gRINA Development Platform

To prove the feasibility of developing applications us-
ing the gRNA, we demonstrate the development of
software around a technique from a publication titled
“Regulatory element detection using correlation with
expression” [21]. The paper presents a new computa-
tional method for discovering cis-regulatory elements
that circumvents the need to cluster genes, based on
their expression profiles. This is typically the sort
of technique that a bioinformaticist might want to
quickly experiment with, by applying it on his own
data sources.

The development of the application (see Figure 5)
involves the use of three gRNA APIs. The application
requires data made available from databases from the
European Molecular Lab (EMBL) [4] and data that
must be specifically licensed from Stanford Genome
Database (SGD). When we assume the task of develop-
ing this application, we must first contact Stanford to
allow us to use the data in the manner that we intend
to. In particular, we must seek permission to write a
Data Hound to specifically access data from the SGD.
Once the permission has been given, the developer uses
the Data Hound API to create a mapping between the
file-formats made available within the SGD, to a new
internal DTDs. It must also use one of several internal
transport protocols available within the Data Hound
APT to conduct the physical transport of the SGD data
into a local warehouse. Once these mechanisms have
been specified, the Data Hound can be deployed, and
will ensure that the data is managed within the gRNA
using the proprietary indexing mechanism within the
data middleware.

Next, the developer can build a data service around
the warehoused data from the SGD. This must include
using one of the existing biological models available
within the Genomics API as the basis for construct-
ing the model. In particular, we take advantage of
information regarding the physical positions of genes
within the database and map related genome sequence
information to a biological primitive type within the
Genomics API called DNASequence, which represents
DNA Sequences in general. Querying of specific genes
within the local SGD warehouse involves the use of the
XomatiQ API to conduct the queries. If we were to
avoid this ideal form of abstraction, we could skip the
step to write a data service class and directly employ
the XomatiQ API to make queries.

In this instance, we need find whether the gene ex-
ists between these two positions in the chromosome.
The query is designed to return ‘-1’ if the gene does
not, exist between the positions, otherwise, it returns
the gene closest to the end position. The objective is to
find all the end position of the genes between the given
positions, sorted by end position of genes in descend-
ing order. In this particular example, ‘chromosome’,



‘start’ and ‘end’ are variables.

FOR $b IN
document ("hlx sgd.all")
/hlx_sgd_entry

WHERE $b//@chromosomeNumber
= " + choromosome + "
AND (($b//Beginning Coordinate
<"+end+"))
AND $b//Ending Coordinate
> " + start + ")
OR ($b//Ending Coordinate
< " + end + "
AND $b//Ending Coordinate
> " + start + "))
SORT BY $b//Ending Coordinate DESC
RETURN ($b//Starting Coordinate) ;

($b//Ending Coordinate)

The development of the specialized Data Service
however ensures that the functionalities of the SGD
can be easily employed in new applications that need
not understand the intricacies of the manner of orga-
nization of data within the database.

Finally, we use the GeneFExpressionAnalyzer class
within Genomics APT to perform the actual analysis of
gene expression data. The developer can either choose
to start with raw images representing results obtained
from a microarray experiment. The Genomics API
contains classes that enable the preprocessing and pro-
cessing of raw images to extract information for the
anaylsis of gene expression. Alternately, he can di-
rectly analyze tabular forms of gene-expression data
resulted from third party microarray image-processing
applications.

4 Deployment within the gRNA

In this section, we discuss the second component of
the gRNA architecture, i.e., the deployment platform.

We believe that the simplicity of the deployment
environment makes for an important consideration in
the successful adoption of new programmable systems.

The gRNA environment operates on a clustered
computing environment consisting of multiple comput-
ers that communicate over Ethernet, that we refer to
as the gRNA Grid (see Figure 6). The typical applica-
tion written for the gRNA must therefore execute as
a multiple tier application, with parts of it executing
on the client computer, and parts executing on several
server-side, distributed computers.

Applications operate from the client’s computer by
communicating with the cluster through a single com-
puter that hosts an Enterprise Java Bean (EJB) server
as application server. This coordinating server then
identifies one or more ‘processing nodes’, which are
computers running a small footprint EJB server, to
perform the task of primarily executing the server-side
functionalities of the application.

The use of a single coordinating server is beneficial
in several ways. The cluster can decide, at the point of
initiation of the application, decide the number of com-
puters that need to be assigned for that application,
depending on availability and necessity. Moreover, the
coordinating server also maintains directories of avail-
able resources discussed in the previous section, using
an LDAP server. Because it essentially treats these
processing nodes as computing resources, it can be
configured to interface with heterogeneous hardware
as well as specialized resources such as vector comput-
ers.
The gRNA has been primarily written using the
Java programming language, with support for inter-
operability with Perl and Python scripting languages,
which are fairly popular within the bioinformatics
community. Where performance is a consideration,
functionalities can be written in C or C++ and in-
terfaced to the overall system using the Java Native
Interface (JNI).

The deployment environment takes into account the
following issues:

e Several procedures in bioinformatics can have
tremendous time and space complexity. The
gRNA addresses the limitations of localized com-
puting resources via distributed computing, and
provides a high level programming environment
to encourage the adoption of this methodology.

e The deployment environment also provides a sys-
tematic and transparent mechanism in which to
access warehouses and Data Services that are
physically distributed across multiple clusters, in
a framework referred to as the gRNA Data Grid.

e Classes developed for the gRNA should be able
to bear functionality designated to execute on the
client-side or on the server side. There should be a
simplified process to inform the gRNA as to which
functionalities should execute on which machine.

4.1 Distributed Computing within the gRNA

Distributed programming functionalities within the
system API are designed to allow a single applica-
tion to take advantage of multiple processors in the
clustered environment. This is useful in the develop-
ment of computationally intensive algorithms that are
conducive to parallelization, which is quite common
for several biological sequence analysis techniques [38].
The gRNA provides, through the System and Grid
API, routines that make it possible to perform such
parallelization using high-level interfaces similar to the
threading capabilities provides in Java and POSIX.
For the sake of simplicity, several of these functional-
ities are made compatible with the Message Passing
Interface (MPI) and Parallel Virtual Machine (PVM)
that are popular interfaces for distributed program-
ming.
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Figure 7: gRNA Data Grid Architecture.

When using these APIs, the cluster automatically
imposes restrictions that prevent a developer from us-
ing arbitrary resources that have not been currently
assigned to the current application.

4.2 The gRNA Data Grid

The gRNA Data Grid is a proprietary architecture to
facilitate the management and querying of data ware-
houses located physically across multiple clusters. The
Data Grid sits between the middleware and the actual
database core (see Figure 7), making it transparent to
the middleware as to the physical location of the data.
The Data Grid uses a host of protocols to facilitate the
transfer of data.

The Data Grid also allows for a potentially large
scale federation of networked data databases. This is
particularly beneficial in managing very large amounts
of data, because the cost of managing multi-terabyte
to petabyte sized databases can be prohibitively ex-
pensive, difficult and require the use of proprietary
solutions.

As shown in Figure 7, the use of the Data Grid is
made transparently within all data middleware APITs.
This means that a developer writing a query correlat-
ing information between warehouses located on sepa-
rate clusters, would write it as though the warehouses
were on the same cluster. The gRNA middleware stud-
ies the query and then appropriately redirects parts
of the query to databases where the related data is
hosted.

In a multi-clustered environment, specific optimiza-
tions are made within the resource allocation schemes
of the coordinating cluster that make it conducive to
applications in genomics research. For example, be-

cause many genomics-centric applications frequently
find themselves engaged in querying large data repos-
itories, the system has the provision to assign appli-
cations to clusters that physically host their data of
their interest.

4.3 Class Deployment

An important aspect of developing new classes in the
gRNA is the ease with which functionalities within
each classes can be designated to operate on the client-
side or on the server side. We briefly cover how devel-
opers can create new distributed classes, how to build
those classes, and how to create client class which can
execute method remotely on them.

Figure 8 illustrates a simple case of third-party de-
velopment in distributed gRNA system. Assume that
the developer wants to write a class called UseSequence
that extends gRNA DNASequence class, and subse-
quently wants to make calls to this class from client
side class called TestClass. Classes (UseSequence and
TestClass) in Figure 8 are the only classes written by
the developer directly.

After passing through the source code through
gRNA Source Code Generator, an additional six files
are created. Three out of the six files are to be used by
the cluster coordinating server, and are also needed to
reside in the client side, since they hold the interfaces
and helper functions for operating on the remote com-
puter. The remaining three classes, which we refer to
as Node classes are deployed in the nodes, but copies
of them also resides in the cluster coordinating server
as remote interfaces.

When client makes a function call, a ‘proxy’ object
in the cluster coordinating server immediately knows



1 package com.fictitious.test;

2

3 import hix.grna.biomodel.sequence._;
4 [

5 *@ejb : bean type="Stateful"

6 *name="UseSequence "jndi_name="com/fictious/test/UseSequence”

7 *@ejb : transaction type="Required "

8 *@ejb : transaction_type type="Container"

9 *@jboss : container_configuration name="Standard Stateful SessionBean"

10 */
11 public class UseSequence

12 extends hix.grna.biomodel.sequence.DNASequence

13 implements hix.grna.system.Server.Object

14

15 public UseSequence( )
16 // default constructor

17 //add your code here . . .
18

19

2011

21 /ladd your methods here . . .
22 **

23 *@ejb :interface_method view_type="remote "
24 %

25 public String callMe ( String in)

26 System.out.printin( " I am called by this parameter : "+in ) ;

27 return "Thanks f o r the "+in ;
28

29

30 /**

31 *@ejb : interface_method view_type="remote "

32 *@hlx : returnType type="remote"
33 %/

34 public RNASequencecreateSequence ()

35 return new RNASequence () ;

38 /**

39 *@ejb : interface_method view_type="remote"

40 *@hlx : returnType type="void"

41 ¥/

42 public void doSomething( ) {

43 System.out.println ( "Do something ") ;
44}

45

46 [**

47 *@ejb : interface_method view_type="remote"

48 *@hlx : returnType type=" remoteArray"
*

50 public RNASequence [ ] createMultipleSequence () {
51 RNASequencel[ ] seqs = new RNASequence [ 2] ;

52 for (inti=0; i<segs.length; i++) {

54

55 return segs;

56}

57

58 // default methods, do not modify ! !
59 public void ejbActivate( ) {}

60 public void e jbPassivate () {}

61 public void ejpRemove() {}

53 seqs [i] = new RNASequence () ;
}

62 public void setSessionContext ( javax.e jb.SessionContext ctx ) {}

63

Figure 8: Sample code to demonstrate automated deployment of distributed classes.

which remote object to delegate this call to. The call
is then delegated to the remote object at the node and
executed there.

In order for classes to be able to run on gRNA dis-
tributed platform, some changes need to be done on
the source code (see Figure 8). Line 4-10 are stan-
dard headers needed by the source code generator for
generating the various proxy classes mentioned above.
The name field at line 5 would be modified to reflect
the name of the class, in this case is UseSequence. The
jndi-name field at line 6 corresponds to the fully quali-
fied class name (include package name) with */’ replac-
ing the normal ‘.’. All gRNA remote object needs to
implement a pre-defined hlz.grna.system.ServerObject
interface. Alternatively they can extend one of gRNA
distributed class, such as DNASequence. In this ex-
ample the class implements ServerObject and extends
DNASequence, even though extending DNASequence
should suffice.

Line 15-18 are the default constructor. In creating
a distributed class, we enforce that there should be
one empty constructor. Additional constructor can be

added as required. Functions in line 58-62 are stan-
dard methods and should not be removed nor changed
by developer. The developer is then free to create
any methods or variables normally as in normal Java
classes. If the developer wanted to make some func-
tion remotely executable, he has to add line 23 to the
function’s javadoc comment.

The Object’s variables are not directly available to
the client at client side. The Genomics API also en-
forces this for reasons highlighted in Section 2.3. Ac-
cess object’s variables developer through accessor and
mutator methods. Line 40 needs to be added if the
function returns void. Line 32 is only added when the
return value of the function is remote class. If this
line is not added, the client gets the serialized version
of the class, which cannot be used for remote execu-
tion. In case the developer does want the function to
return the remote reference of distributed object in-
stead, then line 32 must be added to the javadoc of
the function. If the return value is an array of remote
objects, the developer must add line 48 to the javadoc
comment.



5 Related Work

There exist a number of systems that provide modular
and configurable mechanisms for many of the issues in
computational biology.

A number of notable systems target a key bottle-
neck within bioinformatics problem-solving, by pro-
viding systematic approaches to the issue of biological
data integration and management. DiscoveryLink [7]
from IBM follows the approach of providing config-
urable wrappers as consistent interfaces to the wide
range of remote data sources. The Sequence Re-
trieval System (SRS) [43], initially developed at the
European Biolnformatics Institute and then further
developed by Lion BioScience AG, provides a data
management and query mechanism built around sys-
tematically warehousing databases as a federation.
The Kleisli [20, 22, 42] system provides a system-
atic approach to managing and integrating external
databases, and uses a functional query language to
perform correlations across nested databases. Acedb
[30] is an open-source special purpose object-based
database designed to manage biological data.

There are a number of toolkits designed to encapsu-
late functionalities from specialized areas within com-
putational biology. Notable examples include BioJava
[1] and BioPerl [3], primarily designed for sequence
analysis; and the Phylogenetic Analysis Library (PAL)
[24]. The Ensembl initiative at the European Molec-
ular Biology Labs (EMBL) [4], and the related Dis-
tributed Annotation System (DAS) [26], are systems
that provide systemic, extensible approaches to the is-
sue of annotating genomic data.

The gRNA distinguishes itself by factoring in the
whole broad range of foundational requirements that
go into typical applications in computational biology.
It emphasizes on providing decoupled, yet inter-related
subsystems that are essentially designed with the ease
of third-party programmability as a key criteria. The
gRNA also emphasizes on the ability to easily deploy
new applications, and provides that as part of an in-
tegrative development and deployment environment.

6 Conclusions and Future Work

We have demonstrated how the gRNA provides an ef-
ficient and systematic mechanism for the development
of new genomics-centric applications. In particular, we
have demonstrated the use of a number of specialized
programmable interfaces for the systematic manage-
ment and integration of biological data. The gRNA
also represents a successful strategy for consistently
using XML for representing and querying biological
data. By providing capabilities for the imposition of
detailed policies on biological repositories, and by pro-
viding practical ways of dealing with the general lack of
standards in biological data representation, the gRNA
provides a practical backbone and an engineering ap-

proach to guide the development of genomics centric
tools, as well as large-scale projects. We see the gRNA
as a clear way to extending the ’hypothesis-based’ way
of general lifesciences research to the realm of bioin-
formatics research.
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