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ABSTRACT

Sketching is a common approach to visually query time series da-
ta. However, a recent study reported that sketching a pattern for
querying is “often ineffective on its own” in practice due to lack
of “representative objects” to facilitate bottom-up search. In this
demonstration, we present a novel data-driven sketch-based vi-
sual query interface (VQI) construction system called SENSOR to
alleviate this challenge. Given a time series dataset, SENSOR auto-
matically constructs its VQI by populating different components
from the underlying data. Specifically, it discovers and exposes a
set of representative objects in the form of VST-aware shapelets to
facilitate query formulation. Such data-driven construction has sev-
eral potential benefits such as empowering efficient top-down and
bottom-up search and portability of the interface across different
application domains and sources.

PVLDB Reference Format:

Li Yan, Nerissa Xu, Guozhong Li, Sourav S Bhowmick, Byron Choi,

and Jianliang Xu. SENSOR: Data-driven Construction of Sketch-based
Visual Query Interfaces for Time Series Data. PVLDB, 15(12): 3650 - 3653,
2022.

doi:10.14778/3554821.3554866

1 INTRODUCTION

Sketch-based visual query interfaces (VQI) [4, 7, 8, 11] for time
series data sets (e.g., stock price, ECG) and other data sets (e.g.,
census data) involving ordered sequences (collectively referred to
as data series) enable an end user to convey complex free-form and
scale-less patterns of interest freehand, which are then matched
against the underlying data to identify regions of interest using
some notion of similarity. Although these systems make query for-
mulation effortless, Lee et al. [8] observe that “sketching a pattern
for querying is often ineffective on its own. This is due to the fact
that sketching makes the assumption that users know the pattern that
they want to sketch and are able to sketch it precisely. However this
is typically not the case in practice." They reported that end users
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follow a top-down or bottom-up search paradigm for formulating
queries. The former refers to search based on user’s intuition of
how the desired pattern (i.e., query) should look like in theory (i.e.,
translating a pattern “in-the-head” to a query). The latter refers
to search when a user does not have upfront knowledge of what
to search for. She learns the key patterns that exist in the dataset
through “representative objects” to kick start queries. They observed
that during query formulation users typically prefer to combine
sketching with dragging-and-dropping a recommended pattern
onto the canvas, and then modifying it. These patterns act as repre-
sentative objects of the underlying data to facilitate search. Lee et
al. [8] reported that bottom-up processes are 40% more commonly
used than its top-down counterpart.

At first glance, it may seem that small-sized common shapes
(e.g., spike, sink, rise, drop) [5] may qualify as representative object-
s to aid query formulation. Unfortunately, these patterns are not
discriminative or specific to the underlying dataset as they occur in
many data series and end users are typically aware of these shapes.
On the other hand, representative patterns generated by zenvis-
age++ [8, 12] are specific to the underlying dataset and represent
a small number of common patterns and outliers. However, they
can often be visually complex and large in length (examples can be
seen in Fig. 2 in [8]). Consequently, they may impose significant
cognitive load on end users to visually interpret them to determine
if they are useful (in full or part) for their queries.

We observe that a large number of time series data is associated
with class labels [3] as time series classification is a popular task.
Even if a time series dataset does not have such labels, any state-of-
the-art time series clustering technique [1] can be used to generate
them first (i.e., each cluster is one class). Consequently, it opens
up the opportunity to use shapelets [13], which are discriminative
time series subsequences that are maximally representative of a
class, to serve as representative objects instead of visually complex
and large patterns such as those in zenvisage++. Specifically, an
end user may browse these shapelets to find patterns of interest,
drag-and-drop them on the Query Panel, and modify them in any
way, if necessary, to sketch a query (i.e., shapelet-at-a-time mode).

The selection of useful shapelets for display on a VQI is a chal-
lenging problem as there are numerous of them in a dataset and not
all facilitate query formulation. Manual selection is prohibitively
expensive as it demands a comprehensive knowledge of different
shapes in the underlying time series data. In this demonstration, we
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Figure 1: Functional architecture of SENSOR.

present a novel data-driven sketch-based visual time series query
interface construction system called sENsoR (Sketch-based quEry
iNterface conStructOR) to address this challenge. Given a time
series dataset D with class labels, SENSOR automatically populates
various panels (e.g., data, patterns) of the VQI from D. Specifically,
it selects k useful shapelets (i.e., canned shapelets) for the Pattern
Panel that are discriminative, have high coverage of D, and within
user-specified ease of visual interpretation to facilitate sketching.
Observe that the recommended patterns of zenvisage++ are either
common patterns or outliers. Hence, they are not selected based on
all of these criteria. Under the hood, SENSOR extends an efficient
shapelet discovery technique [9] for selecting them.

Data-driven selection of VQI components makes SENSOR highly
portable as it can automatically construct the VQI for any appli-
cation centered around data series. Note that SENSOR focuses on
the interface for query formulation and not on query processing and
visualization of results. One may plug SENSOR on any data series to
generate the sketch-based VQI and then install it on top of a state-
of-the-art query engine (e.g., [7, 11]). Since SENSOR is independent
of any query engine, a sketched query can easily be passed to the
underlying engine for its evaluation.

2 DESIGN PHILOSOPHY

SENSOR is designed to give end users the freedom to easily and
quickly construct a VQI for any time series data to facilitate top-
down and bottom-up search without resorting to coding. Its design
is based on the following four principles:

Work with independent data sources. Our data-driven ap-
proach should be able to work with any time series data source.
sENSOR will offer sufficient benefits to developers and end users by
making sketch-based query interface generation effortless.

Focus on shapes. SENSOR focuses on shape formulation during
visual querying, which is the most challenging aspect of sketch-
based querying. Predicates on shapes (e.g., vertical position, tempo-
ral position) and values can easily be added by augmenting a Query
Panel with either menu icons (e.g., [11]) or an additional panel (e.g.,
[8, 12]), and is beyond the scope of this work.

Useful shapelets selection. It is paramount to select shapelets
that are potentially useful for facilitating top-down and bottom-up
search paradigms. Intuitively, shapelets with high coverage and
diversity are desirable as they can support a wide variety of queries.
Furthermore, accuracy of freehand sketching varies widely [7]. For
instance, complex shapelets (e.g., with many rise and drop) are
hard to replicate accurately by sketching due to bio-mechanical and
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Figure 2: Visual interface constructed by SENSOR.
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cognitive constraints on humans. A recent study [11] reported that
freehand sketches “preserve visually salient perceptual features but
often with non-uniform scale and locally distort a pattern”. However,
the more inaccurate the sketched pattern is from the desired pattern
in the dataset, the higher is the chance for the underlying query
engine to retrieve irrelevant matches [7]. Hence, it is important to
select high-coverage and discriminative shapelets that also alleviate
the challenge of sketching a shape accurately while ensuring that
end users are exposed to shapelets that are visually easy to interpret
during query formulation.

Query log-oblivious. Although query logs can provide rich
information of shapes of past queries, in practice, such information
is often not publicly available. Hence, sENSor should be able to
generate useful shapelets without demanding query logs as input.

3 SYSTEM OVERVIEW

Figure 1 depicts the architecture of SENSOR. It consists of the fol-
lowing key modules. Interested readers may refer to [9] for detailed
discussion related to some of these modules.

The GUI module. Figure 2 depicts a screenshot of the SENSOR
GUL. Panel 1 enables a user to select a time series data source D
(with class labels), specify input parameters C for the data-driven
construction, and load previously generated shapelets. Note that
the parameters enable her to customize the interface according
to her requirements. Panel 2 (Data Panel) shows the selected time
series data. A user interacts with it via zooming, panning, and nav-
igating iteratively. Panels 3 and 4 (Pattern Panel) visualize common
shapes [5] that occur in most datasets and k shapelets selected from
D, respectively. We refer to the former as common shapelets and the
latter as canned shapelets. Similar to [11], Panel 5 (Query Panel) is
used for freehand and scale-less sketching of a query. A user may
drag-and-drop shapelets to sketch a query in shapelet-at-a-time
mode. These shapelets can be modified in Panel 5 through shrink-
ing, stretching, inserting, or removing irrelevant sections. A user
may also simply sketch a query freehand.

Observe that the contents of Panels 1 and 5 are provided by a user.
On the other hand, the contents of Panels 2, 3, and 4 depend on the
data. Hence, the goal of SENSOR is to populate these three panels. In
particular, common shapelets occur in most datasets and hence are
provided as default for all. Consequently, populating Panels 2 and 3
is straightforward. In the sequel, we focus on populating Panel 4.

The time series transformer module. The raw time series
data is first transformed by PAA [6] and SAX [10], which are a part
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of a class called symbolic representations. These methods smooth
and discretize the raw data into equal-size segments and aggregate
them into a new representation. For example, consider a raw time
series with length n = 8: [0.156, 0.782, 1.551, 0.349, -0.199, -0.78,
1.058, 0.759]. Let the compression ratio be 2 and the alphabets for
symbolic representation are {A, B, C, D} (i.e., alphabet size = 4).
The compression ratio indicates that every two data points are
merged by taking their average value. Thus the PAA sequence is
of length 4 and the raw time series is converted to upto 3 decimal
places: [0.469,0.95,-0.4895,0.9085]. Each value in the PAA sequence
is mapped to one of the alphabets based on a lookup table. Thus,
the raw time series is transformed into a SAX subsequence (a.k.a
SAX word) CDBD. A sliding window method is adopted to generate
numerous SAX words.

The bloom filter-based pruning module. Bloom filters that
use 13 independent MD5 hash functions are constructed for each
class of time series to efficiently prune the same SAX words that
also exist in other classes. Such SAX words have less discriminative
power. Since bloom filters do not produce false negatives, the SAX
words of a class that do not exist in the bloom filters of other classes
are definitely not in those other classes. Figure 3 depicts the key
steps of using bloom filters BF to prune the SAX words set Q. It
assumes there are three classes - a bloom filter is generated for each
class and takes one SAX word e from Q; as the query for the other
two bloom filters generated by Q and Q3. If the SAX word only
appears in this class, then it has high discriminative power and
thus can pass through the bloom filter and is added to the candidate
set. Otherwise, the SAX word has low discriminative power (i.e.,
also present in other classes) and thus is pruned. Next, the module
realizes a non-metric distance-based pruning of similar SAX words,
which eliminates similar SAX words that exist in all classes. In this
step, similar SAX words exist in different classes are pruned. In
addition, for words in the same class, only one representative word
is kept for further processing.

The coverage-based discriminative shapelet selection mod-
ule. For each set of similar SAX words of a class, we consider its
term frequency as a weight. Then, this module creates weighted
bitmap structures of SAX words to quantify the quality of canned
shapelet candidates, which are utilized to discover a set of SAX
words that has the maximal weight and represents all instances in
each class. Specifically, a bitmap structure is constructed for each
SAX word e. The length of bitmap is the number of instances in
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Figure 4: Shapelets and visual interpretation.

the class and the initial value of each bit is set to 0. If e exists in
the sequence Tj, then the value of jth position of the bitmap is
set to 1. Thus, e.bitmap|j] indicates whether the SAX word can-
didate covers T;. The larger the number of 1s in the bitmap of e,
the more instances e covers and the better the quality of e. The
shapelet selection problem is then formalized as a weighted bitmap
cover problem, which can be reduced from the classical weighted
set cover problem. A heuristic algorithm is implemented to solve it.

The SAX-to-points transformer module. This module trans-
forms the SAX words back to their raw representations.

The VST-aware shapelet selection module. The preceding
modules select shapelets that have high coverage and are discrimi-
native. A user needs to visually inspect them in Panel 4 to determine
if a shapelet is relevant to her search. Depending on the shape of
a shapelet, this may demand different degree of cognitive efforts.
For example, consider the two shapelets in Figure 4. Shapelet 1 is
intuitively easier to visually interpret as the small bumps (up-down
turns) are not visually salient features. On the other hand, the up-
down turns in Shapelet 2 are visually salient. Hence, in order to
visually interpret it for querying, a user needs to mentally compute
and match the number of such turns and its overall shape.

This module selects k canned shapelets in Panel 4 by considering
the cognitive effort required for visual interpretation. Given the
selected shapelets in their raw time series format (i.e., output of SAX-
to-points transformer module), a user-specified VST threshold t > 0
and k, it selects k canned shapelets with normalized VST count Cs >
7 for display in Panel 4. It first counts the total number of visually
salient turns (VST) in a shapelet and then utilizes it to compute
Cs. In order to detect and compute number of turns in a shapelet,
we first need to compute the difference between consecutive data
points. Assume a simplified shapelet with only 3 data points: [t1, t2,
t3]. Consider two scenario shapes of the shapelet: the time series
data increases (resp. decreases) from t; to tp then decreases (resp.
increases) from tz to t3. Let Ay = t5 — t; and Ay = t3 — t. It is
obvious that when the product of A1 and Aj is negative, there is
a turn. Hence, we can compute the number of turns in a shapelet
of length ¢ iteratively by incrementing t; by 1 and computing the
product of adjacent As. If the product is negative, it increments the
number of turns by 1.

Not all turns are visually perceptive to humans (e.g., Shapelet
1). Furthermore, when the number of turns increases in a shapelet
of length ¢, the gaps between turns are narrower. This increases
the difficulty to visually interpret a shapelet. Hence, we only count
visually salient turns (VST) in a shapelet. Given a shapelet of length
¢, a turn is a VST if its salient ratio r is greater than or equal to a
saliency threshold o. The salient ratio is given as rs = AY /¢ where
AY is the difference in y-values of the turn. Observe that r; gives
us the flexibility to determine if minor fluctuations in a time series
data source for a specific application are important. We can simply
set o to a very low value in this case.



Lastly, it counts the number of VSTs, denoted by Vg, in each
shapelet S. Then the normalized VST count of S is given as Cs = Vg /?.
If Cs > 1, where 7 is a user-defined VST threshold, then S is selected
for display in Panel 4. Notice that 7, V5, and o can be interactively
varied by an end user to select canned shapelets with different
visual complexities.

The parameters k, o, 7, and V; are specified through the config-
uration panel in Panel 1. Observe that we take a lazy approach of
selecting canned shapelets based on VSTs. That is, we perform the
selection after the coverage-based discriminative shapelet selection.
Alternatively, an eager approach may prune the original time se-
ries based on VSTs before the transformation of raw series to SAX
words. We chose the former to facilitate end users to interactively
change 7/Vs/o to view canned shapelets with different visual com-
plexities without recomputing discriminative shapelets. The eager
approach will result in (partial) recomputation of coverage-based
discriminative shapelets as these parameters change.

The shapelet visualizer module. This module facilitates the
visualization of common and canned shapelets on the VQI. Users
can view them by scrolling the relevant panels.

4 RELATED SYSTEMS

Many studies focus on efficient and scalable processing of time
series queries, e.g., [6, 7]. SENSOR is complimentary to these efforts.
Most existing sketch-based visual querying systems, e.g., [4,7,11] do
not suggest representative patterns beyond simple shapes in a data-
driven manner. The work most germane to SENSOR is zenvisage++[8,
12], which generates representative patterns to represent common
patterns and outliers. As remarked in Section 1, these patterns can
be large and visually complex that can be hard to visually interpret.

There are several recent efforts on the data-driven construction
of VQIs for subgraph query formulation [2]. These systems expose
small subgraphs on a VQI that have high coverage and diversity,
and low cognitive load to facilitate bottom-up search. SENSOR is
inspired by this spirit of data-driven VQI construction. However,
data series and sketch-based querying are fundamentally different
from visually querying graph data.

5 DEMONSTRATION OVERVIEW

SENSOR is implemented in Java JDK 1.8. Our demonstration will
be loaded with several real time series data with varying number,
type, and length from the popular UCRArchive [3] (e.g., Coffee,
ECGFiveDays). Example queries that can be constructed using the
canned shapelets will be presented for formulation. Users can also
sketch their own ad-hoc queries. A video to illustrate the demon-
stration scenarios is available at https://youtu.be/uxF-_v70iRg. The
key objectives are to enable one to experience the followings.
Data-driven construction of VQI. Through SENSOR’s interface
(Figure 2), the audience will be able to select a time series dataset
and configure the aforementioned parameters through Panel 1 to
automatically construct the VQI containing shapelets in Panels 3 and
4 within few seconds. One will be able to interactively select different
time series datasets as well as vary the parameters to appreciate
the portable and data-driven nature of SENSOR. Note that canned
shapelets can be different for different datasets. Furthermore, by
varying 7/Vs/o, the audience can experience the trade-off between

easy and hard-to-sketch shapelets and their impact on cognitive
efforts required to interpret them.

Top-down and bottom-up sketch-based search. The audi-
ence can experience the benefits of SENSOR in sketch-based vi-
sual querying using the generated VQI. In particular, in existing
sketch-based interfaces one has to browse the underlying time se-
ries dataset to find pattern-of-interest to trigger bottom-up search
as without a clear “pattern-in-head” it is hard to initiate a meaning-
ful sketch [8]. As remarked earlier, this can be a cumbersome and
laborious endeavour. We shall demonstrate that sENsoRr alleviates
this challenge. An audience can browse the canned shapelets and
use them as representative objects to trigger bottom-up search. She
may (a) simply drag-and-drop one or more shapelets-of-interest
to the Query Panel and modify them in any way; or (b) view a
shapelet-of-interest in Panel 4 and then replicate it or a portion of it
by freehand scale-less sketching in Panel 5. Given that browsing the
canned shapelets is more efficient than browsing the underlying
time series data, through our demonstration the audience will be
able to appreciate that SENSOR not only facilitates bottom-up search
but also enables more efficient sketch-based query formulation ef-
fortlessly. Furthermore, they will able to discern that the shapelets
support more accurate sketch generation w.r.t the desired pattern,
thereby paving the way for a query engine to retrieve results that
are closer to user’s perception of similarity match.
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