On Server Provisioning for Distributed Interactive Applications

Hanying Zheng and Xueyan Tang
School of Computer Engineering
Nanyang Technological University
Singapore 639798
Email: {zhen0084, asxytang}@ntu.edu.sg

Abstract—Increasing geographical spreads of modern dis-
tributed interactive applications (DIAs) make distributed
server deployment vital for combating network latency and
improving the interactivity among participants. In this paper,
we investigate the server provisioning problem that concerns
where to place servers in DIAs. We formulate the server
provisioning problem with an objective of reducing the network
latency involved in the interaction between participants. We
prove that the problem is NP-hard under any one of the
following three scenarios that may be common in practice: (a)
the network latency does not satisfy the triangle inequality; or
(b) the choices of server locations in the network are restricted;
or (c) the number of server locations to select is limited. Then,
we propose an efficient greedy server provisioning heuristic,
analyze its approximation ratio and give a tight example.
Experiments using real Internet latency data show that our
proposed algorithm significantly outperforms traditional k-
median and k-center server placements.

I. INTRODUCTION

Benefiting from the rapid growth of Internet technologies,
an increasing number of Distributed Interactive Applications
(DIAs) are emerging to provide people with new ways
of collaboration and entertainment. In these applications,
participants dispersed at different locations interact with
each other through the network in real time. Examples of
DIAs include online gaming [1], instant messaging [2],
collaborative computer-aided design and engineering [3],
and web-based e-learning [4].

A critical Quality of Service measure in DIAs is the time
lag experienced by the participants during their interaction.
The interaction is usually carried out in the form of updates
to the application state (such as the virtual game worlds in
online gaming and the shared workspaces in collaborative
design tools). The interaction process normally involves
communicating user-initiated operations and their resultant
state updates between the participants and the servers as well
as executing the operations at the servers. Thus, the time
lag in the interaction includes the network latency in the
communication and the processing delay at the servers. The
latter is generally easier to cut than the former. In particular,
the emerging cloud computing paradigm enables customers
to rent computing resources purely on demand for hosting
their applications [5]. Although elastic computing power
supply from the clouds can largely minimize the server-

side processing delay in DIAs, the network latency remains
as a major barrier to achieving high quality interaction
experience. Excessive network latency can severely degrade
the participant’s quality of experience in DIAs [1].

Increasing geographical spreads of participants in modern

DIAs necessitate distributed server deployment to combat
network latency [6]. In this paper, we focus on reducing the
network latency involved in the interaction between partici-
pants by considering where to place servers in the network.
We formulate the server provisioning problem for DIAs as
a combinatorial optimization problem and prove that it is
NP-hard under any one of the following three scenarios that
may be common in practice: (a) the network latency does not
satisfy the triangle inequality; or (b) the choices of server
locations in the network are restricted; or (c) the number
of server locations to select is limited. We then propose
an efficient greedy heuristic for server provisioning, and
conduct a theoretical analysis of its approximation ratio.
The proposed algorithm is also experimentally evaluated
with real Internet latency data. The results show that our
algorithm significantly outperforms traditional k-median and
k-center server placements.
Related Work. The classical k-median and k-center prob-
lems are widely used to model the placement of web server
replicas in the Internet [7]-[9]. The k-median placement
aims to place a given number of k servers to minimize
the total distance (latency) from the clients to their nearest
servers, whereas the k-center placement aims to place k
servers to minimize the maximum distance (latency) from
the clients to their nearest servers. Both problems are NP-
hard [10]. A variety of heuristic approaches have been
explored for these problems [9], [11]-[13].

The k-median and k-center server placements are, how-
ever, not suited to DIAs because DIAs are fundamentally
different from web content delivery. The clients in the web
just download contents from web servers. Thus, their access
performance can be optimized by simply minimizing the
client-to-server latency. In contrast, the clients in DIAs are
engaged in mutual interactions among themselves. Each
client connects to one server through which it interacts with
all the other clients. Therefore, the interaction time between
clients must include not only the network latencies from
the clients to their connected servers but also the latencies

between their connected servers. This renders straightfor-
ward k-median or k-center formulations invalid for server
provisioning in DIAs. As shall be shown by our experiments,
aggressively reducing the client-to-server latency alone may
considerably increase the latency between the servers and
thus make the interactivity between clients far worse than
optimum. From the computability perspective, the mutual
interaction feature also makes server provisioning for DIAs
much more challenging than that for web content delivery.
With the client-to-server latency as the sole optimization
objective, placing more servers in the network can only im-
prove the web access performance. Nevertheless, deploying
more servers in DIAs does not necessarily imply shorter
network latency in the interaction between clients. We show
in this paper that the server provisioning problem for DIAs is
NP-hard even if there is no limit on the number of servers
that can be placed in the network. In a recent work, we
have investigated client assignment strategies for enhancing
the interactivity performance of DIAs given a set of servers
placed [14]. This paper complements our earlier work by
studying server provisioning for DIAs.

The rest of this paper is organized as follows. Section II
formulates the server provisioning problem and Section III
analyzes its hardness. Section IV presents the greedy server
provisioning heuristic and the theoretical analysis of its
approximation ratio. Experimental evaluations are elaborated
in Section V. Finally, Section VI concludes the paper.

II. PROBLEM FORMULATION

We model the network infrastructure underlying the DIA
as a graph G = (V, E), where V is the set of nodes and F
is the set of links. For each pair of nodes (u,v) € V xV, we
denote by d(u,v) the latency of the network path between
nodes u and v. We define d(v,v) = 0 for each node v € V.

Without loss of generality, we assume that servers can be
placed only at a particular set of nodes Z C V in the network
and refer to these nodes as candidate server locations.
Z can be defined in different ways to address different
server provisioning scenarios. For example, there are two
typical types of models for running DIAs. In the traditional
client-server model, the application state is maintained by
dedicated servers. Participants, known as clients, are respon-
sible for sending user-initiated operations to the servers for
execution and receiving the state updates from the servers.
In this case, the candidate server locations (e.g., the data
centers operated by cloud providers) are normally separate
from client locations. In the peer-to-peer model, on the other
hand, the clients are responsible for executing operations
and maintaining the application state by themselves. In this
case, to select which clients to take up the role of operation
execution, the candidate server locations Z can be modeled
as the set of clients.

Let C C V be the set of clients in the network. To
participate in the DIA, each client ¢; € C needs to connect

to one server. The clients are often autonomous in deciding
which servers to connect to. An intuitive and widely used
strategy in many applications is for the clients to connect
to their nearest servers, i.e., the servers with the shortest
network latency to them [14]-[17]. Suppose that a set of
locations S C Z are selected to place servers. For each client
¢; € C, we denote by n(c;,S) the nearest server to ¢;, i.e.,
d(ci,n(e;, S)) = mingeg d(c;, s). Then, all the operations
issued by client ¢; would be sent to n(c;, S).

The interaction between two clients ¢; and c; goes
through their connected servers. On receiving an operation
issued by ¢, its server n(c;, S) forwards the operation to
¢;’s connected server n(c;,S) if they are different. Then,
n(cj, S) executes the operation! and delivers the resultant
state update to c; to present the effect of ¢;’s operation. Thus,
the interaction process involves the paths from ¢; to n(c;, S),
from n(c;, S) to n(c;, S), and from n(c;, S) to ¢;. We refer
to the concatenation of these paths as the interaction path
from ¢; to c;. The length of the interaction path is given by
d(ci,n(ci, S)) + d(n(c;, S),n(cj, S)) + d(n(c;, S), ¢j) and
represents the network latency involved in the interaction be-
tween ¢; and c;. Note that the interaction path from a client
¢; to itself is the round trip between c; and its connected
server n(c;, S), whose length indicates the network latency
involved for ¢; to see the effect of its own operation.

We measure the interactivity performance of the DIA by
the average interaction path length between all client pairs:

% Z Z (d(civﬂ(ci,s)) + d(n(c;, S),n(c;, 9))

|C| c;,eC CJ'EC
+ d(n(cj, $).c))-

The shorter the average interaction path length, the higher
the interactivity performance of the DIA. Since the total
number of client pairs is fixed given the client set, to
minimize the average interaction path length, it is equivalent
to minimize the total interaction path length between all
client pairs. Therefore, the server provisioning problem for
DIAs is defined as follows.

Server Provisioning Problem. Given a set of clients C' and
a set of candidate server locations Z in the network, select
a set of locations S C Z to place servers for the DIA that
minimizes the total interaction path length between all client
pairs, ie.,

minimize Z Z (d(ci, n(c;, 5))
c;eC CjEC
+d(n(es, S),nles, 9)) + d(n(es, $),5)).
where n(c;, S) refers to the nearest server in S to client c;.

'In some applications such as instant messaging, operation execution
is as simple as forwarding the message typed by the user. In other
applications like online gaming, operation execution could involve more
complex computation and modification to the application state.

III. HARDNESS ANALYSIS

The server provisioning problem is trivial if (1) the
network latencies among the nodes satisfy the triangle
inequality; (2) all the nodes in the network are candidate
server locations; and (3) there is no limit on the number
of server locations to select (or more precisely, the number
of server locations selected can be as large as the number
of clients because there is certainly no need to place more
servers than the number of clients).

The triangle inequality implies that for any two clients c;
and c;, and any two servers s, and s;, we have d(c;,y 8q) +
d(sq, sp) +d(sp, ¢j) > d(ci, ¢;). Therefore, under the above
three assumptions, the optimal server provisioning solution
is to place servers at all the nodes where the clients are
located. In this way, each client connects to the server co-
located with it so that the latencies between all clients and
their nearest servers are 0. Thus, the interaction path length
between any two clients ¢; and ¢; is simply d(c;, ¢;), which
is the shortest possible.

Interestingly, if any one of the above assumptions is
relaxed, the server provisioning problem becomes NP-hard.

A. Networks without Triangle Inequality

If the network latency does not satisfy the triangle inequal-
ity,> we can show the NP-hardness of the server provisioning
problem by a polynomial reduction from the minimum set
cover problem [10]. Given a finite set P and a collection Q
of its subsets, and a positive integer k¥ < |Q|, the decision
version of the minimum set cover problem is to find out
whether QQ contains a subcollection Q' of at most k subsets
such that (Jgeqr @ = P

Consider an instance R of the minimum set cover
problem. Suppose that set P contains n elements: P =
{p1,p2,...,pn}, and collection Q contains m subsets: Q =
{Q1,Q2,...,Qm}. We construct a network G consisting
of the node set Vo U Vg, where Vi contains n nodes
Vo = {c1,¢2,...,cn}, and Vg contains k groups of nodes
Vs = Ule V?. BEach node ¢; € V¢ corresponds to an
element p; in set P. Each group V* contains m clusters
of nodes Vi = U;"Zl VJZ Each cluster Vj corresponds to a
subset @);, and contains |();| nodes that correspond to the
elements of Q;. Thus, there are a total of k- 37", Q]
nodes in V.

Among the nodes in Vg, the latency between any two
nodes in the same cluster or in different groups is set to 1.
The latency between any two nodes in different clusters of
the same group is set to L, where L > 3n?. The latency
between any two nodes in V¢ is also set to L. The latency
from a node ¢; € Vo to a node v € Vg is set to 1 if v
corresponds to element p; € P, and is set to L otherwise.
Figure 1 illustrates an example of network G, where each

2This is not uncommon as Internet routing is often based on business
policies and is not optimal in terms of network latency [18].

-
L __ ! Node cluster

(O Selected server locations

———» Direction from each client
to its nearest server

P ={p1,p2,p3,pa}, Q1 = {p1}, Q2 = {p2}, Qs = {ps,pa}
Q = {Q1,Q2,Qs}, k = 3. Set cover: Q' = {Q1,Q2,Qs}

Server provisioning solution: Vi' U V2 U V3

Figure 1. Example instances of the minimum set cover problem and the
server provisioning problem

node pair connected by a link has latency 1, and each pair
not connected by a link has latency L.

An instance 7 of the server provisioning problem in the
decision version is then defined on the constructed network
Gr as follows: Suppose that a client is located at each node
in Vo, all the nodes in the network are candidate server
locations, and there is no limit on the number of server
locations to select. Can we select a set of server locations
such that the total interaction path length between all client
pairs is bounded by B = 3n??

We first prove that if Q contains a set cover of size at
most k for instance R, there must exist a server placement
with total interaction path length bounded by B for instance
T.Let Q' = {Qu,,Quy, -+ ,Qu, } (Where 1 < [< k) be
a set cover of size not exceeding k for instance R. Then,
placing servers at all the nodes in clusters V) , V2 -+ |V,
is a valid server provisioning solution for instance 7. In fact,
since Q' is a set cover, each element p; € P is contained
in at least one subset among @Qy,, Qu,, *-, Q. Thus,
for each client ¢; € V, there exists at least one node in
V2 UV2 U---UV]} having latency 1 to ¢;. As a result, the
latencies between all the clients and their nearest servers are
1. In addition, the latency between any two servers in Va}1 U
Vﬁz u---u VTZL is 1 because they either come from the same
cluster or from different groups. Therefore, the interaction
path length between each pair of clients is bounded by 1 +
14 1 = 3. Since there are n? interaction paths in total, the
total interaction path length is bounded by 3n? = B.

Next, we prove that if a valid server placement solution
can be found for instance 7, there must exist a set cover of
size at most k for instance R. Let S C VU Vs be the set of
server locations selected in a valid solution of instance 7.
Without loss of generality, we assume that the server at each

location in .S is connected by at least one client.* Since each
client connects to its nearest server, if a server is placed at
a node in V., the client at that node should connect to this
server. Note that the latency between any two nodes in V¢
is L. If servers are placed at more than one node in V¢, the
interaction path length between the clients at these nodes
becomes L > 3n? = B. Therefore, at most one node in Vg
can be selected to place a server, i.e., |[SNVe| < 1.

If |SNVe| = 1, there is exactly one server located in Vi
and the remaining servers are all located in V. Let the server
in V¢ be located at node c,. Since the latency between any
two nodes in Vi is L, to bound the total interaction path
length by B < L, the clients in V¢ \ {¢; } should all connect
to the servers in Vg. Moreover, each of these clients must
have latency 1 to its nearest server because the latency from
a client to a server in Vg is either 1 or L. Thus, the clients
in Vo \ {c;} must connect to servers not corresponding to
element p, € P. Therefore, the latencies from c, to these
servers are L, exceeding the bound B. So, there is no valid
solution of instance 7 satisfying |[S N V| = 1.

If |[SNVe| =0, all the servers are placed in V. Similar
to the former case, since the total interaction path length
does not exceed B, each client ¢; must have latency 1 to
its nearest server. This implies that each element p; € P is
covered by the subset (); corresponding to the node cluster
of ¢;’s nearest server. Thus, Q' = {Q; | 3i,V; NS # 0} is
a set cover for P. Furthermore, to cap the total interaction
path length by B, all the servers must have latency 1 from
each other. Thus, for each group of nodes Vi, all the servers
in VN S must come from the same cluster of V*. Since
there are k groups of nodes V!, V2, ..., V¥ in Vg, we have
|Q'| < k. Therefore, Q' is a set cover of size at most k.

Hence, a set cover of size at most k can be found for
instance R if and only if there exists a server placement with
total interaction path length bounded by B for instance 7.
Thus, the server provisioning problem for networks without
the triangle inequality is NP-hard.

The above hardness analysis also leads to the following
non-approximability result.

Theorem 1. For networks without the triangle inequality,
the server provisioning problem cannot be approximated
within a factor of any polynomial-time computable function
of n unless P = NP, where n is the number of clients.

Proof: For any instance of the minimum set cover
problem, if there exists a set cover of size at most k, the total
interaction path length of an optimal server placement must
be bounded by B = 3n? in the network constructed above.
Any non-optimal server placement, however, produces a
total interaction path length greater than L. This is because
in a non-optimal placement, either a client connects to a

3The server locations not connected by any clients can simply be removed
from S.

server that has a latency L to it, or the latency between a
certain pair of servers is L. In either case, there is at least
one interaction path longer than L, so the total interaction
path length exceeds L. Similarly, if there does not exist any
set cover of size at most k in the set cover problem, the
total interaction path length of an optimal server placement
in the constructed network is also greater than L.

Assume on the contrary that there exists a polynomial-
time server provisioning algorithm with an approximation
ratio of a polynomial-time computable function «(n). For
any instance of the set cover problem, we set L = a(n)B =
3n2a(n) in the constructed network and then run the a(n)-
approximation algorithm. By checking whether the output
server placement produces a total interaction path length
within L, we can decide whether the optimal server place-
ment would have a total interaction path length within B
and thus whether there exists a set cover of size at most k.
This implies a polynomial-time algorithm for the set cover
problem, which contradicts to P # NP.

Hence, the theorem is proven. |

B. Restricted Choices of Server Locations

If not all the nodes in the network are candidate server
locations, the server provisioning problem becomes NP-hard
as well. We can again prove it by a polynomial reduction
from the minimum set cover problem.

Given an instance R of the minimum set cover problem,
we construct the same network Gz as in the previous
section, except that the node pairs that had latency L earlier
have latency 2 now to satisfy the triangle inequality. That
is, in the illustration of Figure 1, a node pair has latency 1
if they are connected by a link and has latency 2 otherwise.
Suppose that a client is located at each node in V¢, only
the nodes in Vg are candidate server locations, and there
is no limit on the number of server locations to select. An
instance) of the server provisioning problem is then defined
on network G’z by setting a bound H = 3n? — n on the
total interaction path length between all client pairs.

We first show that a set cover of size at most k for
instance R gives rise to a valid server provisioning solution
for instance Y. Again, let Q' = {Qu,, Quss > Qu}
(where 1 < [< k) be a set cover of size not exceeding
k. Then, a valid solution for instance) is to place servers
at all the nodes in clusters V., V2, -+, V] . Similar to the
argument in Section III-A, under such server placement, the
latencies between all clients and their nearest servers are 1,
and the latency between any two servers is also 1. Thus, the
interaction path from a client to itself has length 14+ 1 = 2,
and the interaction path length between two distinct clients
is bounded by 1+ 14 1 = 3. Note that there are n(n — 1)
pairs of distinct clients. Therefore, the total interaction path
length is bounded by 3n(n — 1) + 2n = 3n% —n = H.

Next, we show that a valid server provisioning solution
for instance) gives rise to a set cover of size at most k

for instance R. Let S C Vg be a set of server locations that
produces a total interaction path length not exceeding H.
Without loss of generality, assume that the server at each
location in S is connected by at least one client. Note that
each node in Vg has latency 1 to exactly one client in Vi
and has latency 2 to all the other clients. As a result, if
two distinct clients in V- connect to the same server in S,
their interaction path length is at least 1 + 2 = 3. On the
other hand, the latency between any two nodes in Vg is
at least 1. Thus, if two distinct clients connect to different
servers in S, their interaction path length is at least 1 +
1 4+ 1 = 3. Therefore, regardless of server placement, the
interaction path length between any two distinct clients is at
least 3. Since there are n(n— 1) pairs of distinct clients, this
implies that the total interaction path length from all clients
to themselves under server placement S cannot exceed H —
3n(n—1) =2n.

Since the shortest latency from each client to the nodes
in Vg is 1, it follows that the latencies from all the clients
to their nearest servers must be exactly 1. Therefore, each
element p; € P is covered by the subset (); corresponding
to the node cluster of ¢;’s nearest server. That is, Q' =
{Q; | 3,V NS # 0} is a set cover for P.

To limit the total interaction path length by H, the
interaction path length between any two distinct clients must
now be exactly 3. This implies that the latency between any
two servers in S must be 1. Thus, for each group of nodes
Vi, all the servers VN .S must come from the same cluster
of V. It follows that |Q’| < k. Therefore, Q' is a set cover
of size at most k.

In summary, there exists a set cover of size at most
k for instance R if and only if a server placement with
total interaction path length bounded by H can be found
for instance). Thus, the server provisioning problem with
restricted choices of server locations is NP-hard.

C. Limited Number of Server Locations to Select

If the DIA operator can deploy only a limited number of
servers due to budget restriction, a cap can be set on the
number of server locations to select. If the cap is less than
the number of clients, the server provisioning problem is
also NP-hard. This can be proved by a polynomial reduction
from the 3-Dimensional Matching (3DM) problem [10].
The decision version of the 3DM problem is defined as
follows: Given three disjoint sets W/, X and Y each having
k elements, and a set of triples M C W x X x Y, find out
whether M contains a 3-dimensional matching, i.e., whether
there exists a subset M’ C M such that |[M'| = k and
any two triples (wq, Tq,Yq) and (wy, Tp,yp) € M’ satisfy
Wq 7& Wy, Lq 7é xp and Ya 7& Yo-

Given an instance U/ of the 3DM problem, we construct
a network Gy, consisting of the node set Vi U V. The set
Ve contains 3k nodes, each corresponding to an element in
W UXUY of instance ¢/. The set V), contains the same

=3 M={my, ms, ma, m}
W={w,, wa, w3} Matching: M'={m;, m,, m3}
X={x], X2, X3} Server provisioning solution: v{', v5, v}’

Y={y1,y2 y3}

O Selected server locations

m=(wy, X1, y1)

1
1
W 1 v 1 E@ 1 V) 1V
mz=(W2, X2, y2) -4 '
2

mz=(w3, X, ¥3) p
>
m=(wy, x2,¥3) /} -

66 w60 ook

Figure 2. Example instances of the 3DM problem and the server
provisioning problem

2

number of nodes as the size of M in instance /. Each node
in Vs corresponds to a triple in M, and establishes links
of latency 2 to the three nodes in V¢ corresponding to its
three coordinates. For example, in Figure 2, node v}*, which
corresponds to the triple my = (wq, x2,y3), has three links
to nodes v{’, v and v¥ in V. In addition, all the nodes in
Vs are inter-connected with each other via links of latency
1. Suppose that a client is located at each node in V¢, and
all the nodes in network Gy, are candidate server locations.
An instance F of the server provisioning problem is then
defined on network G, by capping the number of server
locations to select at k and setting a bound A = 45k% — 9k
on the total interaction path length between all client pairs.
We first prove that if M contains a matching for instance
U, there must exist a server placement with total interaction
path length bounded by A for instance J. Suppose that
M’ C M is a matching. Let S be the set of k nodes in
Vs that represent the triples in M’ (for example, nodes v,
vy" and v§" in Figure 2). We construct a server placement
by selecting all the k£ nodes in S as the server locations.
Then, each client in Vi has exactly one adjacent node in
S. Thus, each client connects to the server placed at its
adjacent node in S and the latency between them is 2. Since
all the servers in S are inter-connected by links of latency 1,
and each server has exactly three adjacent clients, the total
interaction path length under placement S is given by

(2+0+2)-9k+ (2+1+2) (9k* — 9k)
=45k — 9k = A.

Next, we prove that M contains a matching for instance U
if a valid server placement solution can be found for instance
F. Consider a set S of up to k server locations in network
Gy Let b; (i > 0) be the number of clients that have latency
1 to their nearest servers in S. Since there are a total of 3k
clients and all the links incident on clients have latency 2,
we have Zi>0 b; = 3k and b; = 0. Note that there are by
servers of S located in Vo. So, the number of servers located
in V) is at most k—bg. If a client has latency 2 to its nearest
server, this server must be adjacent to the client and thus is
located in V). Since each server in V), has three adjacent

clients, we have by < 3 (k — bp). Thus, the total length of
the interaction paths from the clients to themselves is

D 2ibi=0-bo+4-by+ Y 2i-b;

i>0 i>3

4:by+6-) b (1)
i>3

=4~b2—|—6'(3]€—b2—b0)

= 18k — 2 - by — 6 - by

> 18k —2-(3-(k—1bo)) —6-by (2)

= 12k.

Y

Since all the links incident on clients have latency 2
and the clients are not adjacent to each other, the shortest
possible interaction path between two distinct clients has
length 4. Let p; (i > 4) be the number of pairs of distinct
clients whose interaction path length is ¢ under server
placement S. Since there are 3k(3k — 1) pairs of distinct
clients in total, we have) .., p; = 3k(3k — 1). If any two
distinct clients have an interaction path length of 4, there
must be a server in V) that is adjacent to both clients. Each
server in V), has three adjacent clients and can thus support
at most 3 - 2 = 6 interaction paths of length 4 between
distinct clients. Since there are at most k£ servers, we have
p4 < 6k. Therefore, the total length of the interaction paths
between distinct clients is

diepi=A-ps+d ip

>4 i>5
>4pit5) b 3)
i>5
=4-py+5-(3kBk—1) —py)
= 45k — 15k — pq4
> 45k — 15k — 6k 4)
= 45k? — 21k.

Thus, the total interaction path length is

D 2i-bi+ Y iop > 12k + 45K — 21k

i>0 i>4

= 45k% — 9k = A.

Therefore, if server placement S has a total interaction
path length bounded by A, the equality must be satisfied at
all the steps (1), (2), (3) and (4) in the above derivation.

Equality at step (3) implies that) ;. p; = 0. So, at most
one client can have latency 3 to its nearest server in 5, i.e.,
bs < 1. Equality at step (1) indicates Zi>3 b; = 0. Thus,
bg + by + bg = 3k. It follows from equality at step (2) (i.e.,
by = 3(k — bg)) that bg = 2 - by, so bs is an even number.
Therefore, bz must be 0, and by is also 0. As a result, we
have b, = 3k, i.e., the latency from each client to its nearest
server in S must be 2. Thus, all the server locations in S
are selected from node set V). Since each node in V), has

only three adjacent clients, exactly & server locations must
be selected from Vj; and these server locations cannot have
any adjacent client in common. Therefore, the k triples of
M corresponding to the k& server locations selected in V),
form a matching.

Hence, M contains a matching for instance I/ if and only
if there exists a server placement with total interaction path
length bounded by A for instance F. Thus, the server pro-
visioning problem with limited number of server locations
to select is NP-hard.

IV. GREEDY ALGORITHM

In this section, we present an efficient greedy algorithm
called GREEDY for server provisioning. The computation of
GREEDY is based simply on the network latencies between
clients and candidate server locations, which can be acquired
with existing tools like ping and King [19].

Without loss of generality, the GREEDY algorithm takes a
parameter k that indicates the cap on the number of server
locations to select. In the case where there is no limit on the
number of server locations to select, £ may simply be set
to the number of candidate server locations. The GREEDY
algorithm starts with an empty set of server locations S,
and adds to S an unselected candidate location that leads to
the maximum reduction in the total interaction path length
in each iteration. The algorithm terminates when no new
server location can be further selected to reduce the total
interaction path length or the number of server locations
selected reaches k.

Algorithm 1 shows the pseudo code of the GREEDY
algorithm. In each iteration, the algorithm evaluates each
unselected candidate location s € Z \ S and calculates the

S+ @, Decyrrent — 005
for all c € C do

nlc] < @; //nearest server to ¢
for i =1 to k do

D* « oo;

foralls € Z\ S do

for all s; € SU {s} do
als;] < 0; //number of clients connecting to s;

: D < 0; //total interaction path length when evaluating s
10: for all c € C do

WRIDNE W

11: if n[c] = @ or d(c, s) < d(c,n[c]) then

12: als] < als]+1; D+ D+2-|C|-d(c,s);

13: else

14: aln[c]] <= a[nlc]]+1; D+ D+2-|C|-d(c,n[d]);
15: D« D+ 37, csufs} 2s;esu{s} alsil - als;] - d(si; s5);
16: if D < D* then

17: D* < D; s* « s;

18: if D* > Deyrrent then

19: break; //stop if cannot further reduce interaction path length

20: S+ Su {8*}; Deurrent < D™
21: for all c € C do

22: if nfc] = @ or d(c, s*) < d(c,n[c|) then
23: n|c] < s*; /lupdate the nearest server of client ¢
24: output S;

Algorithm 1: GREEDY Server Provisioning Algorithm

total interaction path length D if s is added to S (lines 6
to 17). The candidate location that results in the minimum
value of D and the corresponding D value are recorded
in s* and D* respectively (lines 16 to 17). At the end of
each iteration, the algorithm keeps the nearest servers of all
clients under the current placement S in an array n|-] (lines
21 to 23). When evaluating a candidate server location s
in the next iteration, we can find out the nearest server of
each client ¢ by simply comparing the latency from c to
n[c] with the latency from ¢ to s (lines 11 to 14). In this
way, the efficiency of the algorithm is improved by avoiding
repeatedly comparing the latencies between each client and
all the selected server locations.

Suppose that under a server placement S, the number of
clients connecting to each server s; € S is m(s;). Then, the
total interaction path length between all client pairs can be
rewritten as

> (d(c,n(c, S)) + d(n(c, S),n(c', S))

ceCc'eC

+ d(n(c’7S),c’)>
Cl-> d(e,n(c,S)) +[C|- > d(n(c,S).c)

ceC ceC

+3 > " d(n(e,S),n(c, S))

ceCceC

2|C1) " d(e,n(c, 9))

ceC

+ D0 D milsi) - ms;)

s;€S8 s;€S

Thus, to calculate the total interaction path length resulting
from adding a candidate location s to S, the GREEDY
algorithm first counts the number of clients connecting to
each server s; € S U {s} and records it in a[s;]. Then,
the total interaction path length is calculated according to
the above formula (5) (lines 10 to 15). The computational
complexity of the total interaction path length is O(|C|+k?).
Since the number of candidate server locations to evaluate
in each iteration is capped by |Z| (where Z is the set of
candidate server locations) and there are at most & iterations,
the total time complexity of the GREEDY algorithm is
O(k|Z|(IC] + k%))

When assuming that the network latency satisfies the
triangle inequality, we can show that the above GREEDY
algorithm has an approximation ratio of 2, irrespective of
whether the choices of server locations are restricted and
the cap on the number of server locations to select (if any).

Theorem 2. For networks with the triangle inequality, the
GREEDY algorithm produces a total interaction path length
within two times of that in an optimal server placement.

Proof: Suppose that an optimal server placement selects
h server locations s, sa, - - -, and sy,. For each location s;,

denote by C; the set of clients connecting to the server at s;
under the optimal placement. It is obvious that U?Zl C; =
C, where C'is the set of all clients. According to (5), the total
interaction path length under the optimal server placement
is given by

h h
OPT =2|C| Y > dle,s;)+ Y Y |CilICild(si, s;).

j=1c€eC; i=1 j#i
If only one server is placed at a location s in the network,

all the clients would connect to that server and thus the total
interaction path length is given by

ZZ (¢,8) +d(s,s) +d(s,c)) =2|C|- chs

ceCc’'eC ceC

Suppose that s* is the first server location selected by the
GREEDY algorithm. Since the GREEDY algorithm always
selects the best known server location in each iteration,
the total interaction path length resulting from selecting s*
cannot be longer than those resulting from selecting s1, So,

, or sy, in the first iteration, i.e.,

2|C| - Zd(qs*) <2|C|- Z d(e, s1),

ceC ceC
2|C - Zd(c,s*) <2|C|- Z d(c, s2),
ceC ceC

2|C1 - Zd(c, s*) < 2|C - Zd(c,sh).

ceC ceC

and

Taking a weighted average of the interaction path lengths on
the right sides of the above inequalities, we have

1 h
2IC1 - Y dle,s%) < =k > (|ci| 2C) Y (e, si))

ceC i=1 ceC
=2. Z<|C| C;dcs)
—2. Z<|C’| (; c,si)Jr;c;de(c,si))).

By the triangle inequality, for each client ¢ € C}, we have

d(C, Si) < d(C,Sj) +d(sjasi)'

Therefore,
2‘O|) Z d(C, S*)
ceC

h
<23 (el (X dess)
i=1 ceC;
+>.> (d

(c,s5) +d(sj,s))))
j#i ceCy

h h
2. Z <|Cz(z Z d(c,sj) + Z |C;ld(s;, si)>)

j=1ceC; J#i
h h h
=2) |G Y0 D dleys) +2) Y IGHIC (s,)
i=1 j=1c€C; i=1 j#i
h h
=2C1) > dle,sy) +2) D |Gil|Cild(si,55)
j=1ceC; i=1 j#i
h h
<2(201% Y dlens) + XSG (s)
j=1ceC; i=1 j#i
= 2-0OPT.

This implies that the total interaction path length on
selecting the first server location in the GREEDY algorithm
is within two times of that in an optimal server placement.
Since the GREEDY algorithm adds a new server location
in each subsequent iteration only if it reduces the total
interaction path length, the total interaction path length
eventually produced by GREEDY must also be within two
times of the optimum. Hence, the theorem is proven. [|

The approximation ratio 2 of the GREEDY algorithm is
tight. Figure 3 presents a tight example in which the network
contains two client groups C4 = {c1,c2,¢c3} and Cp =
{c4,¢5,c6}, and an additional node g. The latency between
any two nodes in the same client group is 1. The latency
between any two nodes in different client groups is % + 30,
where § > 0. All the nodes in C'4 and Cp have latencies
149 to node g. It is easy to infer that the network satisfies the
triangle inequality when § < % Suppose that all the nodes
in the network are candidate server locations and there is no
limit on the number of server locations to select. Then, the
optimal placement is to select all the nodes in C4 U Cp as
server locations. Under this placement, each client connects
to the server co-located with it, so the total interaction path
length is OPT = Y0 Y., d(ci ;) =12- 1418+ (5 +
39) = 36 + 544. On the other hand, the first server location
selected by the GREEDY algorithm is g. This is because
placing a server at g leads to the total interaction path length
of D, = 12~Z?:1 d(ci, g) = 724724, whereas if a server is

Figure 3. The approximation ratio 2 of the GREEDY algorithm is tight.

placed at a node in C4 UC'i, the total interaction path length
is 12+ (2-1+3- (3 +36)) = 72+ 1085 > D;. In the second
iteration of the GREEDY algorithm, if a new server location
c is further selected from C' 4 UC'p, all the three clients in ¢’s
group would connect to the server at ¢ and the other three
clients remain connecting to the server at g. Therefore, the
total interaction path length becomes Dy = 12-(2-1+ 3 -
(146))+18- (14 0) = 78+ 545. When § < %, we have
D5 > D;. Thus, the GREEDY algorithm does not add any
new server location and terminates at the second iteration.
As a result, the final set of server locations selected is {g}.
When § approaches 0, the ratio between the interaction path
lengths produced by the GREEDY algorithm and the optimal

server placement is lims_,o gy = lims_o géigig =2

V. EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the pro-
posed GREEDY algorithm by using the Meridian dataset
[20], which contains the pairwise latency measurements
between 2500 nodes in the real Internet. The measurements
for some node pairs are not available in the dataset. We
discard the nodes involved in the missing measurements,
and use the complete pairwise latency matrix among the
remaining 1796 nodes as our simulated network. A client is
assumed to be located at each node in the network.

To the best of our knowledge, there is hardly any server
provisioning algorithm tuned for DIAs. For the purpose
of comparison, we also implement a k-median heuristic
[7] and a k-center heuristic [8] in our experiments. Both
heuristics work for k iterations. In each iteration, the k-
median heuristic adds a new server location that results in
the largest reduction in the total latency from the clients to
their nearest servers. Similarly, the k-center heuristic adds
a new server location that results in the lowest value of the
maximum latency from the clients to their nearest servers.

To quantify the relative performance of the algorithms,
we normalize the total interaction path lengths produced by
different algorithms by a theoretical lower bound, which is
derived as follows. Given a set Z of candidate server loca-
tions, the shortest possible interaction path length between
two clients ¢; and ¢; is given by ming, 5, cz(d(c;, sq) +
d(sq, sp) + d(sp,c;)). Therefore, the total length of interac-
tion paths between all client pairs has a lower bound of

Z Z (min (d(ci,sa)qLd(sa,sb)+d(sb,cj))). (6)

Sa,SbEZL
CiECC]‘EC @b

This bound is a super-optimum that may not be achievable
by any real server placement, because it does not enforce
each client to connect to its nearest server or even a single
server through which it interacts with all the other clients.
The total interaction path length normalized by the above
bound shall be called the normalized interactivity.

In the first experiment, we assume that all 1796 nodes in
the network are candidate server locations. Figure 4 shows

i‘; —+—k-median
P —<k-center
E —o—GREEDY
Z10
Q
£ 9
Q
E8
= 7
N 6
g 5
5 4
Z 3
2 hd
1 T T T T T T T T T T
1 20 40 60 80 100 120 140 160 180 200
Cap on the number of server locations to select

Figure 4. Normalized interactivity of different algorithms when all nodes
are candidate server locations

the performance of the three algorithms for different caps
on the number of server locations to select. Since each
client connects to its nearest server, the latencies from the
clients to their connected servers normally decrease with
increasing number of server locations selected. Thus, the k-
median and k-center heuristics always place servers up to
the cap number. However, aggressively reducing client-to-
server latencies alone may result in longer latencies between
the servers of different clients and consequently increase the
interaction path length between clients. As seen from Figure
4, the interaction path lengths of k-median and k-center
placements do not always reduce with increasing number
of server locations selected because they do not consider
inter-server latencies in server provisioning. In contrast, our
GREEDY algorithm stops selecting new server locations
when the total interaction path length cannot be further
reduced. Therefore, its interactivity performance does not
deteriorate when a larger number of server locations are al-
lowed to be selected. In our simulated network, the GREEDY
algorithm does not select additional server locations beyond
195. Figure 4 shows that the GREEDY algorithm significantly
outperforms the k-median and k-center placements.* This
implies that cutting down the client-to-server latency alone
is not very effective for improving the interactivity of DIAs.

In the second experiment, we restrict the choices of server
locations in the network. We randomly choose subsets of
1200, 600, 300, 150 and 75 nodes from the network and
execute the algorithms using these subsets as the candidate
server locations. In this experiment, no limit is set on the
number of server locations for our GREEDY algorithm to
select. We run the GREEDY algorithm until it terminates
and record the number of server locations actually selected
by GREEDY. This number is then used as the number of
server locations to select in executing k-median and k-center
placements. In this way, all the three algorithms select the
same number of server locations in the network to allow
for fair comparison. For each set size, we perform 1000

4The approximation ratio 2 of GREEDY does not apply to our simulations
because the lower bound we calculate is a super-optimum and real Internet
latency data do not necessarily satisfy the triangle inequality.

»
n

= k-median
> 41 k-center
Z35 I GREEDY
g3
g 34 — T
g l T
2 T
_@ 25 —] l
é 5l] I— : T —
z I
“ s —] -] I Ii T
1796 1200 600 300 150 75
Number of candidate server locations
Figure 5. Normalized interactivity of different algorithms for different

numbers of candidate server locations

simulation runs using 1000 different sets of candidate server
locations chosen at random. Figure 5 shows the average
performance of the algorithms together with the 90th and
10th percentile results for different numbers of candidate
server locations. Here, the total interaction path lengths
are normalized by the lower bound (6) derived using the
respective sets of candidate server locations chosen. Thus,
the results of various simulation runs are normalized by
different lower bound values. For comparison purpose, we
also include the results when there is no restriction on the
choices of server locations.’ It can be seen from Figure
5 that our GREEDY algorithm consistently results in much
better interactivity than k-median and k-center placements.
It can also be observed that the normalized interactivity
of the algorithms generally improves when the number of
candidate server locations reduces. This is because fewer
candidate server locations imply smaller search space, so
that it is more likely to hit a good solution within certain
number of attempts.

We also normalize the total interaction path lengths of
different algorithms by the lower bound (6) derived by
setting Z as all 1796 nodes in the network. In this way,
the results of all simulation runs are normalized by the
same lower bound value. Figure 6 shows the results with
such normalization. It can be seen that when the number
of candidate server locations reduces, the new normalized
interactivity increases for all the three algorithms. This is
intuitive since a smaller candidate set restricts the choices
of server locations more severely, thereby degrading the
absolute interactivity performance.

Table I reports the average running times of the algorithms
for different numbers of candidate server locations, which
are measured on a machine with Intel Xeon Quad Core
293GHz CPU and 4GB RAM. In general, the running
time of our GREEDY algorithm is on the same order of
magnitude as the k-median and k-center placements. It
is worth noting that server provisioning is often planned
on mid- to long-term basis since deploying new servers

5No percentile result is plotted in this case because the simulation is run
just once with all 1796 nodes in the network as candidate server locations.

6 | = k-median 1
k-center
2z GREEDY
Z 5 T —
51
g I 1
2 41— 1 I
o
o
= 3 b | L
E 1
g 1 1
S
Z 2 —] — —] —] —] —
1+ T T T T T]
1796 1200 600 300 150 75
Number of candidate server locations

Figure 6. Performance of different algorithms normalized by the same
lower bound value

Table I
AVERAGE RUNNING TIMES OF DIFFERENT ALGORITHMS (IN SECONDS)

candidate server locations | k-median | k-center | GREEDY
1796 16.926s 16911s | 44.991s
1200 10.551s 10.379s 17.406s
600 3.520s 3.494s 3.510s
300 0.846s 0.851s 0.944s
150 0.294s 0.320s 0.297s
75 0.144s 0.122s 0.117s

may involve amendment to hardware infrastructure or lease
agreements with third-party service providers. Therefore, the
running time of our GREEDY algorithm is very acceptable.

VI. CONCLUSION

In this paper, we have investigated the server provisioning
problem for DIAs with the objective of reducing the network
latency involved in the interaction between clients. We
have proven that this problem is NP-hard when (a) the
network latency does not satisfy the triangle inequality;
or (b) the choices of server locations in the network are
restricted; or (c) the number of server locations to select is
limited. We have presented a GREEDY heuristic algorithm
for server provisioning and conducted a theoretical analysis
of its approximation ratio. Experimental evaluations are also
conducted using real Internet latency data. The results show
that aggressively reducing the client-to-server latency alone
is not effective for improving the interactivity of DIAs.
Our proposed GREEDY algorithm substantially outperforms
traditional k-median and k-center server placements.

ACKNOWLEDGEMENT

This research is supported by Multi-plAtform Game In-
novation Centre (MAGIC) in Nanyang Technological Uni-
versity. MAGIC is funded by the Interactive Digital Media
Programme Office (IDMPO) hosted by the Media Develop-
ment Authority of Singapore.

REFERENCES

[1] M. Claypool and K. Claypool. Latency Can Kill: Precision
and Deadline in Online Games. In Proc. ACM MMSys, pages
215-222, 2010.

[2] R. B. Jennings, E. M. Nahum, D. P. Olshefski, D. Saha, Z.-Y.
Shae and C. Waters. A Study of Internet Instant Messaging
and Chat Protocols. IEEE Network, 20(4):16-21, 2006.

[3] Agustina, F. Liu, S. Xia, H. Shen and C. Sun. CoMaya:
Incorporating Advanced Collaboration Capabilities into 3D
Digital Media Design Tools. In Proc. ACM CSCW, pages
5-8, 2008.

[4] L. Ahmad, A. Boukerche, A. Al Hamidi, A. Shadid and
R. Pazzi. Web-Based e-Learning in 3D Large Scale Dis-
tributed Interactive Simulations using HLA/RTI. In Proc.
IEEE IPDPS, pages 1-4, 2008.

[5] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A.
Konwinski, G. Lee, D. Patterson, A. Rabkin, 1. Stoica and
M. Zaharia. A View of Cloud Computing. Communications
of the ACM, 53(4):50-58, 2010.

[6] F. Safaei, P. Boustead, C. D. Nguyen, J. Brun and M. Dowlat-
shahi. Latency-Driven Distribution: Infrastructure Needs of
Participatory Entertainment Applications. /[EEE Communica-
tions Magazine, 43(5):106-112, 2005.

[7] L. Qiu, V. N. Padmanabhan and G. M. Voelker. On the Place-
ment of Web Server Replicas. In Proc. IEEE INFOCOM,
pages 1587-1596, 2001.

[8] E. Cronin, S. Jamin, J. Cheng, A. R. Kurc, D. Raz and
Y. Shavitt. Constrained Mirror Placement on the Inter-
net. IEEE Journal on Selected Areas in Communications,
20(7):1369-1382, 2002.

[9] N. Laoutaris, G. Smaragdakis, K. Oikonomou, I. Stavrakakis
and A. Bestavros. Distributed Placement of Service Facilities
in Large-Scale Networks. In Proc. IEEE INFOCOM, pages
2144-2152, 2007.

[10] M.R. Garey and D. S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman
& Co., New York, NY, USA, 1979.

[11] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala
and V. Pandit. Local Search Heuristic for k-Median and
Facility Location Problems. In Proc. ACM STOC, pages 21—
29, 2001.

[12] M. Chrobak, C. Kenyon and N. Young. The Reverse Greedy
Algorithm for the Metric k-Median Problem. [Information
Processing Letters, 97(2):68-72, 2006.

[13] V. V. Vazirani. Approximation Algorithms. Springer-Verlag,
2001.

[14] L. Zhang and X. Tang. Optimizing Client Assignment for En-
hancing Interactivity in Distributed Interactive Applications.
IEEE/ACM Transactions on Networking, 20(6):1707-1720,
2012.

[15] K.-W. Lee, B.-J. Ko and S. Calo. Adaptive Server Selection
for Large Scale Interactive Online Games. Computer Net-
works, 49(1):84-102, 2005.

[16] S. D. Webb, S. Soh and W. Lau. Enhanced Mirrored Servers
for Network Games. In Proc. ACM NetGames, pages 117—
122, 2007.

[17] C. Ding, Y. Chen, T. Xu and X. Fu. CloudGPS: A Scalable
and ISP-Friendly Server Selection Scheme in Cloud Comput-
ing Environments. In Proc. IEEE/ACM IWQoS, 2012.

[18] C. Lumezanu, R. Baden, N. Spring and B. Bhattacharjee.
Triangle Inequality and Routing Policy Violations in the
Internet. In Proc. PAM, pages 45-54, 2009.

[19] K.P. Gummadi, S. Saroiu and S. D. Gribble. King: Estimating
Latency between Arbitrary Internet End Hosts. In Proc. ACM
SIGCOMM Workshop on Internet Measurement, pages 5—18,
2002.

[20] The Meridian Latency Data Set. http://www.cs.cornell.edu/
People/egs/meridian/.

