
Minimizing Cost in IaaS Clouds via Scheduled Instance Reservation

Qiushi Wang∗, Ming Ming Tan†, Xueyan Tang†, Wentong Cai†
∗Multi-plAtform Game Innovation Centre †School of Computer Science and Engineering

Nanyang Technological University, Singapore
Email: {qswang, mmtan, asxytang, aswtcai}@ntu.edu.sg

Abstract—Regular diurnal patterns are often seen in the
workloads of cloud-based online applications. This kind of
non-stationary workloads changes the processing demands
over time. To run application services with minimum costs,
the number of cloud instances can be dynamically adjusted
according to the workload variations. Recently, a new type
of scheduled instances has emerged in the Infrastructure-as-
a-Service market to facilitate such configurations. Scheduled
instances can be reserved based on a recurring schedule
and they offer price discounts. Meanwhile, cloud vendors
require minimum scheduled durations to avoid the overhead of
frequently launching and terminating cloud instances. Coupled
with traditional on-demand and reserved instances, it becomes
more complicated for users to find the optimal combination
of these three pricing options to minimize their monetary
costs. For the new scheduled instances, not only the number of
instances but also their start and stop times have to be decided.
In this paper, we develop a fast and effective strategy to solve
this problem. Based on the hourly workload distributions, we
first compute the optimal number of instances to acquire for
each pricing option. Then, we design a scheduling algorithm
to arrange the scheduled instances in compliance with the
restriction of their scheduled durations. Using the workloads
of the LOL online game and the Wikipedia Mobile service as
two case studies, the efficacy of our strategy is demonstrated.

I. INTRODUCTION

The growth of Infrastructure-as-a-Service (IaaS) is accel-
erating and attracting rapidly increasing attention. According
to a latest report [1], the worldwide public cloud services
market will grow by 17.2% to a total of $208.6 billion
in 2016. The highest growth comes from IaaS, which is
projected to grow by 42.8%. Some analysts have pointed
out that the world is shifting workloads to clouds, and IaaS
vendors may eventually replace legacy hardware vendors [2].

IaaS enables customers to acquire processing capacities
on demand to meet their time-varying computation require-
ments. In addition to high scalability and fast deployment,
the growth of IaaS is also stimulated by that monetary costs
can be saved as an outcome of public cloud adoption [3].

Normally, IaaS vendors offer diverse pricing options to
satisfy the requests of cloud users. With the changes of
market conditions, the price policy is adjusted to benefit all
market participants. Taking an IaaS market leader – Amazon
as an example, Table I lists the latest price policy of a
general-purpose Amazon EC2 instance. Comparing Table I
with an old price policy of Amazon shown in Table II [4], a

Table I
PRICING OPTIONS OF AN M4.LARGE INSTANCE (LINUX, CURRENT

GENERATION, US EAST) IN AMAZON EC2, AS OF OCT.1, 2016

Instance Type Pricing Option Upfront Hourly

m4.large

On-Demand $ 0 $ 0.12
1-Year Reserved $ 603 $ 0

Scheduled Reserved * $0 $ 0.114 a

$ 0.108 b

* The total scheduled duration should be greater than 1200
hours/year, 100 hours/month, 24 hours/week, or 4 hours/day.

a Peak hours (Monday 0:00 to Saturday 0:00) 5% off On-Demand
usage charges

b Off-Peak hours (Saturday 0:00 to Monday 0:00) 10% off On-
Demand usage charges

Table II
PRICING OF INSTANCES (LIGHT UTILIZATION, LINUX, US EAST) IN

AMAZON EC2, AS OF FEB.10, 2013

Instance Type Pricing Option Upfront Hourly

Standard Small On-Demand $ 0 $ 0.08
1-Year Reserved $ 69 $ 0.039

Standard Medium On-Demand $0 $ 0.16
1-Year Reserved $138 $ 0.078

new option of renting the instances by scheduled reservation
has emerged. The new scheduled instances enable users to
purchase capacity reservations that recur on a daily, weekly,
or monthly basis, with a specified start time and duration,
for a one-year term [5]. Figure 1 shows the web interface
for purchasing scheduled instances. This new pricing option
provides a more flexible choice for periodical workloads
that repeat on regular schedules. Besides the new scheduled
instance, the price policy for long term reservation has also
changed. Previously, users can reserve a long-term instance
(reserved instance) with an upfront fee and enjoy an hourly
usage price discount. But in the latest policy, the one-time
upfront fee has been raised and the hourly usage charge
has been cancelled. That means regardless of whether the
reserved instance is running or not, users will be charged the
same fee. These two price changes reflect that IaaS vendors
prefer regular and steady demands.

The new price policy makes it more complicated for cloud
users to purchase instances to meet their workload demands
with minimum monetary costs. Previous studies [4], [6],
[7] have shown that running the entire workload under
a single pricing option is usually not cost-effective. With
a time-varying workload, users have to decide how many
instances should be long-term reserved to optimize cost. As

Figure 1. Web interface for reserving scheduled instances

the new scheduled instance comes into the market, users can
further make use of it for regular workloads and save more
cost. For example, in the scenario of popular online games,
high workloads often come regularly in every evening. If
long-term reserved instances are purchased for the peak
workloads, a large amount of upfront fee needs to be paid,
but quite a lot of computation resources will be wasted
during low gaming times. On the other hand, completely
switching to on-demand instances may also incur excessive
cost due to their high hourly usage prices. To cope with reg-
ularly fluctuating workloads, adopting scheduled instances
can yield a better trade-off in this dilemma. However, the
existing strategies proposed for choosing between traditional
on-demand and reserved instances [6], [8], [9] cannot deal
with scheduled instances directly. As the scheduled instance
is designed particularly for a planned demand, instance
allocation strategies must be adapted to take into account
the regular workload variations.

In this paper, we propose a fast and effective strategy to
solve the cost optimization problem with the aforementioned
three pricing options. First, we decouple the cost optimiza-
tion problem into two parts. The first sub-problem is to
decide how many scheduled instances and reserved instances
should be booked respectively. For scheduled instances, the
numbers of instances to book at different hours in a day
are normally not identical when the workload shows a
strong diurnal pattern. These numbers are identified through
the hourly workload distributions. For reserved instances, a
searching method is proposed to find the optimal allocation
solution by progressively replacing scheduled/on-demand
instances with reserved instances. The second sub-problem
is to arrange the scheduled instances in compliance with the
restriction of their scheduled durations. As shown in Table I,
for each scheduled instance purchased, its running time must
be longer than 4 hours per day, etc. We propose a scheduling
algorithm to package the workload demands into scheduled
instances so that all of them are arranged to run for sufficient
time and satisfy the duration requirement.

We take two case studies: an online game League of
Legend (LOL) and the Wikipedia Mobile service. Through
an official API [10], we crawled the workload data of the

LOL game for two years. The workload data of Wikipedia
Mobile service is obtained from the statistics publicly avail-
able [11]. We analyze the workloads of these two popular
online applications. Our analysis shows that the workloads
of both applications are highly variable and the workload
variation shows a strong regular pattern which fits well with
the features of the new scheduled instance. We evaluate our
cost optimization algorithms with these two workloads.

The remainder of this paper is organized as follows.
Section II introduces the new type of scheduled instances
in detail. Section III presents our proposed algorithms to
solve the cost optimization problem. Section IV uses two
real workloads as case studies to demonstrate the efficacy
of our algorithms. We briefly survey the related work in
Section V. Finally, Section VI concludes the paper.

II. SCHEDULED INSTANCE

Before introducing the new type of scheduled instances,
we briefly review the pricing details of the traditional on-
demand and reserved instances. On-demand instances allow
users to pay for the resources based on the actual usage
time. Let pod denote the hourly price of an on-demand
instance. If an on-demand instance is run for h hours,
then its cost is pod · h. Reserved instances require users
to prepay an upfront fee Cre for a long-term commitment
(one year) and then the usage is free. So, the cost of a
reserved instance is simply the one-time upfront fee. From
the workload perspective, reserved instances better fit for
long-term stable workloads, whereas on-demand instances
better match with highly variable workloads. It is intuitive
that the optimal choice between an on-demand instance and
a reserved instance is determined by the instance utilization.
Suppose that the average utilization of an instance over one
year is α (0 ≤ α ≤ 1). Then, the cost of using an on-demand
instance is Cod = pod · α · T , where T = 24× 365 = 8760
is the number of hours in a year. If Cod < Cre or equiv-
alently α < Cre

pod·T , using an on-demand instance is more
economical. Otherwise, a reserved instance is preferred.

The new scheduled instances provide a better option
for periodical workloads that repeat regularly. We use an
example to illustrate the advantage of scheduled instances.
Consider a daily workload pattern shown in Figure 2(a),
which demands two instances from 13:00 to 16:00, and one
instance from 8:00 to 13:00 and from 16:00 to 22:00. If
no scheduled instances are available, we should purchase a
reserved instance for the long term and use an additional on-
demand instance from 13:00 to 16:00 everyday. According
to the prices shown in Table I, the total cost of one year
is 603 + 0.12 × 3 × 365 = $734.4. On the other hand,
with scheduled instances, we can reserve two scheduled
instances as shown in Figure 2(b), where the first instance
runs from 8:00 to 16:00 and the second instance runs
from 13:00 to 22:00 everyday. The total running hours
of the two instances are 17 hours. Thus, the total cost is

Figure 2. Advantage and challenge of scheduled instances

0.114 × 17 × 261 + 0.108 × 17 × 104 = $696.7 (assume
there are 261 weekdays and 104 weekend days in a year). It
can be seen that using scheduled instances is cheaper than
using traditional reserved and on-demand instances.

Finding the optimal combination of the three pricing
options to minimize cost is a challenging problem. Although
the hourly cost of a scheduled instance lies between those
of on-demand and reserved instances, we cannot simply
replace some on-demand instances in the best combination
of two traditional pricing options with scheduled instances.
In the above example, the on-demand instance in Figure
2(a) is used for only 3 hours per day, which is less than
the minimum duration required for a scheduled instance
(4 hours, see Table I). If we directly replace the on-
demand instance with a scheduled instance running for 4
hours as shown in Figure 2(c), the total cost would be
603 + 0.114× 4× 261 + 0.108× 4× 104 = $766.9, which
is even higher than using only reserved and on-demand
instances. This example shows that determining the optimal
choice of scheduled instances is not a simple problem.
To satisfy the duration requirement of scheduled instances,
the start and stop times of the two instances have to be
rearranged as shown in Figure 2(b), which also affects the
number of reserved instances to purchase. Thus, the three
pricing options should be considered as a whole in the cost
optimization.

III. COST OPTIMIZATION STRATEGY

The workloads of many online applications are known
to have diurnal patterns, e.g. online games [12], [13] and
web services [14], [15]. To take advantage of the respective
features of different pricing options, a smart strategy is
to serve stable base workloads with reserved instances, to
serve periodical workloads with scheduled instances, and to
serve the remaining abrupt peak workloads with on-demand
instances. To develop an efficient solution, we decompose
the cost optimization problem into two parts. First, we
decide the number of instances to acquire for each pricing
option, and then, we design a schedule for each scheduled
instance under its duration restriction.

A. Instance Allocation Algorithm

We start by developing an instance allocation algorithm
to find the optimal number of instances to acquire for each
pricing option, without considering the duration restriction
of scheduled instances. We address the duration restriction
later when determining the start and stop times of scheduled
instances. As introduced earlier, scheduled instances can be
reserved with repeated patterns recurring daily, weekly or
monthly. In this paper, we shall focus on reserving scheduled
instances with daily recurring patterns. Our methods can
easily be extended to reserve scheduled instances with
weekly or monthly patterns.

The instance allocation algorithm consists of two steps.
First, we identify the maximum possible numbers of sched-
uled instances needed for each hour of a day, assuming that
reserved instances are not available. Then, we progressively
replace the scheduled/on-demand instances by the reserved
instances until the total cost cannot be further reduced. This
gives the optimal combination of the three pricing options.

Since scheduled instances can only be started and stopped
on the hour, we model the computation demands of an
application by hourly workload distributions. For each hour
i of a day, let ni(x) be the residual probability distribution of
the number of instances needed for that hour. That is, ni(x)
is the probability for the number of instances needed to be at
least x in hour i. Figure 3 shows two sample distributions for
the 9th and 22nd hours of a day which are drawn from the
workload of a real online game to be introduced in Section
IV.

Given the hourly workload distributions, we can easily
determine the optimal number of scheduled instances to
acquire for that hour, assuming that reserved instances are
not available. Specifically, if the discounted price of sched-
uled instances is a fraction αs of the price of on-demand
instances, then the optimal number for that hour is given by
Bi = n−1

i (αs), where n−1
i (·) is the inverse function of ni(·),

i.e., ni(Bi) = αs.1 If more than Bi scheduled instances are
reserved for the hour, some scheduled instances would have
utilization lower than αs and thus replacing them with on-
demand instances can save cost. On the other hand, if less
than Bi scheduled instances are reserved, some on-demand
instances to acquire for that hour can have utilization higher
than αs and hence replacing them with scheduled instances
can save cost. Therefore, the optimal number of scheduled
instances to reserve is Bi. In the example of Figure 3,
suppose that αs = 95%. Then, as shown by the red
dashed lines, for the 9th hour, B9 = n−1

9 (95%) = 322
scheduled instances should be used, and for the 22nd hour,

1Amazon EC2 currently has different price discount rates on weekdays
and weekend days (Table I). In this case, we can compute an average
discount rate (with weights of 5 and 2 for weekdays and weekend days)
for the purpose of determining the optimal number of scheduled instances
to reserve.

Figure 3. Samples of hourly workload distributions

B22 = n−1
22 (95%) = 743 scheduled instances should be

used.
Note that the distributions ni(x) describe the number of

instances needed for each hour. Conceptually, if we index all
the instances and always assign the workload to the lowest-
indexed instances, then the utilization of the instances would
decrease with their indexes. So, another way to read Figure
3 is to consider each x-axis value as an instance index.
Then, each point (x, y) implies that the instance indexed
x has a utilization of y. The numbers Bi computed above
essentially provision each instance with a combination of
scheduled instances and on-demand instances. Specifically,
for the instance indexed x, in each hour i of a day, if Bi ≥ x,
a scheduled instance is acquired to serve its workload in hour
i. Otherwise, if Bi < x, an on-demand instance is acquired
to serve its workload in hour i. In the absence of reserved in-
stances, this is the best way to provision the instance indexed
x, and the total cost of the instance over one year is given
by c(x) = 365 · (

∑
i,Bi≥x αs · pod +

∑
i,Bi<x ni(x) · pod),

where pod is the hourly price of an on-demand instance, αs

is the price ratio between a scheduled instance and an on-
demand instance, and 365 is the number of days in a year.
In the example of Figure 3, consider the instance indexed
400. Since B9 = 322 < 400 and B22 = 743 > 400, an
on-demand instance is acquired to serve as instance #400
in the 9th hour and a scheduled instance is acquired to serve
as instance #400 in the 22nd hour.

Now, let us further take the reserved instances into
consideration. With the reserved instances available, each
indexed instance x can either be reserved for one year so that
no scheduled or on-demand instance needs to be acquired
to serve its workload, or be provisioned with the above
best combination of scheduled instances and on-demand
instances. To minimize cost, we should compare the costs of
these two options and choose the option with lower cost. Let
Cre be the one-time upfront fee of a reserved instance. If
c(x) > Cre, a reserved instance should be used to provision
the indexed instance x; if c(x) ≤ Cre, a combination of
scheduled instances and on-demand instances should be used

Instance Allocation Algorithm:
Input: hourly workload distributions ni(x)
Output: R - the number of reserved instances to acquire

ri - the number of scheduled instances to acquire
in each hour i

for i = 1 to 24 do
Bi = n−1

i (αs);
x = 0;
do let x = x+ 1;

compute c(x);
while c(x) ≥ Cre;
R = x− 1;
for i = 1 to 24 do

ri = max{0, Bi −R};
return R and all ri;

Figure 4. Instance allocation algorithm

to provision the indexed instance x. Thus, to find the optimal
combination of the three pricing options, we can compute
the cost of each indexed instance x based on the numbers
Bi obtained earlier and check the cost against Cre to decide
whether to convert the indexed instance x into a reserved
instance. In the case that it is converted into a reserved
instance, the number of scheduled instances (if any) to
acquire for each hour should be reduced by 1 accordingly.
Figure 4 shows the pseudo code of the instance allocation
algorithm. Since the instances have decreasing utilizations
and hence decreasing costs with their indexes, the checking
can stop once an indexed instance with cost lower than Cre

is encountered. To speed up, a binary search can also be
used to find the optimal number of reserved instances to
purchase.

B. Scheduling Algorithm

The instance allocation algorithm in the previous section
outputs a demand list r1, r2, · · · , r24 for scheduled instances
for all the hours of a day, where ri represents the number
of scheduled instances needed in hour i. In this section, we
develop an algorithm to determine a reservation schedule
of scheduled instances to meet the demands in a given list.
The main challenge is to deal with the minimum duration
requirement of scheduled instances. Recall that once a
scheduled instance is started, it has to run continuously for
a minimum duration of 4 hours. Hence, it will be desirable
to find a reservation schedule such that the entire duration
of every scheduled instance is fully utilized to serve the
demands (i.e., no part of its reservation period is left idle).
As analyzed below, this may not always be feasible.

To facilitate presentation, a scheduled instance is said
to be active from the time it is started till the time it
is stopped. Note that scheduled instances can only be
started and stopped on the hour. If an instance is started
at hour s and stopped at hour t, it is active during hours
s, s+1, s+2, · · · , t−1. A demand list is said to be feasible

Figure 5. Basic observation.

Start Hour Number of Servers Minimum Active Period
1 7 hours 1 to 4
2 3 hours 2 to 5
3 5 hours 3 to 6
4 8 hours 4 to 7
5 1 hours 5 to 8

Figure 6. An infeasible demand list

if we can reserve scheduled instances to fulfil the following
conditions:

1) once an instance is started, it can only be stopped after
at least 4 hours.

2) the number of active instances in any hour is equal to
the demand for that hour.

A feasible demand list may have multiple reservation
schedules satisfying the above two conditions. We refer
to these schedules as eligible reservation schedules. If a
demand list is not feasible, no reservation schedule exists to
meet all the demands without having any reservation period
of scheduled instances left idle.

Our solution is based on the following observation illus-
trated in Figure 5. Consider a demand list with a single
peak. That is, there exists an hour p such that the demand
is non-decreasing before p and is non-increasing after p. If
the demand list is feasible, then there must exist an eligible
reservation schedule in which no instance is stopped before
p and no instance is started after p. In order to prove this
claim, suppose that an eligible reservation schedule for the
demand list has one instance U stopped at hour t < p. Since
the demand is non-decreasing before p, the demand at hour t
is no less than that at hour t−1. If U is stopped at hour t (i.e.,
active till hour t−1), in order to fulfil the demand at hour t,
there must be at least one new instance V started at hour t.
Then, instead of stopping instance U at hour t and starting
instance V at hour t, an alternative schedule is to extend the
running time of instance U to cover the entire reservation
period of instance V . The resulting new schedule remains
eligible and has one less instance stopped before hour p. This
process can be repeated to continue reducing the instances
stopped before hour p until all such instances are eliminated.

Thus, there exists an eligible reservation schedule with no
instance stopped before hour p. Similar arguments can be
made to prove that no instance is started after hour p.

A direct implication of the above observation is as fol-
lows. For each hour t, let xt = rt − rt−1 be the difference
between the demands of hour t and the previous hour t− 1.
If a demand list is feasible, then there must exist an eligible
reservation schedule such that at any hour t, if xt > 0,
then exactly xt instances are started at hour t. Otherwise, if
xt < 0, then exactly xt instances are stopped at hour t. It
can be shown that this result applies to any demand list and
is not restricted to those with a single peak.

Recall that an instance can only be stopped after being
active for a minimum period of 4 hours. Hence, a demand
list is infeasible if at some hour t where xt < 0, there are
insufficient instances that can be stopped. This implies that
at this hour t, the number of active instances would have
to exceed the demand. Note that the number of instances
that must be active at hour t is the sum of the positive
values among xt−1, xt−2 and xt−3, i.e., the total number
of instances started in the previous 3 hours. For example,
consider the demand list shown in Figure 6. At hour 6, the
minimum possible number of active instances is x3 + x4 +
x5 = 5 + 8 + 1 = 14, while the demand at hour 6 is r6 =
13. Therefore, this demand list is infeasible. Based on this
observation, we can perform feasibility testing by checking
whether the minimum possible number of active instances
at each hour t (where xt < 0) is less than or equal to the
demand at hour t.2 If so, the demand list is feasible. If not,
then the demand list is infeasible.

If a demand list is infeasible, to take the best advantage
of scheduled instances, we are interested in finding an
approximate solution where the scheduled instances reserved
can cover the demands as much as possible. This can be
achieved by removing some of the demands so that the
resulting demand list is feasible. The removed demands will
be covered by on-demand instances. In the following, we
describe our approach.

Starting from hour t = 1, we iteratively compute the
difference xt = rt − rt−1 between the demands of two
successive hours t− 1 and t. If xt > 0, then we initiate xt
instances at hour t. If xt < 0, then we compute the minimum
possible number of active instances at hour t. If it exceeds
the demand at hour t, let d denote the exceeding amount.
To make the demands feasible, we can remove d instances
that should be active at hour t due to the minimum duration
requirement and remove the amount of demands that these
instances have covered so far (i.e., from their initiations to
hour t− 1). This will allow us to make the demands up to
hour t feasible. In order to minimize the amount of demands

2We remark that it is actually sufficient to perform this test at hours t,
t + 1 and t + 2 for all the hours t where xt < 0 and xt−1 ≥ 0. This is
because the demands at hours outside the above range will not affect the
feasibility result.

Scheduling Algorithm
Input: a demand list r1, r2, . . . , r24
Output: a list of tuples [s, t], each tuple represents a

scheduled instance to be started at hour s and
stopped at hour t

let Q be an empty queue;
let x1 = r1, add x1 copies of 1 into Q;
let t = 2;
while t ≤ 24 do

compute xt = rt − rt−1;
if xt > 0 then

add xt copies of t into Q;
if xt < 0 then

let m be the sum of positive values among xt−1,
xt−2 and xt−3;
if rt < m then

remove the last m− rt items from Q and put
them in an array T ;
for each s ∈ T do

let ri = ri − 1 for i = s, s+ 1, . . . , t− 1;
update xi = ri − ri−1 for i = t− 2, t− 1, t;

remove the first xt items from Q and put them in
an array S;
for each s ∈ S do

output tuple [s, t];
t = t+ 1;

Figure 7. Scheduling algorithm

to remove, we order all the active instances according to their
start times and remove the last d instances (i.e., those with
the latest start times). Figure 7 presents the pseudo code
of our algorithm to find a reservation schedule of scheduled
instances for a demand list. The algorithm outputs an eligible
reservation schedule if the demand list is feasible and an
approximate solution if the demand list is not feasible.

For example, we have shown that the demand list in
Figure 6 is infeasible. The exceeding amount at hour 6 is
14 − 13 = 1. Thus, we can remove one active instance at
hour 6. Among all the instances active at hour 6, the last
started one was started at hour 5. Removing this instance and
the demands it covers (i.e., one unit at hour 5) will render
the resulting demand list feasible.

Finally, we remark that the idea of our scheduling solution
is general and can be applied to minimum duration require-
ments of any length. To deal with a duration requirement of
n hours, we only need to re-define the minimum possible
number of active instances at an hour t as the total number
of instances started in the previous n− 1 hours.

IV. CASE STUDY

To demonstrate the efficacy of our cost optimization
strategy, we collect the workloads of two online applications
for case study.

A. Data Collection

The first application is a popular online game called
League Of Legend (LOL). LOL is a multi-player battle arena
video game. In this game, each session is a match consisting
of 10 players. The players form two opposing teams and they
fight in an arena.

We crawled the workload data of the LOL game in
North America. Starting from the seed data provided by an
official API [10] which includes the information of 1000
matches, we retrieved the lists of players involved in these
matches, and then the lists of matches played by all these
players. After that, we further retrieved the player lists of
the new matches obtained and the match lists of the new
players obtained. We repeated this process iteratively to get
as many matches as we could. In this way, we acquired
the information of more than 100 million matches played
by around 1 million players. Our data covers a period of
two years from 1 August 2014 to 31 July 2016. We use
the number of matches played per hour as an indicator of
workload. Figure 8 shows the number of matches played
in each hour in four sample weeks. It can be seen that the
workload exhibits a regular diurnal pattern. Daily peak loads
appear in the evening. These characteristics are shared by the
workloads of different weeks.

The second application is the Wikipedia Mobile (WikiM)
service, which includes the mobile sites for all Wikimedia
projects. We downloaded the hourly page view statistics of
WikiM for two years (1 August 2014 to 31 July 2016) [11].
We use the total size of the content returned by WikiM in
each hour as a workload indicator of WikiM servers.

Figure 9 shows the size of the content returned by WikiM
in each hour in four sample weeks. Similar to Figure 8, the
workload shown in Figure 9 also exhibits a strong diurnal
pattern. Daily peak loads appear in the daytime from late
morning to afternoon. The workload variations of WikiM
are less significant compared to those of the LOL game.
These fluctuating workloads bring a challenge for the game
provider and Wikipedia operator to provision the server
instances in a cost-effective manner.

B. Regularity

To evaluate the regularity of the workloads, we examine
the correlations between the workloads at the same hour
on different days. We use the Kullback-Leibler Divergence
(KLD) [16] as a distance metric to quantitatively measure
the similarity between workload distributions. Equation (1)
defines the KLD between two discrete probability distribu-
tions P and Q.

DKL(P‖Q) =
∑
i

P (i)log
P (i)

Q(i)
(1)

If the KLD is close to zero, P has a minor divergence
from Q. But the KLD is not symmetric as DKL(P‖Q) 6=

Figure 8. Sample LOL game workloads

Figure 9. Sample Wikipedia Mobile workloads

DKL(Q‖P). Only when DKL(Q‖P) is also close to zero,
P and Q can be considered similar to each other. To
compare the workloads in the same hour on different days,
we compute the workload distributions of the LOL game
and the WikiM service in each hour over a week based on
our workload data of two years. Since there are 24 hours per
day and 7 days per week, for each application, we obtain a
total of 24× 7 = 168 distributions from our workload data,
each with 104 samples as there are 104 weeks in two years.

Figure 10 shows four sample residual probability distri-
butions of the LOL workload for the 9th and 22nd hours
on Tuesday and Thursday. It can be seen that the workload
distributions of the same hour on different days are quite
similar. But the workload distributions of different hours on
the same day can be very different. Table III lists the KLDs

Figure 10. Residual probability distributions of the LOL workload

between the LOL workload distributions of the 9th hour on
different days of a week. As can be seen, all the KLDs are
less than 0.05. The average KLD for the 9th hour across
different days is 0.02.

To illustrate the KLDs in other hours, Table IV lists the
average KLD for each hour of a day for the LOL workload.
As can be seen, all the values are less than 0.06. Similar
trends are also observed for the WikiM workload. Table V
lists the average KLD for each hour of a day for the WikiM
workload. Compared with Table IV, we can see that the
KLDs between the WikiM workload distributions are even
smaller than the LOL workload distributions. From these

Table III
KLD BETWEEN LOL WORKLOAD DISTRIBUTIONS (8AM∼9AM)

Q
P Mon Tue Wed Thu Fri Sat Sun

Mon - 0.0184 0.0214 0.0118 0.0273 0.0353 0.0171
Tue 0.0172 - 0.0179 0.0164 0.0381 0.0383 0.0213
Wed 0.0137 0.0163 - 0.0114 0.0233 0.0355 0.0180
Thu 0.0112 0.0181 0.0144 - 0.0210 0.0305 0.0162
Fri 0.0217 0.0342 0.0205 0.0153 - 0.0416 0.0265
Sat 0.0290 0.0341 0.0344 0.0292 0.0446 - 0.0092
Sun 0.0177 0.0235 0.0224 0.0165 0.0359 0.0135 -

Table IV
AVERAGE KLD OF LOL WORKLOAD FOR EACH HOUR

0∼1am 1∼2am 2∼3am 3∼4am 4∼5am 5∼6am
0.0250 0.0251 0.0288 0.0261 0.0199 0.0168
6∼7am 7∼8am 8∼9am 9∼10am 10∼11am 11∼12pm
0.0231 0.0251 0.0346 0.0487 0.0543 0.0354
12∼1pm 1∼2pm 2∼3pm 3∼4pm 4∼5pm 5∼6pm
0.0241 0.0229 0.0247 0.0269 0.0375 0.0428
6∼7pm 7∼8pm 8∼9pm 9∼10pm 10∼11pm 11∼0am
0.0326 0.0270 0.0202 0.0221 0.0234 0.0168

Table V
AVERAGE KLD OF WIKIM WORKLOAD FOR EACH HOUR

0∼1am 1∼2am 2∼3am 3∼4am 4∼5am 5∼6am
0.0016 0.0016 0.0018 0.0017 0.0019 0.0015
6∼7am 7∼8am 8∼9am 9∼10am 10∼11am 11∼12pm
0.0011 0.0008 0.0010 0.0009 0.0008 0.0008
12∼1pm 1∼2pm 2∼3pm 3∼4pm 4∼5pm 5∼6pm
0.0008 0.0008 0.0009 0.0009 0.0008 0.0010
6∼7pm 7∼8pm 8∼9pm 9∼10pm 10∼11pm 11∼0am
0.0012 0.0011 0.0015 0.0017 0.0015 0.0012

results, we can conclude that the workload distributions of
the same hour on different days are similar to each other
for the LOL game and the WikiM service. This matches
the features of scheduled instances very well and justifies
the need for these two applications to reserve scheduled
instances with daily recurring patterns.

C. Instance Reservation for Cost Optimization

We apply our proposed cost optimization strategy to the
LOL and WikiM workloads. For each application, we use
the workload data of the first year as a training set to build
the workload model and compute the optimal combination
of the three pricing options, and then we use the workload
data of the second year as an evaluation set to evaluate the
reservation plan obtained.

We assume that each server instance can support 10
matches per hour for the LOL workload and can serve 0.5
GB of content per hour for the WikiM workload. Using our
workload data, we compute the distribution of the number
of instances needed for each hour of a day and feed the
distributions into the instance allocation algorithm presented
in Section III-A. Tables VI and VII show the allocation
results for using the first year workload data, where R is the
number of reserved instances required, and ri is the number
of scheduled instances required in hour i of a day. It is easy
to see that scheduled instances are required in the afternoon
and evening to cope with the higher workload of LOL, and in
the morning and afternoon to deal with the higher workload
of WikiM.

Then, we run the scheduling algorithm presented in Sec-
tion III-B based on the demands for scheduled instances
output above. Figures 11 and 12 show the scheduling results.
For the LOL workload, the demand list is feasible and our
algorithm finds an eligible reservation schedule to cover all
the demands. For the WikiM workload, the demand list is
infeasible and our algorithm finds an approximate solution
by removing a little demand (3 instances) in hour 15.

Table VI
ALLOCATION RESULT BASED ON THE 1ST YEAR LOL WORKLOAD

r13 r14 r15 r16 r17 r18 r19 r20 r21 r22 r23 r24
27 93 128 160 182 206 254 241 231 185 113 5

R = 469, r1 ∼ r12 = 0
Table VII

ALLOCATION RESULT BASED ON THE 1ST YEAR WIKIM WORKLOAD

r9 r10 r11 r12 r13 r14 r15 r16 r17
28 30 38 46 41 32 35 30 27

R = 391, r1 ∼ r8 = 0, r18 ∼ r24 = 0

Figure 11. Scheduled instance arrangement (LOL)

Figure 12. Scheduled instance arrangement (WikiM)

On obtaining the instance reservation plan using the first
year workload, we apply it to the second year workload
and compute the percentage of workload served by each
pricing option as well as the total cost incurred. In addition,
we also compute the optimal reservation plan directly using
the second year workload and the corresponding workload
division among pricing options and the total cost incurred.
Figures 13 and 14 compare these results. It can be seen
that the workload divisions of the two reservations plans are
quite similar and their costs are pretty close. The workload
divisions differ by less than 5% for both LOL and WikiM.
The costs differ by only 0.2% and 0.6% for LOL and
WikiM respectively. These results show that the workload
distributions of these two applications are rather stable and
it is practicable to use the models of historical workloads to
optimize the combination of pricing options.

Finally, we evaluate the potential benefits for using sched-
uled instances. It is likely that the price discounts and du-
ration requirements offered by cloud vendors for scheduled
instances may change in the future. Therefore, we study the
cost savings over a wide range of these parameter values.

We again use the first year workload as the training
data to compute the reservation plan and use the second
year workload for evaluation. Currently, the equivalent price
discount of a reserved instance compared to an on-demand
instance is about 43% (i.e., 1−603/(0.12×8760)). Thus, we
vary the price discount of a scheduled instance up to 40%.
We compute the cost saving of using the best combination of
the three pricing options compared to the best combination
of on-demand and reserved options only. Figures 15 and 16
show the cost savings under different price discounts and
duration requirements of scheduled instances. As expected,
more cost can be saved with increasing discount. Note

Figure 13. Workload division among pricing options and cost comparison
(LOL)

Figure 14. Workload division among pricing options and cost comparison
(WikiM)

that the relation between the cost saving and the price
discount is not perfectly linear. This is because the numbers
of instances at different utilizations are not uniform. With
an increasing price discount, a disproportionately larger
number of instances can benefit from the option of scheduled
instances.

In addition, Figures 15 and 16 show that the duration
requirement of scheduled instances also affects the cost
saving. In general, if the cloud vendor sets a longer duration
requirement, less cost can be saved by using scheduled
instances. The reason is easy to understand. Under a tougher
duration restriction of longer time, it will be harder to find an
eligible reservation schedule to fully cover the demands for
scheduled instances. Then, only approximate solutions can
be constructed to partially cover the demands for scheduled
instances. To make a demand list feasible, the amount of
demands that needs to be removed normally increases with
the duration requirement. This implies that more on-demand
instances may have to be used to serve the workloads,
thereby reducing the cost saving.

It is also interesting to note that increasing the price
discount of scheduled instances can mitigate the impact of
duration requirement on cost saving. As shown in Figures
15 and 16, when the discount is below 30%, a duration
requirement of 6 hours results in noticeably lower cost
saving than a duration requirement of 4 hours. But when
the discount exceeds 30%, these two duration requirements
produce almost the same cost savings. This is because
when the discount is higher, a larger number of scheduled
instances are used since more workload is allocated to
scheduled instances. As a result, there are more instances
available for stopping to fit the demand when the demand
drops across successive hours. This increases the chance for
the demand list to pass the feasibility test.

Figure 15. Cost saving of LOL workload

Figure 16. Cost saving of WikiM workload

V. RELATED WORK

Cost optimization for renting cloud resources between
traditional on-demand and reserved pricing options belongs
to the classical rent-or-buy problems. This kind of problems
involves some interesting cases like the ski rental problem
[17] and the Bahncard problem [18]. Some previous work
has adapted the solutions to these problems for cloud in-
stance acquisition. To minimize the cost, Hong et al. [7]
applied a break-even instance utilization ratio at which the
cost of a reserved instance equals that of an on-demand
instance to find the optimal configuration. Bodenstein et al.
[6] introduced strategic decision models to decide at what
time and with which type of pricing options to use.

To reduce the workload knowledge needed for solving the
cost optimization problem, Wang et al. [4] proposed online
algorithms to obtain a near optimal cost with limited or even
no prior knowledge of the future workload. To further reduce
cost, they designed a cloud brokerage service [19] to reserve
a large pool of instances from the cloud provider and share
it among different users. Hu et al. [20] proposed an online
algorithm for cost optimization with multiple reservation
choices that have different price discounts and contract
lengths. The problem is modelled as a multi-dimensional
variant of the Parking Permit Problem. However, all the
reservation choices in their study are traditional reserved
instances that fully book resources throughout the contracts.
No scheduled instance was considered.

Besides the pricing options, another important factor for
optimizing the cost of cloud users is job dispatching. As
demonstrated in [21], the job dispatching strategy may
significantly affect the total cost of the on-demand instances
used in a cloud gaming system. The job dispatching problem
for cost optimization can be modelled as a new variant of
the dynamic bin packing problem [22], [23]. The First Fit
packing algorithm is currently the best known algorithm for
this problem [24].

VI. CONCLUSION

As IaaS vendors like Amazon prefer regular and steady
demands, they have rolled out a new type of scheduled
instances into the market. The scheduled instances make it
more complicated for users to find the optimal combination
of pricing options to serve a workload with minimum
monetary cost. Many previous methods cannot be applied
directly any more. In this paper, we have proposed a new
cost optimization strategy to compute the best numbers of
reserved, scheduled and on-demand instances to use given
the workload distributions. Using two popular online appli-
cations as case studies, we have demonstrated the efficacy
of our solution and the potential benefits of scheduled
instances.

ACKNOWLEDGMENT

This research is supported by the National Research
Foundation, Prime Minister’s Office, Singapore under its
IDM Futures Funding Initiative, and by Singapore Ministry
of Education Academic Research Fund Tier 2 under Grant
MOE2013-T2-2-067.

REFERENCES

[1] “Gartner says worldwide public cloud services market
to grow 17 percent in 2016.” [Online]. Available: http:
//www.gartner.com/newsroom/id/3443517

[2] “Analysts: Public cloud adoption to
create major ripple effect.” [Online].
Available: http://talkincloud.com/cloud-computing/
analysts-public-cloud-adoption-create-major-ripple-effect

[3] “Survey analysis: How cloud adoption trends differ by
geography.” [Online]. Available: https://www.gartner.com/
doc/3328818/survey-analysis-cloud-adoption-trends

[4] W. Wang, B. Li, and B. Liang, “To reserve or not to
reserve: Optimal online multi-instance acquisition in IaaS
clouds,” in Proceedings of the 10th International Conference
on Autonomic Computing (ICAC), 2013, pp. 13–22.

[5] “Amazon elastic compute cloud - scheduled reserved
instances.” [Online]. Available: http://docs.aws.amazon.com/
AWSEC2/latest/UserGuide/ec2-scheduled-instances.html

[6] C. Bodenstein, M. Hedwig, and D. Neumann, “Strategic de-
cision support for smart-leasing infrastructure-as-a-service,”
in Proc. 32nd Intl. Conf. on Info. Sys. (ICIS), 2011, p. 14.

[7] Y.-J. Hong, J. Xue, and M. Thottethodi, “Dynamic server pro-
visioning to minimize cost in an IaaS cloud,” in Proceedings
of the ACM SIGMETRICS Joint International Conference on
Measurement and Modeling of Computer Systems. ACM,
2011, pp. 147–148.

[8] K. Vermeersch, “A broker for cost-efficient QoS-aware
resource allocation in EC2,” Master’s thesis, Universiteit
Antwerpen, Antwerp, Belgium.

[9] W. Wang, B. Liang, and B. Li, “Revenue maximization with
dynamic auctions in IaaS cloud markets,” in Proceedings of
the 21st IEEE/ACM International Symposium on Quality of
Service (IWQoS). IEEE, 2013, pp. 1–6.

[10] “Riot games api.” [Online]. Available: https://developer.
riotgames.com/

[11] “Page view statistics for wikimedia projects.” [Online]. Avail-
able: https://dumps.wikimedia.org/other/pagecounts-raw/

[12] D. Pittman and C. GauthierDickey, “A measurement study of
virtual populations in massively multiplayer online games,”
in Proceedings of the 6th ACM SIGCOMM Workshop on
Network and System Support for Games. ACM, 2007, pp.
25–30.

[13] S. Merritt and A. Clauset, “Social network dynamics in a
massive online game: Network turnover, non-densification,
and team engagement in halo reach,” arXiv preprint
arXiv:1306.4363, 2013.

[14] M. F. Arlitt and C. L. Williamson, “Internet web servers:
workload characterization and performance implications,”
IEEE/ACM Transactions on Networking, vol. 5, no. 5, pp.
631–645, 1997.

[15] K. Wang, M. Lin, F. Ciucu, A. Wierman, and C. Lin,
“Characterizing the impact of the workload on the value of
dynamic resizing in data centers,” Performance Evaluation,
vol. 85-86, pp. 1–18, 2015.

[16] S. Kullback and R. A. Leibler, “On information and suffi-
ciency,” Ann. Math. Statist., vol. 22, no. 1, pp. 79–86, 1951.

[17] A. R. Karlin, M. S. Manasse, L. A. McGeoch, and S. Owicki,
“Competitive randomized algorithms for nonuniform prob-
lems,” Algorithmica, vol. 11, no. 6, pp. 542–571, 1994.

[18] R. Fleischer, “On the bahncard problem,” Theoretical Com-
puter Science, vol. 268, no. 1, pp. 161–174, 2001.

[19] W. Wang, D. Niu, B. Liang, and B. Li, “Dynamic cloud
instance acquisition via IaaS cloud brokerage,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 26, no. 6,
pp. 1580–1593, 2015.

[20] X. Hu, A. Ludwig, A. Richa, and S. Schmid, “Competitive
strategies for online cloud resource allocation with discounts:
The 2-dimensional parking permit problem,” in Proceedings
of the 35th IEEE International Conference on Distributed
Computing Systems (ICDCS). IEEE, 2015, pp. 93–102.

[21] Y. Li, X. Tang, and W. Cai, “Play request dispatching for
efficient virtual machine usage in cloud gaming,” IEEE Trans-
actions on Circuits and Systems for Video Technology, vol. 25,
no. 12, pp. 2052–2063, 2015.

[22] Y. Li, X. Tang, and W. Cai, “On dynamic bin packing
for resource allocation in the cloud,” in Proceedings of the
26th ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA). ACM, 2014, pp. 2–11.

[23] Y. Li, X. Tang, and W. Cai, “Dynamic bin packing for on-
demand cloud resource allocation,” IEEE Transactions on
Parallel and Distributed Systems, vol. 27, no. 1, pp. 157–170,
2016.

[24] X. Tang, Y. Li, R. Ren, and W. Cai, “On first fit bin packing
for online cloud server allocation,” in Proceedings of the
30th IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, 2016, pp. 323–332.

