
Client Assignment for Improving Interactivity in
Distributed Interactive Applications

Lu Zhang and Xueyan Tang
School of Computer Engineering

Nanyang Technological University
Singapore 639798

Email: {zh0007lu, asxytang}@ntu.edu.sg

Abstract—Distributed Interactive Applications (DIAs) are net-
worked systems that allow multiple participants to interact with
one another in real time. Wide spreads of client locations in large-
scale DIAs often require geographical distribution of servers
to meet the latency requirements of the applications. In the
distributed server architecture, how the clients are assigned to
the servers directly affects the network latency involved in the
interactions between clients. This paper focuses on the client
assignment problem for enhancing the interactivity performance
of DIAs. We formulate the problem as a combinational opti-
mization problem on graphs and prove that it is NP-complete.
Several heuristic algorithms are proposed for fast computation
of good client assignments and are experimentally evaluated. The
experimental results show that the proposed greedy algorithms
perform close to the optimal assignment and generally outper-
form the Nearest-Assignment algorithm that assigns each client
to its nearest server.

I. INTRODUCTION

Distributed Interactive Applications (DIAs) are networked
systems that allow multiple participants at different locations
to interact with each other in real time through their computers.
DIAs spread over a wide range of areas that are gaining pop-
ularity rapidly, such as multiplayer online games, distributed
interactive simulations, and collaborative computer-aided de-
sign and engineering. Typically, the application’s state (such
as the virtual worlds in multi-player online games and the
shared workspaces in collaborative design tools) is maintained
by servers. Participants, known as clients, are responsible for
sending user-initiated operations to the servers and receiving
updates of the application’s state from the servers. Since
DIAs are human-in-the-loop applications, it is of crucial
importance to improve the interactivity of DIAs for supporting
graceful interactions among clients. The major challenges to
interactivity enhancement are to deal with network latencies.
Wide spreads of client locations in large-scale DIAs often
require geographical distribution of servers to meet the latency
requirements of the applications. This kind of latency-driven
distribution is essential even when there are no limitations on
the availability of server resources in one location [9].

In the distributed server architecture, the servers commu-
nicate with each other directly, while each client is assigned
to one server and interacts with other clients through their
assigned servers [1], [4]. We characterize the interactivity
performance of DIAs by the duration from the time when a
client issue an operation to the time when the resultant state

update is presented to the same client or a different client.
This duration shall be called the interaction time between
these clients. Under the distributed server architecture, the
interaction time between any pair of clients includes the net-
work latencies between the clients and their assigned servers
and the network latency between their assigned servers. These
network latencies are directly affected by how the clients are
assigned to the servers. Therefore, effectively assigning clients
to appropriate servers in the DIA is an important issue for
enhancing its interactivity. We refer to this issue as the client
assignment problem.

Finding the optimal client assignment is a challenging
task. An intuitive approach for reducing the latency from the
clients to their assigned servers is to assign each client to
its nearest server [7], [14]. This assignment, however, may
considerably increase the latency between the assigned servers
of different clients and thus perform far worse than optimum,
as shall be shown by our experimental results. On the other
hand, assigning all clients to a single server eliminates the
contribution of the inter-server latency to the interaction time,
but such assignment may significantly increase the latency
between the clients and their assigned server, defeating the
purpose of geographical distribution of servers. An optimal
assignment for maximizing interactivity performance should
strike a balance between the inter-server latency and the client-
to-server latency.

In this paper, we investigate the client assignment problem
for enhancing the interactivity performance of DIAs. We for-
mulate the problem as a combinational optimization problem
on graphs and prove that it is NP-complete. Several heuristic
assignment algorithms are proposed and experimentally eval-
uated. Simulations using real Internet latency data show that
the proposed algorithms are efficient and effective in reducing
the interaction time between clients.

Some existing work on how to assign clients to servers
in distributed virtual environments partitions the clients into
groups and assign each client group to one server [10], [11].
Only the clients in the same group are allowed to interact
with each other. As a result, the objective of the assignment
is simply to reduce the client-server latencies. Similarly,
Webb et al. [13] considered the client-server latencies only
in studying the client assignment for online games. Different
from existing research, we integrate the client-server and inter-

server latencies in the formulation of interaction time to model
interactions between any clients in the system. Lee et al.
[7] investigated where to place servers in the network for
satisfying a given latency bound between clients. In contrast,
we aim to assign clients to appropriate servers for maximizing
interactivity given a set of servers placed in the network.

The rest of this paper is organized as follows. Section II
presents the system model and a formulation of the client
assignment problem. Section III analyzes the characteristics of
an optimal client assignment and proves the NP-completeness
results. Section IV proposes three heuristic assignment algo-
rithms for improving the interactivity of DIAs. The experi-
mental setup and results are discussed in Section V. Finally,
Section VI concludes the paper.

II. PROBLEM FORMULATION

We model the underlying network supporting the DIA by a
graph G = (V,E), where V is the set of nodes and E ⊆ V ×V
is the set of links between the nodes. A length d(u, v) > 0 is
associated with each link (u, v) ∈ E, representing the network
latency between nodes u and v. If a message transfer goes
through multiple links from the source to the destination, the
total latency is given by the sum of those on all intermediate
links. To facilitate presentation, we shall extend the function
d(u, v) to all pairs of nodes (u, v) ∈ V ×V by defining d(u, v)
as the length of the routing path between nodes u and v. We
also define that d(u, v) = 0 if u = v.

We assume a distributed server architecture. Let C ⊆ V be
the set of clients in the network and S ⊆ V be the set of
servers in the network. Each client should be assigned to a
server in order to send operations and receive state updates.
An assignment A is a mapping from C to S, where for each
client c ∈ C, we denote by sA(c) ∈ S as the server that
client c is assigned to. In this paper, we focus on reducing the
network latency involved in the interaction between clients,
since the network latency is more difficult to improve than the
processing delay at the servers [3]. A busy server can always
be better provisioned to meet the capacity requirements, e.g.,
by forming a server cluster. Nevertheless, we do discuss how
to deal with the constraint of limited server capacities in our
proposed assignment algorithms in Section IV-D.

For two clients ci and cj to interact, the communication
should go through their assigned servers. To be specific, if
ci issues an operation, the following steps have to be taken
in order for cj to see the effect of the operation. First,
ci sends the operation to its assigned server sA(ci). Then,
sA(ci) forwards the operation to cj’s assigned server sA(cj)
if they are different. Finally, sA(cj) executes the operation
and delivers the resultant state update to cj . In the above
interaction process, the paths from ci to sA(ci), from sA(ci)
to sA(cj), and from sA(cj) to cj are involved. Similarly, if cj

issues an operation, the same three paths are involved in the
interaction process for ci to see the effect of the operation.
Therefore, we refer to the concatenation of these three paths
as the interaction path between ci and cj . The length of
the interaction path, denoted as dA(ci, cj) = d(ci, sA(ci)) +

d(sA(ci), sA(cj)) + d(sA(cj), cj), represents the interaction
time between ci and cj in assignment A. If ci and cj are
assigned to the same server, then the length of their interaction
path is simply dA(ci, cj) = d(ci, sA(ci))+d(sA(cj), cj). If ci

and cj are the same client, the length of their interaction path
dA(ci, ci) = 2 ·d(ci, sA(ci)) is the round-trip time between ci

and its assigned server sA(ci), and represents the interaction
time for client ci to see the effect of its own operation.

We use the average interaction time between all pairs of
clients, i.e.,

2
|C| · (|C|+ 1)

∑
ci,cj∈C

dA(ci, cj), 1

as a measure of the overall interactivity of a DIA. The average
interaction time indicates how long it takes for an operation
to be presented to a participant in the system on an average
level. Given the set of clients, the total number of client
pairs is fixed. Thus, to minimize the average interaction time,
it is equivalent to minimize the total length of interaction
paths between all client pairs. Therefore, the client assignment
problem is formulated as follows.

Definition 1: (Client Assignment Problem) Given a network
G = (V,E) where V contains a set of servers S and a set of
clients C, and the length d(u, v) > 0 for each link (u, v) ∈ E,
the objective of the client assignment problem is to find a client
assignment A with the minimum total length of interaction
paths between all client pairs, i.e.,

minimize D(A) =
∑

ci,cj∈C

dA(ci, cj).

Although the above formulation assumes that interaction
exists between each pair of clients, our analysis and proposed
algorithms can be easily generalized to handle the situation
where each client only interacts with a portion of the other
clients or to reflect different amounts of interaction between
different pairs of clients.

III. NP-COMPLETENESS RESULTS

We investigate the NP-completeness of the client assignment
problem by assuming that messages are routed in the network
along the shortest paths from the source to the destination.
Under this assumption, d(u, v) is the length of the shortest
path between u and v, and the function d(u, v) satisfies the
triangle inequality. We start by studying the characteristics of
an optimal client assignment, as shown in the following two
theorems.

Theorem 1: If a server s1 is located on the shortest path
between a client c and another server s2, then any assignment
assigning c to s2 cannot be an optimal assignment.

Proof: Suppose A is an assignment in which c is assigned
to s2. Based on assignment A, we construct a new assignment
A′ by changing the assigned server of c from s2 to s1, and
keeping the assigned servers of other clients unchanged, i.e.,

1We consider dA(·) as a function of an unordered pair of clients ci and
cj . Given a set of clients C, there are a total of |C|(|C| + 1)/2 unordered
pairs of clients in the summation.

sA′(c) = s, and ∀cj 6= c, sA′(cj) = sA(cj). Then, for any
clients ci, cj 6= c, we have dA′(ci, cj) = dA(ci, cj). Thus, the
length of interaction paths in assignment A′ is given by

D(A′) =
∑

ci,cj∈C

dA′(ci, cj)

=
∑
cj∈C

dA′(c, cj) +
∑

ci,cj 6=c

dA′(ci, cj)

=
∑
cj 6=c

(
d(c, s1) + d(s1, sA′(cj)) + d(sA′(cj), cj)

)
+ 2d(c, s1) +

∑
ci,cj 6=c

dA′(ci, cj)

=
∑
cj 6=c

(
d(c, s1) + d(s1, sA(cj)) + d(sA(cj), cj)

)
+ 2d(c, s1) +

∑
ci,cj 6=c

dA(ci, cj).

By the triangle inequality, we have d(s1, sA(cj)) ≤ d(s1, s2)+
d(s2, sA(cj)). Therefore,

D(A′) ≤
∑
cj 6=c

(
d(c, s1) + d(s1, s2) + d(s2, sA(cj))

+ d(sA(cj), cj)
)

+ 2d(c, s1) +
∑

ci,cj 6=c

dA(ci, cj).

Since d(c, s1) < d(c, s1)+d(s1, s2) = d(c, s2), it follows that

D(A′) <
∑
cj 6=c

(
d(c, s2) + d(s2, sA(cj)) + d(sA(cj), cj)

)
+ 2d(c, s2) +

∑
ci,cj 6=c

dA(ci, cj)

=
∑
cj∈C

dA(c, cj) +
∑

ci,cj 6=c

dA(ci, cj) = D(A).

This implies that the assignment A′ that we construct is better
than assignment A. Thus, assignment A cannot be an optimal
assignment.

Hence, the theorem is proven.
Theorem 2: If the shortest path between a client c1 and a

server s1 and the shortest path between a client c2 and a server
s2 have at least one common node u, then any assignment
assigning c1 and c2 to s1 and s2 respectively cannot be an
optimal assignment.

Proof: As shown in Fig. 1, suppose in an assignment A1,
c1 is assigned to s1 and c2 is assigned to s2. We construct
two assignments A2 and A3 based on A1. A2 assigns both c1

and c2 to s1 and keeps the assigned servers of other clients

s1 c2

s2 c1

u

(a) Assignment A1

s1 c2

s2 c1

u

(b) Assignment A2

s1 c2

s2 c1

u

(c) Assignment A3

Fig. 1. Diagram of Theorem 2

unchanged. A3 assigns both c1 and c2 to s2 and keeps the
assigned servers of other clients unchanged. In the following,
we show that at least one assignment of A2 and A3 is better
than A1.

The total length of interaction paths in assignment A1 is
given by

D(A1) =
∑

ci,cj∈C

dA1(ci, cj)

=
∑

cj 6=c2

dA1(c1, cj) +
∑

cj 6=c1

dA1(c2, cj)

+ dA1(c1, c2) +
∑

ci,cj 6=c1,c2

dA1(ci, cj). (1)

By analyzing the first term of (1), we have∑
cj 6=c2

dA1(c1, cj) = dA1(c1, c1) +
∑

cj 6=c1,c2

dA1(c1, cj)

= |C| · d(c1, s1) +
∑

cj 6=c1,c2

(
d(s1, sA1(cj)) + d(sA1(cj), cj)

)
.

Similarly, for the second term of (1), we have∑
cj 6=c1

dA1(c2, cj)

= |C| · d(c2, s2) +
∑

cj 6=c1,c2

(
d(s2, sA1(cj)) + d(sA1(cj), cj)

)
.

Also note that dA1(c1, c2) = d(c1, s1) + d(s1, s2) + d(c2, s2).
Thus, (1) becomes

D(A1) =
∑

cj 6=c1,c2

(
d(s1, sA1(cj)) + d(sA1(cj), cj)

)
+

∑
cj 6=c1,c2

(
d(s2, sA1(cj)) + d(sA1(cj), cj)

)
+ (|C|+ 1) · d(c1, s1) + (|C|+ 1) · d(c2, s2) + d(s1, s2)

+
∑

ci,cj 6=c1,c2

dA1(ci, cj). (2)

Similarly, the total lengths of interaction paths in assign-
ments A2 and A3 can be written as

D(A2) = 2 ·
∑

cj 6=c1,c2

(
d(s1, sA2(cj)) + d(sA2(cj), cj)

)
+ (|C|+ 1) · d(c1, s1) + (|C|+ 1) · d(c2, s1)

+
∑

ci,cj 6=c1,c2

dA2(ci, cj),

and

D(A3) = 2 ·
∑

cj 6=c1,c2

(
d(s2, sA3(cj)) + d(sA3(cj), cj)

)
+ (|C|+ 1) · d(c2, s2) + (|C|+ 1) · d(c1, s2)

+
∑

ci,cj 6=c1,c2

dA3(ci, cj).

Since all clients except c1, c2 are assigned to identical
servers in A1, A2 and A3, for any clients ci, cj 6= c1, c2,
dA1(ci, cj) = dA2(ci, cj) = dA3(ci, cj). Thus, we have

D(A2) + D(A3)− 2D(A1)
= (|C|+ 1)

(
d(c1, s2) + d(c2, s1)− d(c1, s1)− d(c2, s2)

)
− 2d(s1, s2).

Since u is on the shortest paths from c1 to s1 and from c2 to
s2, we have d(c1, s1) = d(c1, u) + d(s1, u) and d(c2, s2) =
d(c2, u) + d(s2, u). By the triangle inequality, it follows that

D(A2) + D(A3)− 2D(A1)
≤ (|C|+ 1)

(
d(c1, u) + d(s2, u) + d(c2, u) + d(s1, u)

− d(c1, u)− d(s1, u)− d(c2, u)− d(s2, u)
)
− 2d(s1, s2)

< 0.

This shows that the sum of D(A2) and D(A3) is smaller
than two times of D(A1), implying at least one of D(A2) and
D(A3) must be smaller than D(A1), and the corresponding
assignment is better than A1. Therefore, assignment A1 cannot
be an optimal assignment.

Hence, the theorem is proven.
Based on Theorem 2, we obtain the following corollary.
Corollary 1: If a client c2 is located on the shortest path

between another client c1 and a server s1, then any assignment
assigning c1 to s1 and assigning c2 to a different server cannot
be an optimal assignment.

Making use of the above theorems, we show that the client
assignment problem is NP-complete.

Theorem 3: The client assignment problem is NP-complete.
Proof: Consider a candidate solution for an instance of

the client assignment problem in its decision version with a
bound K. Since the length of the interaction path between
each pair of clients can be computed in polynomial time, the
computation of the total length of all interaction paths and its
comparison with the bound K can be performed in polynomial
time. Therefore, the client assignment problem is in NP.

We show that the client assignment problem is NP-complete
by a polynomial reduction from the partition problem which is
known to be NP-complete [5]. The partition problem is defined
as follows: Given a finite set of positive integers B, does there
exist a subset B′ ⊆ B such that

∑
b∈B′ b =

∑
b∈B−B′ b?

Let P be an instance of the partition problem. Assume there
are n elements in B: B = {b1, b2, · · · , bn}, and

∑n
i=1 bi = S.

We first construct a network with 2n servers s1, s2, · · · , s2n

and n groups of clients G1, G2, · · · , Gn, as shown in Fig. 2.
The servers are divided into two sets U1 = {s1, s2, · · · , sn}
and U2 = {sn+1, sn+2, · · · , s2n} with equal cardinality n.
Each server in U1 is connected to all servers in U2 so that
all the servers and inter-server links form a bipartite graph.
Each client group Gi contains bi clients, i.e., |Gi| = bi. So,
there are a total of

∑n
i=1 |Gi| =

∑n
i=1 bi = S clients. One

client in each client group is designated as the center and the
remaining clients are connected to the center to form a star
graph. The center ri of group Gi is connected to server si

in U1 and server sn+i in U2. An instance Q of the client

sn+1 sn+2 s2n

s1 s2 sn

· · · · · · · · ·
G1 G2 Gn

r1 r2 rn

server

client

x-type

y-type

z-type

Fig. 2. Example of instance Q of the client assignment problem

assignment problem is then constructed on the network by
setting d(u, v) = 1 for every link (u, v) in the network, and
the bound K = 11

4 S2 +(2−n)S−n−∑n
i=1 b2

i . It is obvious
that the instance Q is constructed in time polynomial to the
size of instance P . In the following, we show that, there exists
a subset B′ such that

∑
b∈B′ b =

∑
b∈B−B′ b for instance P if

and only if there exists a client assignment A such that the total
length of interaction paths is at most K for instance Q. The
value of K is deliberately selected to ensure the correctness
of the reducibility.

In the network that we construct, servers si and sn+i are
on the shortest paths between the center client ri and all other
servers. According to Theorem 1, the assignments that assign
the center client ri to any server other than si or sn+i cannot
be optimal. Thus, in an optimal assignment, the center client of
each group must be assigned to its connected server in either
U1 or U2. In addition, each center client is on the shortest
paths between all the other clients in the same group and all
servers. According to Corollary 1, all clients in one group must
be assigned to the same server in an optimal assignment. So,
we only consider such assignments that assign all clients in
group Gi to either server si in U1 or server sn+i in U2.

Since the length of every link is 1, the total path length in
an assignment A can be calculated by adding up how many
times each link appears in the interaction paths between all
client pairs. We divide all links in the network into three
types: the x-type links between the center client and the
remaining clients in the same group, the y-type links between
the center clients and their connected servers, and the z-type
links between servers. The occurrences of x- and y-types
of links in interaction paths are independent of the client
assignment. Each x-type link is associated with one client that
is not a center client. The x-type link contributes twice to the
interaction path between this client and itself and contributes
once to the interaction path between this client and each of the
other clients in the network. Since there are S−n clients that
are not the center clients, all x-type links contribute a total of
(S −n)(S + 1) times. On the other hand, the interaction path
between each pair of clients contains two y-type links. Thus,
all y-type links contribute S(S + 1) times in total.

For z-type links, their contributions depend on how many
clients are assigned to server sets U1 and U2. The interaction
path between each pair of clients contains one z-type link if
the pair of clients are assigned to servers in different server

sets and contains two z-type links if the pair of clients are
assigned to different servers in the same set. We denote by
C(si) the number of clients assigned to server si. Then, all
z-type links contribute a total of∑

si∈U1

C(si) ·
∑

si∈U2

C(si)

+ 2 ·
∑

si,sj∈U1
si 6=sj

C(si)C(sj) + 2 ·
∑

si,sj∈U2
si 6=sj

C(si)C(sj)

times. Thus, the total length of interaction paths in the assign-
ment A is given by

D(A)

= (S − n)(S + 1) + S(S + 1) +
∑

si∈U1

C(si)·
∑

si∈U2

C(si)

+ 2 ·
∑

si,sj∈U1
si 6=sj

C(si)C(sj) + 2 ·
∑

si,sj∈U2
si 6=sj

C(si)C(sj)

= (S − n)(S + 1) + S(S + 1) +
∑

si∈U1

C(si)·
∑

si∈U2

C(si)

+
(∑

si∈U1

C(si)
)2 − ∑

si∈U1

C(si)2

+
(∑

si∈U2

C(si)
)2 − ∑

si∈U2

C(si)2

= (S − n)(S + 1) + S(S + 1) +
(∑

si∈U1∪U2

C(si)
)2

−
∑

si∈U1

C(si) ·
∑

si∈U2

C(si)−
∑

si∈U1∪U2

C(si)2.

For each pair of servers si ∈ U1 and sn+i ∈ U2, either
C(si) = |Gi| = bi and C(sn+i) = 0, or C(si) = 0 and
C(sn+i) = |Gi| = bi. Therefore, for each possible assignment,∑

si∈U1
C(si) and

∑
si∈U2

C(si) correspond to the sums of
subsets B′ and B − B′ respectively for a partitioning of
B, and vise versa. It also follows that

∑
si∈U1∪U2

C(si) =∑n
i=1 bi = S, C(si)2 + C(sn+i)2 = b2

i and
∑

si∈U1
C(si) ·∑

si∈U2
C(si) ≤ S2

4 . Thus, we have

D(A) ≥ (S − n)(S + 1) + S(S + 1) + S2 − S2

4
−

n∑
i=1

b2
i

=
11
4

S2 + (2− n)S − n−
n∑

i=1

b2
i = K.

The lower bound K is achieved only when
∑

si∈U1
C(si) ·∑

si∈U2
C(si) = S2

4 , i.e.,
∑

si∈U1
C(si) =

∑
si∈U2

C(si) =
S
2 . Therefore, there exists a client assignment such that the
total length of interaction paths is at most K if and only if
there exists a subset B′ such that

∑
b∈B′ b =

∑
b∈B−B′ b for

the partitioning problem.
Hence, the theorem is proven.

IV. HEURISTIC ALGORITHMS

A brute-force solution to the client assignment problem is
computationally expensive. There are a total of |S||C| different

assignment strategies for an exhaustive search, where |S| is the
number of servers and |C| is the number of clients. The search
space is huge even for small values of |S| and |C|. We present
three heuristic algorithms for the client assignment problem
in this section, and then compare the performance of these
algorithms via simulation experiments in Section V. These
heuristic algorithms do not assume any particular routing
strategy in the network. They compute the client assignment
based simply on the network latencies between different nodes,
which can be obtained with existing utilities like ping and King
[6].

A. Nearest-Assignment
The first algorithm is an intuitive Nearest-Assignment al-

gorithm, in which each client chooses its nearest server as its
assigned server. The motivation of this approach is to minimize
the latency between the client and its assigned server. Nearest-
Assignment is easy to implement and can be performed in
a distributed manner because each client selects its server
independently. The computational complexity for each client
to compute its nearest server is O(|S|). When assuming that
messages are routed along the shortest paths, we can show that
the total interaction path length of Nearest-Assignment has an
approximation ratio of 3 to an optimal assignment.

Theorem 4: The total length of interaction paths between
all pairs of clients in Nearest-Assignment is within three times
of that in an optimal assignment.

Proof: Consider two different clients u and v in the
network. Let nu and nv be the nearest servers of clients u
and v, respectively. Suppose in an optimal assignment A∗,
client u is assigned to a server su and client v is assigned to
a server sv . We immediately have the following results

d(u, nu) ≤ d(u, su) and d(v, nv) ≤ d(v, sv).

Therefore, by the triangle inequality, we have,

d(nu, su) ≤ d(u, nu) + d(u, su) ≤ 2d(u, su),

and
d(nv, sv) ≤ d(v, nv) + d(v, sv) ≤ 2d(v, sv).

The length of the interaction path between u and v in Nearest-
Assignment (denoted by AN) is given by

dAN
(u, v) = d(u, nu) + d(nu, nv) + d(v, nv).

By the triangle inequality, d(nu, nv) should be shorter than
the length of the concatenation of the paths from nu to su,
from su to sv , and from sv to nv . Thus, it follows that

dAN
(u, v)

≤ d(u, nu) + d(nu, su) + d(su, sv) + d(nv, sv) + d(v, nv)
≤ d(u, su) + 2d(u, su) + d(su, sv) + 2d(v, sv) + d(v, sv)
= 3d(u, su) + d(su, sv) + 3d(v, sv)
≤ 3dA∗(u, v).

For the interaction path from a client u to itself, it is easy to
obtain

dAN
(u, u) = 2d(u, nu) ≤ 2d(u, su) = dA∗(u, u).

Therefore, for each pair of clients, the length of their interac-
tion path in Nearest-Assignment is within three times of that
in an optimal assignment. As a result, the total length of all
interaction paths in Nearest-Assignment is within three times
of that in an optimal assignment.

Hence, the theorem is proven.

B. Greedy-Assignment

The second algorithm is called Greedy-Assignment. Greedy-
Assignment starts with an empty assignment A and continues
to assign clients to servers until all clients have been assigned.
Initially, the total length of all interaction paths is zero because
no client is assigned to any server. At each step, Greedy-
Assignment considers all possible pairs (c, s) of an unassigned
client c and a server s to make a new assignment and computes
the increase in the total interaction path length for each pair.
The increase is given by the total length of interaction paths
from this newly assigned client c to all the clients that have
already been assigned, i.e.,∑

ci∈C′∪{c}

dA(c, ci), (3)

where C ′ is the set of clients already assigned. The pair of
client and server that introduces the minimum total length of
these interaction paths is selected to make the assignment. By
analyzing (3), we have∑
ci∈C′∪{c}

dA(c, ci)

= 2d(c, s) +
∑

ci∈C′

(
d(c, s) + d

(
s, sA(ci)

)
+ d
(
sA(ci), ci

))
= (|C ′|+ 2) · d(c, s) +

∑
ci∈C′

d
(
s, sA(ci)

)
+
∑

ci∈C′

d
(
sA(ci), ci

)
. (4)

If we denote by m(s) the number of clients that have been
assigned to server s, the second term of (4) can be written
as
∑

ci∈C′ d
(
s, sA(ci)

)
=
∑

sj∈S m(sj) · d(s, sj). Thus, it
follows that:∑

ci∈C′∪{c}

dA(c, ci)

= (|C ′|+ 2) · d(c, s) +
∑
sj∈S

m(sj) · d(s, sj)

+
∑

ci∈C′

d
(
sA(ci), ci

)
. (5)

Note that the third term of (5) does not change with the
unassigned client c and server s selected to make the new
assignment. Thus, for comparison purpose, at each step of
Greedy-Assignment it can be omitted from the calculation of
the increase in interaction path length. In addition, the second
term of (5) is identical for all pairs of unassigned clients and
a given server. Hence, for each server s, we first compute the
second term of (5) for s and then compute the first term of

1: C ′ ← ∅;
2: for all s ∈ S do
3: m(s)← 0;
4: while C ′ 6= C do
5: min←∞;
6: for all s ∈ S do
7: t2 ←

∑
sj∈S m(sj) · d(s, sj);

8: for all c ∈ C − C ′ do
9: len← (|C ′|+ 2) · d(c, s) + t2;

10: if len < min then
11: min← len;
12: c∗ ← c;
13: s∗ ← s;
14: set sA(c∗) = s∗;
15: C ′ ← C ′ ∪ {c∗};
16: m(s∗)← m(s∗) + 1;

Fig. 3. The Greedy-Assignment algorithm

(5) for s and each unassigned client c to find the pair of client
and server producing the minimum increase in interaction path
length. Since all possible client-server pairs are examined for
each selection, Greedy-Assignment is a centralized algorithm
that requires complete pair-wise latency information between
all clients and servers. The pseudo code of Greedy-Assignment
is presented in Fig. 3. At each step, the calculation of line 7
has a computational complexity of O(|S|) for each server, and
calculating the increase in the total path length from lines 8
to 13 for all clients has a complexity of O(|C|). Therefore,
the total time complexity of each step is O(|S| · (|S|+ |C|)).
As a result, the overall complexity of Greedy-Assignment is
O
(
(|S|+ |C|) · |S| · |C|

)
.

C. Distributed-Greedy-Assignment

Distributed-Greedy-Assignment is the third algorithm we
propose. It also adopts a greedy approach. However, differ-
ent from Greedy-Assignment which does not allow clients
to change their servers once assigned, Distributed-Greedy-
Assignment starts with an existing assignment and continues
to modify the assignment for reducing the total length of in-
teraction paths. To perform modification, each client examines
all servers to determine whether assigning itself to a different
server would decrease the total length of interaction paths. If
so, the client changes its assigned server to the server that
decreases the total path length most. Otherwise, the client
keeps the currently assigned server. This process continues
until no client can reduce the total length of interaction paths
by changing its assigned server. Since the assignment modi-
fication can only decrease the total path length, the resultant
assignment cannot be worse than the initial assignment.

In deciding whether to change or keep its assigned server, a
client c only needs to consider the interaction paths involving
itself since the interaction paths between all other clients do
not change with the assignment modification of this client.
Specifically, for each server s, client c calculates the decrease

s1 s2

s3 s4

c1 c2

10

10

10

10

10

5

5

Fig. 4. An example in which changing two clients’ assigned servers
simultaneously increases the total interaction path length

in the total length of interaction paths between itself and all
clients, supposing that it is assigned to s. Similar to (5), this
total length is given by

∑
ci∈C dA(c, ci) = (|C|+ 1)d(c, s) +∑

sj∈S m(sj)d(s, sj) +
∑

ci∈C d(sA(ci), ci), where the third
item is independent of c’s assignment modification and can
be omitted from the calculation for comparison purpose.
Therefore, the calculation only needs the information of the
latency d(c, s) between c and s, the latencies between s and
other servers, and the number of clients m(sj) that has been
assigned each server sj . To this end, each server maintains the
latencies from itself to other servers, and keeps track of how
many clients have been assigned to itself. The client consider-
ing assignment modification contacts each server to measure
the latency to the server and collects the inter-server latencies
and the number of assigned clients that are maintained by the
server. After all servers have been contacted, the client then
performs the above calculation and assignment modification
locally. In our experiments, we choose Nearest-Assignment as
the initial assignment for Distributed-Greedy-Assignment to
begin with. Thus, the whole Distributed-Greedy-Assignment
algorithm is performed in a distributed manner.

One issue with Distributed-Greedy-Assignment is that, if
two or more clients change their assigned servers simulta-
neously, the total interaction path length is not guaranteed
to decrease because the calculation of each client is based
on the assumption that the assigned servers of other clients
remain unchanged. Fig. 4 gives an example, where the network
contains clients c1, c2 and servers s1, s2, s3, s4, and the
number on each link represents the length of the link. The
initial assignment assigns client c1 to server s1 and client
c2 to server s2. The lengths of interaction paths between
client pairs (c1, c2), (c1, c1) and (c2, c2) are 30, 20 and 20
respectively. So, the total path length is 70. When client c1

tries to change its assigned server, it would choose s3 since
the length of the interaction path between c1 and c2 would be
reduced to 25 while the lengths of interaction paths between
client pairs (c1, c1) and (c2, c2) stay the same, assuming that
c2 keeps its assigned server unchanged. Similarly, client c2

would choose to change its assigned server to s4. However,
if the two clients both change their assigned servers at the
same time, the path length between c1 and c2 would be
increased to 40 which is even longer than the initial assign-
ment. Therefore, a concurrency control mechanism is required
to prevent clients from performing assignment modifications
at the same time. To guarantee that assignment modification
proceeds one client at a time, a token can be circulated among

clients and only the client obtaining the token is allowed
to perform assignment modification. We refer to a complete
circulation in which each client receives the token once and
performs one assignment modification as an iteration. Since
the computational complexity of an assignment modification
for one client is O(|S|2), the total computational complexity
of one iteration for all clients is O(|C||S|2). Our experimental
results in Section V show that over 90% of the potential
reduction in interaction path length is normally achieved in
the first iteration of assignment modification. Thus, a practical
strategy is to execute the Distributed-Greedy-Assignment for
just one iteration.

D. Dealing with Limited Server Capacities

So far, we have not assumed any limitation on the capacity
of each server. In practice, servers have finite capacities. If the
number of clients assigned to a server exceeds its capacity, the
processing delay at the server can increase significantly [8].
Now, we discuss how to take simple steps in our proposed
assignment algorithms to ensure that the capacity of each
server is not exceeded. In Nearest-Assignment, when a client
searches for its nearest server, if this server is saturated, the
client turns to the second nearest server and keeps doing so
until it finds a server that can accommodate more clients. In
Greedy-Assignment, the algorithm only considers the servers
that are not saturated to make the new assignment at each
step. For Distributed-Greedy-Assignment, each client would
only consider to change to servers that are not saturated in the
assignment modification process. We evaluate these modified
algorithms in Section V.

V. EXPERIMENTAL EVALUATION

To evaluate the proposed assignment algorithms, we have
conducted extensive simulation experiments parameterized
with several sets of real and synthetic network latency data
including Meridian [15], Waxman [12] and Random [2]. The
experimental results showed similar performance trends for
different data sets. Due to space limitations, we report only the
representative results for the Meridian data set of real Internet
latency in this section. The Meridian data set contains pair-
wise latency measurements between 2500 nodes in the Internet
using the King measurement technique [6]. The measurements
for some node pairs are invalid and the nodes involved in
these measurements were excluded from the experiments. As a
result, the network simulated in our experiments is represented
by a latency matrix between 1796 nodes. A client is assumed
to be located at each node and a certain number of servers
are randomly placed in the network. In the default parameter
setting, the number of servers is set at 80.

To quantify the relative performance difference, the exper-
imental results of different algorithms are normalized with
respect to a theoretical lower bound on the total length of
interaction paths, which is derived as follows. Note that for any
client assignment A, the interaction path between two clients

u, v has a length of

dA(u, v) = d(u, sA(u)) + d(sA(u), sA(v)) + d(sA(v), v)
≥ min

si,sj∈S
{d(u, si) + d(si, sj) + d(sj , v)}.

By adding up the above inequalities for all client pairs, we
obtain the following lower bound on the total length of all
interaction paths.∑

u,v∈C

(
min

si,sj∈S
{d(u, si) + d(si, sj) + d(sj , v)}

)
.

Note that this lower bound is a super bound that may not
be achievable by any client assignment. This is because the
above lower bound calculation does not enforce the constraint
that each client is assigned to only one server through which
it interacts with all the other clients. The total length of
interaction paths produced by each algorithm normalized by
the above bound shall be called the normalized interactivity.
For each parameter setting, we performed 1000 simulation
runs using 1000 different sets of servers selected at random.
The average performance of these simulation runs is plotted
for performance comparison.

A. Impact of Number of Servers

Fig. 5a shows the average normalized interactivity produced
by the three heuristics for different numbers of servers. In this
experiment, we do not assume any limitation on server capac-
ities. As can be seen, the two greedy algorithms outperform
the Nearest-Assignment algorithm, and they generally perform
close to the lower bound. For all numbers of servers tested,
the total interaction path lengths of Greedy-Assignment and
Distributed-Greedy-Assignment are on average within 47%
and 35% of the lower bound respectively, which means that
they are within at most the same percentage of the results
of the optimal assignment. Comparing the two greedy al-
gorithms, Distributed-Greedy-Assignment consistently outper-
forms Greedy-Assignment over different server numbers.

To further study the improvements of the two greedy
algorithms over the Nearest-Assignment algorithm, we plot
the average and the 90th percentile improvements of the
1000 simulation runs in Fig. 5b. For each simulation run,
we compute the improvements of the greedy algorithms by
subtracting their total path lengths from the total path length
of Nearest-Assignment and normalizing the difference by the
total path length of Nearest-Assignment. As shown in Fig.
5b, the improvements of the greedy algorithms over Nearest-
Assignment increase as the number of servers grows. The
average improvements of Greedy-Assignment and Distributed-
Greedy-Assignment are about 12% and 20% when the number
of servers is 40, and they increase to 20% and 27% for
100 servers. In general, when there are more servers in the
network, the latency between the client and its nearest server
reduces. Thus, the increasing trend in the improvements of
the greedy algorithms over Nearest-Assignment implies that
reducing the client-server latency alone is not the most effi-
cient way of improving the interactivity. The 90th percentile

results indicate that in 1/10 of the simulation runs executed,
Greedy-Assignment and Distributed-Greedy-Assignment out-
perform Nearest-Assignment by at least 21% and 26% for
40 servers, and 27% and 32% for 100 servers. Note that
Distributed-Greedy-Assignment uses Nearest-Assignment as its
initial assignment. Thus, the client assignments generated by
Distributed-Greedy-Assignment cannot be worse than Nearest-
Assignment. However, unlike Distributed-Greedy-Assignment,
Greedy-Assignment is not guaranteed to outperform Nearest-
Assignment for all cases. In the experiments, we observe
that when the number of servers is 20, Greedy-Assignment
generates worse results than Nearest-Assignment in about 1/10
of the simulation runs. Greedy-Assignment becomes better
than Nearest-Assignment for all simulation runs when there
are 100 servers in the network.

In our experiments, Distributed-Greedy-Assignment is ter-
minated when no client can further reduce the total interaction
path length by changing its assigned server. To investigate
the convergence speed of Distributed-Greedy-Assignment, we
plot in Fig. 5c the average improvements of Distributed-
Greedy-Assignment over Nearest-Assignment after each iter-
ation when there are 80 servers in the network. The results
show that, Distributed-Greedy-Assignment converges quickly
in just few iterations. In particular, about 90% of the im-
provements are made in the first iteration, and over 99% of
the improvements are achieved after three iterations. Similar
trends have also been observed in the experimental results with
other server numbers. Thus, a practical strategy is to execute
the Distributed-Greedy-Assignment algorithm for one iteration
only.

B. Impact of Server Capacity

In this experiment, we study the effect of limited server
capacity on the performance of the proposed algorithms. Fig.
6a shows the average normalized interactivity as a function of
the maximum number of clients that can be assigned to each
server. Note that the theoretical lower bound does not change
with server capacity as it assumes unlimited server capacity.
It can be seen from Fig. 6a that the interaction path lengths
generated by all algorithms increase with decreasing server ca-
pacity. This is because at low server capacities, the algorithms
may not be able to assign the clients to the best servers based
on network latency due to insufficient server capacities. The
relative performance of the three algorithms remain similar
over different server capacities. The performance of the greedy
algorithms is better than that of Nearest-Assignment for all
server capacities tested.

Fig. 6b shows the average and 90th percentile improvements
of the greedy algorithms over Nearest-Assignment. As can
be seen, the improvements decrease when each server can
accommodate fewer clients. On average, Greedy-Assignment
and Distributed-Greedy-Assignment’s improvements are 15%
and 22% respectively when the server capacity is 250, while
the improvements drop to 10% and 16% when the server
capacity decreases to 100. These results imply that limited
server capacity has greater effect on the performance of

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 20 30 40 50 60 70 80 90 100

A
v
er

ag
e

n
o
rm

al
iz

ed
 i

n
te

ra
ct

iv
it

y

Number of servers

Nearest-Assignment
Greedy-Assignment

Distributed-Greedy-Assignment

(a) Average normalized total length of interaction
paths

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 20 30 40 50 60 70 80 90 100

Im
p
ro

v
em

en
t

o
f

in
te

ra
ct

iv
it

y

Number of servers

(average) Greedy-Assignment
(average) Distributed-Greedy-Assignment

(90-percentile) Greedy-Assignment
(90-percentile) Distributed-Greedy-Assignment

(b) Improvement in the total length of interaction
paths

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 1 2 3 4 5 6 7 8

Im
p
ro

v
em

en
t

o
f

in
te

ra
ct

iv
it

y

Number of iterations

server number = 20
server number = 40
server number = 60
server number = 80

server number = 100

(c) Impact of iteration number on the performance
of Distributed-Greedy-Assignment

Fig. 5. Experimental results for different numbers of servers

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 50 100 150 200 250

A
v
er

ag
e

n
o
rm

al
iz

ed
 i

n
te

ra
ct

iv
it

y

Server capacity

Nearest-Assignment
Greedy-Assignment

Distributed-Greedy-Assignment

(a) Average normalized total length of interaction
paths

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 50 100 150 200 250

Im
p
ro

v
em

en
t

o
f

in
te

ra
ct

iv
it

y

Server capacity

(average) Greedy-Assignment
(average) Distributed-Greedy-Assignment

(90-percentile) Greedy-Assignment
(90-percentile) Distributed-Greedy-Assignment

(b) Improvement in the total length of interaction
paths

 0

 0.05

 0.1

 0.15

 0.2

 0 1 2 3 4 5 6 7 8

Im
p
ro

v
em

en
t

o
f

in
te

ra
ct

iv
it

y

Number of iterations

server capacity = 50
server capacity = 100
server capacity = 150
server capacity = 200
server capacity = 250

(c) Impact of iteration number on the performance
of Distributed-Greedy-Assignment

Fig. 6. Experimental results for different server capacities

the greedy algorithms than Nearest-Assignment. The results
also suggest that increasing the capacities of the servers at
strategic locations has the potential to significantly improve
the interactivity.

Fig. 6c shows the average improvement of Distributed-
Greedy-Assignment over Nearest-Assignment as a function of
the number of iterations executed. For all server capacities
tested, Distributed-Greedy-Assignment achieves about 90% of
its improvements in the first iteration, similar to the observa-
tions made in Fig. 5c. Therefore, it is generally sufficient to
execute Distributed-Greedy-Assignment for just one iteration.

VI. CONCLUSION

In this paper, we have investigated the client assignment
problem for enhancing the interactivity of DIAs. We have for-
mulated the problem as a combinational optimization problem
on graphs and shown that this problem is NP-complete. Three
heuristic algorithms have been proposed and experimentally
evaluated using real Internet latency data. The results show that
the proposed greedy algorithms perform close to the optimal
assignment, and generally outperform the Nearest-Assignment
algorithm that assigns each client to its nearest server.

REFERENCES

[1] L.D. Briceño et al. Robust resource allocation in a massive multiplayer
online gaming environment. In Proc. 4th International Conference on
Foundations of Digital Games, pages 232–239, 2009.

[2] K. Calvert and E. Zegura. GT internetwork topology models, 1997.

[3] E. Cronin et al. Constrained mirror placement on the internet. IEEE J.
Sel. Areas Commun., 20(7):1369–1382, 2002.

[4] E. Cronin, B. Filstrup, and A. Kurc. A distributed multiplayer game
server system. Technical report, University of Michigan, 2001.

[5] M.R. Garey and D.S. Johnson. Computers and intractability: A guide
to the theory of NP-completeness. WH Freeman and Company, San
Francisco, Calif, 1979.

[6] K.P. Gummadi, S. Saroiu, and S.D. Gribble. King: Estimating latency
between arbitrary Internet end hosts. In Proc. 2nd ACM SIGCOMM
Workshop on Internet Measurment, pages 5–18. ACM, 2002.

[7] K.W. Lee, B.J. Ko, and S. Calo. Adaptive server selection for large scale
interactive online games. Computer Networks, 49(1):84–102, 2005.

[8] P. Morillo et al. Improving the performance of distributed virtual
environment systems. IEEE Trans. Parallel Distrib. Syst., 16(7):637–
649, 2005.

[9] F. Safaei et al. Latency-driven distribution: infrastructure needs of par-
ticipatory entertainment applications. IEEE Commun. Mag., 43(5):106–
112, 2005.

[10] D.N.B. Ta and S. Zhou. A network-centric approach to enhancing the
interactivity of large-scale distributed virtual environments. Computer
Communications, 29(17):3553–3566, 2006.

[11] D.N.B. Ta and S. Zhou. A two-phase approach to interactivity en-
hancement for large-scale distributed virtual environments. Computer
Networks, 51(14):4131–4152, 2007.

[12] BM Waxman. Routing of multipoint connections. IEEE J. Sel. Areas
Commun., 6(9):1617–1622, 1988.

[13] S.D. Webb and S. Soh. Adaptive client to mirrored-server assignment
for massively multiplayer online games. In Proc. MMCN, 2008.

[14] S.D. Webb, S. Soh, and W. Lau. Enhanced mirrored servers for network
games. In Proc. 6th ACM SIGCOMM workshop on Network and system
support for games, pages 117–122. ACM, 2007.

[15] B. Wong, A. Slivkins, and E.G. Sirer. Meridian: A lightweight
network location service without virtual coordinates. In Proc. ACM
SIGCOMM’05, pages 85–96, 2005.

