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Abstract—The network traffic pattern of continuous sensor
data collection often changes constantly over time due to the
exploitation of temporal and spatial data correlations as well as
the nature of condition-based monitoring applications. This paper
develops a novel TDMA schedule that is capable of efficiently
collecting sensor data for any network traffic pattern and is thus
well suited to continuous data collection with dynamic traffic
patterns. Following this schedule, the energy consumed by sensor
nodes for any traffic pattern is very close to the minimum
required by their workloads given in the traffic pattern. The
schedule also allows the base station to conclude data collection
as early as possible according to the traffic load, thereby reducing
the latency of data collection. Experimental results using real-
world data traces show that, compared with existing schedules
that are targeted on a fixed traffic pattern, our proposed schedule
significantly improves the energy efficiency and time efficiency
of sensor data collection with dynamic traffic patterns.

I. INTRODUCTION

Energy efficiency and time efficiency are two major consid-
erations for sensor data collection in wireless sensor networks.
Energy efficiency concerns the amount of energy spent in
data collection. Since sensor nodes are normally powered by
batteries, it is critical to conserve energy as much as possible
to extend the lifetime of a sensor network [1], [2]. Time
efficiency, on the other hand, refers to the latency of collecting
data from sensor nodes to a base station (or a sink node).
Sensor data are often required to be quickly gathered after
acquisition for timely processing [1].

TDMA is a promising MAC protocol for efficient data
collection in wireless sensor networks [3]–[5]. TDMA is
contention-free and eliminates collisions by scheduling only
non-interfering transmissions to proceed in the same time
slot. It avoids the energy cost and latency overhead required
by contention-based MAC protocols to compete for channel
access and to perform retransmissions upon collisions. In
addition, TDMA allows sensor nodes to turn their radios
off whenever they are not transmitting or receiving, further
conserving energy at sensor nodes.

Most existing TDMA schedules are constructed for a static
network traffic pattern in which a fixed set of nodes report
data to the base station at each sampling interval [3]–[5].
In practice, however, continuous sensor data collection often
exhibits dynamically changing network traffic patterns over
time due to energy conservation concerns and the nature of
monitoring applications. For example:

• To save energy, temporal and spatial correlations among
sensor measurements are usually exploited to reduce the

amount of data that need to be collected [6]. In this
approach, a sensor node updates new measurements with
the base station only when the new measurements differ
considerably from past ones or their correlations with
other measurements in the vicinity change substantially.
As a result, the set of reporting nodes normally changes
from one sampling interval to another.

• Condition-based monitoring is widely used in surveil-
lance applications such as active volcano detection [1]
and structural health monitoring [7]. In these applications,
only sensor measurements satisfying certain conditions
need to be reported to the base station. For instance, to
monitor volcanic activities, only the spikes of seismic and
infrasonic signals need to be collected [1]. Thus, the set
of sensor nodes that report to the base station is expected
to vary over different sampling intervals.

The above scenarios of continuous data collection share the
common characteristic that the network traffic pattern changes
over different sampling intervals in a largely unpredictable
manner. One possible approach to cope with dynamic traffic
patterns is to construct and deploy a new TDMA schedule
tailored to the new traffic pattern whenever the traffic pattern
changes. However, identifying new traffic patterns and dissem-
inating new schedules over the network both require sensor
nodes to communicate with each other, which introduces extra
energy consumption and latency overheads. When the traffic
pattern changes frequently, the overheads are very likely to
cancel out or even outweigh the benefits of deploying new
schedules [4]. Therefore, it is highly desirable to consistently
use a single TDMA schedule that is able to efficiently handle
a wide variety of traffic patterns.

This paper develops a novel TDMA schedule that achieves
high energy efficiency and time efficiency for any traffic
pattern and is thus well suited to the needs of continuous
data collection with dynamic traffic patterns. Following this
schedule, the energy consumed by each node self-adapts to its
required workload given in any traffic pattern. The scheduling
algorithm also incorporates effective strategies for letting the
base station conclude data collection as early as possible ac-
cording to the traffic load, thereby reducing the latency of data
collection. Experimental results using real-world data traces
show that, compared with existing schedules, our proposed
schedule significantly reduces the energy cost and latency of
sensor data collection with dynamic traffic patterns.



II. TRAFFIC PATTERN OBLIVIOUS SCHEDULING

A. System Model

We consider a network of sensor nodes that periodically
sample local phenomena like temperature and solar radiation.
The data acquired by all sensor nodes are continuously col-
lected by a base station (or a sink node). Following common
practices [8], we assume that the sensor nodes are organized
into a tree structure rooted at the base station for data collec-
tion. Due to various reasons as described in the introduction, a
sensor node may not report its acquired data to the base station
at every sampling interval. The data reported by each sensor
node in a sampling interval, if any, fits into one packet and the
packets generated by different sensor nodes are not aggregated
on their ways toward the base station. Similar to other studies
[3]–[5], clocks are assumed to be synchronized among sensor
nodes. Time is divided into slots and the duration of a time
slot allows a sensor node to transmit only one packet.

To avoid collisions, only transmissions that do not conflict
with each other are allowed to be scheduled in the same
time slot. For example, for sensor nodes equipped with single
omnidirectional transceivers, conflict-free scheduling normally
requires that a node cannot transmit and receive simultane-
ously, and for a node to successfully receive the transmission
of another node, no other neighbor of the receiving node
should transmit at the same time [3]–[5].

B. A Motivating Example

We start with an example illustrating how a traditional
TDMA schedule constructed for a static traffic pattern in-
troduces idle listening and unnecessary delay under dynamic
traffic patterns. Fig. 1(a) shows a network of 10 sensor nodes
organized into a tree structure for data collection. For sim-
plicity, in this example, we assume that the transmission from
each node to its parent conflicts with only the transmissions
of its siblings and grandparent in the tree. Fig. 1(b) shows a
typical schedule [3], [4] targeted on the full traffic pattern in
which each node generates one data packet to send to the base
station. In the full traffic pattern, the base station receives the

latency=13 slotstransmission ends at slot 8

Transmissions performed when only nodes A, B, D and E generate data packets.

1 2 3 4 5 6 7 8 9 10 11 12

transmission is performed

transmissions 
scheduled in 
the slot

slot number 13

(b) 

transmission is not performed but the receiver listens

A  S

B  S E  B B  S

A  SC A A S G C

F B

C A A S

B S

D A

I F F B

H D

B S

D A

J F

A S

F B B S

 

S

J

E FC

I

BA

Base Station

G

D

H

An example network.(a) 

Fig. 1. Inefficiency of a schedule targeted on a static network traffic pattern.

last packet in slot 13 (from node B). So, the latency of data
collection is 13 time slots. In the data collection process, node
B listens to transmissions in four time slots (slots 3, 5, 9 and
12) and transmits in five time slots (slots 2, 4, 7, 10 and 13).

Now suppose the traffic pattern changes such that only
nodes A, B, D and E generate data packets to send, and
the change is not known a priori to any node as well as the
base station. Using the same schedule, actual transmissions
occur only in the fully shaded rectangles shown in Fig. 1(b).
Although the base station has received all the four data packets
by the end of slot 8, it has to continue listening for possible
transmissions in slots 10, 11 and 13. This is because packets
generated by nodes I, H and J, if any, are scheduled to be
forwarded to the base station in slots 10, 11 and 13 respectively
by nodes B, A and B. Since the base station does not know
beforehand whether nodes I, H and J generate any data packet
or not, it has to listen in these slots in order not to miss any
potential transmission. The base station cannot make certain
that all data have been received until the end of slot 13.
Therefore, the latency of data collection remains to be 13 time
slots. For node B, it receives only one packet from node E in
slot 3. Similar to the base station, since B is not aware of
which descendants generate data packets, B still has to listen
for possible transmissions in all the four slots 3, 5, 9 and 12,
the last three of which result in idle listening as shown by half
shaded rectangles in Fig. 1(b). Similar observations can also
be made for other nodes in the network.

C. Reducing Idle Listening and Latency

Our key strategy for reducing idle listening and latency
is to allow each node to transmit all data in its successive
transmission slots starting from its first transmission slot,
irrespective of the traffic pattern. In this way, if a node does
not send out any packet in a scheduled transmission slot, the
node will leave all of its subsequent transmission slots idle as
well. Therefore, on observing an idle transmission slot of the
node, its parent is assured that no more data will come from
the node and thus can safely turn off its radio in all subsequent
transmission slots of the node to avoid idle listening.

By applying the above strategy to all nodes in the network,
a parent node listens to each child for at most one more slot
than the actual number of transmission slots used by the child
to send packets. Therefore, the energy consumed by sensor
nodes for any traffic pattern is very close to the minimum
required by their workloads given in the traffic pattern. For
the base station, on observing an idle transmission slot of a
child node, the base station can infer that the child node has
finished transmitting all data. Therefore, instead of listening
for possible transmissions till the end of the schedule, the base
station concludes data collection when it infers that all of its
child nodes have finished transmissions.

To illustrate our strategy, consider the example network of
Fig. 1(a). Suppose that node B and its children’s transmission
slots are arranged in temporal order as shown in Fig. 2. In
this order, B’s first transmission slot is scheduled after E and
F’s first transmission slots, and B’s second transmission slot
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Fig. 2. A temporal order of transmission slots that allows node B to transmit
all data in its successive transmission slots.

is scheduled after F’s second transmission slot. Then, node
B is able to transmit all data in its successive transmission
slots irrespective of the traffic pattern, provided that nodes E
and F both transmit data in their successive transmission slots
starting from their first transmission slots. This is because
based on whether E and F’s first transmission slots are idle
or not, node B would have learned whether E and F have
any packet to forward to it. In addition, node B certainly
knows whether itself generates any packet to send to the base
station. Thus, prior to node B’s first transmission slot, B is
already aware of whether it needs to send at least one packet
to its parent or not (but B may not know the total number of
packets to send to its parent). If at least one packet needs to
be sent, B would send out a packet in its first transmission
slot, which may be any packet available at B (i.e., either the
packet generated by B or the packet received from E or F
in their first transmission slots). Otherwise, B leaves its first
transmission slot idle and will not have anything to send in all
subsequent transmission slots either. Similar arguments apply
to B’s second transmission slot as well. Therefore, node B is
committed to transmit all data in its successive transmission
slots starting from its first transmission slot.

Let Tv be the subtree rooted at a node v, and |Tv| be
the size of Tv . In general, we have the following necessary
and sufficient condition for enabling a node v to transmit all
data in its successive transmission slots starting from its first
transmission slot, assuming that all of its children do so. Due
to space limitations, the proof is omitted here.

Condition S: for each 1 ≤ i ≤ |Tv| and each child c of
node v, the ith transmission slot of node v should be scheduled
after the ith transmission slot of node c if |Tc| > i, and after
all transmission slots of node c if |Tc| ≤ i.

It is easy to verify that the temporal order of transmission
slots in Fig. 2 satisfies condition S for node B. Exploiting
condition S in scheduling would enable each node to transmit
all data in its successive transmission slots so as to reduce idle
listening for any traffic pattern and create opportunities for the
base station to conclude data collection sooner.

D. Our Proposed Scheduling Algorithm

Our proposed scheduling algorithm is called TPO (Traffic
Pattern Oblivious) in that the constructed schedule effectively
deals with any network traffic pattern. Algorithm 1 presents
the pseudo code of the TPO scheduling algorithm, where T
is the routing tree for data collection, C(v) denotes the set of
node v’s children in the tree, Tv stands for the subtree rooted
at node v, |Tv| denotes the size of Tv , and S(t) represents the
set of nodes that are assigned slot t as their transmission slots.
In this algorithm, two counters are maintained for each node:
the toschedule counter records the number of transmission

Algorithm 1: TPO Scheduling Algorithm

1 for each node v ∈ T do
2 v.scheduled = 0;
3 if C(v) = ∅ then
4 v.toschedule = 1;
5 else
6 v.toschedule = 0;
7 t = 1;
8 E = {v|v.toschedule > v.scheduled};
9 while E 6= ∅ do

10 S(t) = ∅;
11 for each node v in E do
12 if v does not conflict with any node in S(t) then
13 S(t) = S(t) ∪ {v};
14 v.scheduled = v.scheduled+ 1;
15 let p be v’s parent;
16 if ∀c ∈ C(p), c.scheduled = |Tc| then
17 p.toschedule = |Tp|;
18 else
19 p.toschedule = min{c.scheduled | c ∈

C(p), c.scheduled<|Tc|};
20 E = {v|v.toschedule > v.scheduled};
21 t = t+ 1;

slots allowed to be assigned to the node, and the scheduled

counter records the number of transmission slots that have
already been assigned to the node. Initially, only leaf nodes
can be assigned transmission slots: their toschedule counters
are set to 1. The toschedule counters of non-leaf nodes are
set to 0. In addition, the scheduled counters of all nodes are
set to 0. These are shown in steps 1 to 6 of Algorithm 1.

The algorithm schedules one time slot at a time. For each
time slot, only the nodes with toschedule counters greater
than scheduled counters are eligible to be assigned the time
slot as their transmission slots. These nodes are maintained by
an eligible set E (steps 8 and 20). Each time slot is scheduled
in a greedy manner by examining all eligible nodes (step 11).
If an eligible node v does not conflict with any other node
already scheduled for transmission in the current time slot, v
is assigned the current time slot as a transmission slot and its
scheduled counter is incremented (steps 12 to 14).

Condition S implies that at any time, a non-leaf node cannot
be assigned more transmission slots than any of its children
except those children that have finished scheduling all their
transmission slots. Therefore, to make use of condition S,
when a node v is assigned a new time slot, the toschedule

counter of its parent p is updated as follows:

p.toschedule = min{c.scheduled | c ∈ C(p), c.scheduled < |Tc|}
if ∃c ∈ C(p), c.scheduled < |Tc|,

|Tp| if ∀c ∈ C(p), c.scheduled = |Tc|,

where C(p) is the set of p’s children. Note that |Tp| is the
maximum possible number of transmission slots required by
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Fig. 3. The TPO schedule constructed for the network of Fig. 1(a).

node p when every node in subtree Tp generates one packet
to send to the base station. The above update is performed in
steps 15 to 19. The algorithm completes when no more node
is eligible for scheduling (step 9).

A schedule constructed by the TPO algorithm is to be
consistently used throughout the duration of continuous data
collection, irrespective of the traffic pattern. Thus, the schedul-
ing overhead, amortized over the duration of continuous data
collection, would be minimal even if the TPO algorithm is
implemented in a centralized manner. We are currently inves-
tigating a distributed implementation of the TPO algorithm.

Fig. 3 shows the schedule constructed by our TPO algorithm
for the network of Fig. 1(a) and how the schedule handles the
traffic pattern in which only nodes A, B, D and E generate
packets to send to the base station. The fully shaded rectangles
are the actual transmissions that take place; the half shaded
rectangles represent that the sending node does not perform
transmission, but the receiving node listens for transmission in
the time slot; the non-shaded rectangles mean that the sending
node does not transmit and the receiving node does not listen
either. As seen from Fig. 3, since nodes F, I and J do not
generate packets, node F leaves all its transmission slots (slots
3, 4 and 7) idle. Node B, on observing that the slot 3 is idle,
turns off its radio in slots 4 and 7. Thus, including listening
to node E in slot 1, node B listens for a total of two slots
only. As a result, the schedule of Fig. 3 reduces the number
of time slots in which node B listens by half (from four slots
down to two slots) compared to the schedule of Fig. 1(b).
In addition, the base station infers that nodes A and B have
finished transmissions respectively when it observes that slots
8 and 9 are idle. So, the base station concludes data collection
at the end of slot 9. Therefore, the latency of data collection
is four slots shorter than that in the schedule of Fig. 1(b).

III. PERFORMANCE EVALUATION

A. Experimental Setup

We developed a simulator to evaluate the proposed TPO
scheduling algorithm. We simulated a network of sensor nodes
randomly deployed over a square field with the base station
located at the center. A breadth first search tree rooted at the
base station was constructed and used as the routing tree for
data collection [3], [4]. The following conflict constraints were
placed on scheduling: when a node is scheduled to receive data
from another node, no other neighbor of the receiving node
is allowed to be scheduled for transmission in the same time
slot [3]–[5]. Due to space limitations, we shall only report the

representative results for a sample network topology of 100
nodes placed over a 1×1 field as shown in Fig. 4(a), in which
the transmission range of sensor nodes was set at 0.15.

We made use of the temperature data trace provided by
the LEM project [9] in our simulation. We extracted a large
number of subtraces and associated different subtraces with
different sensor nodes in the simulated network. Each subtrace
contained 20,000 readings.

To simulate dynamic network traffic patterns, we imple-
mented error-bounded approximate data collection [6], in
which the base station would like to be assured that its
knowledge of sensor readings are always kept within a re-
quired error bound e from the exact sensor readings. To
suppress unnecessary updates, each sensor node maintains a
filter window [u − e, u + e] centered at the reading u that it
last updated with the base station. At each sampling interval,
if the new reading is beyond the filter window, the sensor
node reports the new reading to the base station and updates
its filter window. It is intuitive that the average proportion of
sensor nodes reporting data to the base station at a sampling
interval decreases with an increasing error bound. In addition
to approximate data collection, we also simulated exact data
collection with a full traffic pattern (denoted by “Full” in the
performance results) in which all sensor nodes report their
readings to the base station at every sampling interval.

For comparison purposes, we also implemented two state-
of-the-art scheduling algorithms: TIGRA [5] and SPARSE [4].
TIGRA uses a graph coloring algorithm to construct a latency-
optimized schedule for the aforementioned full traffic pattern.
SPARSE aims to build a minimum-latency schedule for a
given network traffic pattern. To identify the traffic pattern and
construct the schedule, messages must flow over the entire
routing tree to complete an in-order tree traversal and one
top-down pass from the base station to all sensor nodes [4].
In our simulation of SPARSE, at each sampling interval, a
new schedule tailored to the network traffic pattern of that
sampling interval was constructed prior to data collection. In
contrast, TIGRA and our TPO algorithm consistently use a
single schedule throughout all sampling intervals.

Each simulation run was performed for 20,000 sampling
intervals. We compared different scheduling algorithms in
terms of time efficiency and energy efficiency. For time
efficiency, we recorded the latency of data collection at each
sampling interval and calculated the average latency over the
20,000 sampling intervals simulated. For energy efficiency, we
focused on the energy spent by sensor nodes in transmitting
data, receiving data and idle listening. Following the power
consumption of a Mica2 mote [10], we assumed that the
energy costs for a sensor node to perform transmission and
listen for transmission in a time slot are 1 and 0.75 units of
energy respectively. We recorded the total amount of energy
consumed by each sensor node over the 20,000 sampling
intervals simulated. Then, we added up these amounts to
obtain the total energy consumed in the whole network. Since
the network lifetime is largely determined by the most energy-
consuming node [8], we also found out the node that consumed
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Fig. 4. A sample network topology and performance results for different error bounds of approximate data collection.

the largest amount of energy and plotted this amount for
performance comparison.

B. Performance Results

Figs. 4(b), (c) and (d) show the performance of different
scheduling algorithms as a function of the error bound of
approximate data collection. Fig. 4(b) shows that the TIGRA
schedule produces the same latency of data collection for
all error bounds. This is because TIGRA targets at the full
traffic pattern. But in approximate data collection, the traffic
pattern changes over time in an unpredictable manner. Since
the base station does not know a priori which nodes would
report data in a sampling interval, it has to always wait until
the end of the TIGRA schedule to make sure that all data
have been received. In contrast, TPO and SPARSE are able to
take advantage of lighter traffic load at larger error bounds to
reduce the latency of data collection. However, for the sample
network topology shown in Fig. 4(a), the latency overhead of
SPARSE for constructing a new schedule at each sampling
interval is 136 time slots, which far outweighs the benefit of
deploying the new schedule for data collection. Therefore, the
latency of SPARSE is much higher than that of TIGRA, even
when the error bound is large. Our proposed TPO schedule
considerably reduces the latency of data collection compared
to TIGRA and SPARSE over a wide range of error bounds.

Figs. 4(c) and (d) show that our proposed TPO schedule
leads to significantly lower energy consumption than TIGRA
and SPARSE. In the TIGRA schedule, irrespective of the
traffic pattern, the number of time slots each node has to
listen equals the number of its descendants in the routing
tree. Therefore, the nodes close to the base station spend
a lot of energy in idle listening when the traffic load is
light. This explains why the energy consumption of the most
consuming node is generally much higher in TIGRA than
in the other schedules (see Fig. 4(c)). On the other hand,
while the SPARSE schedule is able to avoid idle listening,
the energy overhead for constructing a new schedule at each
sampling interval is substantial. Thus, as shown in Fig. 4(d),
SPARSE results in even higher total energy consumption in the
whole network than TIGRA. In our proposed TPO schedule,
a receiving node can safely stop listening to a sending node
when it identifies the end of transmissions performed by the

sending node, thereby conserving energy. Fig. 4(c) shows
that in approximate data collection, the most consuming node
in TPO spends much less energy compared to TIGRA and
SPARSE. This implies our TPO schedule can substantially
prolong network lifetime over the other two algorithms.

IV. CONCLUSIONS

We have presented a TDMA schedule that is well suited to
continuous data collection with dynamic traffic patterns. Our
proposed schedule is traffic pattern oblivious in that it achieves
high energy efficiency and time efficiency of data collection
irrespective of the traffic pattern. Following this schedule, the
energy consumed by sensor nodes for any traffic pattern is
very close to the minimum required by their workloads given
in the traffic pattern. The schedule also allows the base station
to conclude data collection as early as possible according to the
traffic load. Experimental results using real-world data traces
show that, compared with existing schedules, our proposed
schedule considerably reduces the latency of data collection
and achieves significant energy savings.
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