
On First Fit Bin Packing for Online Cloud Server Allocation

Xueyan Tang, Yusen Li, Runtian Ren, and Wentong Cai
School of Computer Engineering

Nanyang Technological University
Singapore 639798

Email: {asxytang, S080007, RENR0002, aswtcai}@ntu.edu.sg

Abstract—Cloud-based systems often face the problem of
dispatching a stream of jobs to run on cloud servers in an
online manner. Each job has a size that defines the resource
demand for running the job. Each job is assigned to run
on a cloud server upon its arrival and the job departs after
it completes. The departure time of a job, however, is not
known at the time of its arrival. Each cloud server has a
fixed resource capacity and the total resource demand of all
the jobs running on a server cannot exceed its capacity at all
times. The objective of job dispatching is to minimize the total
cost of the servers used, where the cost of renting each cloud
server is proportional to its running hours by “pay-as-you-go”
billing. The above job dispatching problem can be modeled as a
variant of the Dynamic Bin Packing (DBP) problem known as
MinUsageTime DBP. In this paper, we develop new approaches
to the competitive analysis of the commonly used First Fit
packing algorithm for the MinUsageTime DBP problem, and
establish a new upper bound of µ+4 on the competitive ratio
of First Fit packing, where µ is the ratio of the maximum job
duration to the minimum job duration. Our result significantly
reduces the gap between the upper and lower bounds for the
MinUsageTime DBP problem to a constant value independent
of µ, and shows that First Fit packing is near optimal for
MinUsageTime DBP.

I. INTRODUCTION

The standard Dynamic Bin Packing (DBP) problem [6]
considers a set of items, each having an arrival time and
a departure time. The items are to be packed into bins in
an online manner such that the total size of the items in
each bin does not exceed the bin capacity at all times. A
bin is opened when it receives the first item and is closed
when all items in the bin depart. The objective of DBP is to
minimize the maximum number of concurrently open bins
in the packing process.

In this paper, we consider a variant of the DBP problem.
We focus on the duration of each bin’s usage, i.e., the
period from its opening to its closing. Our objective is to
pack the items into bins to minimize the accumulated bin
usage time. We refer to this variant of the DBP problem
as the MinUsageTime DBP problem [16]. This problem is
motivated by the online job dispatching problem arising
from many cloud-based systems in which jobs may arrive at
arbitrary times. Each job needs some amount of resources for
execution and is assigned to run on a cloud server upon its
arrival. The departure time of the job, however, is not known

at the time of its arrival. The job is not reassigned to other
servers during execution due to reasons such as high migra-
tion overheads and penalty. Each cloud server has a fixed
resource capacity that restricts the total amount of resources
needed by all the jobs running on the server at any time. The
objective of job dispatching is to minimize the total cost of
the servers used. The on-demand server instances (virtual
machines) rented from public clouds such as Amazon EC2
are normally charged according to their running hours by
“pay-as-you-go” billing [1]. Therefore, to minimize the total
renting cost, it is equivalent to minimize the total running
hours of the cloud servers. Such a job dispatching problem
can be modeled exactly by the MinUsageTime DBP problem
defined above, where the jobs and cloud servers correspond
to the items and bins respectively.

A typical application of the preceding job dispatching
problem is cloud gaming. In a cloud gaming system, games
are run and rendered on cloud servers, while players inter-
act with the games via networked thin clients [10], [14].
Running each game instance demands a certain amount of
GPU resources. When a play request is received by the
cloud gaming provider, it should be assigned to a cloud
server that has enough GPU resources to run the requested
game instance. Several game instances can share the same
cloud server provided that the server’s GPU resources are
not saturated. Each game instance keeps running on the
assigned server until the player stops the game. Migrating a
game instance from one server to another during execution is
usually not allowed due to interruption to game play. Cloud
gaming providers such as GaiKai rent servers from public
clouds to run game instances [19]. Then, a natural problem
faced by the cloud gaming provider is how to dispatch the
play requests to cloud servers to minimize the total renting
cost of the servers used.

Previous work on MinUsageTime DBP. The MinUsage-
Time DBP problem was first proposed in our earlier work
[15], [16]. Any online bin packing algorithm can be applied
to the problem. In [15], [16], we analyzed the competitive-
ness of several classical bin packing algorithms, including
Any Fit family of algorithms (which open a new bin only
when no current open bin can accommodate an incoming
item), First Fit and Best Fit (which are two particular Any
Fit algorithms). We proved that the competitive ratio of any

Any Fit packing algorithm cannot be better than µ+1, where
µ is the ratio of the maximum item duration to the minimum
item duration. The competitive ratio of Best Fit packing
is not bounded for any given µ. If all the item sizes are
smaller than 1

β of the bin capacity (β > 1 is a constant), the
competitive ratio of First Fit packing has an upper bound
of β

β−1 · µ+ 3β
β−1 +1. For the general case, the competitive

ratio of First Fit has an upper bound of 2µ+ 7. We further
proposed a Hybrid First Fit algorithm that classifies and
packs items based on their sizes to achieve a competitive
ratio no larger than 8

7µ+
55
7 [16]. We also indicated a lower

bound of µ on the competitive ratio of any online packing
algorithm [16]. Kamali et al. [12] later presented a formal
proof of this lower bound. They also showed that Next Fit
packing has a competitive ratio bounded above by 2µ+ 1.

Contributions of this paper. In this paper, we signifi-
cantly tighten the gap between the upper and lower bounds
for the MinUsageTime DBP problem, reducing the gap
to a constant value independent of µ. We develop new
approaches to improve the competitive analysis of First
Fit packing, including dividing and consolidating bin usage
periods based on item arrivals (Sections V and VI), and
compensating for low utilization periods by exploiting high
utilization periods to bound the amortized bin utilization
(Section VII). Our analysis establishes a new upper bound
of µ + 4 on the competitive ratio of First Fit packing,
regardless of the item sizes. This new bound is the current
best upper bound for the MinUsageTime DBP problem.1 It is
the first known upper bound that has a multiplicative factor
1 for µ, whereas all the aforementioned upper bounds have
multiplicative factors larger than 1 for µ. Our result indicates
that First Fit packing is near optimal for the MinUsageTime
DBP problem.

The rest of this paper is organized as follows. Section
II reviews the related work. Section III provides some
preliminaries. Sections IV to VII carry out the competitive
analysis of First Fit packing. Section VIII compares the
competitiveness of First Fit packing and Next Fit packing,
and shows that the later is inherently worse. Finally, Section
IX concludes the paper.

II. RELATED WORK

The classical bin packing problem aims to pack a set of
items into the minimum number of bins. It is well known
that even the offline version of classical bin packing is NP-
hard [8]. In the online version, each item must be placed
in a bin without the knowledge of subsequent items. Once
placed, the items are not allowed to move to other bins. The
competitive ratios of various algorithms for classical online
bin packing have been extensively studied [2], [18].

1Hybrid First Fit and Next Fit packing algorithms that classify items
based on their sizes can achieve competitive ratios of µ+5 [15] and µ+2
[12] respectively, but to do so, these algorithms require the max/min item
duration ratio µ to be known a priori and thus are semi-online in nature.

Dynamic bin packing (DBP) is a generalization of the
classical bin packing problem [6]. In DBP, items may arrive
and depart at arbitrary times. The objective is to minimize
the maximum number of bins concurrently used in the
packing. A large amount of research work has also been
done to analyze the competitive ratios of various algorithms
for DBP [4], [5], [6], [11]. However, standard DBP does
not consider the duration of bin usage. In contrast, the
MinUsageTime DBP problem we have defined aims to
minimize the total amount of time the bins are used [16].

Interval scheduling [13] is another problem related to our
MinUsageTime DBP problem. In the basic interval schedul-
ing, each job is associated with one or several alternative
time intervals for execution. The goal of scheduling is to
maximize the number of jobs executed on a server that can
process only a single job at any time [9], [20]. Recently,
some works have studied interval scheduling with bounded
parallelism, where each server can process multiple jobs
simultaneously up to a fixed maximum number [7], [17]. A
server is considered busy if at least one job is running on it.
The objective is to minimize the total busy time of all servers
to complete a given set of jobs. This target resembles the one
we study in this paper. However, there is a crucial difference
between interval scheduling and our MinUsageTime DBP
problem. The ending times of jobs are known in interval
scheduling, but the departure time of an item is not known
at the time of its packing in our problem.

III. PRELIMINARIES

A. Notations and Definitions

We first define some key notations used in this paper. For
any time interval I , we use I− and I+ to denote the left
and right endpoints of I respectively. For technical reasons,
we shall view intervals as half-open, i.e., I = [I−, I+). Let
l(I) = I+ − I− denote the length of the time interval I .

For any item r, let I(r) denote the time interval from
r’s arrival to its departure. We say that item r is active
during the interval I(r), and we refer to the length of I(r)
as the item duration. Let s(r) denote the size of item r.
For notational convenience, for a list of items R, we also
use s(R) to denote the total size of all the items in R,
i.e., s(R) =

∑
r∈R s(r). In addition, we refer to the time

duration in which at least one item in R is active as the
span of R and denote it by span(R) (see Figure 1).

B. First Fit Packing Algorithm

In the bin packing process, a bin is opened when it
receives the first item. When all the items in a bin depart,
the bin is closed. At any time, the total size of all the active
items in an open bin is referred to as the bin level.

We consider the following First Fit algorithm for online
bin packing. Each time when a new item arrives, if there
are one or more open bins that can accommodate the new
item, First Fit places the item in the bin which was opened

time

)(1rI
1r

2r

3r

)()()()(}),,({ 3312321 rIrIrIrIrrrspan

)(2rI

)(3rI
)(2rI)(1rI)(3rI)(3rI

Figure 1. Span of an item list

earliest among these bins. Otherwise, if no open bin can
accommodate the new item, then a new bin is opened to
receive the item.

C. Competitive Ratio

The performance of an online algorithm is usually mea-
sured by its competitive ratio, i.e., the worst-case ratio
between the solution constructed by the algorithm and an
optimal solution [3].

Without loss of generality, we assume that the bins all
have unit capacity. Given a list of items R, let OPT (R, t)
denote the minimum achievable number of bins into which
all the active items at time t can be repacked. Then, the
total bin usage time of an optimal offline adversary that can
repack everything at any time is given by

OPTtotal(R) =
∫
⋃

r∈R I(r)

OPT (R, t) dt,

where
⋃
r∈R I(r) is the packing period, i.e., the time interval

from the first item arrival to the last item departure in R.
As shown in our earlier work [15], [16], it is easy to obtain
the following lower bounds on OPTtotal(R):

Proposition 1: OPTtotal(R) ≥
∑
r∈R

(
s(r) · l(I(r))

)
.

Proposition 2: OPTtotal(R) ≥ span(R).
The first bound is derived by assuming that no capacity of
any bin is wasted at any time, where s(r)·l(I(r)) is the time-
space demand of an item r. The second bound is derived
from the fact that at least one bin must be used at any time
when at least one item is active.

Let FFtotal(R) denote the total bin usage time by
applying First Fit packing to the list of items R. The
competitive ratio of First Fit packing is the maximum ratio
of FFtotal(R)/OPTtotal(R) over all instances of item
lists R. A standard approach to deriving bounds on the
competitive ratio is to prove the following relation for all R:
FFtotal(R) ≤ α ·OPTtotal(R), where α is a constant [6].
Then, the competitive ratio of First Fit packing is bounded
above by α.

IV. BIN USAGE PERIODS

Now, we start the competitive analysis of First Fit packing
for the MinUsageTime DBP problem. For any list of items
R, let µ = maxr∈R l(I(r))

minr∈R l(I(r)) denote the ratio of the maximum

E3

E2

1b

2b

4b

)(11 WU
2V

2U
3V

3U

4W

2W

3b

E4

4U

4V

Figure 2. An example of usage periods

item duration to the minimum item duration among all the
items in R. Without loss of generality, we shall assume that
the minimum item duration is 1, and the maximum item
duration is µ (µ ≥ 1).

Suppose a total of m bins b1,b2,. . . ,bm are used by First
Fit packing to pack a list of items R. For each bin bk, let
Uk = [U−k , U

+
k) denote the usage period of bk, i.e., the

period from the time when bk is opened to the time when bk
is closed. Then, the total bin usage time of First Fit packing
is given by the total length of the usage periods of all the
bins used, i.e., FFtotal(R) =

∑m
k=1 l(Uk).

Without loss of generality, assume that the bins are
indexed in the temporal order of their openings, i.e., U−1 ≤
U−2 ≤ · · · ≤ U−m. For each bin bk, let Ek be the latest
closing time of all the bins that are opened before bk, i.e.,
Ek = max{U+

i |1 ≤ i < k}. For the first bin b1, define
E1 = U−1 . We divide the usage period Uk of each bin into
two parts: Vk and Wk. Vk is the period [U−k ,min{U+

k , Ek}).
If Ek ≤ U−k , define Vk = ∅. Wk = Uk−Vk is the remaining
period. Figure 2 shows an example of these definitions.

According to the definitions, we have l(Uk) = l(Vk) +
l(Wk). Apparently, for any two different bins bk1 and bk2 ,
Wk1 ∩ Wk2 = ∅. It is also easy to see that span(R) =
l(
⋃m
k=1Wk) =

∑m
k=1 l(Wk). Therefore,

FFtotal(R) =
m∑
k=1

l(Uk)

=

m∑
k=1

(
l(Vk) + l(Wk)

)
=

(m∑
k=1

l(Vk)

)
+ span(R)

≤
(m∑
k=1

l(Vk)

)
+OPTtotal(R), (1)

where the last step follows from Proposition 2. In what
follows, we shall analyze the amortized bin levels over the
periods Vk to bound the total time-space demand of all items
in terms of

∑m
k=1 l(Vk) and then derive the competitive ratio

of First Fit based on Proposition 1.

V. CREATION AND CONSOLIDATION OF SUBPERIODS

We classify items into small and large ones according to
their sizes. Items of sizes less than 1

µ+3 are called small
items, while those of sizes greater than or equal to 1

µ+3 are
called large items, where µ is the max/min item duration
ratio.

For each bin bk, we choose a set of small items that are
placed in bk during period Vk. As illustrated in Figure 3, we
start by selecting the first small item ever placed in bin bk
and then select subsequent items by repeating the following
process. Given the current selected item r, if there are other
small items placed in bin bk within a duration µ (including
µ) after r’s arrival, the next item selected is the last item
among these small items. Otherwise, if no other small item
is placed in bin bk within a duration µ after r’s arrival, the
next item selected is the first small item placed in bk after
r. The selection process terminates once (i) a small item
arriving within a duration µ (including µ) before the end of
period Vk is chosen, or (ii) the last small item arriving in
period Vk is chosen.

As shown in Figure 3, the arrival times of the small items
selected divide Vk into a set of periods x0, x1, x2, x3, . . . ,
where x0 is the period before the arrival of the first small
item, and xi (i ≥ 1) is the period between the arrival times
of the i-th and (i + 1)-th small items selected. Note that
if no small item is ever placed in bin bk during period Vk,
we have x0 = Vk. For each period xi (i ≥ 1), if its length
l(xi) > µ, we further split xi into an l-subperiod xl,i and
an h-subperiod xh,i, where the length of the l-subperiod is
l(xl,i) = µ and the remaining period xh,i = xi − xl,i is
the h-subperiod. We also rewrite x0 as xh,0 and refer to it
as an h-subperiod. Recall that the maximum item duration
is µ. Based on the above process of item selection, there
cannot be any small item staying in bin bk during the h-
subperiods. This implies that the bin level must be at least
1

µ+3 high during the h-subperiods (where ’h’ stands for
high utilization). In contrast, the bin level is likely to be
lower than 1

µ+3 during the l-subperiods (where ’l’ stands
for potentially low utilization). For notational convenience,

Vk

bk

arrivals of the selected small items

arrivals of other small items

1,lx 1,hx 2,lx 3,lx 3,hx

arrivals of large items

0,hx

Figure 3. An example of item selection and period split

if the length of period xi does not exceed µ, we define
xl,i = xi and xh,i = ∅. As a result, Vk is eventually
partitioned into the following list of subperiods: xh,0, xl,1,
xh,1, xl,2, xh,2, xl,3, xh,3, . . . , which we shall refer to as the
subperiods produced from bin bk. To facilitate presentation,
we shall also refer to bk as the bin of these subperiods.

The above item selection and period split process implies
the following properties:

Proposition 3: For each l-subperiod xl,i, it holds that
l(xl,i) ≤ µ.

Proposition 4: At the left endpoint of each l-subperiod
xl,i, a new small item is placed in the bin of xl,i.

Proposition 5: For any two consecutive l-subperiods xl,i
and xl,i+1, it holds that l(xl,i) + l(xl,i+1) > µ.

Proof: Assume on the contrary that l(xl,i)+l(xl,i+1) ≤
µ. This implies l(xl,i) < µ and l(xl,i+1) < µ. It follows
from the period split process that xh,i = ∅ and xh,i+1 = ∅.
Thus, we have l(xi) + l(xi+1) = l(xl,i) + l(xl,i+1) ≤ µ
and l(xi) < µ. Let ri and ri+1 denote the selected small
items arriving at the beginning of periods xi and xi+1

respectively. If ri+1 is the last item selected, then the fact
l(xi) + l(xi+1) ≤ µ indicates that ri is a small item
arriving within a duration µ before the end of period Vk.
According to termination condition (i), no item should be
further selected after ri, which contradict that ri+1 is a
selected item. If ri+1 is not the last item selected, let ri+2

denote the next item selected after ri+1. Since l(xi) < µ,
ri+1 is a small item placed in bin bk within a duration µ
after ri’s arrival. The item selection process implies that ri+1

must be the last small item placed in bin bk within a duration
µ after ri’s arrival. Therefore, ri+2 must arrive beyond a
duration µ after ri’s arrival. As a result, l(xi)+l(xi+1) > µ,
which again results in a contradiction.

Proposition 6: The bin level is at least 1
µ+3 high through-

out the h-subperiods xh,0, xh,1, xh,2, xh,3,
According to Proposition 4, a new small item is placed in

bin bk at the beginning of each l-subperiod produced from
bk. Then, by the definition of First Fit packing, the bins with
indexes lower than k, if any, must have rather high bin levels
at that time. Based on this observation, we attempt to find
some periods in these bins to compensate for the potential
low utilization of the l-subperiods.

First, for each l-subperiod xl,i produced from bin bk, there
must exist at least one open bin with an index lower than k at
time x−l,i (the beginning of xl,i). Otherwise, bk would be the
open bin with the lowest index at time x−l,i. According to the
previous definitions, x−l,i would then belong to Wk, which
contradicts that x−l,i is in Vk. Among all the open bins with
indexes lower than k at time x−l,i, we define the last opened
bin (the bin with the highest index) as the supplier bin of
the l-subperiod x−l,i. Figure 4 shows an example of supplier
bins.

Next, we consolidate some l-subperiods produced from
the same bin. Let xl,1, xl,2, xl,3, . . . be the set of l-

subperiods produced from one bin. We define the pair
relationship between two consecutive l-subperiods.

Definition 1: Two consecutive l-subperiods xl,i and
xl,i+1 are said to form a pair if they have the same supplier
bin and l(xl,i+1) > µ · l(xl,i).

Proposition 7: If two consecutive l-subperiods xl,i and
xl,i+1 form a pair, then xh,i = ∅.

Proof: By Proposition 3, we have µ · l(xl,i) <
l(xl,i+1) ≤ µ. It follows that l(xl,i) < 1 ≤ µ. This indicates
xh,i = ∅, since the h-subperiod xh,i is non-empty only if
l(xl,i) = µ.

Note that it is possible for a sequence of three or more
consecutive l-subperiods to form pairs in a concatenated
manner. For example, suppose that 1 ≤ µ < 1+

√
5

2 . Let ε be
a sufficiently small value such that 1 ≤ µ < µ+ ε < 1+

√
5

2 .
Then, we have (µ+ε)2 < µ+ε+1 and thus µ

µ+ε+1 <
µ

(µ+ε)2 .
Let z be a value satisfying µ

µ+ε+1 < z < µ
(µ+ε)2 . Suppose

the lengths of three consecutive l-subperiods are l(xl,i) = z,
l(xl,i+1) = (µ + ε)z, and l(xl,i+2) = (µ + ε)2z. Then, we
have l(xl,i) < l(xl,i+1) < l(xl,i+2) < µ (satisfying Propo-
sition 3) and l(xl,i+1) + l(xl,i+2) > l(xl,i) + l(xl,i+1) > µ
(satisfying Proposition 5). Since l(xl,i+1) > µ · l(xl,i) and
l(xl,i+2) > µ · l(xl,i+1), the l-subperiod xl,i+1 forms pairs
with both its left and right neighboring l-subperiods.

If an l-subperiod does not form any pair with its neigh-
boring l-subperiods, we call it a single l-subperiod. For
the l-subperiods that form pairs, we combine each maximal
sequence of consecutive l-subperiods into a consolidated l-
subperiod.

Definition 2: A sequence of consecutive l-subperiods
{xl,i, xl,i+1, . . . , xl,j} (j ≥ i + 1) is combined into
a consolidated l-subperiod if and only if the following
conditions are all satisfied:

(1) any two consecutive l-subperiods in the sequence form
a pair;

(2) xl,i does not form a pair with xl,i−1, or i = 1 (xl,i is
the first l-subperiod of the bin);

(3) xl,j does not form a pair with xl,j+1, or xl,j is the
last l-subperiod of the bin.

Based on the above definitions, all the l-subperiods
xl,1, xl,2, xl,3, . . . produced from one bin are divided
into single l-subperiods and consolidated l-subperiods. For
each single l-subperiod xl,i, we define the time interval
[x−l,i −

l(xl,i)
µ+1 , x

−
l,i +

l(xl,i)
µ+1) associated with xl,i’s supplier

bin as the supplier period of xl,i (see Figure 4). Note that
the length of xl,i’s supplier period is 2

µ+1 · l(xl,i). The pair
relationship (Definition 1) essentially gives the condition
for the supplier periods of two consecutive l-subperiods to
overlap if they were single l-subperiods. For each consoli-
dated l-subperiod {xl,i, xl,i+1, . . . , xl,j}, by definition, all
the l-subperiods in the sequence share a common supplier
bin. We define the time interval [x−l,i+1 − max{ l(xl,i)

µ+1 +

l(xl,i),
l(xl,i)+l(xl,i+1)

µ+1 }, x−l,j +
l(xl,j)
µ+1) associated with their

supplier period

1
)(

,
1
)(1,

1,
1,

1,
l

l
l

l

xl
x

xl
x

1
)(

,
1

)()(
),(

1
)(

max 4,
4,

3,2,
2,

2,
3,

l
l

ll
l

l
l

xl
x

xlxl
xl

xl
x

(single l-subperiod) (consolidated l-subperiod)

bk

supplier bin of

supplier bin of

2,lx 3,lx 4,lx

},,{ 4,3,2, lll xxx

1,lx

},,{ 4,3,2, lll xxx

4,hx1,hx

}{ 1,lx

}{ 1,lx

Figure 4. An example of supplier bins and periods

supplier bin as the supplier period of the consolidated
l-subperiod (see Figure 4). As shall be shown later in
Lemma 3, the supplier period of the consolidated l-subperiod
includes the supplier periods of all the l-subperiods in it if
they were single l-subperiods. We have the following lemma
about the length of the supplier period.

Lemma 1: The supplier period of a consolidated l-
subperiod {xl,i, xl,i+1, . . . , xl,j} has a length shorter than
2

µ+1 ·
∑
i≤k≤j l(xl,k).

Proof: Please refer to the extended version of this
paper [21] for details.

VI. INTERSECTION BETWEEN SUPPLIER PERIODS

To study the amortized bin level, we shall work towards
calculating the total time-space demand for all the items in
the l-subperiods and their supplier periods. To that end, we
first check for possible intersections among all the supplier
periods, where two supplier periods are defined to intersect
if and only if they are associated with the same supplier bin
and their time intervals overlap. In this section, we show
that the supplier periods of all the single and consolidated
l-subperiods do not intersect with each other.

A. l-subperiods from the Same Bin

We first examine the supplier periods of two successive
single/consolidated l-subperiods produced from the same
bin. Let xl,1, xl,2, xl,3, . . . denote the set of l-subperiods
produced from one bin.

If the two l-subperiods have different supplier bins, their
supplier periods cannot intersect according to the definition.
Thus, we only need to consider the situation where the two
l-subperiods have the same supplier bin. Their relationship
can be classified into the following two cases.

Case 1: An l-subperiod of any type followed by a single
l-subperiod.

Suppose a single l-subperiod xl,i (or a consolidated l-
subperiod {. . . , xl,i−1, xl,i}) is followed by another single l-
subperiod xl,i+1. By definition, the supplier period of xl,i (or
{. . . , xl,i−1, xl,i}) has a right endpoint of x−l,i+

l(xl,i)
µ+1 , and

the supplier period of xl,i+1 has a left endpoint of x−l,i+1 −
l(xl,i+1)
µ+1 . Since xl,i and xl,i+1 do not form a pair, according

to Definition 1, we have l(xl,i+1) ≤ µ · l(xl,i). It follows
that l(xl,i) + l(xl,i+1) ≤ (µ+ 1) · l(xl,i). So,

l(xl,i)

µ+ 1
+
l(xl,i+1)

µ+ 1
≤ l(xl,i)

≤ l(xl,i) + l(xh,i) = x−l,i+1 − x
−
l,i, (2)

and hence,

x−l,i +
l(xl,i)

µ+ 1
≤ x−l,i+1 −

l(xl,i+1)

µ+ 1
.

Therefore, the two supplier periods do not intersect.
Case 2: An l-subperiod of any type followed by a consol-

idated l-subperiod.
Suppose a single l-subperiod xl,i (or a consolidated l-

subperiod {. . . , xl,i−1, xl,i}) is followed by another con-
solidated l-subperiod {xl,i+1, xl,i+2, . . . }. The supplier
period of xl,i (or {. . . , xl,i−1, xl,i}) has a right end-
point of x−l,i +

l(xl,i)
µ+1 . The supplier period of {xl,i+1,

xl,i+2, . . . } has a left endpoint of x−l,i+2 −max{ l(xl,i+1)
µ+1 +

l(xl,i+1),
l(xl,i+1)+l(xl,i+2)

µ+1 }. Since xl,i and xl,i+1 do not
form a pair, following (2) in the analysis of Case 1, we
have

l(xl,i)

µ+ 1
+
l(xl,i+1)

µ+ 1
+ l(xl,i+1) ≤ l(xl,i) + l(xl,i+1). (3)

In addition, since l(xl,i) + l(xl,i+1) > µ ≥ 1 (Proposition
5), it follows that µ · (l(xl,i) + l(xl,i+1)) > µ ≥ l(xl,i+2).
So, we have

(µ+1) · (l(xl,i)+ l(xl,i+1)) > l(xl,i)+ l(xl,i+1)+ l(xl,i+2),

and hence,

l(xl,i) + l(xl,i+1) >
l(xl,i)

µ+ 1
+
l(xl,i+1) + l(xl,i+2)

µ+ 1
. (4)

Combining (3) and (4), we obtain

l(xl,i)

µ+ 1
+max

{ l(xl,i+1)

µ+ 1
+ l(xl,i+1),

l(xl,i+1) + l(xl,i+2)

µ+ 1

}
≤ l(xl,i) + l(xl,i+1)

≤ l(xl,i) + l(xh,i) + l(xl,i+1) + l(xh,i+1)

= x−l,i+2 − x
−
l,i.

Therefore,

x−l,i +
l(xl,i)

µ+ 1

≤ x−l,i+2 −max
{l(xl,i+1)

µ+ 1
+l(xl,i+1),

l(xl,i+1)+l(xl,i+2)

µ+ 1

}
,

which implies that the two supplier periods do not intersect.

B. l-subperiods from Different Bins
Next, we examine the supplier periods of two sin-

gle/consolidated l-subperiods produced from different bins.
Let xl,1, xl,2, xl,3, . . . denote the set of l-subperiods
produced from one bin, and let yl,1, yl,2, yl,3, . . . denote
the set of l-subperiods produced from another bin. Again,
we only consider the situation where the two l-subperiods
have the same supplier bin. Their relationship can also be
classified into two cases.

Case 3: An l-subperiod of any type followed by a single
l-subperiod.

Suppose a single l-subperiod xl,i (or a consolidated l-
subperiod {. . . , xl,i−1, xl,i}) is followed by another single
l-subperiod yl,j , i.e., their left endpoints satisfy x−l,i ≤ y−l,j .
Assume xl,i is produced from bin bg , and yl,j is produced
from bin bk. If k < g, then the supplier bin of xl,i cannot
have an index lower than k, since bin bk is opened before
bin bg , and bk is not closed at least until time y−l,j ≥ x

−
l,i. On

the other hand, by definition, the supplier bin of yl,j must
have an index lower than k. As a result, xl,i and yl,j cannot
have the same supplier bin. Therefore, if xl,i and yl,j have
the same supplier bin, we must have g < k and the supplier
bin has an index lower than g (see Figure 5). Then, in order
for yl,j to have a supplier bin with index lower than g, bin bg
must be closed by time y−l,j , which implies that y−l,j ≥ U+

g

where U+
g is the ending time of bg’s usage period Ug . Since

a new item is placed in bin bg at time x−l,i (Proposition 4)
and the minimum item duration is 1, bin bg must remain
open for a duration at least 1 after x−l,i. Thus, we have

y−l,j ≥ U
+
g ≥ x−l,i + 1. (5)

Note that the supplier period of xl,i (or {. . . , xl,i−1, xl,i})
has a right endpoint of x−l,i+

l(xl,i)
µ+1 , and the supplier period

of yl,j has a left endpoint of y−l,j−
l(yl,j)
µ+1 . Since l(yl,j) ≤ µ,

it follows that

l(yl,j) ≤ µ ≤ µ · (y−l,j − x
−
l,i).

It is also obvious that x−l,i + l(xl,i) = x+l,i ≤ U+
g , which

indicates

l(xl,i) ≤ U+
g − x−l,i ≤ y

−
l,j − x

−
l,i. (6)

1
)(,ilxl

ilx ,

jly ,

1
)(, jlyl

gb

kb
gU

iljl xy ,,

supplier periods

Figure 5. Case 3

Therefore,

l(xl,i)

µ+ 1
+
l(yl,j)

µ+ 1

≤ 1

µ+ 1
· (y−l,j − x

−
l,i) +

µ

µ+ 1
· (y−l,j − x

−
l,i)

= y−l,j − x
−
l,i. (7)

Thus, we have

x−l,i +
l(xl,i)

µ+ 1
≤ y−l,j −

l(yl,j)

µ+ 1
,

so the two supplier periods do not intersect.
Case 4: An l-subperiod of any type followed by a consol-

idated l-subperiod.
Suppose a single l-subperiod xl,i (or a consolidated l-

subperiod {. . . , xl,i−1, xl,i}) is followed by another con-
solidated l-subperiod {yl,j , yl,j+1, . . . } (see Figure 6). The
supplier period of xl,i (or {. . . , xl,i−1, xl,i}) has a right
endpoint of x−l,i +

l(xl,i)
µ+1 . The supplier period of {yl,j ,

yl,j+1, . . . } has a left endpoint of y−l,j+1 − max{ l(yl,j)µ+1 +

l(yl,j),
l(yl,j)+l(yl,j+1)

µ+1 }. Similar to Case 3, it can be proved
that (7) holds, so

l(xl,i)

µ+ 1
+
l(yl,j)

µ+ 1
≤ y−l,j − x

−
l,i

= y−l,j+1 − l(yl,j)− l(yh,j)− x
−
l,i

≤ y−l,j+1 − l(yl,j)− x
−
l,i.

Thus, we have

y−l,j+1 −
(l(yl,j)
µ+ 1

+ l(yl,j)
)
≥ x−l,i +

l(xl,i)

µ+ 1
. (8)

Moreover, (5) and (6) in the analysis of Case 3 also hold,
i.e., y−l,j ≥ x

−
l,i + 1 and l(xl,i) ≤ y−l,j − x

−
l,i. It follows from

y−l,j − x
−
l,i ≥ 1 that µ · (y−l,j − x

−
l,i) ≥ µ ≥ l(yl,j+1). Thus,

(µ+ 1) · (y−l,j+1 − x
−
l,i)

= (µ+ 1) · (y−l,j + l(yl,j) + l(yh,j)− x−l,i)
= (µ+ 1) · (y−l,j + l(yl,j)− x−l,i)
> l(yl,j) + µ · (y−l,j − x

−
l,i) + (y−l,j − x

−
l,i)

≥ l(yl,j) + l(yl,j+1) + l(xl,i).

Therefore,

y−l,j+1 −
l(yl,j) + l(yl,j+1)

µ+ 1
> x−l,i +

l(xl,i)

µ+ 1
. (9)

Combining (8) and (9), we have

x−l,i +
l(xl,i)

µ+ 1

≤ y−l,j+1 −max
{ l(yl,j)
µ+ 1

+ l(yl,j),
l(yl,j) + l(yl,j+1)

µ+ 1

}
.

Thus, the two supplier periods do not intersect.

1
)()(

),(
1
)(

max 1,,
,

, jljl
jl

jl ylyl
yl

yl
1
)(,ilxl

,...},{ 1,, jljl yy

gb

kb
gU

iljl xy ,1,

jly , 1, jly ...
ilx ,

supplier periods

Figure 6. Case 4

Based on the above analysis, we have the following
conclusion.

Lemma 2: The supplier periods of all the single and
consolidated l-subperiods produced from all bins do not
intersect with each other.

VII. TIME-SPACE DEMAND AND COMPETITIVE RATIO

A. A Single l-subperiod and Its Supplier Period

First, we calculate the time-space demands of the items in
a single l-subperiod and its supplier period. Consider a single
l-subperiod xl,i. By Proposition 4, let pi denote the selected
small item placed in the bin of xl,i at the left endpoint x−l,i.
Recall that each item resides in the system for a duration at
least 1 (the minimum item duration). Since l(xl,i)

µ+1 ≤
µ
µ+1 <

1 and l(xl,i)
µ+1 < l(xl,i), the time-space demand of pi over

xl,i is at least s(pi) · l(xl,i)
µ+1 .

Let Ri denote the set of items in the supplier bin of xl,i at
the left endpoint x−l,i. Let u(xl,i) denote the supplier period
of xl,i, i.e., u(xl,i) = [x−l,i −

l(xl,i)
µ+1 , x

−
l,i +

l(xl,i)
µ+1). Since

l(xl,i)
µ+1 < 1, the items in Ri must stay in the system for

a duration at least l(xl,i)
µ+1 over the supplier period u(xl,i).

Thus, the total time-space demand of all the items in Ri over
u(xl,i) is at least s(Ri) · l(xl,i)

µ+1 . By the definition of First Fit
packing, since xl,i’s supplier bin cannot accommodate item
pi, the total size of the items in Ri together with pi must
exceed 1, i.e., s(Ri) + s(pi) > 1.

Let d
(
u(xl,i)

)
denote the total time-space demand of the

items in xl,i’s supplier bin over the supplier period u(xl,i).
Let d(xl,i) denote the total time-space demand of the items
in xl,i’s bin over xl,i. Then, we have d

(
u(xl,i)

)
≥ s(Ri) ·

l(xl,i)
µ+1 and d(xl,i) ≥ s(pi) · l(xl,i)

µ+1 . Therefore,

d
(
u(xl,i)

)
+ d(xl,i) ≥

(
s(Ri) + s(pi)

)
· l(xl,i)
µ+ 1

>
l(xl,i)

µ+ 1
=

1

µ+ 3
·
(2

µ+ 1
· l(xl,i) + l(xl,i)

)
=

1

µ+ 3
·
(
l(u(xl,i)) + l(xl,i)

)
. (10)

This means the amortized bin level over a single l-subperiod
and its supplier period is at least 1

µ+3 .

B. A Consolidated l-subperiod and Its Supplier Period

Next, we calculate the time-space demands of the items in
a consolidated l-subperiod and its supplier period. Consider
a consolidated l-subperiod {xl,i, xl,i+1, . . . , xl,j}. For each
i ≤ k ≤ j, let pk denote the selected small item arriving at
time x−l,k (Proposition 4). Similar to the analysis for a single
l-subperiod, the time-space demand of pk over xl,k is at least
s(pk) · l(xl,k)

µ+1 . Let d(xl,i∪xl,i+1∪· · ·∪xl,j) denote the total
time-space demand of the items in xl,i, xl,i+1, . . . , xl,j’s bin
over xl,i ∪ xl,i+1 ∪ · · · ∪ xl,j . Then, we have

d(xl,i ∪ xl,i+1 ∪ · · · ∪ xl,j) ≥
∑
i≤k≤j

s(pk) ·
l(xl,k)

µ+ 1
. (11)

For each i ≤ k ≤ j, let Rk denote the set of items in
the supplier bin of the consolidated l-subperiod at time x−l,k.
For any k1 and k2 such that k2 − k1 ≥ 2, since x−l,k2 −
x−l,k1 ≥ l(xl,k1) + l(xl,k1+1) > µ (Proposition 5) and µ is
the maximum item duration, it follows that Rk1 ∩Rk2 = ∅.
Therefore, Ri ∪ Ri+1 ∪ · · · ∪ Rj can be divided into the
following disjoint subsets Ri−Ri+1, Ri∩Ri+1, Ri+1−Ri−
Ri+2, Ri+1∩Ri+2, Ri+2−Ri+1−Ri+3, . . . , Rj−1−Rj−2−
Rj , Rj−1 ∩Rj , Rj −Rj−1. For notational convenience, we
define Ri−1 = ∅ and Rj+1 = ∅, so that the first and last
subsets in the above list can be rewritten as Ri−Ri−1−Ri+1

and Rj − Rj−1 − Rj+1. Similar to the case of a single l-
subperiod, for the items in each Rk − Rk−1 − Rk+1 (i ≤
k ≤ j), they must stay in the supplier bin for a duration at
least l(xl,k)

µ+1 in the time interval [x−l,k−
l(xl,k)
µ+1 , x

−
l,k+

l(xl,k)
µ+1).

The following lemma shows that this time interval is fully
contained in the supplier period of {xl,i, xl,i+1, . . . , xl,j}.

Lemma 3: For each k where i ≤ k ≤ j, the time interval
[x−l,k−

l(xl,k)
µ+1 , x

−
l,k+

l(xl,k)
µ+1) is fully contained in the supplier

period of {xl,i, xl,i+1, . . . , xl,j}.
Proof: Please refer to the extended version of this

paper [21] for details.
It follows from Lemma 3 that the aggregate time-space

demand of the items in Rk−Rk−1−Rk+1 over {xl,i, xl,i+1,
. . . , xl,j}’s supplier period is at least

s(Rk −Rk−1 −Rk+1) ·
l(xl,k)

µ+ 1
.

For the items in each Rk ∩ Rk+1 (i ≤ k < j), by
definition, they definitely stay in the supplier bin from time
x−l,k to x−l,k+1. Note that l(xh,k) = 0 (Proposition 7). Thus,
the length of the time interval from x−l,k to x−l,k+1 is l(xl,k).
Since xl,k and xl,k+1 form a pair, we have l(xl,k) <

l(xl,k+1)
µ

(Definition 1), and it follows that

l(xl,k) + l(xl,k+1)

µ+ 1
<

l(xl,k+1)
µ + l(xl,k+1)

µ+ 1
=
l(xl,k+1)

µ
≤ 1.

Therefore, the items in Rk ∩Rk+1 must stay in the supplier
bin for a duration at least l(xl,k)+l(xl,k+1)

µ+1 in the time interval

[x−l,k−(
l(xl,k)+l(xl,k+1)

µ+1 −l(xl,k)), x−l,k+1+(
l(xl,k)+l(xl,k+1)

µ+1 −
l(xl,k))) = [x−l,k+1−

l(xl,k)+l(xl,k+1)
µ+1 , x−l,k+

l(xl,k)+l(xl,k+1)
µ+1).

The following lemma shows that this time interval is fully
contained in the supplier period of {xl,i, xl,i+1, . . . , xl,j}.

Lemma 4: For each k where i ≤ k < j, the time interval
[x−l,k+1 −

l(xl,k)+l(xl,k+1)
µ+1 , x−l,k +

l(xl,k)+l(xl,k+1)
µ+1) is fully

contained in the supplier period of {xl,i, xl,i+1, . . . , xl,j}.
Proof: Please refer to the extended version of this

paper [21] for details.
It follows from Lemma 4 that the aggregate time-space

demand of the items in Rk ∩ Rk+1 over {xl,i, xl,i+1, . . . ,
xl,j}’s supplier period is at least

s(Rk ∩Rk+1) ·
l(xl,k) + l(xl,k+1)

µ+ 1
.

Let u({xl,i, xl,i+1, . . . , xl,j}) denote the supplier period
of {xl,i, xl,i+1, . . . , xl,j}. Let d

(
u({xl,i, xl,i+1, . . . , xl,j})

)
denote the total time-space demand of the items in
{xl,i, xl,i+1, . . . , xl,j}’s supplier bin over the supplier period
u({xl,i, xl,i+1, . . . , xl,j}). Summarizing the above results,
we have

d
(
u(xl,i, xl,i+1, . . . , xl,j)

)
≥

∑
i≤k≤j

s(Rk −Rj−1 −Rk+1) ·
l(xl,k)

µ+ 1

+
∑
i≤k<j

s(Rk ∩Rk+1) ·
l(xl,k) + l(xl,k+1)

µ+ 1

=
∑
i≤k≤j

(
s(Rk−1 ∩Rk) + s(Rk −Rk−1 −Rk+1)

+s(Rk ∩Rk+1)
)
· l(xl,k)
µ+ 1

=
∑
i≤k≤j

s(Rk) ·
l(xl,k)

µ+ 1
. (12)

By the definition of First Fit packing, for each i ≤ k ≤ j,
we have s(Rk) + s(pk) > 1. It follows from (11) and (12)
that

d
(
u({xl,i, xl,i+1, . . . , xl,j})

)
+ d
(
xl,i ∪ xl,i+1 ∪ · · · ∪ xl,j

)
>

∑
i≤k≤j

l(xl,k)

µ+ 1
.

By definition, xl,i, xl,i+1, . . . , xl,j are all disjoint. Thus,

l(xl,i ∪ xl,i+1 ∪ · · · ∪ xl,j) =
∑
i≤k≤j

l(xl,k).

By Lemma 1,

l
(
u({xl,i, xl,i+1, . . . , xl,j})

)
<

2

µ+ 1
·
∑
i≤k≤j

l(xl,k).

Therefore,

d
(
u({xl,i, xl,i+1, . . . , xl,j})

)
+ d(xl,i ∪ xl,i+1 ∪ · · · ∪ xl,j)

>
1

µ+ 3
·
(2

µ+ 1
·
∑
i≤k≤j

l(xl,k) +
∑
i≤k≤j

l(xl,k)
)

>
1

µ+ 3
·
(
l
(
u({xl,i, xl,i+1, . . . , xl,j})

)
+l(xl,i ∪ xl,i+1 ∪ · · · ∪ xl,j)

)
. (13)

This shows the amortized bin level over a consolidated l-
subperiod and its supplier period is also at least 1

µ+3 .

C. All l-subperiods and Supplier Periods

Now, we put all the l-subperiods and their supplier periods
together. Let X denote the set of all the single l-subperiods
and consolidated l-subperiods produced from all bins in
the packing process. Each x ∈ X is either a single or
a consolidated l-subperiod. Let u(x) denote the supplier
period of x. In the previous subsections, we have proved
that for each x, d

(
u(x)

)
+ d(x) > 1

µ+3 ·
(
l
(
u(x)

)
+ l(x)

)
.

We shall show in this subsection that

d
(⋃
x∈X

(
u(x) ∪ x

))
>

1

µ+ 3
· l
(⋃
x∈X

(
u(x) ∪ x

))
. (14)

Intuitively, the major barrier to establishing (14) is that the
l-subperiods and their supplier periods may intersect. Recall
from Lemma 2 that the supplier periods of all the single and
consolidated l-subperiods do not intersect with each other.
By definition, all the single and consolidated l-subperiods
are also disjoint themselves. Thus, the only possibility of
intersection is between a single/consolidated l-subperiod x1
and the supplier period of another single/consolidated l-
subperiod x2. Fortunately, in deriving the amortized bin lev-
els of (10) and (13), for the single/consolidated l-subperiod,
we only count the time-space demand of the selected small
items arriving at the left endpoints of the l-subperiods.
Therefore, the time-space demands double-counted in the
intersection parts are all due to these selected small items.
Since small items have sizes less than 1

µ+3 , the amortized bin
level by aggregating all the l-subperiods and their supplier
periods should remain at least 1

µ+3 when double counting
is eliminated. A formal analysis leading to (14) is given in
the extended version of this paper [21].

D. Competitive Ratio of First Fit Packing

Finally, we further add the h-subperiods produced from
each bin into consideration. Let Y denote the set of all the
h-subperiods produced from all bins. By definition, the h-
subperiods do not intersect with the l-subperiods, but they
may intersect with the supplier periods of l-subperiods.
Since the h-subperiods have bin levels no less than 1

µ+3
(Proposition 6), we have

d
(⋃
y∈Y

y−
⋃
x∈X

u(x)
)
≥ 1

µ+ 3
· l
(⋃
y∈Y

y−
⋃
x∈X

u(x)
)
. (15)

Recall that all the l-subperiods and h-subperiods consti-
tute the periods Vk. Thus, according to (1), (14) and (15),
we have

FFtotal(R) ≤
∑
x∈X

l(x) +
∑
y∈Y

l(y) +OPTtotal(R)

= l
(⋃
x∈X

x
)
+ l
(⋃
y∈Y

y
)
+OPTtotal(R)

≤ l
(⋃
x∈X

x ∪
⋃
x∈X

u(x)
)
+l
(⋃
y∈Y

y −
⋃
x∈X

u(x)
)
+OPTtotal(R)

= l
(⋃
x∈X

(u(x) ∪ x)
)
+l
(⋃
y∈Y

y −
⋃
x∈X

u(x)
)
+OPTtotal(R)

< (µ+ 3) · d
(⋃
x∈X

(u(x) ∪ x)
)

+(µ+ 3) · d
(⋃
y∈Y

y −
⋃
x∈X

u(x)
)
+OPTtotal(R)

= (µ+ 3) · d
(⋃
x∈X

x ∪
⋃
x∈X

u(x) ∪
⋃
y∈Y

y
)
+OPTtotal(R).

Note that d
(⋃

x∈X x ∪
⋃
x∈X u(x) ∪

⋃
y∈Y y

)
is bounded

by the total time-space demand of all items over the
entire packing period. It follows from Proposition 1 that
d
(⋃

x∈X x∪
⋃
x∈X u(x)∪

⋃
y∈Y y

)
≤ OPTtotal(R). There-

fore, we have the following result:

FFtotal(R) ≤ (µ+ 3) ·OPTtotal(R) +OPTtotal(R)
= (µ+ 4) ·OPTtotal(R).

Theorem 1: For the MinUsageTime DBP problem, the
competitive ratio of First Fit packing has an upper bound
of µ+ 4.

It has been proved that for MinUsageTime DBP, the
competitive ratio of any online packing algorithm cannot
be better than µ [12], [16]. Thus, the result of Theorem 1
indicates that First Fit packing is near optimal for MinUsage-
Time DBP.

VIII. COMPARISON BETWEEN FIRST FIT AND NEXT FIT

The Next Fit packing algorithm keeps exactly one bin
available for receiving new items at any time. If an incoming
item does not fit in the available bin, the available bin is
marked unavailable and a new bin is opened (and marked
available) to receive the new item. Unavailable bins are never
marked available again and are closed when all the items in
the bin depart.

Kamali et al. [12] has shown that the competitive ratio
of Next Fit packing has an upper bound of 2µ + 1 for the
MinTotal DBP problem. In this section, we show that the
competitive ratio of Next Fit has a lower bound of 2µ by
constructing an example. This implies that the multiplicative
factor 2 of µ is inevitable in the competitive ratio of Next
Fit. Therefore, First Fit is the only known packing algorithm

so far whose competitive ratio has a multiplicative factor 1
for µ.

Let n be an integer no less than 3. At time 0, let 2n pairs
of items arrive in sequence. The first item of each pair has
a size 1

2 and the second item has a size 1
2n . At time 1, let

all the items of size 1
2 depart. At time µ, let all the items of

size 1
2n depart.

When Next Fit packing is applied, each pair of items are
placed in a separate bin because the first item of the pair
(of size 1

2) cannot fit in the previous open bin which has a
level 1

2 + 1
2n . Thus, 2n bins are opened from time 0 to µ.

Therefore, the total bin usage time of Next Fit packing is
2nµ. On the other hand, in the optimal packing, every two
items of size 1

2 can be packed into one bin so that only n
bins are enough to store all the items of size 1

2 from time
0 to 1. All the items of size 1

2n can be packed into only
one bin. Therefore, the total bin usage time of the optimal
packing is n+ µ. The ratio between the bin usage times of
Next Fit packing and optimal packing is 2nµ

n+µ , which can
be made arbitrarily close to 2µ as n goes towards infinity.
Thus, the competitive ratio of Next Fit packing has a lower
bound of 2µ.

IX. CONCLUDING REMARKS

The MinUsageTime DBP problem models online job
dispatching to cloud servers. In this paper, we have de-
veloped new approaches to analyze the competitiveness of
the commonly used First Fit packing algorithm for the
MinUsageTime DBP problem, and established a new upper
bound of µ+4 on its competitive ratio, which is the current
best upper bound for the MinUsageTime DBP problem.
Our result significantly reduces the gap between the upper
and lower bounds for the MinUsageTime DBP problem
to a constant independent of µ, and indicates that First
Fit packing is near optimal for MinUsageTime DBP. One
direction for future work is to extend the MinUsageTime
DBP problem to the multi-dimensional version to model
multiple types of resources (e.g., CPU and memory) for
online cloud server allocation.

ACKNOWLEDGMENT

This work is supported by Singapore Ministry of Ed-
ucation Academic Research Fund Tier 2 under Grant
MOE2013-T2-2-067, and by the National Research Foun-
dation Singapore under its Interactive Digital Media (IDM)
Strategic Research Programme.

REFERENCES

[1] Amazon EC2 pricing. http://aws.amazon.com/ec2/pricing/.

[2] J. Balogh, J. Békési, and G. Galambos. New lower bounds
for certain classes of bin packing algorithms. Approximation
and Online Algorithms (Lecture Notes in Computer Science,
Volume 6534), pages 25–36, 2011.

[3] A. Borodin and R. El-Yaniv. Online computation and com-
petitive analysis, volume 53. Cambridge University Press
Cambridge, 1998.

[4] J. W.-T. Chan, T.-W. Lam, and P. W. Wong. Dynamic
bin packing of unit fractions items. Theoretical Computer
Science, 409(3):521–529, 2008.

[5] J. W.-T. Chan, P. W. Wong, and F. C. Yung. On dynamic bin
packing: An improved lower bound and resource augmenta-
tion analysis. Computing and Combinatorics, pages 309–319,
2006.

[6] E. G. Coffman, Jr, M. R. Garey, and D. S. Johnson. Dynamic
bin packing. SIAM Journal on Computing, 12(2):227–258,
1983.

[7] M. Flammini, G. Monaco, L. Moscardelli, H. Shachnai,
M. Shalom, T. Tamir, and S. Zaks. Minimizing total busy time
in parallel scheduling with application to optical networks. In
Proc. IEEE IPDPS’09, pages 1–12, 2009.

[8] M. R. Garey and D. S. Johnson. Computers and intractability:
A guide to the theory of NP-completeness, 1979.

[9] M. C. Golumbic. Algorithmic Graph Theory and Perfect
Graphs. Academic Press, 1980.

[10] C.-Y. Huang, K.-T. Chen, D.-Y. Chen, H.-J. Hsu, and C.-H.
Hsu. GamingAnywhere: the first open source cloud gaming
system. ACM Transactions on Multimedia Computing, Com-
munications, and Applications, 10(1s):10, 2014.

[11] Z. Ivkovic and E. L. Lloyd. Fully dynamic algorithms for
bin packing: Being (mostly) myopic helps. SIAM Journal on
Computing, 28(2):574–611, 1998.

[12] S. Kamali and A. López-Ortiz. Efficient online strategies for
renting servers in the cloud. SOFSEM 2015: Theory and
Practice of Computer Science, 8939:277–288, 2015.

[13] E. L. Lawler, J. K. Lenstra, A. H. Rinnooy Kan, and D. B.
Shmoys. Sequencing and scheduling: Algorithms and com-
plexity. Handbooks in Operations Research and Management
Science, 4:445–522, 1993.

[14] Y. Li, Y. Deng, R. Seet, X. Tang, and W. Cai. MASTER:
Multi-platform application streaming toolkits for elastic re-
sources. In Proc. ACM MM’15, pages 805–806, 2015.

[15] Y. Li, X. Tang, and W. Cai. Dynamic bin packing for on-
demand cloud resource allocation. IEEE Transactions on
Parallel and Distributed Systems, 27(1):157–170, 2016.

[16] Y. Li, X. Tang, and W. Cai. On dynamic bin packing for
resource allocation in the cloud. In Proc. ACM SPAA’14,
pages 2–11, 2014.

[17] G. B. Mertzios, M. Shalom, A. Voloshin, P. W. Wong, and
S. Zaks. Optimizing busy time on parallel machines. In Proc.
IEEE IPDPS’12, pages 238–248, 2012.

[18] S. S. Seiden. On the online bin packing problem. Journal of
the ACM, 49(5):640–671, 2002.

[19] R. Shea, J. Liu, E.-H. Ngai, and Y. Cui. Cloud gaming:
Architecture and performance. IEEE Network, 27(4):16–21,
2013.

[20] F. C. R. Spieksma. On the approximability of an interval
scheduling problem. Journal of Scheduling, 2:215–227, 1999.

[21] X. Tang, Y. Li, R. Ren, and W. Cai. On First Fit Bin Pack-
ing for Online Cloud Server Allocation (Extended Version).
Available at http://www.ntu.edu.sg/home/asxytang/.

