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Abstract—In this paper, we study the problem of how to
dispatch the play requests to the cloud servers in a cloud gaming
system. We show that the dispatching strategy of play requests
may heavily affect the total service cost of the cloud gaming
system. The play request dispatching problem can be considered
as a variant of the dynamic bin packing problem. However, we
show that the classical bin packing algorithms such as First Fit
and Best Fit are not efficient in dispatching the play requests
in cloud gaming due to the diurnal workload pattern of online
games. To address this issue, we propose an efficient request
dispatching algorithm that assigns the play requests according
to the predicted ending times of the game sessions. Through
extensive evaluations using real online gaming traces, we show
that the proposed dispatching algorithm can significantly reduce
the resource waste of the cloud servers and thus decrease the total
service cost compared to the First Fit and Best Fit algorithms.

I. INTRODUCTION

Recently, cloud gaming has attracted a great deal of inter-
ests from both academia and industry [20], [4], [5]. The basic
idea of cloud gaming is to run games on cloud servers and
players interact with games through thin clients. Specifically,
the thin client sends player inputs to a cloud server; the cloud
server runs the game instance, render 3D graphics, encodes
the game scenes into a video and streams the video to the
thin client; the thin client decodes and displays the video
to the player. In this way, players can play games easily
without installing them locally. Moreover, players can play
GPU intensive games on their computers, tablets or even
mobile phones without dedicated hardware equipped.

Running a game instance requires a certain amount of
computational resources. Therefore, the number of game in-
stances that can run concurrently on a cloud server is lim-
ited. In order to serve a large player population, the cloud
gaming service provider needs to prepare sufficient number
of cloud servers for running the game instances. However,
the high workload variability of online gaming makes server
provisioning a challenging issue. As shown by empirical data
(see Figure 2 in Section III), the number of active players
varies greatly over the day. Thus, setting up too many servers
would lead to resource waste during slower gaming times while
not maintaining enough servers would result in servers becom-
ing overloaded during peak gaming times. The on-demand
resource provisioning service in public clouds like Amazon
EC2 provides a promising solution to the above problem. The
users can rent the resources (i.e., virtual machines) on an as-

needed basis in response to workload variation and pay for
only the resources that they actually use. This approach frees
the users from the complexities of purchasing, engineering and
maintaining hardware infrastructures, and has been adopted by
cloud gaming companies such as OnLive [4] and GaiKai [1].

Consider a cloud gaming system that rents virtual machines
to serve as cloud servers. A main concern of the service
provider is how to minimize the total renting cost of the virtual
machines used. Generally, the total renting cost is proportional
to the total running hours of all the virtual machines used.
Given a workload, we shall show that the total running hours
of all the virtual machines used is highly dependent on how
the play requests of the players are assigned to the virtual
machines. In our previous work [25], we modeled the problem
of dispatching play requests to cloud servers for minimizing
the total renting cost as a variant of the dynamic bin packing
(DBP) problem, which is named the MinTotal DBP problem.
We theoretically analyzed the worst-case performance of the
classical bin packing algorithms such as First Fit and Best
Fit for the MinTotal DBP problem. First Fit attempts to put a
new item into the first bin (i.e., the earliest opened bin) that
can accommodate the item, while Best Fit attempts to assign a
new item to the bin with the smallest residual capacity that can
accommodate it. First Fit and Best Fit are simple and make
decisions based on the current system state only. However, we
shall show that First Fit and Best Fit packing algorithms may
lead to large resource waste of the virtual machines in cloud
gaming due to its diurnal workload pattern.

In this paper, we propose an efficient play request dispatch-
ing algorithm which assigns play requests according to the
predicted ending times of the game sessions. This approach
is based on the assumption that the ending times of the game
sessions can be predicted in some ways, e.g., according to the
user habits, historical user behaviors or based on the expected
game session length etc. With the predicted ending times,
our request dispatching algorithm aims to “pack” the game
sessions that have similar ending times to the same virtual
machine, so that the virtual machine can keep high resource
utilization during its running hours. We evaluate the proposed
dispatching algorithm by using real game session traces and the
results show that it can significantly reduce the resource waste
of the virtual machines, thereby decreasing the total running
hours compared to First Fit and Best Fit.

The rest of this paper is structured as follows. The related
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works are summarized in Section 2. In Section 3, the play
request dispatching problem in cloud gaming is introduced
and the performance of the classical bin packing algorithms
is evaluated. Our proposed play request dispatching algorithm
is presented in Section 4. In Section 5, the experimental
evaluations and results are discussed. Finally, conclusions are
made and future work is discussed in the last section.

II. RELATED WORKS

Cloud gaming systems have been implemented for both
commercial use and research studies [20], [4], [5]. Gamin-
gAnyWhere [20] is the first open source cloud gaming sys-
tem, which provides a complete cloud gaming testbed for
researchers and developers. OnLive [4] is the first company
offering a commercial cloud gaming platform. As mentioned
in the introduction, the basic idea of cloud gaming is to render
games on cloud servers and stream videos to thin clients. A
lot of research work has been conducted towards measuring
and optimizing the video-based cloud gaming solution. The
measurement works have mainly concentrated on measuring
the latency and network traffic of the existing commercial
cloud gaming platforms [10], [24], [26], [12]. The optimization
works have mainly focused on video encoding techniques and
graphic rendering techniques for bit rate reduction [17], [6],
[7], [11], [27].

There is also some research work studying the resource
management issues in cloud gaming systems. Wu et al. [28]
studied the request dispatching and server provisioning issues
in a multi-region multi-datacenter cloud gaming system. The
objective of their work is to reduce the latency. Hong et al.
[19] considered how to consolidate the game instances on the
physical servers to strike a balance between the Quality of
Experience (QoE) perceived by players and the net profit of
the service provider. They found that both the QoE and the
provider’s profit are highly dependent on how the VMs are
placed on the physical servers. Some heuristic algorithms were
proposed to maximize the provider’s profit while guaranteeing
the QoE. However, it was assumed that the operational cost of
the cloud gaming service provider is proportional to the CPU
and GPU utilizations of its servers. This is valid when the
service provider maintains its own server infrastructure. But
it does not really match the pricing model of the on-demand
resources offered by public clouds. If the service provider rents
server resources from public clouds, the servers rent would be
charged according to their running hours regardless of their
utilizations. Thus, to save the total renting cost, it is important
to reduce the total running hours of the servers.

The play request dispatching problem studied in this paper
is related to the bin packing and interval scheduling problems.
The classical bin packing problem aims to pack the items
into the least number of bins. The problem and its variations
have been studied extensively in both the offline and online
versions [13], [15]. It is well known that the offline version
of the classical bin packing problem is NP-hard already [16].
A variant of the classical bin packing problem is dynamic
bin packing [14]. This generalization assumes that items
may arrive and depart at arbitrary times. The objective is
to minimize the maximum number of bins ever used over
time. The play request dispatching problem considered in this
paper is a case of dynamic bin packing. However, we study

the problem from different view points in that we aim to
minimize the total renting cost. In our previous work [25],
we have formulated the play request dispatching problem for
minimizing the total service cost of a cloud gaming system
that rents servers from public clouds. We modeled the problem
as a MinTotal DBP problem and theoretically analyzed the
worst-case performance of the classical bin packing algorithms
such as Best Fit and First Fit for the MinTotal DBP problem.
However, no experimental evaluation was conducted using
real gaming workloads. The interval scheduling problem is
also related to the play request dispatching problem [21]. The
classical interval scheduling problem considers a set of jobs,
each associated with an interval in which the job should be
processed. Each machine can process only a single job at any
time. Given a fixed number of machines, the objective is to
schedule a maximum feasible subset of jobs [8]. However, the
online version of the problem has seldom been studied.

III. CLASSICAL BIN PACKING ALGORITHMS FOR PLAY

REQUEST DISPATCHING

Suppose the cloud gaming service provider rents virtual
machines as the cloud servers. When a play request is received,
it should be assigned to an active virtual machine that has
enough computational resources to run the game instance of
this request. Several game instances may share the same virtual
machine as long as the computational resources of the virtual
machine are not saturated. If no active virtual machine is able
to accommodate the play request, a new virtual machine should
be started. Generally, once a game instance starts, it will reside
in the same virtual machine during the entire game session.
Thus, each play request corresponds to one game session and
these two terms can be used interchangeably. The migration
of game instances from one virtual machine to another is not
preferable due to large migration overheads and interruption
to game play [19]. A virtual machine can be shutdown and
released for saving cost if no game instance is running on it.

In the online scenario, each play request must be dispatched
as it arrives without any knowledge of the future play request
arrivals. For a given set of play requests, the dispatching
strategy directly affects the total running hours of the virtual
machines used to serve all the play requests. Consider the
following example. Suppose for simplicity that all the play
requests have the same computational resource requirements.
Assume each virtual machine is able to host at most 2
game instances concurrently. Let each play request (or game
session) be represented by a pair: (starting time, ending time).
Assume there are three play requests to be served, which are
represented by r1 = (0, 10), r2 = (0, 1), r3 = (0, 10). It is
easy to see that the three play requests arrive at the same time
and two virtual machines are needed to host them. Suppose
r1 and r2 are packed into the same virtual machine, and r3 is
assigned to the other virtual machine (see Figure 1(a)). In this
case, the running hours of the virtual machine serving r1 and
r2 would be max{1, 10} = 10, and the running hours of the
virtual machine serving r3 would be 10. Therefore, the total
running hours of the two virtual machines is 10 + 10 = 20.
On the other hand, if r1 and r3 are packed into the same
virtual machine, then r2 would be assigned to the other virtual
machine (see Figure 1(b)). In this case, the running hours of
the virtual machine serving r1 and r3 would be 10, and the
running hours of the virtual machine serving r2 would be 1.



Thus, the total running hours of the two virtual machines is
10 + 1 = 11. It can be seen from the above example that the
total running hours of the virtual machines is highly dependent
on how the play requests are dispatched.
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Fig. 1. Two dispatching strategies

A. Classical Packing Algorithms

Since the play request dispatching is a variant of the
bin packing problem, we first examine how the classical bin
packing algorithms perform for this problem. We conducted
some simulations to evaluate the two most commonly used
bin packing algorithms: First Fit and Best Fit. We consider
the following implementations of First Fit and Best Fit for
play request dispatching in cloud gaming:

• First Fit Dispatching: Each time a play request
arrives, First Fit tries to assign it to the earliest started
active virtual machine that has enough resources to run
the game instance for the request. If no such virtual
machine is found, a new virtual machine is started and
the request is assigned to the new virtual machine.

• Best Fit Dispatching: Each time a play request ar-
rives, Best Fit tries to assign it to the “best” active
virtual machine, which is the one with the smallest
amount of spare resources that can accommodate the
game instance for the request. If no such virtual
machine is found, a new virtual machine is started and
the request is assigned to the new virtual machine.

We implemented an event-driven simulator to simulate the
play request dispatching process by using First Fit and Best
Fit. In order to make the simulations more realistic, we use
the data from the World of Warcraft Avatar History (WoWAH)
dataset [23]. The World of Warcraft (WoW) is the most popular
MMORPG in the world which has over 12 million subscribers
[2]. Hence, the data of WoW is often studied by researchers
from various areas [9], [18], [22]. The WoWAH dataset records
continual observations of the status of all players in a WoW
realm in Taiwan over a 3-year period from Jan. 2006 to Jan.
2009. During the monitored period, 91065 players and 667032
game sessions associated with the players were observed.

In the simulations, each game session in the WoWAH
dataset represents a play request in cloud gaming. We assume
that all the game sessions have the same computational re-
source requirements and each virtual machine is able to run up
to 4 game instances simultaneously (a normal GPU generally
can support 3 ∼ 5 game instances concurrently [29]). Figure 2
shows the number of active players over a sample period of 3

days and Figure 3 shows the instantaneous number of virtual
machines used by different dispatching algorithms over the
sample period. The “Optimal” curve represents the minimum
number of virtual machines required for accommodating all
the active game sessions, which is calculated by dividing the
total number of active game sessions by the virtual machine
capacity (i.e., 4 game sessions on each virtual machine).

According to how the number of active game sessions
changes (see Figure 2), we divide 24 hours of the day into two
periods: a climbing period (from 7:00 to 23:00) and a declining
period (from 23:00 to 7:00 of the next day). The number of
active players generally increases during the climbing period
and decreases during the declining period. As can be seen
from Figure 3, the numbers of virtual machines used by First
Fit and Best Fit dispatching are very close to Optimal in the
climbing period. This is because there are more play request
arrivals than departures in the climbing period. In this case,
no matter how the play requests are assigned, all the active
virtual machines are almost fully occupied by the continuously
arriving play requests. However, in the declining period, First
Fit and Best Fit occupy many more virtual machines than
Optimal. It implies that the active virtual machines under
First Fit and Best Fit dispatching are not fully utilized in
the declining period. This is because there are more player
departures than arrivals in the declining period. If the players
on the same virtual machine do not leave the system at the
same time, the “leftover” game sessions would cause many
virtual machines to run at low levels of resource utilization so
that these virtual machines cannot be shut down timely. As
indicated in Figure 3, the area between the “Optimal” curve
and the First Fit (or Best Fit) curve represents the “wasted”
running hours of virtual machines under First Fit (or Best
Fit) dispatching. It is easy to see that there exist a large
number of wasted running hours for both First Fit and Best
Fit dispatching.

IV. ENDING TIME BASED PLAY REQUEST DISPATCHING

In this section, we propose an efficient play request dis-
patching algorithm that can greatly reduce the wasted running
hours compared to First Fit and Best Fit. The basic idea
is to assign play requests according to the predicted ending
times of the game sessions, and pack those game sessions that
have “close” ending times into the same virtual machine. In
this way, all the game sessions assigned to the same virtual
machine are expected to complete at around the same time.
Therefore, each virtual machine can keep a high level of
resource utilization during its running hours and can be shut
down timely after all its game sessions end. The details of the
dispatching algorithm are described in Algorithm 1.

Denote the play request to be dispatched by r. We first
predict the ending time of r’s game session, which is denoted
by e(r) (line 1). For each active virtual machine v, let T (v)
denote the expected shutdown time of v, which is defined
as the latest predicted ending time of all the game sessions
currently running on v. If there is no active virtual machine
that has enough computational resources to serve r, a new
virtual machine needs to be started and the play request r is
assigned to the new virtual machine (lines 3-4). Otherwise,
r would be assigned to one of the active virtual machines
that have sufficient spare computational resources. Among all
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Fig. 2. Number of active players over a sample period of 3 days
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Fig. 3. Performance of First Fit and Best Fit dispatching for a sample period of 3 days

the active virtual machines that can accommodate r, we first
consider the virtual machines whose expected shutdown times
are later than e(r) (lines 6-8). The rationale behind is that if r is
assigned to a virtual machine whose expected shutdown time is
later than e(r), the total running hours of the virtual machines
will not be increased after the assignment. This is because the
virtual machine serving r needs to keep active at least to its
expected shutdown time no matter whether r is assigned to it
or not. If all the active virtual machines that can accommodate
r have their expected shutdown times earlier than e(r), r is
then assigned to the virtual machine that has the latest expected
shutdown time. The motivation here is to minimize the increase
of the total running hours after the assignment (line 10).

V. EXPERIMENTS

We conducted extensive experiments using the WoWAH
dataset to evaluate the benefit of the proposed play request
dispatching algorithm. In each experiment, we used different
algorithms to dispatch the play requests (i.e., the game sessions
in the WoWAH dataset) and collected the statistics of active
virtual machines used at each time point. We also evaluated
the impacts of the virtual machine capacity and the prediction
errors of the game sessions’ ending times on the performance
of our ETPRD algorithm.

First, we assume the ending times of the game sessions
are perfectly predicted in the ETPRD algorithm. Moreover,
we assume each virtual machine is able to host up to 4 game
instances concurrently. Figure 4 shows the number of active
virtual machines used over the sample period as shown in

Algorithm 1 Ending Time based Play Request Dispatching
(ETPRD)

1: Predict e(r) for the play request r
2: Denote the set V = {v1, v2, ...} as the set of active virtual

machines that have enough computational resources to run
the game instance for r

3: if V = ∅ then
4: Start a new virtual machine and assign r to the new

started virtual machine
5: else
6: Denote by V ′ ⊆ V the set of all the virtual machines v

such that T (v) > e(r)
7: if V ′ �= ∅ then
8: Assign r to any of the virtual machines in V ′
9: else

10: Assign r to the virtual machine v′ such that T (v′) is
the latest (largest) among all the virtual machines in
V

11: end if
12: end if

Figure 2. It can be seen that the active number of virtual
machines used by the ETPRD algorithm in the declining period
has been greatly reduced compared to the First Fit and Best Fit
algorithms. This is because in the climbing period, the ETPRD
algorithm packs the game sessions that have similar ending
times into the same virtual machine. In the declining period,
the game sessions assigned to the same virtual machine end at
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Fig. 4. Performance of different dispatching algorithms for a sample period of 3 days
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around the same time. Therefore, each virtual machine is able
to maintain high resource utilization throughout its running
hours and can be shut down timely when the players depart.
The area between the First Fit curve and the ETPRD curve is
the total running hours that are saved by ETPRD compared
to First Fit. It is easy to see that ETPRD can save almost
70% wasted running hours compared to First Fit and Best Fit
dispatching.

Next, we evaluate how the virtual machine capacity (in
terms of how many game instances can run on a virtual
machine concurrently) would affect the performance of the
ETPRD algorithm. We still assume that the ending times of
the game sessions are perfectly predicted in this experiment.
The virtual machine capacity is varied in the range from 1 to 32
(the recent GPU technology is able to support up to 32 game
instances on a single board [3]). Figure 5 shows the average
daily wasted running hours (i.e., the additional running hours
compared to the optimal running hours) produced by different
dispatching algorithms over the entire WoWAH dataset (i.e.,
the 3-year period from Jan. 2006 to Jan. 2009). It can be
seen that for most of the virtual machine capacities, ETPRD
can save more than 50% wasted running hours compared
to First Fit and Best Fit dispatching. In the extreme case
where the virtual machine capacity is only 1 (i.e., each virtual
machine can run one game instance only), it is intuitive that all
the dispatching algorithms (including Optimal) would occupy
exactly the same number of virtual machines at any time and
there is no wasted running hour at all. On the other hand, when
a virtual machine can accommodate multiple game instances,
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Fig. 6. Performance for different virtual machine capacities

the percentage of reduction in wasted running hours by our
ETPRD algorithm gradually decreases with increasing virtual
machine capacity. This is because given a set of play requests,
when the virtual machine capacity is larger, it becomes more
difficult to find sufficient number of play requests that share
similar ending times to fill up a virtual machine to its capacity.
It should be noted that a wasted running hour of a high-
capacity virtual machine actually wastes more resources than a
wasted running hour of a low-capacity virtual machine. Figure
6 shows the absolute amount of resource waste in terms of the
game instance slots (which is given by the wasted running
hours times the virtual machine capacity). It can be seen that
as the virtual machine capacity increases, the resource waste
cut by our ETPRD algorithm compared to First Fit and Best
Fit dispatching also increases.
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Finally, we evaluate how prediction errors of the ending
times would affect the performance of the ETPRD algorithm.
We again assume that the capacity of each virtual machine is
4. Since it is not the main focus of this paper to investigate
specific prediction algorithms, we study the sensitivity of
the ETPRD algorithm by assuming given prediction errors.
Consider a play request r. Let s(r) and e(r) denote the starting
time and ending time of its game session respectively. Denote
by p(r) the predicted ending time of the game session. The

prediction error for r is defined as the ratio of
p(r)−e(r)
e(r)−s(r) , i.e.,

the difference between the predicted and real ending times
normalized by the actual length of the game session.

In the simulations, we tested different ranges of prediction
errors. Given a range, we randomly generated a prediction error
in the range for each play request. The daily averaged wasted
running hours of ETPRD for different ranges of prediction er-
rors are shown in Figure 7. As can be seen, the wasted running
hours of ETPRD increases almost linearly as the prediction
error increases. It can be observed that ETPRD has noticeable
performance gains (38% reduction in wasted running hours
compared to First Fit and Best Fit dispatching) even when the
prediction errors are as high as [-100%, +100%].

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a play request dispatching
algorithm for cloud gaming systems to optimize their service
costs. The proposed algorithm assigns the play requests ac-
cording to the predicted ending times of game sessions. The
experimental results show that the proposed algorithm can
significantly reduce the total service cost compared to the
classical First Fit and Best Fit bin packing algorithms. It is
also seen from the experimental results that the benefit of the
proposed algorithm is dependent on how accurately the ending
times are predicted. Therefore, an important direction of future
work is to investigate effective algorithms for predicting the
ending times of game sessions.
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