
IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXX XXX 1

Synergy of Dynamic Frequency Scaling and
Demotion on DRAM Power Management:

Models and Optimizations
Yanchao Lu, Bingsheng He, Xueyan Tang, Senior Member, IEEE, and Minyi Guo, Senior Member, IEEE

Abstract—Main memory (or DRAM) is one of the most significant components to the computer system’s performance and energy
consumption. Dynamic frequency scaling (DFS) and DRAM low-power states (Demotion) are two main-stream techniques for DRAM
power management. DFS reduces the operation frequency of memory channels and DRAM devices when the memory bandwidth is
under-utilized, whereas demotion transits individual memory ranks to low-power states during long idle periods. Despite that there
have been fruitful research work for DFS and demotion separately, little attention has been paid to the synergy between these two
techniques. To bridge this gap, this paper conducts a comprehensive study on the synergy between DFS and demotion. In particular,
we leverage queuing theory to develop analytical models for the energy consumption and performance of DRAM systems with DFS
and demotion. These models provide valuable insights into the synergy between DFS and demotion. We further attempt to minimize
the energy consumption by considering both DFS and demotion while keeping a pre-defined performance penalty budget. To reduce
the optimization complexity, we develop simple yet effective heuristics to search near-optimum DFS-demotion configurations. We
experimentally compare our design with other state-of-the-art DRAM energy saving policies using detailed simulations of a large set of
workloads. Experimental results show the accuracy of our analytical models and the effectiveness of our optimizations.

Index Terms—Demotion, Dynamic frequency scaling, Energy consumption, Main memory systems, In-memory processing

F

1 INTRODUCTION

E NERGY consumption has become a major factor in the
design and implementation of modern computer systems.

In many systems, main memory (or DRAM) is a critical
component for the performance and energy consumption.
As processors have moved to a multi-/many-core era, more
applications run simultaneously with their working sets in the
main memory. Emerging applications such as in-memory data
analytics [1] and RAMCloud [2] boost the memory capacity
of modern computing systems. Such hunger for main memory
of larger capacity makes the amount of energy consumed by
main memory approaching or even surpassing that consumed
by processors in many servers [3], [4]. For example, it has been
reported that main memory contributes to as much as 40–46%
of total energy consumption in server applications [5], [6]. For
these reasons, this paper investigates whether and how we can
leverage DRAM power management techniques to reduce the
energy consumption of main memory.

There have been various energy saving techniques on ex-
ploiting the power management capability of main memory.
Two important and common techniques are DRAM low-power

• Yanchao Lu and Minyi Guo are with the Department of Computer Science
and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
The work of Yanchao Lu is done when he was a visiting student in Nanyang
Technological University, Singapore. E-mail: chzblych@sjtu.edu.cn, guo-
my@cs.sjtu.edu.cn.

• Bingsheng He and Xueyan Tang are with the School of Computer En-
gineering, Nanyang Technological University, Singapore 639798. Bing-
sheng He is the corresponding author. E-mail: bshe@ntu.edu.sg, asxy-
tang@ntu.edu.sg.

states (Demotion) [7], [8], [9], [10] and dynamic frequency
scaling (DFS) [11], [12]. The common theme of demotions
is to transit individual memory ranks to low-power states
during (long) idle periods, whereas DFS dynamically scales
the operation frequency of memory channels and DRAM
devices to make the active memory power proportional to
memory loads. DFS can reduce the memory power when the
memory bandwidth is under-utilized.

Despite that there have been fruitful research studies for
DFS and demotion separately, little attention has been paid to
the synergy between those two techniques. Actually, there is
a complex interplay between DFS and demotion in DRAM
power management. On the one hand, a lower memory fre-
quency in DFS leads to lower background power consump-
tions for memory devices. However, this also results in a
longer application execution time and increases the energy
consumption of a memory access. Moreover, it usually reduces
the length of memory idle periods, and thus degrades the
effectiveness of demotions. On the other hand, operating
memory devices at a higher frequency reduces the memory
access energy and creates more opportunities for demotions,
at the cost of increased background power consumptions and
state transition overheads (i.e., the resynchronization energy
and delay). We find that there is a tradeoff between DFS
and demotion in optimizing memory energy consumption.
Figure 1 shows the results of two state-of-the-art demotion
(RAMZzz [10]) and DFS (MemScale [12]) approaches with
different optimization goals (The detailed experimental setup
can be found in Section 5). We study two common optimiza-
tion goals, i.e., energy consumption and energy-delay2 (ED2).
All values are normalized to those of RAMZzz. Demotion

2 IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXX XXX

zeusmp xalan omnetpp sjeng M1 M2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

N
or

m
al

iz
ed

 E
ne

rg
y

/ E
D

2 RAMZzz (Energy)
 MemScale (Energy)
 RAMZzz (ED2)
 MemScale (ED2)

Fig. 1. The tradeoff between RAMZzz [10] and Mem-
Scale [12] across different optimization goals. The penalty
budget of energy optimization is 10%, and that of ED2

optimization is 5%.

is more efficient for some cases on workloads, optimization
goals and performance penalty budgets, whereas DFS wins in
other cases. This interplay motivates us to study the synergy
between DFS and demotion, and to find the suitable DFS-
demotion configuration for maximizing energy saving.

In this paper, we develop performance models and opti-
mization techniques for exploiting the synergy between DFS
and demotion. This is in contrast with the previous studies
on DRAM power management, which focused on either
DFS [11], [12] or demotion only [10], [13], [14], [15]. We
start by developing queuing theory-based analytical models for
the energy consumption and performance of DRAM systems
with DFS and demotion. The models provide valuable insights
into the synergy between DFS and demotion. We show that:
(1) DFS and demotion have their own energy-efficient scopes
on different workloads and DRAM architectures; (2) the op-
timum energy consumption depends nontrivially on the DFS-
demotion configurations, which vary with different workloads
and DRAM architectures.

Through modeling, we find that a naive approach of combin-
ing DFS and demotion can be far from optimal in practice. For
example, Deng et al. [12] combined a single low-power state
(fast-exit powerdown) with their DFS, which produces only
marginal energy saving in their experiments. A dynamic and
adaptive approach is more suitable than a static combination.
Therefore, we propose to adjust the DFS-demotion configura-
tion periodically. In each period, our cost model can predict
the energy consumption and performance of a DFS-demotion
configuration. However, a brute-force search over the entire
DFS-demotion space can be too costly. Thus, we develop sim-
ple yet effective heuristic mechanisms to reduce the runtime
overhead. Our models and optimizations are able to work for
different goals such as energy consumption and ED2. In this
paper, we focus on the optimization goal of minimizing the
energy consumption while keeping the performance penalty
within a given budget.

We evaluate our design using detailed simulations of a
large set of workloads. We use the SPEC 2006 benchmark
to evaluate our approach in comparison with the state-of-the-
art approach using demotion or DFS techniques only [10],
[12] as well as the static combination of DFS and demo-
tion [12]. The experimental results show that our approach
achieves an average energy consumption reduction of 11–70%
over the demotion-only approach, 20–67% over the DFS-only
approach, 22–54% over the static combination of DFS and
demotion. Moreover, our heuristic mechanisms produce near-

optimal results with only 8% higher energy consumption on
average than the optimum.

The contributions of this work are summarized as follows.
First, we develop analytical models to study the synergy
between DFS and demotion, which reveal the interplay be-
tween DFS and demotion. Second, leveraging the analytical
models, we develop optimization techniques for dynamic
DFS-demotion configurations. We further develop simple and
effective heuristics to reduce the computational complexity
of optimizations. To the best of our knowledge, this is the
first work to dynamically adapt DFS-demotion configurations
for DRAM power management. Finally, we conduct extensive
experiments to show the effectiveness of our design over
different workloads and DRAM architectures.

Organization. The rest of the paper is organized as fol-
lows. We introduce the background and review related work
in Section 2. Section 3 presents analytical models for the
synergy between DFS and demotion. Section 4 describes our
proposed optimizations. The experimental results are presented
in Section 5. We conclude this paper in Section 6.

2 BACKGROUND AND RELATED WORK
2.1 DRAM Power Management
We study the DDR-series (e.g., DDR3 and DDR4) based
main memory system in this paper. In power management,
a memory rank is the smallest physical unit that we can
control. Specifically, individual ranks serve memory requests
independently and can also operate at different power states.
A busy rank may work in the active state (ACT), while an
idle rank may be set to a low-power (or power-down) state in
order to save energy consumption. Note, all the memory ranks
should work at the same memory frequency in the current
DRAM architecture. Regardless of the memory architecture,
the total power consumption of the DRAM system can be
divided into two parts: operation power and background power.
The operation power is the power required to activate the
DRAM device to perform memory reads and writes. The
background power accounts for all the power consumption
when there is no memory access. Background power is a major
component in the total DRAM power consumption [16], [17].

2.2 DRAM Demotion
Modern DRAM architectures support a number of low-power
states, which hardware components to be disabled [18], [19].
Each state is characterized with its power consumption and
the time that it takes to transition back to the active state (i.e.,
resynchronization time). Typically, the lower power consump-
tion a state has, the higher the resynchronization time is. Ta-
ble 1 summarizes the major power state transitions of DDR3.
For each state, we show its normalized power consumption
(normalized to that of ACT) and the resynchronization time
back to ACT. The power consumption data are calculated
from DRAM System Power Calculator [20]. The resynchro-
nization times are obtained from DRAM manufacturers’ data
sheets [18].

Entering a low-power state when a rank is idle can sig-
nificantly reduce the background power consumption. For

LU et al.: SYNERGY OF DYNAMIC FREQUENCY SCALING AND DEMOTION ON DRAM POWER MANAGEMENT: MODELS AND OPTIMIZATIONS 3

TABLE 1
Power states for DDR3 at 1333 MHz.

Power State Normalized Power Resynchronization
Time (ns)

ACT 1.0 0
ACT PDN 0.612 6

PRE PDN FAST 0.520 18
PRE PDN SLOW 0.299 24

SR FAST 0.170 768
SR SLOW 0.104 6768

example, the pre-charge power-down with fast exit state
(PRE PDN FAST) consumes only 52% of the power of ACT.
However, to exit from a low-power state, the disabled hardware
components need to be reactivated and the rank needs to
be restored to the active state. Transitions to different power
states cause very different latencies and energy penalties. For
example, the self-refresh with slow exit state (SR SLOW) has
much higher resynchronization latency and energy cost than
PRE PDN FAST. If a memory rank makes a wrong decision
to transit itself into SR SLOW during a short idle period, the
energy penalty can outweigh the saved energy. Furthermore,
the high resynchronization latency can degrade the memory
performance considerably if such wrong decisions happen
frequently. Only sufficiently long idle periods should make
use of deeper low-power states.

Existing research on demotions can be roughly divided into
two categories: 1) how to make correct decisions on state
transitions [7], [10], [13], [14], [21], and 2) how to extend
the idle periods effectively [10], [15], [16], [21].

For the first category, a number of models (e.g., based
on history [10], [13] and exponential distributions [7]) have
been developed to guide decision making on demotions. Hur
et al. [13] developed adaptive history-based scheduling in
the memory controller. Diniz et al. [14] limited the energy
consumption by adjusting the power states of DRAM. Fan
et al. [7] developed an analytic model to estimate the idle
time of DRAM chips using an exponential distribution. Wu et
al. [10] developed a history-based prediction model to estimate
the power-down timeout (the amount of time spent from the
beginning of an idle period before a transition to a low-power
state is made) for accurate control of power state transitions.
Compared with all these demotion-only studies, this paper
combines the demotion and DFS techniques in queuing theory
based analytical models.

Page migration has been considered to be an effective
approach to extend the idle periods. Huang et al. [16] stored
frequently-accessed pages into hot ranks and left infrequently-
used and unmapped pages in cold ranks. Kshitij et al. [15] used
a similar page migration mechanism between cold and hot
ranks, and always set cold ranks with a pre-selected low-power
state. Wu et al. [10] developed dynamic page migrations to
adapt to data access patterns. While page migrations have been
demonstrated to be effective in simulations, these techniques
bring some tricky implementation issues that prohibit their
practical usage in current DRAM architectures. First, page
migrations bring performance and energy penalty (migrating
pages cause more memory reads and writes, and memory
service interruptions), and are usually too complex to be inte-
grated into current memory systems. Second, page migrations

TABLE 2
Impacts of DFS on DDR3 DRx4 R-DIMM architectures.

Power State Power (W)
at 1333 MHz

Power (W)
at 800 MHz

ACT 1.34 1.09
ACT PDN 0.82 0.67

PRE PDN FAST 0.70 0.58
PRE PDN SLOW 0.40 0.35

SR FAST 0.23 0.19
SR SLOW 0.14 0.14

Power State Resync Time (ns)
at 1333 MHz

Resync Time (ns)
at 800 MHz

ACT 0 0
ACT PDN 6 8

PRE PDN FAST 18 20
PRE PDN SLOW 24 26

SR FAST 768 1280
SR SLOW 6768 7280

Operation Energy (nJ)
at 1333 MHz

Energy (nJ)
at 800 MHz

Average energy/read 56 64.7
Average energy/write 61 72

Operation Latency (ns)
at 1333 MHz

Latency (ns)
at 800 MHz

Average latency/access 51 55

usually require modifications to not only the DRAM controller
but also operating systems. For these reasons, we do not
consider page migration in this study.

2.3 DRAM Dynamic Frequency Scaling (DFS)
Memory dynamic frequency scaling (DFS) is a more recent
approach to reduce the DRAM energy consumption [11],
[12]. When the memory bandwidth is under-utilized, lowering
the memory frequency can bring potential energy savings.
Adjusting frequency on current DRAM architectures has little
runtime overhead. The time of transitions between different
frequencies is around 1µs [11].

Lowering the memory frequency affects both the power and
performance of the memory system. We study the impacts
of DFS on power consumptions, resynchronization times, and
memory accesses for DDR3 architectures. Table 2 summarizes
the results on the background and operation powers, low-
power states’ resynchronization times, and average memory
access latency for DDR3 architectures at 1333MHz and
800MHz. The background powers are calculated for a 1GB
DDR3 DRx4 R-DIMM, obtained from the calculation by
David et al. [11]. The operation energy stands for an average
energy consumption per read or write [11]. The low-power
states’ resynchronization times and average memory access la-
tency are obtained from DRAM System Power Calculator [20]
and DRAM manufacturers’ data sheets [18]. A memory access
includes activation and pre-charge operations, reading/writing
data arrays, data output, and I/O termination.

From this table, we make the following observations. First,
changing memory frequency has a significant impact on the
power states in the DRAM architecture. Typically, the lower
the memory frequency, the lower the power consumption of
each power state. However, the resynchronization time of each
low-power state increases with decreasing memory frequency
(The resynchronization time is associated with tCK , which
scales with the memory frequency). DFS has a direct impact

4 IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXX XXX

on the demotion decision. On one hand, it enhances the
energy efficiency of each low-power state since the power
consumption of each low-power state is further reduced at
lower memory frequencies. On the other hand, it leads to larger
performance degradation as well as increased energy penalty
when transiting into low-power states.

Second, the operation (read and write) energy is higher
at lower memory frequencies. This is because the memory
access takes longer time at lower frequencies. However, as
demonstrated in [11], [12], the reduction in the background
power is normally more significant than the increase in the
operation energy consumption. Therefore, DFS can reduce the
memory system energy consumption.

Third, lowering memory frequency increases the memory
access latency. Overall, the increment of memory access
latency is sub-linear to the decrement of frequency. Since the
memory bus runs slower at lower frequencies, DFS can reduce
the length of idle periods between memory requests.

There have been several studies on leveraging DFS to
reduce DRAM energy consumption. David et al. [11] evaluated
the effects of lower memory frequency on a real hardware
platform, and switched the memory frequency and voltage
based on memory bandwidth utilization at the runtime. Deng et
al. [12] developed similar DFS schemes, based on performance
and energy models. In their experiment, they developed a
static approach that combines a single low-power state (fast-
exit powerdown) with their DFS scheme. Our model analysis
and experiment will demonstrate that the static approach is
suboptimal for different workloads and DRAM architectures.
Therefore, we propose adaptive selection of the DFS-demotion
configuration at the runtime. A follow-up work of Deng et
al. [22] combines CPU DVFS with memory DFS to save
system energy. However, it does not consider main memory
demotion as we do in this work.

Besides optimizations targeting at general DRAM sys-
tems, some researchers have also proposed energy saving
techniques for specific applications such as databases and
virtual machines. Cache-centric optimizations (either cache-
conscious [23] or cache-oblivious [24]) reduce memory access
and create more opportunities for energy savings. Dynamic
memory allocation mechanisms such as ballooning and hot-
plug [25] provide an opportunity for rank-aware DRAM
power saving in virtualization environments. Finally, there
has been some work on combining demotion and DFS on
the CPU (e.g., [26], [27], [28]). However, their models and
optimizations are specifically designed for the CPU, which
are not applicable to the main memory. The synergy between
demotion and DFS for the main memory has not been well
studied. To the best of our knowledge, this paper is the first
of its kind in studying demotion and DFS on DRAM in a
systematic approach.

3 MODELING MEMORY DFS AND DEMOTION

In order to understand the potential benefits of combining
memory DFS and demotion techniques, we develop analytical
models to estimate the energy consumption and performance
of different combinations of DFS and demotion settings. The

TABLE 3
Parameters and variables used in the analytical model.

Parameters Description
Workload Characteristics

λ
The arrival rate of memory requests
at the highest memory frequency (i.e., f0).

ϕ
The proportion of memory reads
in all memory requests.

DRAM Architecture Features

N
The number of available power states,
i.e., S0 (active state), . . ., SN−1 .

M
The number of available memory frequencies,
i.e., f0 (default), . . ., fM−1 .

Pi,j
The power consumption of state Si

at frequency fj .

Ri,j
The resynchronization time of state Si

at frequency fj .
gj The memory access latency at frequency fj .

γj
The average energy cost per memory read
at frequency fj .

ωj
The average energy cost per memory write
at frequency fj .

System Configurations

D
The maximum allowed performance degradation,
i.e., the delay budget.

DFS-Demotion Configurations
∆i The power-down timeout of state Si.
f The memory frequency.

model captures the DRAM architecture features and workload
parameters. With the model, we are able to gain insight
into the power-performance optimization space shaped by
different DFS-demotion configurations, and understand the
potential improvement offered by the optimal DFS-demotion
configuration. Table 3 lists the parameters used in our model.

3.1 Memory Energy and Performance Models

We first present the assumptions for our model. First, we
assume that the times between memory requests (inter-arrival
times) follow a Poisson distribution. Second, the DRAM
system enables both demotion and DFS techniques, with N
power states (Si, i = 0, . . . , N−1) and M memory frequencies
(fi, i = 0, . . . ,M − 1), respectively. For simplicity, we denote
the active state by S0, and the rest N − 1 low-power states
by S1, S2, . . . , SN−1 in the descending order of their power
consumptions. We also sort all the supported frequencies in
the descending order: f0 > f1 > f2 > · · · > fN−1. DFS is
applied to all memory ranks, i.e., all memory ranks should
have the same frequency at any time. In contrast, each rank
can make its own demotion decisions. A memory rank transits
to the power state Si if the idle period exceeds a power-down
timeout ∆i (i = 1, . . . , N − 1). The state transition incurs
a time penalty Ri,j (the resynchronization time of state Si

at frequency fj). We view multiple power state transitions
as a chain of state transitions from higher-power states to
lower-power states. We define the demotion configuration of
a memory rank to be a vector of power-down timeouts ∆⃗ =
(∆0,∆1, . . . ,∆N−1), where ∆i represents the power-down
timeout of state Si, i = 1, . . . , N − 1 (For simplicity, we set
∆0 = 0 as the power-down timeout of state S0, i.e., the active
state). When the idle period length becomes longer than ∆i,
we perform the state transition from Si−1 to Si.

LU et al.: SYNERGY OF DYNAMIC FREQUENCY SCALING AND DEMOTION ON DRAM POWER MANAGEMENT: MODELS AND OPTIMIZATIONS 5

We model the energy consumption and performance of
each memory rank individually, since the ranks operate in-
dependently. In particular, we derive the estimation for a rank
at memory frequency fj and power-down timeouts ∆⃗. With
queuing theory, we model a memory rank as an M/D/1 queuing
system with arrival rate λ (λ is the arrival rate of memory
requests for a given rank at frequency f0), and a determined
service time gj (i.e., the memory access latency at memory
frequency fj). Inspired by previous studies [5] and [29], we
extend the conventional M/D/1 model with an exceptional first
service time to model the effects of demotion and frequency
scaling. If a memory request arrives and finds the rank busy
(i.e, the rank is serving other memory requests), it has a normal
memory access latency gj at memory frequency fj . Otherwise,
the rank is idle and the memory access would be delayed
by an initial setup time I. The initial setup time I is the
resynchronization time for powering up the rank from a low-
power state. Let x be a random variable representing the idle
period length for the memory rank. Then, the initial setup
time I at memory frequency fj and power-down timeouts ∆⃗
is given by

I =

 R0,j (= 0) if 0 ≤ x < ∆1

Ri,j if ∆i ≤ x < ∆i+1 , i = 1, . . . , N − 2
RN−1,j if x ≥ ∆N−1

(1)

The inter-arrival time between two memory requests conforms
to the exponential distribution with parameter λ. Because
of the memoryless property of exponential distribution, the
idle period length x conforms to the same distribution (the
exponential distribution with parameter λ). Thus, the first and
the second moments E[I] and E[I2] of the initial setup time
are given by

E[I] =
∫ ∞

0

Iλe−λx
dx =

N−1∑
i=0

Ri,j (e
−λ∆i − e

−λ∆i+1) (2)

E[I2
] =

∫ ∞

0

I2
λe

−λx
dx =

N−1∑
i=0

R
2
i,j (e

−λ∆i − e
−λ∆i+1) (3)

Note that we set R0,j = 0, ∆0 = 0, and ∆N = ∞. According
to Welch’s previous work [29], the expected response time for
an M/D/1 server with an exceptional first service time is given
by

E[R](fj , ∆⃗) =
λg2

j

2(1 − λgj)
+

2E[I] + λE[I2]

2(1 + λE[I])
+ gj (4)

E[R](fj , ∆⃗) consists of three parts: 1) the expected queueing
delay for a standard M/D/1 queue, 2) the expected resynchro-
nization delay caused by demotion (calculated by the initial
setup time I and the probability for a memory request to be de-
layed by the resynchronization), and 3) the expected memory
access latency gj at memory frequency fj . Plugging Eq. (2)
and (3) into Eq. (4), we obtain the expected response time
for one memory request E[R](fj , ∆⃗) at memory frequency
fj and power-down timeouts ∆⃗.

We now derive the expected energy consumption of one
memory request. We decompose the expected energy cost of
a memory request (denoted as E[E](fj , ∆⃗)) into two parts in
Eq. (5): 1) E[Eop](fj), the average energy cost per memory
read/write at frequency fj ; and 2) E[Ebk](fj , ∆⃗), the expected
preceding background energy consumption (i.e., that between
the last memory access and the current memory access).

E[E](fj , ∆⃗) = E[Eop](fj) + E[Ebk](fj , ∆⃗) (5)

E[Eop](fj) is given by
E[Eop](fj) = ϕ · γj + (1 − ϕ) · ωj (6)

where γj and ωj are the average energy costs per memory read
and write, respectively, and ϕ is the proportion of memory
reads in all memory accesses.

TABLE 4
The number of power states used (n) and the number of

frequencies used (m).
n Power States
1 ACT
2 ACT, PRE PDN FAST
3 ACT, PRE PDN FAST, SR FAST

6 ACT, ACT PDN, PRE PDN FAST, PRE PDN SLOW,
SR FAST, SR SLOW

m Frequencies
1 1333 MHz
2 1333, 800 MHz
3 1333, 800, 533 MHz
6 1333, 1066, 800, 667, 533, 267 MHz

To estimate the preceding background energy consumption
(E[Ebk](fj , ∆⃗)), we first calculate the probability θ that an
arrived memory request finds the memory rank idle. Since the
expected busy period length for the memory rank is E[B] =
gj+E[I]
1−λgj

according to the results of a previous work [29], the
expected number of memory requests served during a busy
period is E[B]/gj . The first memory request of a busy period
finds the system idle, while the others find it busy. Thus, θ is
given by

θ =
gj

E[B]
=

gj(1 − λgj)

gj + E[I]
(7)

When an arrived memory request finds the memory rank idle,
the preceding background energy consumption depends on the
preceding idle period length x. We consider the situation that
∆i ≤ x < ∆i+1 (i = 0, . . . , N−1). The DRAM first consumes
an accumulated energy AC(fj , i) =

∑i−1
k=0(Pk ,j (∆k+1 −∆k))

(i.e., spending ∆k+1 − ∆k time at each state Sk with Pk ,j
power, k = 0, . . . , i − 1), then holds Pi,j power for x − ∆i
time at state Si, and finally dissipates P0 ,j power for Ri,j time
when activated (i.e., the resynchronization energy penalty).
Thus, the background energy cost when ∆i ≤ x < ∆i+1 is
Pi,j (x−∆i)+AC(fj , i)+P0 ,jRi,j . Since the preceding idle
period length x conforms to the exponential distribution with
parameter λ, the probability for x to satisfy ∆i ≤ x < ∆i+1

is e−λ∆i − e−λ∆i+1 . Thus, the expected background energy
cost is given by

E[Ebk idle](fj , ∆⃗) =
∑N−1

i=0 {(e−λ∆i − e−λ∆i+1)×

(Pi,j (
∫ ∆i+1
∆i

xλe−λx dx − ∆i) + AC(fj , i) + P0,jRi,j)}

=
∑N−1

i=0 {(e−λ∆i − e−λ∆i+1) × (Pi,j (
e−λ∆i

λ (λ∆i + 1)−
e
−λ∆i+1

λ (λ∆i+1 + 1) − ∆i) + AC(fj , i) + P0,jRi,j)}

(8)

If a memory request arrives when the memory rank is
busy, the background energy consumption is zero. There-
fore, the expected preceding background energy consumption
E[Ebk](fj , ∆⃗) is given by

E[Ebk](fj , ∆⃗) = θ · E[Ebk idle](fj , ∆⃗) (9)

3.2 Numerical Studies
In the following, we conduct numerical studies based on the
analytical models. Specifically, we study the impact of work-
load features, DRAM architectures and system configurations
including the budget for performance degradation. Following
the current DDR3 DRAM architectures, we consider N =
6 power states (an active state and 5 power-down states in
the DDR3 architecture) for demotion, and M = 6 memory
frequencies (1333, 1066, 800, 667, 533, 267 MHz) for DFS.

To understand how the DFS-demotion configuration affects
the energy consumption, we change the number of power

6 IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXX XXX

TABLE 5
The impact of λ (accesses per 103 cycles).

λ
Optimal DFS-demotion configuration

Freq.
(MHz)

Power-down
timeouts (cycles)

Normalized energy
consumption

0.1 267 0, 0, 0, ∞, ∞ 0.098
1.0 667 12, 16, 16, ∞, ∞ 0.317
2.5 667 0, 1214, 1591, ∞, ∞ 0.614
4.0 800 37, ∞, ∞, ∞, ∞ 0.830
5.5 1066 16, ∞, ∞, ∞, ∞ 0.987
7.0 1333 ∞, ∞, ∞, ∞, ∞ 1.000

states used (denoted by n) and the number of memory fre-
quencies used (denoted by m) for DRAM. Specifically, we
set n and m with 1, 2, 3, and 6 as shown in Table 4. For
example, n = 1 means that the memory ranks stay only in
ACT. m = 1 means that DRAM operates only at the highest
memory frequency 1333 MHz.

We aim to minimize the energy consumption of the mem-
ory system while keeping the program performance penalty
within a pre-defined budget. The penalty budget is defined
by a performance slowdown D (e.g., 10% performance loss)
relative to the program performance without any DRAM power
management. We consider the expected program execution
time of an idle period of the memory system (i.e., the CPU
computation phase) and one memory request (i.e., the memory
access phase). For simplicity, we study a single-rank memory
system. We calculate the expected program performance un-
der the memory frequency fj and power-down timeouts ∆⃗

by T (fj , ∆⃗) = Tcpu + Tmem . We assume that the CPU
computation happens in and only in the idle period of the
memory system. Thus, Tcpu = 1/λ, which is insensitive
to changes in the memory system. Tmem = E[R](fj , ∆⃗),
which varies with the memory frequency and power-down
timeouts. Hence, the optimal DFS-demotion configuration
under a given performance penalty budget D is defined as,
the optimal memory frequency f and power-down timeouts
∆⃗ that minimize E[E](fj , ∆⃗), while satisfying the program
performance T (fj , ∆⃗) ≤ (1+D)×T (f0, ∆⃗baseline). ∆⃗baseline

= (0,∞, . . . ,∞), which means the memory system is always
in ACT. T (f0, ∆⃗baseline) is maximum program performance
when the memory system runs at the highest memory fre-
quency (f0) without any state transitions.

By default, we set the proportion of memory reads ϕ = 1.0
(i.e., all memory requests are read operations), and the penalty
budget D = 10%. The power consumption and resynchroniza-
tion time of each power state, and the average energy cost per
memory read/write at f0 (i.e., 1333 MHz) are obtained from
manufactures’ datasheet [18]. The values of these parameters
at frequencies other than f0 are scaled according to Micron’s
System Power Calculator [20] and Technical Note on DDR3
Power [30]. For the memory access latency gj , we calculate it
according to the DRAM specification, i.e., the sum of tRCD ,
tCL, tRP and tBURST . These DRAM timing parameters stand
for the times of an activation command, a pre-charge com-
mand, a column access and a data burst transfer, respectively.
tRCD , tCL and tRP are around 15ns in DDR3, even at low
memory frequencies. tBURST is four bus cycles (i.e., 4 · tCK),
which increases linearly as the memory frequency decreases.
The arrival rate of memory requests λ is presented as in the

average number of memory requests per 103 CPU cycles. The
energy consumption is normalized to that of the baseline DFS-
demotion configuration (i.e., at the memory frequency f0 and
power-down timeouts ∆⃗baseline). We present the results for a
single memory rank.

Workload characteristics. We first study the impact of the
arrival rate of memory requests (λ). In this study, we set ϕ
= 1.0, and D = 10%, and use n = 6 power states and m =
6 frequencies for DRAM. For each λ, we search the optimal
DFS-demotion configuration exhaustively. Table 5 shows the
best DFS-demotion configuration for different values of λ. ∞
means that DRAM devices will not be demoted to such power-
down state. We have the two key observations.

First, the optimal DFS-demotion configuration varies with
the workloads. As λ increases, the normalized energy con-
sumption also increases. Since the background energy con-
sumption becomes less significant in the total energy con-
sumption, the frequency increases and the opportunities for
demotions decrease in the optimal configuration.

Second, both DFS and demotion contribute to the total
energy saving. For some cases (e.g., λ = 1.0 and 2.5),
they have the same frequency in the optimal DFS-demotion
configuration, while their demotion schemes are different. For
some cases (e.g., λ = 4.0 and 5.5), they have similar demotion
schemes in the optimal DFS-demotion configuration, while
their memory frequencies are different.

DRAM Architectures. Next, we study the impact of dif-
ferent DRAM architecture features as shown in Figure 2.
We search the optimal DFS-demotion configuration in the
space of n power states and m frequencies for each DRAM
architecture exhaustively. We make the following observations
from Figure 2.

First, making use of all the available power states and
memory frequencies (i.e., n = 6 and m = 6) always has the
lowest energy consumption across different workloads and
performance penalty budgets. The energy consumption de-
creases with increasing numbers of power states and memory
frequencies used. This implies that, both DFS and demotion
contribute to the energy saving, which shows the synergy
between DFS and demotion.

Second, it is quite costly to find the lowest energy consump-
tion by exhaustive search. Since the lowest energy consump-
tion usually exists when making use of all the available power
states and memory frequencies (i.e., n=6 and m=6), the search
space of DFS-demotion configurations is large. Thus, the cost
of an exhaustive search for the optimal configuration is high.

Third, when the number of frequencies is large (i.e., m=6),
adding more low-power states does not have much improve-
ment for the two workloads (i.e., λ = 1.0 and 2.5), and vice
versa. This is because both DFS and demotion can contribute
the total energy saving. When the number of frequencies or
low-power states is large, the optimization space of DFS-
demotion may be large enough to pick a suitable DFS-
demotion configuration for these specific workloads. However,
it is not appropriate to conclude that a small number of low-
power states (i.e., n=3) are enough for all scenarios. In modern
server workloads, the average memory access rate can be
quite different for different workloads and change dynamically

LU et al.: SYNERGY OF DYNAMIC FREQUENCY SCALING AND DEMOTION ON DRAM POWER MANAGEMENT: MODELS AND OPTIMIZATIONS 7

1 2 3 6

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 E
ne

rg
y

Number of power states (n)

 m = 1
 m = 2
 m = 3
 m = 6

(a) λ = 1.0, D = 5%
1 2 3 6

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 E
ne

rg
y

Number of power states (n)

 m = 1
 m = 2
 m = 3
 m = 6

(b) λ = 1.0, D = 15%
1 2 3 6

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 E
ne

rg
y

Number of power states (n)

 m = 1
 m = 2
 m = 3
 m = 6

(c) λ = 2.5, D = 10%
1 2 3 6

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of power states (n)

N
or

m
al

iz
ed

 E
ne

rg
y

 m = 1
 m = 2
 m = 3
 m = 6

(d) λ = 2.5, D = 20%

Fig. 2. The impact of DRAM architecture features on energy consumption of optimal DFS-demotion configurations.

within one application.
System Configurations. We study the impact of the per-

formance penalty budget. Figure 3 shows the normalized
energy consumption of the optimal DFS-demotion configu-
ration for three schemes when D varies from 5% to 20%.
We search the optimal DFS-demotion configuration at each
penalty budget exhaustively for the following three schemes:
1) demotion-only (with frequency at 1333MHz only), 2) DFS-
only (with the active state only), and 3) the combined DFS-
demotion scheme. The combined DFS-demotion scheme has
the highest energy saving at all the performance penalty
budgets. The energy saving becomes larger as the perfor-
mance penalty budget increases. The memory frequencies of
the optimal DFS-demotion configurations for the combined
DFS-demotion scheme are 1066, 667, 533, 800 MHz for
D = 5%, 10%, 15%, 20%, respectively. Interestingly, the best
memory frequency is higher at D = 20% compared with that
at D = 15%. This again shows the synergy between DFS and
demotion techniques. Though DFS alone brings less energy
saving at D = 20%, combining it with a more aggressive
demotion scheme achieves more significant energy saving.

Demotion Only DFS Only DFS-Demotion
0.55

0.60

0.65

0.70

0.75

0.80

(n = 6, m = 6)(n = 1, m = 6)

N
or

m
al

iz
ed

 E
ne

rg
y

 D = 5%
 D = 10%
 D = 15%
 D = 20%

(n = 6, m = 1)

Fig. 3. The impact of penalty budget on energy consump-
tion of optimal DFS-demotion configurations (λ = 2.5).

Summary. From the numerical studies, we observe the sig-
nificant synergy between DFS and demotion. A combination of
DFS and demotion can lead to much large energy savings than
individual techniques. However, the optimal DFS-demotion
configuration varies with the workloads, system configura-
tions and DRAM architectures. Thus, an adaptive approach
of combining DFS and demotion techniques is desirable.
Furthermore, finding the optimal DFS-demotion configuration
is a challenging task at the runtime, due to the large solution
space. This motivates us to develop efficient heuristics for
finding suitable DFS-demotion configurations.

4 ADAPTIVE DFS-DEMOTION OPTIMIZATIONS
In this section, we develop adaptive DRAM power man-
agement that dynamically selects the suitable DFS-demotion

configuration at the runtime. With the analytical models on
performance and energy consumption developed in Section 3,
we are able to optimize DRAM power management with
respect to an arbitrary performance-energy optimization goal.
In this section, we focus on minimizing the total memory
energy consumption within a pre-defined budget of program
performance degradation, while our method is also applicable
to other optimization goals.

4.1 Overview
The workflow of the DRAM power management is given in
Algorithm 1. We periodically adjust the memory frequency
and each rank’s power-down timeouts based on a control
algorithm. The adjustment period is called an epoch. An epoch
is defined to consist of a pre-defined number of memory
requests to the DRAM. At the beginning of each epoch,
we determine a suitable DFS-demotion configuration for the
epoch and use it for the entire new epoch.

Algorithm 1 Workflow of Proposed DRAM Power Manage-
ment Mechanism
Condition:

Any memory reference to rank r occurs.
Algorithm:
1: if rank r is in the lower-power state then
2: Set r to be ACT;
3: Serve the memory request;
4: Maintain performance counters; /*Section 4.2*/

Condition:
The length of the current idle period of rank r is updated.

Algorithm:
1: Perform demotions (if necessary) according to the demotion configuration

for rank r;

Condition:
The processed number of memory requests equals the epoch size.

Algorithm:
1: Start a new epoch;
2: Estimate the maximum performance Tmin of the new epoch;

/*Section 4.2*/
3: Set the performance target Ttarget according to the control algorithm;

/*Section 4.3*/
4: for each possible DFS-demotion configuration do
5: Estimate the total memory energy consumption and program perfor-

mance; /*Section 4.2*/
6: Determine the suitable DFS-demotion configuration for the new epoch;

/*Section 4.3 and 4.4*/
7: Adjust the memory frequency and each memory rank’s power-down

timeouts for the new epoch;
8: Reset performance counters;

During an epoch, we maintain the performance information
via a set of hardware performance counters (more details can
be found in Section 4.2). These counters can be read by

8 IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXX XXX

the operating system as inputs for estimating memory energy
and program performance of the next epoch under different
DFS-demotion configurations, or trigger specific hardware
interruptions. They are reset at the beginning of each epoch.
For each idle period in the epoch, demotions may be triggered
according to the DFS-demotion configuration. At the begin-
ning of each epoch, based on performance counters gathered
in the previous epoch, the system estimates the maximum
program performance Tmin for the new epoch (Section 4.2).
Tmin is the program execution time when the memory sys-
tem runs at the highest memory frequency and without any
demotions. Then, the performance target Ttarget is set by the
control algorithm. Next, the control algorithm tries to search
all possible DFS-demotion configurations and picks up an
optimal configuration that has a minimum estimated memory
energy consumption, while maintaining the estimated program
performance within the performance target Ttarget (details are
presented in Section 4.3). Due to the huge search space, we
explore heuristics to efficiently figure out a suitable DFS-
demotion configuration that is close to the global optimum
(Section 4.4). After the suitable DFS-demotion configuration
is determined, we adjust the memory system with the new
selected frequency, and set different power-down timeouts
for different memory ranks according to the DFS-demotion
configuration, and use this configuration for each rank for the
entire epoch.

Let us briefly discuss some system implementation is-
sues. Our adaptive scheme can be implemented with modest
hardware and software supports. On the hardware side, we
require the memory sub-system to have the ability of changing
memory frequency (as proposed in previous studies [11],
[12]) and demoting individual memory ranks to low-power
states (already supported in current DRAM architectures)
dynamically. Our design also relies on hardware performance
counters in processors and memory controllers like previous
studies [12], [22]. These counters can be read by the operating
system as inputs for estimating memory energy and program
performance of the next epoch. For example, a hardware
interruption is triggered when the counter L equals the epoch
size, which causes the operating system to estimate the suitable
DFS-demotion configuration of a new start epoch. The amount
of on-chip storage for these performance counters (about
132 bytes) is small compared to the multi-MByte shared
LLC. On the software side, we offload some functionalities
including new APIs for hardware performance counters and
the prediction of DFS-demotion configurations to the operating
system (like previous studies [10], [12], [31]). The operating
system runs the prediction model and updates the DFS-
demotion configuration for the memory controller (via setting
corresponding registers) at the beginning of each epoch. We
note that the structure complexity and storage overhead of our
proposed design are similar to the previous proposals [10],
[12], [16], [32].

We describe the implementation details of key components
in the following sections.

TABLE 6
Performance Counters

Performance Counters Description

Lr
The number of memory requests
to memory rank r.

CNRRr
The number of read requests
to memory rank r.

CMRTr
The average response time for
a memory request in memory rank r.

CMLPr
The maximal length of idle periods
in memory rank r.

L The total number of memory requests
to all memory ranks.

4.2 Extended Performance-Energy Model

The analytical model in Section 3 is mainly for a single
memory rank. In this subsection, we extend this model to
estimate the total energy consumption of all memory ranks and
to estimate the program execution time given a DFS-demotion
configuration.

In each epoch, the system maintains a set of hardware
performance counters. We list these performance counters
in Table 6. An epoch ends when L reaches the pre-defined
epoch size. With these counters, we leverage the analytic
model developed in Section 3 and historical information in
the previous epoch to predict the energy consumption of the
memory system and the program performance for the new
epoch. In particular, with the analytical model in Section 3, we
model the expected energy consumption E[E](fj , ∆⃗) and the
expected response time E[R](fj , ∆⃗) for a memory request.
First, we need to calculate the average memory access rate
λr for each memory rank r at the memory frequency f0
in the previous epoch, and use it as the predicted λr for
the new epoch. Given performance counters in Table 6 and
the DFS-demotion configuration in the previous epoch, we
set E[R](fj , ∆⃗) to the actual average memory response time
(CMRTr) in the previous epoch, and get λr for each rank r by
solving Eq. (4). This calculation is performed to all memory
ranks. We denote the number of memory ranks as K, and ∆⃗r
(r = 0, . . . ,K − 1) as power-down timeouts for memory rank
r. Then, we can calculate the expected energy consumption
E[E](fj , ∆⃗r) and the expected response time E[R](fj , ∆⃗r)
for a memory request in memory rank r at memory frequency
fj and power-down timeouts ∆⃗r. Following the analytical
model, the total memory energy consumption of all memory
ranks Etotal(fj , ∆⃗0, . . . , ∆⃗K−1) is given by

Erank (r, fj , ∆⃗r) = Lr · E[E](fj , ∆⃗r)

Etotal (fj , ∆⃗0, . . . , ∆⃗K−1) =
∑K−1

r=0 Erank (r, fj , ∆⃗r)
(10)

where Lr is the number of memory requests to memory
rank r in the previous epoch (i.e., L =

∑K−1
r=1 Lr). Given a

certain memory frequency fj , Erank (r, fj , ∆⃗r) calculates the
total energy consumption at memory frequency fj and with
power-down timeouts ∆⃗r for each memory rank r. Thus, the
predicted total memory energy consumption of all ranks for the
new epoch is given in Etotal(fj , ∆⃗1, . . . , ∆⃗K−1) by summing
up each memory rank’s energy.

Next, we decompose the program execution time to the total
time of computation phases Tcpu and the total time of mem-
ory phases. Tcpu is insensitive to changes in DFS-demotion
configurations, while the total time of memory phases varies
with memory frequencies as well as power-down timeouts. The
estimated program performance Ttotal(fj , ∆⃗1, . . . , ∆⃗K−1) is
given by

Tcpu = Tactual − max{Lr · CMRTr}
Ttotal (fj , ∆⃗1, . . . , ∆⃗K−1) = Tcpu + max{Lr · E[R](fj , ∆⃗r)}

(11)

LU et al.: SYNERGY OF DYNAMIC FREQUENCY SCALING AND DEMOTION ON DRAM POWER MANAGEMENT: MODELS AND OPTIMIZATIONS 9

We record the actual epoch execution time Tactual at the end of
each epoch. At the beginning of each epoch, we compute Tcpu

by subtracting the maximum total time of memory phases of
each memory rank (i.e., Lr · CMRTr that recorded in perfor-
mance counters) from Tactual of the previous epoch, and use
it as the predicted total time of computation phases Tcpu for
the new epoch. Then, we estimate the total length of memory
phases in the new epoch as the maximum of Lr ·E[R](fj , ∆⃗r)
(r = 0, . . . ,K − 1). Combining them together, we obtain the
estimated program performance Ttotal(fj , ∆⃗1, . . . , ∆⃗K−1) at
memory frequency fj and power-down timeouts ∆⃗r (r =
0, . . . ,K − 1).

4.3 Slack-aware Control Algorithm
In order to ensure that a pre-defined performance target can
be met over program execution, we use an adaptive control
approach to perform adjustment on the performance budget
at the beginning of each epoch. Following Deng et al. [12],
we use slack to quantify the performance degradation. The
slack is defined as the distance between the program’s actual
performance and the estimated performance as in Eq. (12).

Ttarget = Tmin · (1 + D)

Tslack = Ttarget − Tactual
(12)

Ttarget is the target program performance for the new epoch.
It has a pre-defined performance slowdown D (e.g., 10%
performance loss) relative to the maximum program per-
formance without any power management Tmin . With the
analytical model developed in Section 4.2, Tmin equals
T(f0, ∆⃗1, . . . , ∆⃗K−1), where ∆⃗r = (0,∞, . . . ,∞), r =
1, . . . ,K − 1. That is, Tmin is the program execution time
at the highest memory frequency (f0) and without any de-
motions on all memory ranks. The target performance Ttarget

is calculated based on Tmin . Tactual is the recorded actual
program execution time of the previous epoch. Then, we get
the performance slack using Eq. (12). The slack helps make
performance adjustments among epochs. The accumulated
slack is applied to the performance penalty budget of the new
epoch. If it is larger than zero, we have a larger performance
penalty budget. Thus, the control algorithm’s optimization goal
is defined as, finding the optimal DFS-demotion configuration
that minimizes the estimated total memory energy consumption
Etotal(fj , ∆⃗1, . . . , ∆⃗K−1), and keeps the predicted program
performance T(fj , ∆⃗1, . . . , ∆⃗K−1) within the target perfor-
mance Ttarget given the accumulated slack from previous
epochs in the new epoch.
Etotal(fj , ∆⃗1, . . . , ∆⃗K−1) is minimized if and only if each

memory rank r’s energy consumption Erank (r, fj , ∆⃗r) (r =
1, . . . ,K−1) is minimized. T(fj , ∆⃗1, . . . , ∆⃗K−1) is satisfied
if and only if each memory rank’s extra latency is within the
performance penalty budget.

4.4 Heuristics-based Search
Searching the optimal DFS-demotion configuration can be
very costly. Even though the search process can be parallelized
at the rank level, it is still a challenging task, particularly at the
runtime. An exhaustive search is not feasible. The complexity
of an exhaustive search for a memory rank is O(M · TN−1)
steps (each step estimates the memory energy consumption

and program performance for a DFS-demotion configuration),
with M being the number of available frequencies, N being
the number of available power states, and T being the number
of possible values for a power-down timeout (e.g., the time
length of an epoch). Thus, we need to explore heuristics to
reduce the search time. In the following, we describe heuristics
for DFS and demotion.

DFS heuristic. In Section 3.2, we have observed that the
memory frequency in the optimal DFS-demotion configura-
tion generally increases with the memory access rate. This
motivates us to conduct the search along the dimension of
memory frequency using a binary search with the hill-climbing
optimization [33]. Specifically, the search starts at a mid-point
memory frequency f (i.e., f = fi, i = ⌊M/2⌋), and looks for
the suitable power-down timeouts under f . Denote by ε the
optimal energy consumption under frequency f . Then, another
frequency f ′ that half-way between the current frequency and
either of the endpoints is chosen, and the process is repeated.
If the optimal energy consumption ε′ for that f ′ is better,
the binary search continues on that side, and the other side
is disregarded. Otherwise, the algorithm switches to the other
side (disregarding further attempts on the first side). When
neither side is better, or we run out of choices, the search
ends.

Demotion heuristic. An orthogonal way to reduce the
search effort is the demotion dimension. Since low-power
state transitions are nonzero cost processes, the break-even
time Bi,j denotes the minimum length of idle periods, which
justifies a state transition to state Si at memory frequency
fj , during which keeping the DRAM device in active state
consumes the same amount of energy as transiting to state Si
and back to active state. In other words, Bi,j characterizes the
minimum idle length for energy-efficient state transitions. Bi,j
is given by

Bi,j =
Ri,j · P0,j

P0,j − Pi,j

(13)

Pi,j and Ri,j are the power consumption and resynchroniza-
tion time of state Si at memory frequency fj , respectively.
We keep a performance counter CMLPr for each rank r to
record the maximum idle period in the rank during an epoch,
and use CMLPr to predict the largest idle period length in the
next epoch. Thus, state Si can be disregarded directly if Bi,j

is larger than CMLPr at frequency fj for memory rank r.
Combining these two heuristics, we develop an efficient

greedy algorithm with the branch-bound optimization to find
the suitable demotion configuration for a memory rank in
Algorithm 2. Given a certain frequency fj , we first remove
the low-power states, whose break-even times are larger than
CMLPr for rank r, from the set of available low-power states.
The remaining eligible low-power states are kept in S⃗eligible .
Based on S⃗eligible , we choose the best low-power state and
its power-down timeout which leads to the smallest estimated
Erank (r, fj , ∆⃗r), while keeping the program performance
within the budget. When finding the power-down timeout,
it tries all possible values from the highest (CMLPr) to the
lowest (0) until the program performance is not satisfied. Next,
we keep the estimated power-down timeout of the selected
low-power state unchanged, and select a new low-power state
and its power-down timeout from the rest eligible low-power
states, which results in the smallest estimated Erank (r, fj , ∆⃗r)

10 IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXX XXX

Algorithm 2 Greedy algorithm to find the demotion configu-
ration ∆⃗r for rank r
Input:

The memory frequency fj , all low-power states set
S⃗ = (S1, . . . , SN−1), with associated power consumptions
set P⃗ = (P1 ,j , . . . , PN−1 ,j), and break-even times set
B⃗ = (B1 ,j , . . . , BN−1 ,j);

Initialization:
∆⃗k = Φ, S⃗select = Φ, S⃗eligible = Φ;

1: for all Si ∈ S⃗ do
2: if Bi,j ≤ CMLPr then
3: Add Si into S⃗eligible ;
4: W = |S⃗eligible |;
5: while |S⃗select | ̸= W do
6: for all Si ∈ S⃗eligible do
7: Add Si into S⃗select ;
8: for each possible ∆i (from CMLPr to 0) value do
9: Calculate Erank (r, fj , ∆⃗r) using Eq. (10) with selected low-

power states subset S⃗select ;
10: if the program performance is violated then
11: break;
12: Find the suitable ∆i that has the best Erank (r, fj , ∆⃗r);
13: Remove Si from S⃗select ;
14: Find the low-power state Sp that has a best Erank (r, fj , ∆⃗r);
15: Add ∆p into ∆⃗r ;
16: Remove Sp from S⃗eligible ;
17: Add Sp into S⃗select ;
18: for all Si /∈ S⃗select do
19: ∆i = ∞;
20: Add ∆i into ∆⃗r ;
Output:

Demotion times set ∆⃗r at fj frequency for rank r.

when two low-power states are applied. We repeat this process
to add one more new low-power state into the previous
selected subset of low-power states together with its power-
down timeout in each step. Finally, we get the suitable power-
down timeouts for all eligible low-power states. To further
improve the prediction speed, we use an exponential search
approach by iterating in the form of 2i (0 ≤ i ≤ log2 CMLPr)
for each power-down timeout.

The complexity of the algorithm is O(log2 M · W 2 ·
log2 CMLPr) steps, which represents a significant improve-
ment over the exhaustive search. W is the number of eligible
low-power states, which should be much smaller than N in
most cases. Thus, intuitively, the heuristic-based search should
converge quickly to a good DFS-demotion configuration.

5 EVALUATION
In this section, we present the quantitative evaluation of our
proposed DRAM power management mechanism.

5.1 Methodology
We use a cycle-accurate simulator–PTLSim [34] to collect
memory access traces (last-level cache misses and writebacks)
from a variety of workloads, and replay the traces using our
detailed memory system simulator. Our simulation models
all the relevant aspects of the operating system, memory
controller and DRAM devices, including page placements,
memory channel, bank contention, row buffer management,
DRAM device power and timing. The main architectural char-
acteristics of the simulated machine are listed in Table 7. We

TABLE 7
Architectural characteristics of the simulated machine.
Component Features
CPU 4 in-order core running at 2.667 GHz
TLB 64 entries
L1 I/D cache (per core) 48 KB
L2/L3 cache (shared) 256 KB/4 MB
Cache line/OS page size 64 B/4 KB
DRAM DDR3 DRx4 R-DIMM at 1333 MHz [18]
ranks 8
capacity (GB) 8
power states see Table 1
memory frequencies 10 frequencies (1333–133 MHz)

TABLE 8
Mixed workloads: memory footprint (FP), memory

accesses statistics per 5× 108 cycles (Mean and Stdev
Mean).

Name FP
(MB)

Mean
(106)

Stdev
Mean

Applications

M1 661.3 0.6 1.02 gromacs, gobmk, hmmer, bzip

M2 1477.4 1.7 1.11 bzip, soplex, sjeng, cactusADM

M3 626.6 2.9 0.59 soplex, sjeng, gcc, zeusmp

M4 537.8 3.5 0.47 zeusmp, gcc, leslie3d, omnetpp

M5 1082.9 4.4 0.71 gcc, leslie3d, calculix, gemsFDTD

M6 1250.5 8.7 0.40 libquantum, xalan, gemsFDTD, zeusmp

evaluate our techniques with the DDR3 memory architecture,
and simulate a 8GB memory system with 8 memory ranks.

Our settings for demotion and DFS are consistent with the
previous studies [10], [11], [12]. By default, we consider the
six power states supported in the current DDR3 architecture
(DDR3 DRx4 R-DIMM) as shown in Table 1, and a wide
range of memory frequencies: 1333, 1200, 1066, 934, 800,
667, 533, 400, 267 and 133 MHz. The default memory
frequency is 1333 MHz. The timing and power parameters
of DRAM chips at the default frequency are obtained from
manufacturers’ datasheet [18]. The background powers at the
default frequency are obtained from the calculation by David
et al. [11]. Parameters at other frequencies are scaled according
to the previous study [11], [12].

Workloads. We have used 19 applications from SPEC
2006. These workloads have widely different memory access
rates, footprints and localities. To assess our algorithm under
the context of multi-core CPUs, we study various mixed
workloads of four different applications from SPEC 2006
(Table 8). The four applications start at the same time. The
mixed workloads form multi-programmed executions on a
four-core CPU, ordered by the average number of memory
accesses (Mean). The standard deviation and mean values
are calculated based on memory access statistics per 5× 108

CPU cycles. For each workload, we select the simulation
period of 1010 CPU cycles in the original PTLSim simulation
(at the default memory frequency and no demotions), which
represents a stable and sufficiently long execution behavior.

We use the optimization goal of minimizing the total
memory energy consumption while keeping the performance
penalty within a predefined budget in this section. Due to
space limitations, we do not present the results for all single
applications. Instead, we report their geometric mean (GM),
and also five representative applications: omnetpp, zeusmp,
cactusADM, libquantum and mcf (denoted as S1, S2, S3, S4
and S5, respectively). They cover a wide range of memory
accesses intensiveness (0.1, 0.9, 1.0, 4.7, 8.0 millions accesses

LU et al.: SYNERGY OF DYNAMIC FREQUENCY SCALING AND DEMOTION ON DRAM POWER MANAGEMENT: MODELS AND OPTIMIZATIONS 11

on average per 5× 108 CPU cycles, respectively).
Comparisons. We compare our DRAM power management

mechanism (denoted as Hybrid) with a number of baseline and
state-of-the-art DRAM power management schemes. Here are
the details about the schemes in comparison:

• No Power Management (BASE): The memory fre-
quency is fixed at the default 1333 MHz and memory
ranks are always kept active even when they are idle.

• RAMZzz: RAMZzz is one of the state-of-the-art ap-
proaches using demotion [10]. For fair comparison, we
disable page migrations in RAMZzz (as explained in
Section 2). RAMZzz only considers two pre-selected
low-power states on DDR3 (PRE PDN FAST and
SR FAST).

• RAMZzz+: RAMZzz+ is an enhanced version of
RAMZzz, which explores state transitions among all
available power-down states on DDR3.

• MemScale: MemScale is one of the state-of-the-art ap-
proaches using DFS [12].

• MemScale+SFD: MemScale+SFD is a policy that com-
bines DFS with a static demotion scheme. A memory
rank immediately demotes to PRE PDN FAST when
it is idle. This approach was adopted in the previous
study [12].

• MemScale+DFD: MemScale+DFD is similar to Mem-
Scale+SFD, except that MemScale+DFD chooses the
power-down timeout according to our control algorithm.
MemScale+DFD is different from Hybrid, where it only
uses a pre-selected low-power state for demotions.

• Hybrid: Hybrid is the power management approach
developed in this paper.

We allow users to specify the epoch sizes and penalty
budgets. By default, the epoch size is set to 106 memory
requests, and penalty budget is set to 10%.

We first compare the behavior of Hybrid, BASE, Mem-
Scale+SFD, and MemScale+DFD to show the adaptivity of
Hybrid under different workloads (Section 5.2.1). Then, we
compare Hybrid with MemScale, RAMZzz and RAMZzz+ in
order to evaluate the impact of individual techniques, and the
synergy between DFS and demotion (Section 5.2.2). Third, we
investigate the effectiveness of the proposed search heuristics
(Section 5.3). We also study the impact of Hybrid on full
system energy savings, and present some additional results
for the optimization goal of ED2 (memory subsystem energy
× program execution time2). Due to the space limitation, we
put these results in Appendix A and B of the supplementary
file. All the results are normalized by those of BASE.

5.2 Results on Energy Optimizations

5.2.1 Overall Comparison

Figure 4 shows the normalized total memory energy con-
sumption of Hybrid in comparison with MemScale+SFD, and
MemScale+DFD when the penalty budget is set at 10%.
The comparison with MemScale+SFD and MemScale+DFD
shows the effectiveness of the adaptive feature of our proposed
method. If the normalized energy consumption of an approach

GM S1 S2 S3 S4 S5 M1 M2 M3 M4 M5 M6
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

N
or

m
al

iz
ed

 E
ne

rg
y

 MemScale+SFD
 MemScale+DFD
 Hybrid

Fig. 4. Overall comparisons on energy consumptions.

is smaller than 1.0, the approach is more energy efficient than
BASE.

Thanks to the adaptive combination of DFS and demotion
techniques, Hybrid is significantly more energy-efficient than
BASE, with an average reduction of 67% in total energy con-
sumption. The reduction is more significant for the workloads
with less intensive memory accesses (such as S1, S2 and
M1). This is because idle periods are generally longer for less
memory-intensive workloads, and lower memory frequencies
are feasible for those workloads for saving more background
power.

Comparing to the static scheme of DFS and demotion,
Hybrid outperforms MemScale+SFD for all workloads, with
an average reduction of 38% in total energy consumption. The
fixed power-down timeouts in MemScale+SFD cannot adapt to
different workloads when the memory frequency is changing.
Furthermore, the gap between MemScale+SFD and Hybrid
becomes larger for more memory-intensive workloads (such
as S5 and M6). The aggressive demotion of MemScale+SFD
can hurt energy efficiency because of the high latency and
energy penalty of demotions on short idle periods. This
penalty is even larger on memory-intensive workloads. We
make a further study to compare MemScale+DFD with Mem-
Scale+SFD. MemScale+DFD is more energy-efficient than
MemScale+SFD, which demonstrates that adaptively choosing
the suitable DFS-demotion configuration yields significant
improvement over static DFS-demotion schemes.

Hybrid also has larger energy savings compared with
MemScale+DFD, with an average reduction of 26% in total
energy consumption. Though MemScale+DFD chooses the
power-down timeout according to our control algorithm, it
only considers a single pre-selected low-power state (i.e.,
PRE PDN FAST). However, Hybrid explores five available
low-power states in DDR3 architectures. Also, the demotion
schemes are different for MemScale+DFD and Hybrid. Adding
more low-power states brings a larger search space of DFS-
demotion configurations for maximizing energy savings.

We also perform detailed studies on our analytical model.
Figures 5(a) and 5(b) show the ratios of estimated energy/per-
formance (predicted by our analytical model at the beginning
of an epoch) and measured energy/performance (measured at
the end of the corresponding epoch) for different epochs of
M4. Our estimations are very close to real measurements at
different DFS-demotion settings. We observe similar results
for different workloads.

We study the performance delay in more details. Figure 6
shows the breakdown of the performance delay. We divide the
delay penalty into two parts, resynchronization delay (caused

12 IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXX XXX

GM S1 S2 S3 S4 S5 M1 M2 M3 M4 M5 M6
0%
1%
2%
3%
4%
5%
6%
7%
8%
9%
10%
11%

Pe

rf
or

m
an

ce
 D

el
ay

 Resynchronization delay
 Frequeny scaling delay

Performance Penalty budget

(a) Hybrid
GM S1 S2 S3 S4 S5 M1 M2 M3 M4 M5 M6

0%
1%
2%
3%
4%
5%
6%
7%
8%
9%
10%
11%

Pe
rf

or
m

an
ce

 D
el

ay

 Resynchronization delay
 Frequeny scaling delay

Performance Penalty budget

(b) MemScale+SFD
GM S1 S2 S3 S4 S5 M1 M2 M3 M4 M5 M6

0%
1%
2%
3%
4%
5%
6%
7%
8%
9%
10%
11%

Pe
rf

or
m

an
ce

 D
el

ay

 Resynchronization delay
 Frequeny scaling delay

Performance Penalty budget

(c) MemScale+DFD

Fig. 6. The breakdown of performance delay.

1 11 21 31 41 51 61 71
0.80

0.85

0.90

0.95

1.00

1.05

1.10

Pr
ed

ic
tio

n
A

cc
ur

ac
y

Epoch Number

 Estimated Energy / Measured Energy

(a) Energy

1 11 21 31 41 51 61 71
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20

 Estimated Performance / Measured Performance

Pr
ed

ic
tio

n
A

cc
ur

ac
y

Epoch Number

(b) Performance

Fig. 5. Comparing estimated energy/performance with
measurements of Hybrid on M4.

by state transitions) and frequency scaling delay (caused by
DFS, including memory access delay and frequency switching
penalty). Though Hybrid and MemScale+DFD show different
breakdowns of the performance delay due to different demo-
tion schemes, the delays of Hybrid and MemScale+DFD are
well controlled under the pre-defined penalty budget (i.e., 10%
in this experiment). On the other hand, MemScale+SFD cannot
limit the delay within the penalty budget for workloads S5 and
M6. This demonstrates the effectiveness of our control algo-
rithm. Additionally, the resynchronization delay and frequency
scaling delay vary significantly across different workloads in
our Hybrid scheme. For example, the resynchronization delay
is much higher than the frequency scaling delay for workload
S5, which indicates that state transitions are more often for
saving the DRAM power. These observations demonstrate
the effectiveness of adaptive DFS-demotion configurations for
different workloads.

0.33

0.27 0.26 0.25 0.24 0.23 0.23 0.23

0.1% 1% 2% 4% 8% 10%15%20%
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

N
or

m
al

iz
ed

 E
ne

rg
y

Performance penalty budget
(a) S3

0.78

0.62
0.57

0.52 0.50 0.49 0.49 0.49

0.1% 1% 2% 4% 8% 10%15%20%
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

 Performance penalty budget

N
or

m
al

iz
ed

 E
ne

rg
y

0.78

(b) M4

Fig. 7. Energy consumption of Hybrid on S3 and M4.

One might think that Hybrid could have even higher energy
savings, if it could keep the frequency lower and power-down

timeouts smaller and approximate the performance penalty
budget more closely. However, approximating the performance
penalty budget more closely could also increase the DRAM
energy consumption (by increasing the memory read/write
energy and the resynchronization energy significantly). Thus,
our policy degrades the performance only up (and sets the
DFS-demotion configuration) to the point that results in the
minimized total memory system energy.

Figure 7 illustrates the normalized energy consumption of
Hybrid for different performance penalty budgets on S3 and
M4. The normalized energy consumption is decreased when
varying the penalty budget from 0.1% to 20%. A small penalty
budget limits the potential for energy savings.

5.2.2 Individual Impacts
We now evaluate the individual impacts of DFS and demotion
in Hybrid.

Impact of demotion. We study the impact of demotion
by comparing Hybrid, MemScale (no demotion), and Mem-
Scale+SFD (a static demotion scheme), as shown in Figure 8.
Hybrid has much lower energy consumption than MemScale,
with a range of 20–66% reduction in total energy consumption.

GM S1 S2 S3 S4 S5 M1 M2 M3 M4 M5 M6
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

N
or

m
al

iz
ed

 E
ne

rg
y

 MemScale
 MemScale+SFD
 Hybrid

Fig. 8. Energy consumption of Hybrid, MemScale and
MemScale+SFD.

We further have the following two major observations. First,
compared with MemScale, Hybrid can save more background
power by considering low-power states. The reduction is also
encouraging for memory-intensive workloads (such as S4,
S5, M5 and M6). Even though idle periods are shortened
after applying DFS on those workloads, Hybrid can still use
those lower-power states with short resynchronization times.
Second, applying a static demotion scheme with DFS shows
only marginal improvement on the energy efficiency. The
normalized energy consumption of MemScale+SFD is rather
close to that of MemScale. This is consistent with the previous
study [12].

Impact of DFS. Figure 9 shows the energy consumption
results for Hybrid, RAMZzz, and RAMZzz+. Comparing to
RAMZzz, Hybrid decreases the energy consumption by 31%

LU et al.: SYNERGY OF DYNAMIC FREQUENCY SCALING AND DEMOTION ON DRAM POWER MANAGEMENT: MODELS AND OPTIMIZATIONS 13

on average. Though lowering the memory frequency may
shorten the idle periods of ranks, Hybrid can still achieve
significant improvement by adaptively choosing the optimal
DFS-demotion configuration.

GM S1 S2 S3 S4 S5 M1 M2 M3 M4 M5 M6
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

N
or

m
al

iz
ed

 E
ne

rg
y

 RAMZzz
 RAMZzz+
 Hybrid

Fig. 9. Energy consumption of Hybrid, RAMZzz and
RAMZzz+.

RAMZzz+ is comparable to Hybrid for memory-intensive
workloads (such as S5, M5 and M6). Lower memory fre-
quencies are not suitable for those workloads, due to the
cost of increased operational energy and memory access time.
Thus, demotions play a more significant role for saving the
energy consumption of DRAM. On the other hand, Hybrid
can exploit much lower memory frequencies for workloads
with less memory access intensiveness. Overall, Hybrid has a
lower energy consumption than RAMZzz+, with an average
energy reduction of 21%.

Compared with RAMZzz, RAMZzz+ further decreases the
energy consumption, which justifies the necessity of involving
more low-power states for demotions. RAMZzz only uses two
pre-selected low-power states, and loses the opportunity of
adapting to different workloads.

5.3 Effectiveness of Search Heuristics

GM S1 S2 S3 S4 S5 M1 M2 M3 M4 M5 M6
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

N
or

m
al

iz
ed

 E
ne

rg
y

 Exhaustive
 Hybrid

Fig. 10. Energy consumption of Hybrid and Exhaustive.

To study the effectiveness of our search heuristics, we
simulate a variant of Hybrid, denoted as Exhaustive, which
finds the optimal DFS-demotion configuration by searching
the entire optimization space. Still, Exhaustive adopts branch-
bound optimizations to reduce unnecessary search efforts.
That is, at a certain frequency, the search of power-down
timeouts starts from high to low until the target performance is
violated. As shown in Figure 10, Hybrid achieves a very close
energy consumption to Exhaustive for all workloads. This
indicates that our proposed heuristics achieve near-optimal
energy savings with reduced search space.

We further perform a detailed analysis on the effectiveness
of these optimization heuristics for a selected workload M1.
We compare the average computational time and normalized
energy consumption for the Hybrid and Exhaustive approaches
in Table 9 for different numbers of power states (denoted as

n) and memory frequencies used (denoted as m). For a given
n, we consider S0 (active state) and other low-power states
Si (1 ≤ i < n). Similarly, for a given m, we consider the
highest memory frequency 1333 MHz and other frequencies
fi = 1333 − 133 × i MHz (1 ≤ i < m). The average
computational time is the average simulation time of finding
the DFS-demotion configuration for an epoch. We show the
speedup of the average computational time for Hybrid over
Exhaustive.

As the number of power states and frequencies used in-
creases, the normalized energy consumption becomes lower
for both Hybrid and Exhaustive (from left to right, and top
to bottom in Table 9). This further shows the benefits of the
self-adapting feature brought by our proposed adaptive DFS-
demotion configurations. Hybrid has a slightly higher energy
consumption than Exhaustive in all cases, within the range of
3–8%. The average computational time of Hybrid is improved
significantly over that of Exhaustive, which significantly re-
duces the runtime overhead.

6 CONCLUSIONS

Effectively exploiting power management techniques is crit-
ical for reducing DRAM energy consumption. In this pa-
per, we propose a novel DRAM power management design
by adaptively combining DFS and demotion. An analytical
model is developed to understand the synergy between DFS
and demotion. Based on the analytical model, we develop
optimization techniques to efficiently search for good DFS-
demotion configurations at the runtime. We further develop
simple and effective heuristics to reduce the computational
complexity of optimization. We evaluate our proposed mod-
els and optimizations with SPEC 2006 in comparison with
baseline and state-of-the-art power saving techniques. Our
simulation results demonstrate significant improvement of our
mechanism in energy consumption over other power saving
techniques.

ACKNOWLEDGEMENT

The authors would like to thank anonymous reviewers for
their insightful comments. This work is supported by a MoE
AcRF Tier 2 grant (MOE2012-T2-1-126) in Singapore. This
work is also partly supported by the National Basic Research
Program of China (973 Project Grant No. 2015CB352400),
Program for Changjiang Scholars and Innovative Research
Team in University (IRT1158, PCSIRT) China, NSFC (Grant
No. 61272099) and Scientific Innovation Act of STCSM (No.
13511504200).

REFERENCES

[1] F. Färber and et al., “Sap hana database: data management for modern
business applications,” SIGMOD Rec., vol. 40, no. 4, 2012.

[2] J. Ousterhout and et al., “The case for ramclouds: scalable high-
performance storage entirely in dram,” SIGOPS Oper. Syst. Rev., vol. 43,
no. 4, 2010.

[3] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler, and T. W.
Keller, “Energy management for commercial servers,” IEEE Computer,
vol. 36, no. 12, 2003.

14 IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXX XXX

TABLE 9
Speedup (Speedup) and normalized energy consumption (E) of Hybrid (HB) and Exhaustive (EX) on M1.

m = 3 m = 6 m = 10
n E (HB) E (EX) Speedup E (HB) E (EX) Speedup E (HB) E (EX) Speedup
3 0.51 0.49 72 0.39 0.37 92 0.30 0.29 145
4 0.36 0.35 1275 0.30 0.29 1586 0.27 0.25 2475
6 0.30 0.28 23027 0.26 0.25 35922 0.24 0.23 45824

[4] U. Hoelzle and L. A. Barroso, The Datacenter as a Computer: An In-
troduction to the Design of Warehouse-Scale Machines, 1st ed. Morgan
and Claypool Publishers, 2009.

[5] D. Meisner, B. T. Gold, and T. F. Wenisch, “Powernap: eliminating
server idle power,” in ASPLOS ’09, 2009.

[6] M. S. Ware and et al., “Architecting for power management: The ibm
power7 approach,” in HPCA ’10, 2010.

[7] X. Fan, C. Ellis, and A. Lebeck, “Memory controller policies for dram
power management,” in ISLPED ’01, 2001.

[8] V. Delaluz and et al., “Scheduler-based dram energy management,” in
DAC ’02, 2002.

[9] H. Huang, P. Pillai, and K. G. Shin, “Design and implementation of
power-aware virtual memory,” in USENIX ATC ’03, 2003.

[10] D. Wu, B. He, X. Tang, J. Xu, and M. Guo, “Ramzzz: rank-aware dram
power management with dynamic migrations and demotions,” in SC ’12,
2012.

[11] H. David and et al., “Memory power management via dynamic volt-
age/frequency scaling,” in ICAC ’11, 2011.

[12] Q. Deng and et al., “Memscale: active low-power modes for main
memory,” in ASPLOS ’11, 2011.

[13] I. Hur and C. Lin, “A comprehensive approach to dram power manage-
ment,” in HPCA ’08, 2008.

[14] B. Diniz, D. Guedes, W. Meira, Jr., and R. Bianchini, “Limiting the
power consumption of main memory,” in ISCA ’07, 2007.

[15] K. Sudan, K. Rajamani, W. Huang, and J. Carter, “Tiered memory:
An iso-power memory architecture to address the memory power wall,”
IEEE Trans. on Comput., vol. 61, no. 12, 2012.

[16] H. Huang and et al., “Improving energy efficiency by making dram less
randomly accessed,” in ISLPED ’05, 2005.

[17] H. Zheng and Z. Zhu, “Power and performance trade-offs in contem-
porary dram system designs for multicore processors,” IEEE Trans. on
Comput., vol. 59, no. 8, 2010.

[18] Micron Tech., Inc., MT41J256M4JP-15E Datasheet, 2010.
[19] Micron Tech., Inc., MT42L128M32D1LF-25WT Datasheet, 2011.
[20] Micron Tech., Inc., System Power Calculator,

http://www.micron.com/products/support/power-calc, 2012.
[21] Y. Lu, D. Wu, B. He, X. Tang, J. Xu, and M. Guo, “Rank-aware dynamic

migrations and adaptive demotions for dram power management,” CoRR,
vol. abs/1409.5567, 2014.

[22] Q. Deng, D. Meisner, A. Bhattacharjee, T. Wenisch, and R. Bianchini,
“Coscale: Coordinating cpu and memory system dvfs in server systems,”
in MICRO ’45, 2012.

[23] B. He, Q. Luo, and B. Choi, “Cache-conscious automata for xml
filtering,” IEEE Trans. on Knowl. and Data Eng., vol. 18, no. 12, 2006.

[24] B. He and Q. Luo, “Cache-oblivious databases: Limitations and oppor-
tunities,” ACM Trans. Database Syst., vol. 33, no. 2, 2008.

[25] H. Liu, H. Jin, X. Liao, W. Deng, B. He, and C.-z. Xu, “Hotplug
or ballooning: A comparative study on dynamic memory management
techniques for virtual machines,” IEEE Trans. on Parall. and Distrib.
Syst., vol. PP, no. 99, 2014.

[26] F. Kong, Y. Wang, Q. Deng, and W. Yi, “Minimizing multi-resource
energy for real-time systems with discrete operation modes,” in ECRTS
’10, 2010.

[27] V. Devadas and H. Aydin, “On the interplay of voltage/frequency scaling
and device power management for frame-based real-time embedded
applications,” IEEE Trans. on Comput., vol. 61, no. 1, 2012.

[28] M. E. T. Gerards and J. Kuper, “Optimal dpm and dvfs for frame-based
real-time systems,” ACM Trans. Archit. Code Optim., vol. 9, no. 4, 2013.

[29] P. D. Welch, “On a generalized m/g/1 queuing process in which the first
customer of each busy perido receives exceptional service,” Operations
Research, vol. 12, no. 1, 1964.

[30] Micron Tech., Inc., TN-41-01: Calculating Memory System Power for
DDR3, 2007.

[31] L. E. Ramos, E. Gorbatov, and R. Bianchini, “Page placement in hybrid
memory systems,” in ICS ’11, 2011.

[32] K. Sudan and et al., “Micro-pages: increasing dram efficiency with
locality-aware data placement,” in ASPLOS ’10, 2010.

[33] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.
Prentice Hall, 2003.

[34] M. T. Yourst, “Ptlsim: A cycle accurate full system x86-64 microarchi-
tectural simulator,” in ISPASS ’07, 2007.

Yanchao Lu received the BS degree in com-
puter science and technology from Beijing In-
stitute of Technology, China, in 2010. He is
currently a fourth year Ph.D. student at Depart-
ment of Computer Science and Engineering,
Shanghai Jiao Tong University, China. His re-
search interests include low-power system de-
sign, GPGPU, parallel and distributed systems.

Bingsheng He received the bachelor degree
in computer science from Shanghai Jiao Tong
University (1999-2003), and the PhD degree
in computer science in Hong Kong University
of Science and Technology (2003-2008). He is
an assistant professor in Division of Networks
and Distributed Systems, School of Computer
Engineering of Nanyang Technological Univer-
sity, Singapore. His research interests are high
performance computing, distributed and parallel
systems, and database systems.

Xueyan Tang received the BEng degree in com-
puter science and engineering from Shanghai
Jiao Tong University in 1998, and the PhD de-
gree in computer science from the Hong Kong
University of Science and Technology in 2003.
He is currently an associate professor in the
School of Computer Engineering at Nanyang
Technological University, Singapore. He has
served as an associate editor of IEEE Transac-
tions on Parallel and Distributed Systems. His
research interests include distributed systems,

mobile and pervasive computing, and wireless sensor networks. He is a
senior member of the IEEE.

Minyi Guo received the BS and ME degrees
in computer science from Nanjing University,
China, in 1982 and 1986, respectively, and the
PhD degree in information science from the Uni-
versity of Tsukuba, Japan, in 1998. From 1998 to
2000, he had been a research associate of NEC
Soft, Ltd. Japan. He was a visiting professor at
the Department of Computer Science, Georgia
Institute of Technology. He was a full professor
at the University of Aizu, Japan, and is the head
of the Department of Computer Science and

Engineering at Shanghai Jiao Tong University, China. He has served
as an associate editor of IEEE Transactions on Computers and IEEE
Transactions on Parallel and Distributed Systems. His research interests
include automatic parallelization and data-parallel languages, bioinfor-
matics, compiler optimization, high-performance computing, and perva-
sive computing. He is a senior member of the IEEE and has published
more than 150 papers in well-known conferences and journals.

