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Analysis of Server Provisioning
for Distributed Interactive Applications

Hanying Zheng and Xueyan Tang

Abstract—Increasing geographical spreads of modern dis-
tributed interactive applications (DIAs) make distributed server
deployment vital for combating network latency and improving
the interactivity among participants. In this paper, we investigate
the server provisioning problem that concerns where to place
servers for DIAs. We formulate the server provisioning problem
with an objective of reducing the network latency involved in the
interaction between participants. We prove that the problem is
NP-hard under several scenarios. We analyze the performance
of the classical k-median server placement for DIAs and propose
a new greedy server provisioning heuristic for DIAs. Theoretical
analysis shows that the approximation ratio of the proposed
greedy algorithm is much lower than that of the k-median
placement. Experiments using real Internet latency data also
show that our proposed algorithm significantly outperforms the
k-median and other baseline server placements.

Index Terms—Distributed interactive application, server place-
ment, interactivity

I. INTRODUCTION

An increasing number of Distributed Interactive Applica-
tions (DIAs) are emerging in recent years to provide people
with new ways of collaboration and entertainment. In these ap-
plications, participants dispersed at different locations interact
with each other through the network in real time. Examples
of DIAs include online gaming [2], instant messaging [3],
collaborative computer-aided design and engineering [4], and
web-based e-learning [5].

A critical Quality of Service measure for DIAs is the time
lag experienced by the participants during their interaction.
The interaction process in DIAs normally involves communi-
cating user-initiated operations and their resultant updates to
the application state (such as the virtual game worlds in online
gaming and the shared workspaces in collaborative design
tools) between the participants and the servers as well as exe-
cuting the operations at the servers. Thus, the time lag in the
interaction includes the network latency in the communication
and the processing delay at the servers. The latter is generally
easier to cut than the former. In particular, the emerging cloud
computing paradigm enables customers to rent computing
resources purely on demand for hosting their applications [6].
Although elastic computing power supply from the clouds can
largely minimize the server-side processing delay in DIAs,
the network latency remains as a major barrier to achieving
high quality interaction experience. Excessive network latency
can severely degrade the participant’s quality of experience in
DIAs [2].
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Increasing geographical spreads of participants in modern
DIAs necessitate distributed server deployment to combat
network latency [7]. In this paper, we focus on reducing the
network latency involved in the interaction between partici-
pants by considering where to place servers in the network.
We formulate the server provisioning problem for DIAs as a
combinatorial optimization problem and prove that it is NP-
hard under any one of the following three scenarios that may
be common in practice: (a) the network latency does not satisfy
the triangle inequality; or (b) the choices of server locations
in the network are restricted; or (c) the number of server
locations to select is limited. We then propose an efficient
greedy heuristic for server provisioning in DIAs. We conduct
theoretical analysis to compare the greedy heuristic with the
classical k-median server placement. In particular, we study
the approximability of the algorithms for networks with trian-
gle inequality violations. To the best of our knowledge, this
is the first paper that analyzes the asymptotic approximability
of server placement algorithms with respect to the extent of
triangle inequality violations. The results suggest that our
proposed algorithm has significantly better approximability
than the k-median placement. The proposed algorithm is also
experimentally evaluated with real Internet latency data. The
results again show that our algorithm significantly outperforms
the k-median and other baseline server placements.
Related Work. The classical k-median and k-center problems
have been widely used to model server placement in the
Internet [8]–[12]. The k-median placement aims to place a
given number of k servers to minimize the total distance
(latency) from the clients to their nearest servers, whereas the
k-center placement aims to place k servers to minimize the
maximum distance (latency) from the clients to their nearest
servers. Both problems are NP-hard [13]. A variety of heuristic
approaches have been explored for these problems [10], [14]–
[16]. The k-median and k-center server placements are quite
successful for web content delivery [8], [9]. However, DIAs
are fundamentally different from web content delivery. The
clients in the web just download contents from web servers.
Thus, their access performance can be optimized by simply
minimizing the client-to-server latency. In contrast, the clients
in DIAs are engaged in mutual interactions among themselves.
Each client connects to one server through which it interacts
with all the other clients. Therefore, the interaction time
between clients must include not only the network latencies
from the clients to their connected servers but also the latencies
between their connected servers. We shall analyze and evaluate
the performance of the k-median server placement for DIAs.
In a recent work, we have investigated client assignment
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strategies for enhancing the interactivity performance of DIAs
given a set of servers placed [17]. This paper complements
our earlier work by studying server provisioning for DIAs.

This paper significantly extends a preliminary conference
version [1]. The rest of this paper is organized as follows.
Section II formulates the server provisioning problem for DIAs
and Section III analyzes its hardness. Section IV studies the
approximability of the k-median server placement. Section
V presents the greedy server provisioning heuristic and the
theoretical analysis of its approximation ratio. Experimental
evaluations are elaborated in Section VI. Finally, Section VII
concludes the paper.

II. PROBLEM FORMULATION

We model the network infrastructure underlying the DIA as
a graph G = (V,E), where V is the set of nodes and E is the
set of links. For each pair of nodes (u, v) ∈ V ×V , we denote
by d(u, v) the latency of the network path between nodes u
and v. We define d(v, v) = 0 for each node v ∈ V .

Without loss of generality, we assume that servers can be
placed only at a particular set of nodes Z ⊆ V in the network
and refer to these nodes as candidate server locations. Z
can be defined in different ways to address different server
provisioning scenarios. For example, there are two typical
types of models for running DIAs. In the traditional client-
server model, the application state is maintained by dedicated
servers. Participants, known as clients, are responsible for
sending user-initiated operations to the servers for execution
and receiving the state updates from the servers. In this case,
the candidate server locations (e.g., the data centers operated
by cloud providers) are normally separate from client loca-
tions. In the peer-to-peer model, on the other hand, the clients
are responsible for executing operations and maintaining the
application state by themselves. In this case, to select which
clients to take up the role of operation execution, the candidate
server locations Z can be modeled as the set of clients.

Let C ⊆ V be the set of clients in the network. To
participate in the DIA, each client ci ∈ C needs to connect
to one server. The clients are often autonomous in deciding
which servers to connect to. An intuitive and widely used
strategy in many applications is for the clients to connect
to their nearest servers, i.e., the servers with the shortest
network latency to them [11], [17]–[19]. Suppose that a set
of locations S ⊆ Z are selected to place servers. For each
client ci ∈ C, we denote by n(ci, S) the nearest server to ci,
i.e., d(ci, n(ci, S)) = mins∈S d(ci, s). Then, all the operations
issued by client ci would be sent to n(ci, S).

The interaction between two clients ci and cj goes through
their connected servers. On receiving an operation issued by
ci, its server n(ci, S) forwards the operation to cj’s connected
server n(cj , S) if they are different. Then, n(cj , S) executes
the operation1 and delivers the resultant state update to cj
to present the effect of ci’s operation. Thus, the interac-
tion process involves the paths from ci to n(ci, S), from

1In some applications such as instant messaging, operation execution is as
simple as forwarding the message typed by the user. In other applications like
online gaming, operation execution could involve more complex computation
and modification to the application state.

n(ci, S) to n(cj , S), and from n(cj , S) to cj . We refer to
the concatenation of these paths as the interaction path from
ci to cj . The length of the interaction path is given by
d(ci, n(ci, S)) + d(n(ci, S), n(cj , S)) + d(n(cj , S), cj) and
represents the network latency involved in the interaction
between ci and cj . Note that the interaction path from a client
ci to itself is the round trip between ci and its connected server
n(ci, S), whose length indicates the network latency involved
for ci to see the effect of its own operation.

We measure the interactivity performance of the DIA by the
average interaction path length between all client pairs:

1

|C|2
∑
ci∈C

∑
cj∈C

(
d(ci, n(ci, S)) + d(n(ci, S), n(cj , S))

+ d(n(cj , S), cj)
)
.

The shorter the average interaction path length, the higher the
interactivity performance of the DIA. Since the total number of
client pairs is fixed given the client set, to minimize the average
interaction path length, it is equivalent to minimize the total
interaction path length between all client pairs. Therefore, the
server provisioning problem for DIAs is defined as follows.

DIA Server Provisioning Problem. Given a set of clients
C and a set of candidate server locations Z in the network,
select a set of locations S ⊆ Z to place servers for the DIA
that minimizes the total interaction path length between all
client pairs, i.e.,

minimize
∑
ci∈C

∑
cj∈C

(
d(ci, n(ci, S))

+ d(n(ci, S), n(cj , S)) + d(n(cj , S), cj)
)
,

where n(ci, S) refers to the nearest server in S to client ci.

In the above formulation, we focus on minimizing the net-
work latencies involved in the interaction. No server capacity
limitation is assumed at the candidate server locations. We
shall discuss and evaluate how to deal with server capacity
constraints in our proposed algorithms in Section VI-B.

III. HARDNESS ANALYSIS

The DIA server provisioning problem is trivial if (1) the net-
work latencies among the nodes satisfy the triangle inequality;
(2) all the nodes in the network are candidate server locations;
and (3) there is no limit on the number of server locations
to select (or more precisely, the number of server locations
selected can be as large as the number of clients because there
is certainly no need to place more servers than the number
of clients). The triangle inequality implies that for any two
clients ci and cj , and any two servers sa and sb, we have
d(ci, sa) + d(sa, sb) + d(sb, cj) ≥ d(ci, cj). Therefore, under
the above three assumptions, the optimal server provisioning
solution is to place servers at all the nodes where the clients
are located. In this way, each client connects to the server co-
located with it so that the latencies between all clients and
their nearest servers are 0. Thus, the interaction path length
between any two clients ci and cj is simply d(ci, cj), which
is the shortest possible.
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Fig. 1. Example instances of the minimum set cover problem and the DIA
server provisioning problem

Interestingly, if any one of the above assumptions is relaxed,
the DIA server provisioning problem becomes NP-hard.

A. Networks without Triangle Inequality

Triangle inequality violations are not uncommon as Internet
routing is often based on business policies and is not optimal in
terms of network latency [20]. If the network latency does not
satisfy the triangle inequality, we can show the NP-hardness
of the DIA server provisioning problem by a polynomial
reduction from the minimum set cover problem [13]. Given
a finite set P and a collection Q of its subsets, and a positive
integer k ≤ |Q|, the decision version of the minimum set cover
problem is to find out whether Q contains a subcollection Q′
of at most k subsets such that

⋃
Q∈Q′ Q = P .

Consider an instance R of the minimum set cover problem.
Suppose that set P contains n elements: P = {p1, p2, ..., pn},
and collection Q contains m subsets: Q = {Q1, Q2, ..., Qm}.
We construct a network GR consisting of the node set VC∪VS ,
where VC contains n nodes VC = {c1, c2, ..., cn}, and VS
contains k groups of nodes VS =

⋃k
i=1 V

i. Each node ci ∈
VC corresponds to an element pi in set P . Each group V i

contains m clusters of nodes V i =
⋃m
j=1 V

i
j . Each cluster

V ij corresponds to a subset Qj , and contains |Qj | nodes that
correspond to the elements of Qj . Thus, there are a total of
k ·∑m

j=1 |Qj | nodes in VS .
Among the nodes in VS , the latency between any two nodes

in the same cluster or in different groups is set to 1. The
latency between any two nodes in different clusters of the
same group is set to L, where L > 3n2. The latency between
any two nodes in VC is also set to L. The latency from a
node ci ∈ VC to a node v ∈ VS is set to 1 if v corresponds to
element pi ∈ P , and is set to L otherwise. Figure 1 illustrates
an example of network GR, where each node pair connected
by a link has latency 1, and each pair not connected by a link
has latency L.

An instance T of the DIA server provisioning problem in
the decision version is then defined on the constructed network
GR as follows: Suppose that a client is located at each node in
VC , all the nodes in the network are candidate server locations,
and there is no limit on the number of server locations to
select. Can we select a set of server locations such that the
total interaction path length between all client pairs is bounded
by B = 3n2?

We first prove that if Q contains a set cover of size at most
k for instance R, there must exist a server placement with
total interaction path length bounded by B for instance T . Let
Q′ = {Qx1

, Qx2
, · · · , Qxl

} (where 1 ≤ l ≤ k) be a set cover
of size not exceeding k for instance R. Then, placing servers
at all the nodes in clusters V 1

x1
, V 2
x2
, · · · , V lxl

is a valid server
provisioning solution for instance T . In fact, since Q′ is a set
cover, each element pi ∈ P is contained in at least one subset
among Qx1

, Qx2
, · · · , Qxl

. Thus, for each client ci ∈ VC ,
there exists at least one node in V 1

x1
∪ V 2

x2
∪ · · · ∪ V lxl

having
latency 1 to ci. As a result, the latencies between all the clients
and their nearest servers are 1. In addition, the latency between
any two servers in V 1

x1
∪ V 2

x2
∪ · · · ∪ V lxl

is 1 because they
either come from the same cluster or from different groups.
Therefore, the interaction path length between each pair of
clients is bounded by 1 + 1 + 1 = 3. Since there are n2

interaction paths in total, the total interaction path length is
bounded by 3n2 = B.

Next, we prove that if a valid server placement solution
can be found for instance T , there must exist a set cover
of size at most k for instance R. Let S ⊆ VC ∪ VS be the
set of server locations selected in a valid solution of instance
T . Without loss of generality, we assume that the server at
each location in S is connected by at least one client.2 Since
each client connects to its nearest server, if a server is placed
at a node in VC , the client at that node should connect to
this server. Note that the latency between any two nodes in
VC is L. If servers are placed at more than one node in VC ,
the interaction path length between the clients at these nodes
becomes L > 3n2 = B. Therefore, at most one node in VC
can be selected to place a server, i.e., |S ∩ VC | ≤ 1.

If |S ∩ VC | = 1, there is exactly one server located in VC
and the remaining servers are all located in VS . Let the server
in VC be located at node cx. Since the latency between any
two nodes in VC is L, to bound the total interaction path
length by B < L, the clients in VC \ {cx} should all connect
to the servers in VS . Moreover, each of these clients must
have latency 1 to its nearest server because the latency from
a client to a server in VS is either 1 or L. Thus, the clients
in VC \ {cx} must connect to servers not corresponding to
element px ∈ P . Therefore, the latencies from cx to these
servers are L, exceeding the bound B. So, there is no valid
solution of instance T satisfying |S ∩ VC | = 1.

If |S ∩ VC | = 0, all the servers are placed in VS . Similar
to the former case, since the total interaction path length does
not exceed B, each client ci must have latency 1 to its nearest
server. This implies that each element pi ∈ P is covered by

2The server locations not connected by any clients can simply be removed
from S.
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the subset Qj corresponding to the node cluster of ci’s nearest
server. Thus, Q′ = {Qj | ∃i, V ij ∩ S 6= ∅} is a set cover for
P . Furthermore, to cap the total interaction path length by B,
all the servers must have latency 1 from each other. Thus, for
each group of nodes V i, all the servers in V i ∩ S must come
from the same cluster of V i. Since there are k groups of nodes
V 1, V 2, · · · , V k in VS , we have |Q′| ≤ k. Therefore, Q′ is a
set cover of size at most k.

Hence, a set cover of size at most k can be found for
instance R if and only if there exists a server placement
with total interaction path length bounded by B for instance
T . Thus, the DIA server provisioning problem for networks
without the triangle inequality is NP-hard.

The above hardness analysis also leads to the following non-
approximability result.

Theorem 1. For networks without the triangle inequality, the
DIA server provisioning problem cannot be approximated by
any constant factor unless P = NP.

Proof: For any instance of the minimum set cover prob-
lem, if there exists a set cover of size at most k, the total
interaction path length of an optimal server placement must
be bounded by B = 3n2 in the network constructed above.
Any non-optimal server placement, however, produces a total
interaction path length greater than L. This is because in any
non-optimal placement, either a client connects to a server that
has a latency L to it, or the latency between a certain pair of
servers is L. In either case, there is at least one interaction path
longer than L, so the total interaction path length exceeds L.
Similarly, if there does not exist any set cover of size at most
k in the set cover problem, the total interaction path length
of an optimal server placement in the constructed network is
also greater than L.

Assume on the contrary that there exists a polynomial-time
server provisioning algorithm with a constant approximation
ratio of β. For any instance of the set cover problem, we
set L = βB = 3n2β in the constructed network and
then run the β-approximation algorithm. If the output server
placement produces a total interaction path length larger than
L, it indicates that the optimal server placement has a total
interaction path length larger than B. So, there does not exist
any set cover of size at most k. On the other hand, if the output
server placement has a total interaction path length within L,
it must be bounded by B according to the above analysis.
Thus, the optimal server placement would also have a total
interaction path length within B so that there exists a set cover
of size at most k. Therefore, this implies a polynomial-time
algorithm for the set cover problem, which contradicts to P 6=
NP.

Hence, the theorem is proven.

B. Restricted Choices of Server Locations
If not all the nodes in the network are candidate server

locations, the DIA server provisioning problem becomes NP-
hard as well. We can again prove it by a polynomial reduction
from the minimum set cover problem.

Given an instance R of the minimum set cover problem,
we construct the same network GR as in the previous section,

except that the node pairs that had latency L earlier have
latency 2 now to satisfy the triangle inequality. That is, in
the illustration of Figure 1, a node pair has latency 1 if they
are connected by a link and has latency 2 otherwise. Suppose
that a client is located at each node in VC , only the nodes
in VS are candidate server locations, and there is no limit on
the number of server locations to select. An instance Y of the
DIA server provisioning problem is then defined on network
GR by setting a bound H = 3n2 − n on the total interaction
path length between all client pairs.

We first show that a set cover of size at most k for instance
R gives rise to a valid server provisioning solution for instance
Y . Again, let Q′ = {Qx1 , Qx2 , · · · , Qxl

} (where 1 ≤ l ≤ k)
be a set cover of size not exceeding k. Then, a valid solution
for instance Y is to place servers at all the nodes in clusters
V 1
x1

, V 2
x2

, · · · , V lxl
. Similar to the argument in Section III-A,

under such server placement, the latencies between all clients
and their nearest servers are 1, and the latency between any
two servers is also 1. Thus, the interaction path from a client
to itself has length 1 + 1 = 2, and the interaction path length
between two distinct clients is bounded by 1+1+1 = 3. Note
that there are n(n− 1) pairs of distinct clients. Therefore, the
total interaction path length is bounded by 3n(n− 1) + 2n =
3n2 − n = H .

Next, we show that a valid server provisioning solution
for instance Y gives rise to a set cover of size at most k
for instance R. Let S ⊆ VS be a set of server locations
that produces a total interaction path length not exceeding
H . Without loss of generality, assume that the server at each
location in S is connected by at least one client. Note that
each node in VS has latency 1 to exactly one client in VC and
has latency 2 to all the other clients. As a result, if two distinct
clients in VC connect to the same server in S, their interaction
path length is at least 1+2 = 3. On the other hand, the latency
between any two nodes in VS is at least 1. Thus, if two distinct
clients connect to different servers in S, their interaction path
length is at least 1 + 1 + 1 = 3. Therefore, regardless of
server placement, the interaction path length between any two
distinct clients is at least 3. Since there are n(n − 1) pairs
of distinct clients, this implies that the total interaction path
length from all clients to themselves under server placement
S cannot exceed H − 3n(n− 1) = 2n.

Since the shortest latency from each client to the nodes in
VS is 1, it follows that the latencies from all the clients to their
nearest servers must be exactly 1. Therefore, each element
pi ∈ P is covered by the subset Qj corresponding to the node
cluster of ci’s nearest server. That is, Q′ = {Qj | ∃i, V ij ∩S 6=
∅} is a set cover for P .

To limit the total interaction path length by H , the inter-
action path length between any two distinct clients must now
be exactly 3. This implies that the latency between any two
servers in S must be 1. Thus, for each group of nodes V i, all
the servers in V i∩S must come from the same cluster of V i.
It follows that |Q′| ≤ k. Therefore, Q′ is a set cover of size
at most k.

In summary, there exists a set cover of size at most k
for instance R if and only if a server placement with total
interaction path length bounded by H can be found for
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Fig. 2. Example instances of the 3DM problem and the DIA server
provisioning problem

instance Y . Thus, the DIA server provisioning problem with
restricted choices of server locations is NP-hard.

C. Limited Number of Server Locations to Select

If the DIA operator can deploy only a limited number of
servers due to budget restriction, a cap can be set on the
number of server locations to select. If the cap is less than
the number of clients, the DIA server provisioning problem is
also NP-hard. This can be proved by a polynomial reduction
from the 3-Dimensional Matching (3DM) problem [13]. The
decision version of the 3DM problem is defined as follows:
Given three disjoint sets W , X and Y each having k elements,
and a set of triples M ⊆ W × X × Y , find out whether M
contains a 3-dimensional matching, i.e., whether there exists
a subset M ′ ⊆ M such that |M ′| = k and any two triples
(wa, xa, ya) and (wb, xb, yb) ∈M ′ satisfy wa 6= wb, xa 6= xb
and ya 6= yb.

Given an instance U of the 3DM problem, we construct
a network GU consisting of the node set VC ∪ VM . The set
VC contains 3k nodes, each corresponding to an element in
W ∪ X ∪ Y of instance U . The set VM contains the same
number of nodes as the size of M in instance U . Each node
in VM corresponds to a triple in M , and establishes links
of latency 2 to the three nodes in VC corresponding to its
three coordinates. For example, in Figure 2, node vm4 , which
corresponds to the triple m4 = (w1, x2, y3), has three links to
nodes vw1 , vx2 and vy3 in VC . In addition, all the nodes in VM are
inter-connected with each other via links of latency 1. Suppose
that a client is located at each node in VC , and all the nodes
in network GU are candidate server locations. An instance F
of the DIA server provisioning problem is then defined on
network GU by capping the number of server locations to
select at k and setting a bound A = 45k2 − 9k on the total
interaction path length between all client pairs.

We first prove that if M contains a matching for instance
U , there must exist a server placement with total interaction
path length bounded by A for instance F . Suppose that M ′ ⊆
M is a matching. Let S be the set of k nodes in VM that
represent the triples in M ′ (for example, nodes vm1 , vm2 and
vm3 in Figure 2). We construct a server placement by selecting
all the k nodes in S as the server locations. Then, each client
in VC has exactly one adjacent node in S. Thus, each client
connects to the server placed at its adjacent node in S and the

latency between them is 2. Since all the servers in S are inter-
connected by links of latency 1, and each server has exactly
three adjacent clients, the total interaction path length under
placement S is given by

(2 + 0 + 2)· 9k + (2 + 1 + 2)· (9k2 − 9k) = 45k2 − 9k = A.

Next, we prove that M contains a matching for instance U
if a valid server placement solution can be found for instance
F . Consider a set S of up to k server locations in network
GU . Let bi (i ≥ 0) be the number of clients that have latency
i to their nearest servers in S. Since there are a total of 3k
clients and all the links incident on clients have latency 2, we
have

∑
i≥0 bi = 3k and b1 = 0. Note that there are b0 servers

of S located in VC . So, the number of servers located in VM
is at most k− b0. If a client has latency 2 to its nearest server,
this server must be adjacent to the client and thus is located
in VM . Since each server in VM has three adjacent clients, we
have b2 ≤ 3 · (k− b0). Thus, the total length of the interaction
paths from the clients to themselves is∑

i≥0
2i · bi = 0 · b0 + 4 · b2 +

∑
i≥3

2i · bi

≥ 4 · b2 + 6 ·
∑
i≥3

bi (1)

= 4 · b2 + 6 · (3k − b2 − b0)
= 18k − 2 · b2 − 6 · b0
≥ 18k − 2 · (3 · (k − b0))− 6 · b0 (2)
= 12k.

Since all the links incident on clients have latency 2 and
the clients are not adjacent to each other, the shortest possible
interaction path between two distinct clients has length 4.
Let pi (i ≥ 4) be the number of pairs of distinct clients
whose interaction path length is i under server placement S.
Since there are 3k(3k − 1) pairs of distinct clients in total,
we have

∑
i≥4 pi = 3k(3k − 1). If any two distinct clients

have an interaction path length of 4, there must be a server
in VM that is adjacent to both clients. Each server in VM has
three adjacent clients and can thus support at most 3 · 2 = 6
interaction paths of length 4 between distinct clients. Since
there are at most k servers, we have p4 ≤ 6k. Therefore, the
total length of the interaction paths between distinct clients is∑

i≥4
i · pi = 4 · p4 +

∑
i≥5

i · pi

≥ 4 · p4 + 5 ·
∑
i≥5

pi (3)

= 4 · p4 + 5 · (3k(3k − 1)− p4)
= 45k2 − 15k − p4
≥ 45k2 − 15k − 6k (4)
= 45k2 − 21k.

Thus, the total interaction path length is∑
i≥0

2i · bi +
∑
i≥4

i · pi ≥ 12k + 45k2 − 21k

= 45k2 − 9k = A.
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Therefore, if server placement S has a total interaction path
length bounded by A, the equality must be satisfied at all the
steps (1), (2), (3) and (4) in the above derivation.

Equality at step (3) implies that
∑
i>5 pi = 0. So, at most

one client can have latency 3 to its nearest server in S, i.e.,
b3 ≤ 1. Equality at step (1) indicates

∑
i>3 bi = 0. Thus,

b0 + b2 + b3 = 3k. It follows from equality at step (2) (i.e.,
b2 = 3(k − b0)) that b3 = 2 · b0, so b3 is an even number.
Therefore, b3 must be 0, and b0 is also 0. As a result, we
have b2 = 3k, i.e., the latency from each client to its nearest
server in S must be 2. Thus, all the server locations in S
are selected from node set VM . Since each node in VM has
only three adjacent clients, exactly k server locations must
be selected from VM and these server locations cannot have
any adjacent client in common. Therefore, the k triples of M
corresponding to the k server locations selected in VM form
a matching.

Hence, M contains a matching for instance U if and only
if there exists a server placement with total interaction path
length bounded by A for instance F . Thus, the DIA server
provisioning problem with limited number of server locations
to select is NP-hard.

IV. ANALYSIS OF k-MEDIAN PLACEMENT

Since the DIA server provisioning problem is NP-hard under
several scenarios, we shall focus on investigating heuristic
algorithms and their approximability. We first study the perfor-
mance of the classical k-median server placement for DIAs.
The k-median problem has been widely used to model server
placement in the Internet [8], [9], [12]. The k-median problem
seeks to select a given number of k locations in the network
to host servers such that the total distance (latency) from
the clients to their nearest servers is minimized. Our DIA
server provisioning problem shares some similarity with the
k-median problem in that we also aim to find server placement
that minimizes an aggregate latency metric. However, in our
problem, the interaction time between the clients in DIAs in-
cludes not only the latencies from the clients to their connected
servers but also the latencies between their connected servers.

While many works in the field of network coordinate
systems [21], [22] have assumed that the triangle inequality
holds in the Internet, several other works have argued that
triangle inequality violations are not uncommon due to the
restrictions of the Internet structure and the routing policies
of ISPs [20], [23]. Without loss of generality, our analysis
concerns the performance of server placement not only in
networks with the triangle inequality but also in networks with
triangle inequality violations. To this end, we relax the triangle
inequality constraint by introducing an additional parameter α
and define the α-triangle inequality as follows.

α-Triangle Inequality. Given a constant α (α ≥ 1), a network
is said to satisfy the α-triangle inequality if for any three
different nodes u, v and w in the network, it holds that

d(u, v) ≤ α · (d(u,w) + d(w, v)).

Note that for any two different nodes u and v in the network,
it is obvious that d(u, v) ≤ α ·d(u, v) = α ·(d(u, v)+d(v, v)).

Therefore, if a network satisfies the α-triangle inequality, any
nodes u, v and w in the network fulfills d(u, v) ≤ α·(d(u,w)+
d(w, v)).

The α-triangle inequality is generic because for any net-
work, a value of α can always be found for the network
latencies to satisfy the α-triangle inequality. Suppose that V
is the set of nodes in a network. Then, α can be set at

max
{
1, max
u,v,w∈V
u 6=v 6=w

d(u, v)

d(u,w) + d(w, v)

}
.

In essence, the parameter α characterizes the extent of tri-
angle inequality violations. The larger the value of α, the
more severe the triangle inequality violations. When α = 1,
the α-triangle inequality degenerates to the original triangle
inequality. Given a constant α > 1, the networks satisfying
the α-triangle inequality but not the original 1-triangle in-
equality constitute a subset of all the networks with triangle
inequality violations. Although Theorem 1 has given a non-
approximability result for networks with triangle inequality
violations, it is possible to approximate the DIA server
provisioning problem for networks satisfying the α-triangle
inequality.

Next, we analyze the performance of the k-median server
placement under the α-triangle inequality. When a limit k is set
on the number of server locations to select in the DIA server
provisioning problem, we have the following approximability
results of the k-median server placement.

Theorem 2. For networks satisfying the α-triangle inequality
(α ≥ 1), the k-median server placement has an approximation
ratio of max{ 12α3+ 3

2α
2+1, 23α

3+α2+ 2
3} for the DIA server

provisioning problem with a limit k on the number of server
locations to select.

Proof: Consider a network satisfying the α-triangle in-
equality (α ≥ 1). Assume that there are n clients c1, c2, ..., cn
in the network. Let S be a set of candidate server locations in
the network. Suppose that the set of optimal server locations
for the DIA server provisioning problem is SP ⊆ S. We
denote by pi ∈ SP the nearest server of each client ci (1 ≤
i ≤ n) under placement SP . Suppose that the k-median server
placement is SM ⊆ S. We denote by mi ∈ SM the nearest
server of each client ci (1 ≤ i ≤ n) under placement SM .

Define a new variable

x =

∑n
i=1

∑n
j=1 d(pi, pj)

n ·∑n
i=1 d(ci, pi)

.

Then, it can be shown that the total interaction path length
TM achieved by the k-median server placement SM satisfies

TM ≤ n

n∑
i=1

d(ci, pi) ·
(
2 + 2α2 + α3

+ α2 ·min
{
x+ α, αx+ 1

})
.

(5)

Please refer to Appendix A in the supplementary material for
the detailed derivation.
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If x ≥ 1, since α ≥ 1, we have x−1 ≤ α(x−1). It follows
that min{x+ α, αx+ 1} = x+ α. Thus,

TM ≤ n

n∑
i=1

d(ci, pi) ·
(
2 + 2α2 + α3 + α2(x+ α)

)
.

Note that the total interaction path length under placement SP
(the optimal solution of the server provisioning problem) is

TP = 2n

n∑
i=1

d(ci, pi) +

n∑
i=1

n∑
j=1

d(pi, pj)

= n

n∑
i=1

d(ci, pi) · (2 + x).

Therefore, the largest possible ratio between TM and TP is

r(x ≥ 1) = max
x≥1

2 + 2α2 + α3 + α2(x+ α)

2 + x

= max
x≥1

(
α2 +

2α3 + 2

2 + x

)
=

2

3
α3 + α2 +

2

3
. (6)

Similarly, if 0 ≤ x ≤ 1, since α ≥ 1, we have x − 1 ≥
α(x−1) and thus min{x+α, αx+1} = αx+1. In this case,
the largest possible ratio between TM and TP is

r(0 ≤ x ≤ 1) = max
0≤x≤1

2 + 2α2 + α3 + α2(αx+ 1)

2 + x

= max
0≤x≤1

(
α3 +

2 + 3α2 − α3

2 + x

)
.

If 2+3α2−α3 ≥ 0, i.e., 1 ≤ α ≤ 1+
3
√
2 +
√
3+

3
√
2−
√
3,

we have

max
0≤x≤1

(
α3 +

2 + 3α2 − α3

2 + x

)
=

2 + 3α2 + α3

2
.

If 2+3α2−α3 < 0, i.e., α > 1+
3
√
2 +
√
3+

3
√
2−
√
3, we

have

max
0≤x≤1

(
α3 +

2 + 3α2 − α3

2 + x

)
=

2 + 3α2 + 2α3

3
.

Thus,

r(0 ≤ x ≤ 1) =


1

2
α3 +

3

2
α2 + 1 if 2 + 3α2 ≥ α3,

2

3
α3 + α2 +

2

3
if 2 + 3α2 < α3,

(7)

which can actually be rewritten as

r(0 ≤ x ≤ 1) = max
{1
2
α3 +

3

2
α2 + 1,

2

3
α3 + α2 +

2

3

}
.

Combining (6) and (7), if α ≥ 1, the approximation ratio of
the k-median placement for the server provisioning problem
is given by

max
{1
2
α3 +

3

2
α2 + 1,

2

3
α3 + α2 +

2

3

}
.

Hence, the theorem is proven.
When α = 1, max

{
1
2α

3 + 3
2α

2 + 1, 23α
3 + α2 + 2

3

}
=

max{3, 73} = 3. Thus, Theorem 2 implies the following
corollary.

Corollary 1. For networks satisfying the 1-triangle inequality,
the k-median server placement has an approximation ratio of
3 for the DIA server provisioning problem with a limit k on
the number of server locations to select.

The proof of Theorem 2 also gives rise to the following
result for the DIA server provisioning problem when there is
no limit on the number of server locations to select.

Corollary 2. For each instance of the DIA server provisioning
problem on a network satisfying the α-triangle inequality, if
an optimal server placement selects k server locations, then
the k-median server placement produces a total interaction
path length within max{ 12α3+ 3

2α
2+1, 23α

3+α2+ 2
3} times

of that in the optimal server placement.

The approximation ratio derived in Theorem 2 is tight.
To demonstrate, we present an example in which the ratio
between the total interaction path lengths of the k-median
placement and optimal placement can be made arbitrarily
close to 1

2α
3 + 3

2α
2 + 1, and another example in which the

ratio can be made arbitrarily close to 2
3α

3 + α2 + 2
3 . Both

examples are constructed based on a network topology con-
sisting of three disjoint subsets of nodes VC = {c1, c2, ..., cn},
VM = {m1,m2, ...,mn} and VP = {p1, p2, ..., pn}. Figure
3(a) illustrates the first example. Due to space limitations, only
the network latencies between some node pairs are shown in
the figure. Table I lists the network latencies between all pairs
of nodes, where α ≥ 1 and 0 < ε < 1. It is easy to verify that
the network latencies satisfy the α-triangle inequality. Suppose
that a client is located at each node in VC , and all the nodes
in VM ∪ VP are candidate server locations. Then, the optimal
solution to the DIA server provisioning problem is to place
servers at all the n nodes in VP . In this case, each client ci
connects to the server at pi, and this gives the minimum total
interaction path length of

2n

n∑
i=1

d(ci, pi) +

n∑
i=1

n∑
j=1

d(pi, pj) = 2n2(1 + ε) + n(n− 1)ε.

On the other hand, the n-median placement is to place servers
at all the n nodes in VM . Under such placement, the nearest
server of each client ci is at mi, so the total latency from the
clients to their nearest servers is minimized at n. In this case,
the total interaction path length is given by

2n

n∑
i=1

d(ci,mi) +

n∑
i=1

n∑
j=1

d(mi,mj)

= 2n2 + n(n− 1)(α3 + 3α2).

Therefore, the ratio between the results of the n-median and
optimal placements is

2n2 + n(n− 1)(α3 + 3α2)

2n2(1 + ε) + n(n− 1)ε
.

As the number of clients n goes toward infinity and ε
approaches 0, this ratio approaches

lim
n→∞

lim
ε→0

2n2 + n(n− 1)(α3 + 3α2)

2n2(1 + ε) + n(n− 1)ε

= lim
n→∞

2n2 + n(n− 1)(α3 + 3α2)

2n2
=

1

2
α3 +

3

2
α2 + 1.
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Fig. 3. The approximation ratio of the k-median placement is tight.

TABLE I
NETWORK LATENCY MATRIX FOR TIGHT EXAMPLE OF 1

2
α3 + 3

2
α2 + 1.

∀i, j (i 6= j) ci mi pi

ci 0 1 1 + ε

mi 1 0 2α

pi 1 + ε 2α 0

cj α2 + α 2α2 + α α(1 + 2ε)

mj 2α2 + α α3 + 3α2 α2 + α

pj α(1 + 2ε) α2 + α ε

TABLE II
NETWORK LATENCY MATRIX FOR TIGHT EXAMPLE OF 2

3
α3 + α2 + 2

3
.

∀i, j (i 6= j) ci mi pi

ci 0 1 1 + ε

mi 1 0 2α

pi 1 + ε 2α 0

cj 2α2 2α2 + 3α 2α

mj 2α2 + 3α 2α3 + 3α2 2α2 + α

pj 2α 2α2 + α 1

Similarly, Figure 3(b) illustrates the second example and
Table II shows the network latencies between all pairs of nodes
in this example, where α ≥ 1 and 0 < ε < 1. It can be checked
that the network latencies satisfy the α-triangle inequality.
Again, suppose that a client is located at each node in VC , and
all the nodes in VM ∪ VP are candidate server locations. The
optimal placement for the DIA server provisioning problem
is to place a server at each node in VP so that each client
ci connects to the server at pi. This gives the minimum total
interaction path length of

2n

n∑
i=1

d(ci, pi) +

n∑
i=1

n∑
j=1

d(pi, pj) = 2n2(1 + ε) + n(n− 1).

Meanwhile, the n-median placement is to select all the n nodes
in VM as server locations. In this case, each client ci connects

to its nearest server at mi. Thus, the total interaction path
length is

2n

n∑
i=1

d(ci,mi) +

n∑
i=1

n∑
j=1

d(mi,mj)

= 2n2 + n(n− 1)(2α3 + 3α2).

Therefore, the ratio between the results of the n-median and
optimal placements can be made arbitrarily close to

lim
n→∞

lim
ε→0

2n2 + n(n− 1)(2α3 + 3α2)

2n2(1 + ε) + n(n− 1)

= lim
n→∞

2n2 + n(n− 1)(2α3 + 3α2)

2n2 + n(n− 1)
=

2

3
α3 + α2 +

2

3
,

as n goes toward infinity and ε approaches 0.

V. GREEDY ALGORITHM

The cubical growth of its approximation ratio with α implies
that the k-median placement may not perform well in networks
with triangle inequality violations. Moreover, it is difficult to
find the k-median placement due to its NP-hardness [13]. In
this section, we propose an efficient GREEDY algorithm that
has much better approximability than the k-median placement.
The computation of GREEDY is based simply on the network
latencies between clients and candidate server locations, which
can be acquired with existing tools like ping and King [24].

Without loss of generality, the GREEDY algorithm takes a
parameter k that indicates the cap on the number of server
locations to select. In the case where there is no limit on the
number of server locations to select, k may simply be set to the
number of candidate server locations. The GREEDY algorithm
starts with an empty set of server locations S. In each iteration,
the algorithm adds to S an unselected candidate location that
leads to the maximum reduction in the total interaction path
length. The algorithm terminates when no new server location
can be further selected to reduce the total interaction path
length or the number of server locations selected reaches k.
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Algorithm 1 shows the pseudo code of the GREEDY algo-
rithm. In each iteration, the algorithm evaluates each unse-
lected candidate location s ∈ Z \ S and calculates the total
interaction path length D if s is added to S (lines 6 to 17).
The candidate location that results in the minimum value of
D and the corresponding D value are recorded in s∗ and D∗

respectively (lines 16 to 17). At the end of each iteration, the
algorithm keeps the nearest servers of all clients under the
current placement S in an array n[·] (lines 21 to 23). When
evaluating a candidate server location s in the next iteration,
we can find out the nearest server of each client c by simply
comparing the latency from c to n[c] with the latency from c to
s (lines 11 to 14). In this way, the efficiency of the algorithm
is improved by avoiding repeatedly comparing the latencies
between each client and all the selected server locations.

Suppose that under a server placement S, the number of
clients connecting to each server si ∈ S is m(si). Then, the
total interaction path length between all client pairs can be
rewritten as∑

c∈C

∑
c′∈C

(
d(c, n(c, S)) + d(n(c, S), n(c′, S))

+ d(n(c′, S), c′)
)

= |C| ·
∑
c∈C

d(c, n(c, S)) + |C| ·
∑
c′∈C

d(n(c′, S), c′)

+
∑
c∈C

∑
c′∈C

d(n(c, S), n(c′, S))

= 2|C|
∑
c∈C

d(c, n(c, S))

+
∑
si∈S

∑
sj∈S

m(si) ·m(sj) · d(si, sj). (8)

Thus, to calculate the total interaction path length resulting
from adding a candidate location s to S, the GREEDY algo-
rithm first counts the number of clients connecting to each

1: S ← ∅, Dcurrent ←∞;
2: for all c ∈ C do
3: n[c]← ∅; //nearest server to c
4: for i = 1 to k do
5: D∗ ←∞;
6: for all s ∈ Z \ S do
7: for all si ∈ S ∪ {s} do
8: a[si]← 0; //number of clients connecting to si
9: D ← 0; //total interaction path length when evaluating s

10: for all c ∈ C do
11: if n[c] = ∅ or d(c, s) < d(c, n[c]) then
12: a[s]← a[s] + 1; D ← D + 2 · |C| · d(c, s);
13: else
14: a[n[c]]← a[n[c]] + 1; D ← D + 2 · |C| · d(c, n[c]);
15: D ← D +

∑
si∈S∪{s}

∑
sj∈S∪{s} a[si] · a[sj ] · d(si, sj);

16: if D < D∗ then
17: D∗ ← D; s∗ ← s;
18: if D∗ ≥ Dcurrent then
19: break; //stop if cannot further reduce interaction path length
20: S ← S ∪ {s∗}; Dcurrent ← D∗;
21: for all c ∈ C do
22: if n[c] = ∅ or d(c, s∗) < d(c, n[c]) then
23: n[c]← s∗; //update the nearest server of client c
24: output S;

Algorithm 1: GREEDY Server Provisioning Algorithm

server si ∈ S ∪ {s} and records it in a[si]. Then, the total
interaction path length is calculated according to the above
formula (8) (lines 10 to 15). The computational complexity
of the total interaction path length is O(|C| + k2). Since the
number of candidate server locations to evaluate in each iter-
ation is capped by |Z| (where Z is the set of candidate server
locations) and there are at most k iterations, the total time
complexity of the GREEDY algorithm is O(k|Z|(|C|+ k2)).

We can show that the above GREEDY algorithm has an
approximation ratio of 2α for networks with the α-triangle
inequality, irrespective of whether the choices of server lo-
cations are restricted and the cap on the number of server
locations to select (if any).

Theorem 3. For networks satisfying the α-triangle inequality
(α ≥ 1), the GREEDY algorithm produces a total interaction
path length within 2α times of that in an optimal server
placement.

Proof: Suppose that an optimal server placement selects
h server locations s1, s2, · · · , and sh. For each location si,
denote by Ci the set of clients connecting to the server at si
under the optimal placement. It is obvious that

⋃h
i=1 Ci = C,

where C is the set of all clients.
If only one server is placed at a location s in the network,

all the clients would connect to that server and thus the total
interaction path length is given by∑
c∈C

∑
c′∈C

(d(c, s) + d(s, s) + d(s, c′)) = 2|C| ·
∑
c∈C

d(c, s).

Suppose that s∗ is the first server location selected by
the GREEDY algorithm. Since the GREEDY algorithm always
selects the best known server location in each iteration, the
total interaction path length resulting from selecting s∗ cannot
be longer than those resulting from selecting s1, s2, · · · , or
sh in the first iteration, i.e.,

2|C| ·
∑
c∈C

d(c, s∗) ≤ 2|C| ·
∑
c∈C

d(c, s1),

2|C| ·
∑
c∈C

d(c, s∗) ≤ 2|C| ·
∑
c∈C

d(c, s2),

· · · · · ·
and

2|C| ·
∑
c∈C

d(c, s∗) ≤ 2|C| ·
∑
c∈C

d(c, sh).

Taking a weighted average of the interaction path lengths on
the right sides of the above inequalities, we have

2|C| ·
∑
c∈C

d(c, s∗) ≤ 1

|C| ·
h∑
i=1

(
|Ci| · 2|C| ·

∑
c∈C

d(c, si)

)

= 2

h∑
i=1

(
|Ci| ·

∑
c∈C

d(c, si)

)

= 2

h∑
i=1

(
|Ci| ·

( ∑
c∈Ci

d(c, si) +
∑
j 6=i

∑
c∈Cj

d(c, si)
))

. (9)

By the α-triangle inequality, for each client c ∈ Cj , we have

d (c, si) ≤ α ·
(
d (c, sj) + d (sj , si)

)
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=
(
1 + (α− 1)

)
·
(
d (c, sj) + d (sj , si)

)
.

Therefore,∑
j 6=i

∑
c∈Cj

d(c, si) ≤
∑
j 6=i

∑
c∈Cj

(
d(c, sj) + d(sj , si)

)
+(α− 1)

∑
j 6=i

∑
c∈Cj

(
d(c, sj) + d(sj , si)

)
≤

h∑
j=1

∑
c∈Cj

d(c, sj)−
∑
c∈Ci

d(c, si) +
∑
j 6=i

∑
c∈Cj

d(sj , si)

+(α− 1)
∑
j 6=i

∑
c∈Cj

(
d(c, sj) + d(sj , si)

)
.

It follows from (9) that

2|C| ·
∑
c∈C

d(c, s∗)

≤ 2 ·
h∑
i=1

(
|Ci|

( h∑
j=1

∑
c∈Cj

d(c, sj) +
∑
j 6=i

∑
c∈Cj

d(sj , si)

+(α− 1)
∑
j 6=i

∑
c∈Cj

(
d(c, sj) + d(sj , si)

)))

= 2|C|
h∑
j=1

∑
c∈Cj

d(c, sj) + 2

h∑
i=1

∑
j 6=i
|Ci||Cj |d(si, sj)

+(2α− 2)

h∑
i=1

(
|Ci| ·

(∑
j 6=i

∑
c∈Cj

(
d(c, sj) + d(si, sj)

)))

≤ 2

(
2|C|

h∑
j=1

∑
c∈Cj

d(c, sj) +

h∑
i=1

∑
j 6=i
|Ci||Cj |d(si, sj)

)

+(2α− 2)

( h∑
i=1

|Ci|
∑
j 6=i

∑
c∈Cj

d(c, sj)

+

h∑
i=1

∑
j 6=i
|Ci||Cj |d(si, sj)

)
.

According to (8), the total interaction path length under the
optimal server placement is given by

OPT = 2|C|
h∑
j=1

∑
c∈Cj

d(c, sj) +

h∑
i=1

∑
j 6=i
|Ci||Cj |d(si, sj).

Thus,

2|C| ·
∑
c∈C

d(c, s∗)

≤ 2 ·OPT + (2α− 2)

(
|C|

h∑
j=1

∑
c∈Cj

d(c, sj)

+

h∑
i=1

∑
j 6=i
|Ci||Cj |d(si, sj)

)
≤ 2 ·OPT + (2α− 2) ·OPT
= 2α ·OPT.

This implies that the total interaction path length on se-
lecting the first server location in the GREEDY algorithm is

1
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Fig. 4. The approximation ratio 2α of the GREEDY algorithm is tight.

within 2α times of that in an optimal server placement. Since
the GREEDY algorithm adds a new server location in each
subsequent iteration only if it reduces the total interaction path
length, the total interaction path length eventually produced by
GREEDY must also be within 2α times of that in an optimal
placement. Hence, the theorem is proven.

The approximation ratio 2α of the GREEDY algorithm is
tight. Figure 4 presents a tight example in which the network
contains two node groups GA = {c1, c2, c3, s1, s2, s3} and
GB = {c4, c5, c6, s4, s5, s6}, and an additional node g. Each
node ci (1 ≤ i ≤ 6) has latency ε to node si, latency α to
the rest nodes in the same group, and latency α( 43 + 3δ) to
all the nodes in the other groups, where δ, ε > 0. Figure 4
illustrates the latencies between c3 and the other nodes. In
addition, the latency between two nodes si and sj (i 6= j) is 1
if they are in the same group, and is 4

3 +3δ otherwise. All the
nodes in GA and GB have latency α(1 + δ) to node g. It is
easy to infer that the network latencies satisfy the α-triangle
inequality when δ ≤ 2

3 and ε ≤ α(1 + α). Suppose that a
client is located at each node ci (1 ≤ i ≤ 6), nodes g, s1, s2,
· · · , s6 are candidate server locations, and there is no limit
on the number of server locations to select. Then, the optimal
placement is to select nodes s1, s2, · · · , s6 as server locations.
Under such server placement, each client ci connects to the
server at si, so the total interaction path length is

OPT = 12 ·
6∑
i=1

d(ci, si) +

6∑
i=1

∑
j 6=i

d(si, sj)

= 12 · 6ε+ 12 · 1 + 18 ·
(4
3
+ 3δ

)
= 36 + 54δ + 72ε.

On the other hand, the first server location selected by the
GREEDY algorithm is g. This is because placing a server
at g leads to the total interaction path length of D1 =
12·∑6

i=1 d(ci, g) = 12·6·α(1+δ) = 72α+72αδ, whereas if a
server is placed at any node si, the total interaction path length
is 12 · (ε+2 ·α+3 ·α( 43 +3δ)) = 72α+108αδ+12ε > D1.
In the second iteration of the GREEDY algorithm, if a new
server location s is further selected from {s1, s2, · · · , s6}, all
the three clients in s’s group would connect to the server at s
and the other three clients remain connecting to the server at
g. Therefore, the total interaction path length becomes D2 =
12 ·(ε+2 ·α+3 ·α(1+δ))+18 ·α(1+δ) = 78α+54αδ+12ε.
When δ < 1

3 + 2α
3 ε, we have D2 > D1. Thus, the GREEDY
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algorithm does not add any new server location and terminates
at the second iteration. As a result, the final set of server
locations selected is {g}. When both δ and ε approach 0, the
ratio between the total interaction path lengths produced by
the GREEDY algorithm and the optimal server placement is

lim
δ→0

lim
ε→0

D1

OPT
= lim
δ→0

lim
ε→0

72α+ 72αδ

36 + 54δ + 72ε
= 2α.

For any α ≥ 1, we have

2α ≤ 1

2
α3 +

3

2
α2 ≤ max

{1
2
α3 +

3

2
α2 + 1,

2

3
α3 + α2 +

2

3

}
.

Therefore, the approximation ratio of the GREEDY algorithm
(Theorem 3) is much lower than that of the k-median server
placement (Theorem 2). Asymptotically, the approximation
ratio of GREEDY grows just linearly with α, whereas the
approximation ratio of the k-median placement grows cubi-
cally with α. This indicates that the GREEDY algorithm is far
more resilient to the extent of triangle inequality violations
than the k-median placement. Moreover, due to its incremental
nature, the GREEDY algorithm can also be used directly to find
substitute server locations in the presence of server failures.

VI. EXPERIMENTAL EVALUATION

Besides theoretical approximability analysis, we have also
evaluated the performance of the proposed GREEDY algorithm
using different latency datasets collected from the real Internet
and synthetic networks, including Meridian [25], PeerWise
[26] and p2psim-kingdata [27]. The experimental results us-
ing these datasets show similar performance trends. Due to
space limitations, we present in this section the results using
the Meridian dataset, which is the largest publicly available
real Internet latency dataset to our knowledge. The Meridian
dataset contains the pairwise latency measurements between
2500 nodes. The measurements for some node pairs are not
available in the dataset. We discard the nodes involved in the
missing measurements, and use the complete pairwise latency
matrix among the remaining 1796 nodes as the simulated
network. The simulated network does not satisfy the trian-
gle inequality. To examine the extent of triangle inequality
violations, we check all the triangles among the nodes. For
each triangle (u, v, w), we compute the ratio of d(u,v)

d(u,w)+d(w,v) ,
where d(u, v) is the longest edge among the three. If the
ratio does not exceed 1, the triangle satisfies the triangle
inequality. Figure 5 shows the cumulative distribution of the
ratio. It can be seen that 78% of the triangles satisfy the
triangle inequality and for the remaining triangles, their extent
of triangle inequality violations has a heavy-tailed distribution.

We compare our proposed algorithm with the k-median
and other baseline server placements. To quantify the rela-
tive performance of the algorithms, we normalize the total
interaction path lengths produced by different algorithms by
a theoretical lower bound, which is derived as follows. Given
a set Z of candidate server locations, the shortest possible
interaction path length between two clients ci and cj is given
by minsa,sb∈Z(d(ci, sa)+d(sa, sb)+d(sb, cj)). Therefore, the
total length of interaction paths between all client pairs has a

1 2 3 4 5 6 7 8 9
0.75

0.8

0.85

0.9

0.95

1

ratio

C
D

F

Fig. 5. Cumulative distribution of the extent of triangle inequality violations
for all triangles in the Meridian dataset

lower bound of∑
ci∈C

∑
cj∈C

(
min

sa,sb∈Z

(
d(ci, sa) + d(sa, sb) + d(sb, cj)

))
. (10)

Note that this bound is a super-optimum, which may not be
achievable by any real server placement, because it does not
enforce each client to connect to its nearest server or even
a single server through which it interacts with all the other
clients. The total interaction path length normalized by the
above bound shall be called the normalized interactivity.

The k-median and k-center placements have been consid-
ered to be closely related to the server placement for DIAs
[11], [12]. For the purpose of comparison, we implement
a k-median heuristic [8] and k-center heuristic [9] in our
experiments. Both heuristics work for k iterations. In each
iteration, the k-median heuristic adds a new server location
that results in the largest reduction in the total latency from the
clients to their nearest servers. Similarly, the k-center heuristic
adds a new server location that results in the lowest value of
the maximum latency from the clients to their nearest servers.
In addition, we also implement a k-favourable heuristic that
considers not only the client-to-server latencies but also the
inter-server latencies. The k-favourable heuristic evolves from
the above derivation of the lower bound. Specifically, for each
pair of clients ci and cj , the candidate server locations giving
rise to the shortest possible interaction path between ci and cj
are recorded. Then, the k-favourable heuristic selects the top k
candidate server locations that are most frequently involved in
the shortest possible interaction paths between all client pairs.
Intuitively, these locations have high potential to optimize the
interactivity performance of DIAs.

A. Performance Comparison for Different Algorithms

We start by not placing any restriction on the available
choices of server locations. Specifically, we assume that all
1796 nodes are candidate server locations, and a client is
located at each of the nodes in the network. Figure 6 shows
the performance of the four algorithms for different caps on
the number of server locations to select. As can be seen, server
placement has great impacts on the interactivity performance.

When only one server location is selected, the GREEDY
algorithm degenerates to the 1-median placement. Figure 6
shows that by selecting additional server locations, GREEDY
substantially reduces the network latency involved in the
interaction between clients over the 1-median placement.
This demonstrates the great potential of distributed server
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Fig. 6. Normalized interactivity of different algorithms when all nodes are
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Fig. 7. Normalized interactivity of different algorithms for different numbers
of candidate server locations

deployment to enhance the interactivity performance of DIAs.
However, deploying more servers does not always result in
better interactivity between clients—the server locations must
be chosen carefully. For example, in the k-median and k-center
heuristics, the latencies from the clients to their connected
servers normally decrease with increasing number of server
locations selected since each client connects to its nearest
server. Thus, the k-median and k-center heuristics always
place servers up to the cap number. However, aggressively
reducing client-to-server latencies alone may result in longer
latencies between the servers of different clients and conse-
quently increase the interaction path length between clients.
As seen from Figure 6, the interaction path lengths of the
k-median and k-center heuristics do not always reduce with
increasing number of server locations selected because they
do not consider inter-server latencies in server provisioning.
By taking inter-server latencies into account, the k-favourable
heuristic performs much better than the k-median and k-center
heuristics when more servers are allowed to be selected. How-
ever, its interactivity performance is still considerably worse
than our GREEDY algorithm. GREEDY stops selecting new
server locations when the total interaction path length cannot
be further reduced. Therefore, its interactivity performance
does not deteriorate with a higher cap on the number of server
locations to select. Figure 6 shows that the GREEDY algorithm
significantly outperforms the other three placements.

Next, we restrict the choices of server locations in the
network. We assume that a client is located at each of 896
randomly selected nodes. Then, we randomly choose subsets
of 75, 150, 300, 600 and 900 nodes from the remaining
nodes in the network as the candidate server locations. In this
experiment, no limit is set on the number of server locations

for our GREEDY algorithm to select. We run the GREEDY
algorithm until it terminates and record the number of server
locations actually selected by GREEDY. This number is then
used as the number of server locations to select in executing
the other three heuristics. In this way, all the four algorithms
select the same number of server locations in the network
to allow for fair comparison. For each set size, we perform
1000 simulation runs using 1000 different sets of candidate
server locations chosen at random. Figure 7 shows the average
performance of the algorithms together with the 90th and 10th
percentile results for different numbers of candidate server
locations. Here, the total interaction path lengths are normal-
ized by the lower bound (10) derived using the respective
sets of candidate server locations chosen. Thus, the results
of various simulation runs are normalized by different lower
bound values. It can be seen from Figure 7 that our GREEDY
algorithm consistently results in much better interactivity than
the other three placements. It can also be observed that the
normalized interactivity of the algorithms generally improves
when the number of candidate server locations reduces. This is
because fewer candidate server locations imply smaller search
space, so that it is more likely to obtain a good solution within
certain number of attempts.

We also record the running times of different algorithms.
The results show that our GREEDY algorithm has very ac-
ceptable running time. Please refer to Appendix B in the
supplementary material for details.

B. Impact of Server Capacity

All the above experiments have assumed that there is no
capacity limitation of the servers. This is the case when we
have sufficient server capacities available to be allocated on
demand at the candidate server locations. In this section, we
further study the impact of server capacity on the performance
of the server placement algorithms. Suppose that we have a
certain number of servers to allocate, each of which has a
given capacity in terms of the maximum number of clients
that can connect to it. To place the servers, we first execute
each server placement algorithm to select the server locations.
Then, we allocate the servers to each selected server location
approximately in proportion to the number of clients having
it as their nearest server locations. The total capacity of the
servers allocated to a server location forms the capacity of this
server location. When a server location has been connected by
enough clients and filled to its capacity, it would not accept any
new connections from other clients, and the affected clients
have to turn to their next nearest server locations with spare
capacities.

We assume 896 clients and 300 candidate server locations
in each simulation run. First, we study the impact of the
individual server capacity by testing 36, 18, 12 and 9 servers
each with the capacity of 25, 50, 75 and 100 respectively.
Note that under these settings, the total server capacity is
900 and just suffices to accommodate all the 896 clients.
Figure 8 shows the performance of different server placement
algorithms. It can be seen that the GREEDY algorithm achieves
the best interactivity for all the cases tested. Figure 8 also
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Fig. 8. Normalized interactivity of different algorithms for different individ-
ual server capacities
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Fig. 9. Normalized interactivity of different algorithms for different total
server capacities

shows the trend that the performance of each algorithm slightly
deteriorates when the individual server capacity increases. This
is because the number of servers needed to support all the
clients decreases with increasing individual server capacity.
As a result, the number of locations that are allocated servers
decreases accordingly, raising the number of clients that cannot
connect to their preferred nearest server locations.

Next, we study the impact of the total available server
capacity. In this experiment, the capacity of each server is
fixed at 50. Figure 9 shows the performance results for
different numbers of servers available for allocation. Again, the
GREEDY algorithm outperforms the other server placements.
We can also observe from the figure that the interactivity
performance of each server placement generally improves with
increasing number of servers available. This is because a
larger number of servers increase the maximum number of
connections that each server location can accept. Thus, more
clients can connect to their preferred nearest server locations.

C. Impact of Dynamics in Network Conditions

The network latency in real networks may vary over time
due to dynamics in network conditions. In this section, we
study the impact of the changes in network latency on the
performance of the server provisioning algorithms. Since the
Meridian dataset does not contain the measurements of net-
work latencies at different times, we use the PlanetLab All
Pairs Pings dataset [28] collected on 6 June 2005 in this
experiment. This dataset contains the periodic pairwise latency
measurements between PlanetLab nodes at intervals of 15
minutes over a one-day time span. There are 95 measurements
in the dataset and 193 nodes consistently involved in all the
measurements. Thus, we simulate a network of 193 nodes,
using these data to emulate the network latencies among the
nodes. The latency between each node pair in the simulated
network changes according to the consecutive measurements
in the dataset.

We randomly select 80 nodes as candidate server locations,
and assume that a client is located at each of the remaining 113
nodes. We decide the server placement based on the latency
data of the first measurement and keep the server placement
unchanged throughout the simulation run. Two scenarios of
client connections are then simulated. In the first scenario,
each client connects to a fixed server (the nearest server
as indicated by the latency data of the first measurement)
throughout the simulation run. That is, the connected servers
of the clients do not change with the network latency. In the
second scenario, each client always connects to the nearest
server based on the latest latency measurement. As a result,
the connected servers of the clients change over time along
with the variation of network latency. The theoretical lower
bound on the total interaction path length is recalculated
at each latency measurement for computing the normalized
interactivity. We have performed simulation with many dif-
ferent sets of candidate server locations chosen at random
and observed similar performance trends. Figure 10 shows
the performance results for a sample set of candidate server
locations. As can be seen, our GREEDY algorithm achieves
the best interactivity in both scenarios despite the changes in
network latency. In addition, the GREEDY algorithm also has
the minimum fluctuation in the normalized interactivity among
the four server provisioning algorithms. This implies that the
GREEDY algorithm is more resilient to the variation of network
latency.

Comparing Figures 10(a) and 10(b), it can be observed
that the performance of each server provisioning algorithm
is slightly improved when the clients adjust their connec-
tions according to the up-to-date latency measurements. These
adjustments reduce the latency between each client and its
nearest server.

In summary, the results of this experiment show that good
server placement for DIAs is relatively stable over time
and adaptive client connections can assist to compensate for
the interactivity loss due to short-term variation of network
latency.

VII. CONCLUSION

In this paper, we have investigated the server provisioning
problem for DIAs with the objective of reducing the network
latency involved in the interaction between clients. From
the computability perspective, the mutual interaction feature
makes server provisioning for DIAs much more challenging
than that for web content delivery. With the client-to-server
latency as the sole optimization objective, placing more
servers in the network can only improve the web access
performance. Nevertheless, deploying more servers in DIAs
does not necessarily imply shorter network latency in the
interaction between clients. We have shown that the server
provisioning problem for DIAs is NP-hard even if there is
no limit on the number of servers that can be placed in the
network. We have also proposed a GREEDY algorithm that
achieves a much lower approximation ratio than the classical
k-median server placement. Experimental evaluations using
real Internet latency data show that aggressively reducing
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Fig. 10. Performance of different algorithms with dynamic network latency

the client-to-server latency alone may considerably increase
the latency between servers and thus make the interactivity
between clients far worse than optimum. Our proposed
GREEDY algorithm substantially outperforms the k-median
and other baseline server placements and is also more resilient
to the dynamics in network latency.

ACKNOWLEDGEMENTS

This work is supported by Singapore Ministry of Education
Academic Research Fund Tier 2 under Grant MOE2013-T2-
2-067.

REFERENCES

[1] H. Zheng and X. Tang. On Server Provisioning for Distributed
Interactive Applications. In Proc. IEEE ICDCS, pages 500–509, 2013.

[2] M. Claypool and K. Claypool. Latency Can Kill: Precision and Deadline
in Online Games. In Proc. ACM MMSys, pages 215–222, 2010.

[3] R. B. Jennings, E. M. Nahum, D. P. Olshefski, D. Saha, Z.-Y. Shae and
C. Waters. A Study of Internet Instant Messaging and Chat Protocols.
IEEE Network, 20(4):16–21, 2006.

[4] Agustina, F. Liu, S. Xia, H. Shen and C. Sun. CoMaya: Incorporating
Advanced Collaboration Capabilities into 3D Digital Media Design
Tools. In Proc. ACM CSCW, pages 5–8, 2008.

[5] L. Ahmad, A. Boukerche, A. Al Hamidi, A. Shadid and R. Pazzi. Web-
Based e-Learning in 3D Large Scale Distributed Interactive Simulations
using HLA/RTI. In Proc. IEEE IPDPS, pages 1–4, 2008.

[6] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica and M. Zaharia. A View of
Cloud Computing. Communications of the ACM, 53(4):50–58, 2010.

[7] F. Safaei, P. Boustead, C. D. Nguyen, J. Brun and M. Dowlatshahi.
Latency-Driven Distribution: Infrastructure Needs of Participatory En-
tertainment Applications. IEEE Communications Magazine, 43(5):106–
112, 2005.

[8] L. Qiu, V. N. Padmanabhan and G. M. Voelker. On the Placement of
Web Server Replicas. In Proc. IEEE INFOCOM, pages 1587–1596,
2001.

[9] E. Cronin, S. Jamin, J. Cheng, A. R. Kurc, D. Raz and Y. Shavitt.
Constrained Mirror Placement on the Internet. IEEE Journal on Selected
Areas in Communications, 20(7):1369–1382, 2002.

[10] N. Laoutaris, G. Smaragdakis, K. Oikonomou, I. Stavrakakis and
A. Bestavros. Distributed Placement of Service Facilities in Large-Scale
Networks. In Proc. IEEE INFOCOM, pages 2144–2152, 2007.

[11] K.-W. Lee, B.-J. Ko and S. Calo. Adaptive Server Selection for Large
Scale Interactive Online Games. Computer Networks, 49(1):84–102,
2005.

[12] M. Kwok. Performance Analysis of Distributed Virtual Environments.
PhD thesis, University of Waterloo, 2006.

[13] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., New York,
NY, USA, 1979.

[14] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala and
V. Pandit. Local Search Heuristic for k-Median and Facility Location
Problems. In Proc. ACM STOC, pages 21–29, 2001.

[15] M. Chrobak, C. Kenyon and N. Young. The Reverse Greedy Algorithm
for the Metric k-Median Problem. Information Processing Letters,
97(2):68–72, 2006.

[16] V. V. Vazirani. Approximation Algorithms. Springer-Verlag, 2001.
[17] L. Zhang and X. Tang. Optimizing Client Assignment for Enhancing

Interactivity in Distributed Interactive Applications. IEEE/ACM Trans-
actions on Networking, 20(6):1707–1720, 2012.

[18] S. D. Webb, S. Soh and W. Lau. Enhanced Mirrored Servers for Network
Games. In Proc. ACM NetGames, pages 117–122, 2007.

[19] C. Ding, Y. Chen, T. Xu and X. Fu. CloudGPS: A Scalable and ISP-
Friendly Server Selection Scheme in Cloud Computing Environments.
In Proc. IEEE/ACM IWQoS, 2012.

[20] C. Lumezanu, R. Baden, N. Spring and B. Bhattacharjee. Triangle
Inequality and Routing Policy Violations in the Internet. In Proc. Passive
and Active Measurement Conference, pages 45–54, 2009.

[21] F. Dabek, R. Cox, F. Kaashoek and R. Morris. Vivaldi: A Decentralized
Network Coordinate System. In Proc. ACM SIGCOMM, pages 15–26,
2004.

[22] M. Costa, M. Castro, A. Rowstron and P. Key. PIC: Practical Internet
Coordinates for Distance Estimation. In Proc. IEEE ICDCS, pages 178–
187, 2004.

[23] H. Zheng, E. K. Lua, M. Pias and T. G. Griffin. Internet Routing Policies
and Round-Trip-Times. In Proc. Passive and Active Measurement
Conference, pages 236–250, 2005.

[24] K. P. Gummadi, S. Saroiu and S. D. Gribble. King: Estimating Latency
between Arbitrary Internet End Hosts. In Proc. ACM SIGCOMM
Workshop on Internet Measurement, pages 5–18, 2002.

[25] The Meridian Latency Data Set. http://www.cs.cornell.edu/People/egs/
meridian/.

[26] The PeerWise Data Set. http://www.cs.umd.edu/projects/peerwise/.
[27] The p2psim King Data Set. http://pdos.csail.mit.edu/p2psim/kingdata/.
[28] The PlanetLab All Pairs Pings Data Set. http://pdos.csail.mit.edu/∼strib/

projects.html.
Hanying Zheng received the BSc degree in com-
puter science and technology from Sun Yat-Sen
University, China. He is currently a PhD candi-
date in computer science at Nanyang Technological
University, Singapore. His research interests include
computer and communication networks, distributed
systems, mobile computing and cloud computing.

Xueyan Tang is currently an associate professor
in the School of Computer Engineering at Nanyang
Technological University, Singapore. He has served
as an associate editor of IEEE Transactions on Par-
allel and Distributed Systems. His research interests
include distributed systems, mobile and pervasive
computing, and wireless sensor networks. He is a
senior member of the IEEE.


