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Demotions for DRAM Power Management
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Abstract—Modern DRAM architectures allow a number of low-power states on individual memory ranks for advanced power
management. Many previous studies have taken advantage of demotions on low-power states for energy saving. However, most of
the demotion schemes are statically performed on a limited number of pre-selected low-power states, and are suboptimal for different
workloads and memory architectures. Even worse, the idle periods are often too short for effective power state transitions, especially
for memory intensive applications. Wrong decisions on power state transition incur significant energy and delay penalties. In this paper,
we propose a novel memory system design named RAMZzz with rank-aware energy saving optimizations including dynamic page
migrations and adaptive demotions. Specifically, we group the pages with similar access locality into the same rank with dynamic
page migrations. Ranks have their hotness: hot ranks are kept busy for high utilization and cold ranks can have more lengthy idle
periods for power state transitions. We further develop adaptive state demotions by considering all low-power states for each rank and a
prediction model to estimate the power-down timeout among states. We experimentally compare our algorithm with other energy saving
policies with cycle-accurate simulation. Experiments with benchmark workloads show that RAMZzz achieves significant improvement
on energy-delay2 and energy consumption over other energy saving techniques.

Index Terms—Demotion, Energy consumption, Main memory systems, In-memory processing, Page migrations
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1 INTRODUCTION

E NERGY consumption has become a major factor for the
design and implementation of computer systems. Inside

many computing systems, main memory (or DRAM) is a crit-
ical component for the performance and energy consumption.
The hunger for main memory of larger capacity makes the
amount of energy consumed by main memory approaching
or even surpassing that consumed by processors in many
servers [1], [2]. For example, it has been reported that main
memory contributes to as much as 40–46% of total energy
consumption in server applications [2], [3], [4]. For these
reasons, this paper studies the energy saving techniques of
main memory.

Current main memory architectures allow power manage-
ment on individual memory ranks. Individual ranks at different
power states consume different amounts of energy. There have
been various energy-saving techniques on exploiting the power
management capability of main memory [5], [6], [7], [8].
The common theme of those research studies is to exploit
the transition of individual memory ranks to low-power states
(i.e., demotion) for energy saving. Fan et al. concluded that
immediate transitions on Direct Rambus DRAM (RDRAM)
to the low-power state saved the most energy consumption for
most single-application workloads [9]. However, the decision
can be wrong for more memory intensive workloads such
as multi-programmed executions, and for different memory
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architectures. Existing techniques are suboptimal in the fol-
lowing aspects: (1) they do not effectively extend the idle
period, either with static page placement [9], [10] or with
heuristics-based page migrations [5], [6]; (2) the prediction
on the power-down timeout (the amount of time spent since
the beginning of an idle period before transferring to a low-
power state) for a state transition is limited and static, either
with heuristics [5], [6] or regression-based model [9]; (3) most
of the demotion schemes are statically performed on a limited
number of pre-selected low-power states (e.g., Huang et al. [6]
selects two low-power states only, out of five in DDR3). The
static demotion scheme is suboptimal for different workloads
and different memory architectures.

To address the aforementioned issues, we propose a novel
memory design named RAMZzz with rank-aware power man-
agement techniques including dynamic page migrations and
adaptive demotions. Instead of having static page placement,
we develop dynamic page migration mechanisms to exploit
the access locality changes in the workload. As a result, ranks
are categorized into hot and cold ones. The hot rank is highly
utilized and has very short idle periods. In contrast, the cold
rank has a relatively small number of long idle periods, which
is good for power state transitions for energy saving.

Instead of adopting static demotion schemes, we develop
adaptive demotions to exploit the power management capabil-
ities of all low-power states for individual ranks. The decisions
are guided by a prediction model to estimate the idle period
distribution. The prediction model is specifically designed with
the consideration of page migrations among ranks. Based on
the prediction model, RAMZzz is able to optimize for different
goals such as energy saving and energy-delay2 (ED2). In
this paper, we focus on the optimization goal of minimizing
ED2 (or energy consumption) of the memory system while
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keeping the program performance penalty within a pre-defined
performance slowdown relative to the maximum performance
without any power management (e.g., 10% performance loss).

We evaluate our design using detailed simulations of differ-
ent workloads including SPEC 2006 and PARSEC [11]. We
evaluate RAMZzz in comparison with representative power
saving policies [6], [10], [12] and an ideal oracle approach.
Our experiments with the optimization goal of ED2 (for a
maximum acceptable performance degradation of 4%) on three
different DRAM architectures show that (1) both page migra-
tions and adaptive demotions well adapt to the workload; (2)
with both page migrations and adaptive demotions, RAMZzz
achieves an average ED2 improvement of 45.2–64.2% over
the basic approach without power management, and achieves
only 3.7–5.7% on average larger ED2 than the ideal oracle
approach. The experiments with the optimization goal of
energy consumption have demonstrated similar results.

Organization. The rest of the paper is organized as follows.
We introduce the background on basic power management
of DRAM and review related work in Section 2. Section 3
gives an overview of RAMZzz design, followed by detailed
implementations in Section 4. The experimental results are
presented in Section 5. We conclude this paper in Section 6.

2 BACKGROUND AND RELATED WORK

2.1 DRAM Power Management
In this paper, we use the terminology of DDR-series memory
architectures (e.g., DDR2 and DDR3 etc) to describe our
approach. DDR is usually packaged as modules, or DIMMs.
Each DIMM contains multiple ranks. In power management,
a rank is the smallest physical unit that we can control. Indi-
vidual ranks can service memory requests independently and
also operate at different power states. The power consumption
of a memory rank can be divided into two main categories:
active power and background power. Active power consists of
the power that is required to activate the banks and service
memory reads and writes. Background power is the power
consumption without any DRAM accesses. Background power
is a major component in the total DRAM power consumption,
and tends to be more significant in the future [6], [13].
For example, Huang et al. [6] found that the background
power contributes to 52% of the total DRAM power in their
evaluation. Therefore, we focus on reducing the background
power consumption.

Depending on which hardware components are disabled,
modern memory architectures support a number of power
states with complicated transitions [14], [15]. Each state is
characterized with its power consumption and the time that it
takes to transition back to the active state (resynchronization
time). Typically, the lower power consumption the low-power
state has, the higher the resynchronization time is. Table 1
summarizes the major power state transitions of three typical
DRAM architectures: DDR3, DDR2 and LPDDR2. For each
state, we show its dynamic power consumption (normalized
to that of ACT) and the resynchronization times back to ACT.
The power consumption values are calculated with DRAM
System Power Calculator [17]. The resynchronization times

TABLE 1
Power states for three typical DRAM architectures.

Power State Normalized Power Resynchronization Time (ns)

DDR3 DRx4 at 1333 MHz [14]
ACT 1.0 0

ACT PDN 0.612 6
PRE PDN FAST 0.520 18
PRE PDN SLOW 0.299 24

SR FAST 0.170 768
SR SLOW 0.104 6768

DDR2 DRx8 at 800 MHz [15]
ACT 1.0 0

ACT PDN FAST 0.619 5
ACT PDN SLOW 0.325 18

PRE PDN 0.237 25
SR 0.178 500

LPDDR2 DRx16 at 800 MHz [16]
ACT 1.0 0

ACT PDN 0.523 8
PRE PDN 0.303 26

SR 0.194 100

are obtained from DRAM manufacturers’ data sheets [14],
[15], [16].

From Table 1, we have the following observations on state
demotions on different memory architectures.

First, on a specific memory architecture, power states have
quite different latency and energy penalties as well as different
power consumptions. Second, different memory architectures
have their own specifications on power states as well as
power state energy consumption and resynchronization time.
First, different memory architectures may have different sets
of power states. For example, DDR3 has a special low-
power state, i.e., self-refresh with slow exit state (SR SLOW),
whereas DDR2 and LPDDR2 do not have any equivalent
state. SR SLOW has a very high resynchronization time and
consumes only 10% of the power of ACT. Second, the energy
consumption or the resynchronization time of the same power
state can vary for different memory architectures. Take self-
refresh states (SR) as an example. While SR consumes a
similar normalized power consumption for the three archi-
tectures (about 17–19%), the resynchronization time varies
significantly. The resynchronization times on DDR3, DDR2,
LPDDR2 are 768ns (SR FAST), 500ns (SR) and 100ns (SR),
respectively.

The above-mentioned observations have significant impli-
cations to DRAM power management design.

First, the above-mentioned observations clearly show the
deficiency of the static demotion schemes [5], [6], [7], [9].
The static demotion schemes are performed on the pre-selected
low-power states (even for all ranks in the same architecture,
and for different memory architectures). On a specific memory
architecture, the static decision loses the opportunities for
demoting to the most energy-effective low-power state for
different idle period lengths. Moreover, with different memory
architectures, the static decision loses the opportunities for
adapting to different memory architectures.

Second, because the latency and energy penalty for switch-
ing from deeper low-power states is substantially higher than
the penalty of switching from shallower states, entering deep
power-down states for short idle times could in fact hurt energy
efficiency because the power savings might not be able to
offset the high latency penalty of switching back to the active
state.

The design of RAMZzz are guided by the aforementioned
two implications. It embraces dynamic migrations and adap-
tive demotions, adapting to different workloads and different
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memory architectures.

2.2 Related Work

Different power state transition approaches have been devel-
oped for DRAM systems. Hur et al. [18] developed adaptive
history-based scheduling in the memory controller. Based on
page migration, Huang et al. [6] stored frequently-accessed
pages into hot ranks and left infrequently-used and unmapped
pages on cold ranks. Their decisions on page migrations
are based on heuristics. Lebeck et al. [12] studied different
page allocation strategies. Their approach does not have any
analytical model to guide the decision, or utilize both recency
and frequency to capture rank hotness. Our prediction model
offers a novel way of power management on guiding page
migrations and power state transitions. Fan et al. [9] developed
an analytic model on estimating the idle time of Direct Rambus
DRAM (RDRAM) chips using an exponential distribution.
Their model did not consider page migrations. For demotions,
they adopted a simple approach that, when there is an idle
period, immediate transitions on RDRAM to the low-power
state are made. However, the decision can be wrong for mem-
ory intensive workloads such as multi-programmed executions,
and for different memory architectures. Kshitij et al. [19] used
a similar page migration mechanism between cold and hot
ranks, but always set cold ranks with a pre-selected low-
power state. Instead of relying on the presumed knowledge
of distribution, our prediction model combines the historical
information on idle period distribution and page access lo-
cality. More importantly, compared with all previous studies
that pre-define a number of fixed states for all ranks [6], [9],
[10], [12], [18], [19], this paper develops adaptive demotions
to exploit the energy-saving capabilities of all power states,
and the adaptation is on the granularity of individual ranks
for different memory architectures.

DRAM power state transitions have been implemented in
operating systems and compilers. Delaluz et al. [7] present an
operating system based solution letting the scheduler decide
the power state transitions. This approach requires the inter-
faces of exposing and controlling the power states. Huang et
al. [5] proposed power-aware virtual memory systems. For
energy efficient compilations, Delaluz et al. [20] proposed
compiler optimizations for memory energy consumption of ar-
ray allocations. They further combined the hardware-directed
approach and compiler-directed approaches [21] for more
energy saving.

There are other approaches for reducing the DRAM power
consumption. We review three representative categories. The
first category is to reduce the active power consumption. Fang
et al. [22] suggested the subdivision of a conventional DRAM
rank into mini-ranks comprising of a subset of DRAM devices
to improve DRAM energy efficiency. Anh et al. [23] proposed
Virtual Memory Devices (VMDs) comprising of a small
number of DRAM chips. Decoupled DIMMs [24] proposed the
DRAM devices at a lower frequency than the memory channel
to reduce DRAM power. The second category is to reduce the
power consumption of power state transitions. Bi et al. [25]
took advantage of the I/O handling routines in the OS kernel

to hide the delay incurred by memory power state transitions.
Balis et al. [26] proposed finer grained memory state transition.
The third category is to adjust the voltage and frequency of
DRAM. Memory voltage and frequency scaling (DVFS) is a
recent approach to reduce DRAM energy consumption [27],
[28]. Lu et al. [29] conducted a comprehensive study on the
synergy between DVFS and demotion on DRAM architectures.
Those approaches are complementary to the state transition-
based energy saving approaches.

Recently, different architectural designs of DRAM sys-
tems [13], [23], [30], [31] are explored on multi-core pro-
cessors for performance, energy, reliability and other issues.
Cache-centric optimizations (either cache-conscious [32] or
cache-oblivious [33], [34]) reduce memory access and create
more opportunities for energy saving. Besides optimizations
targeting at general DRAM systems, some researchers have
also proposed energy saving techniques for specific applica-
tions such as databases [8], [35] and video processing [35].

A preliminary version of RAMZzz has been presented in
a previous paper [36]. This paper goes beyond the prelim-
inary version with two major improvements. First, we have
enhanced the cost model and the design of RAMZzz with
adaptive demotions. Adaptive demotions can exploit energy-
saving capabilities of all power states for different memory
architectures and different workloads, and the adaptation is
on the granularity of individual memory ranks. Second, we
have extended the evaluation to study the effectiveness of
RAMZzz on three DRAM architectures (i.e., DDR2, DDR3
and LPDDR2), and demonstrated the self-tuning feature of
RAMZzz for different workloads (SPEC 2006 and PARSEC)
and different memory architectures. Note, our preliminary
version [36] evaluates only SPEC 2006 on DDR3.

3 DESIGN OVERVIEW

In this section, we give an overview of the design rationales
and workflow of RAMZzz.

3.1 Motivations

Our goal is to reduce the background power of DRAM. Due
to the inherent power management mechanisms of DRAM,
there are three obstacles in the effectiveness of reducing the
background power.

First, due to the latency and power penalty of transiting
from low-power state to active state, it requires a minimum
length threshold for an idle period that is worthwhile to make
the state transition. Ideally, if the idle period is longer than
the threshold value, the rank should jump to the low-power
state at the beginning of the idle period; otherwise, we should
keep the rank in the active state. However, it is not easy to
predict the length of each idle period, due to dynamic memory
references.

Second, in memory intensive workloads, the number of idle
periods is large, and many of the idle periods are too short
to be exploited for power saving. It is desirable to reshape
the page references to different ranks so that the idle periods
become longer and the number of idle periods is minimized.
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Fig. 1. Overview of RAMZzz.
Third, static demotion schemes cannot adapt to different

workloads and different memory architectures. With page
migrations, we further need adaptation for power management
on individual ranks (differentiating the rank hotness).

3.2 Workflow of RAMZzz
We propose a novel memory design RAMZzz with dynamic
migrations and adaptive demotions to address the aforemen-
tioned obstacles. We develop a dynamic page placement policy
that is likely to create longer idle periods. The policy takes
advantage of recency and frequency of pages stored in the
ranks, and ranks are categorized into hot and cold ones.
The hot ranks tend to have very short idle periods, and the
cold ranks with relatively long idle periods. Page migrations
are periodically performed to maintain the rank hotness (the
period is defined as epoch). With dynamic page migrations,
short idle periods are consolidated into longer ones and the
number of idle periods is reduced on the cold ranks. On
the other hand, the configuration for adaptive demotions is
determined periodically (the period is called slot). For each
slot, a demotion configuration (i.e., power-down timeouts for
all power states) is used to guide demotions within the slot.

We further develop an analytical model to periodically
estimate the idle period distribution of one slot. Our analytical
model is based on the locality of memory pages and the idle
period distribution of the previous slot. Given an optimization
goal (such as minimizing energy consumption or minimizing
ED2), we use the prediction model to determine the demotion
configuration for the new slot. Since the prediction has much
lower overhead than the page migration, a slot is designed to
be smaller than an epoch. In our design, an epoch consists
of multiple slots. Figure 1 illustrates the relationship between
slot and epoch. RAMZzz performs demotion configuration and
prediction at the beginning of each slot and performs page
migration at the beginning of each epoch.

The overall workflow of RAMZzz is designed as shown
in Algorithm 1. RAMZzz maintains the performance model
by updating the data structures used in the prediction model
(Section 4.2). As the idle period length increases, actions of the
adaptive demotion scheme may be triggered. At the beginning
of each epoch, RAMZzz decides the page migration schedule
and starts to migrate the pages to the destination ranks
(Section 4.1). At the beginning of each slot, RAMZzz performs
prediction and determines the demotion configuration for the
new slot (Section 4.3). The next section will describe the
design and implementation details of each component.

4 DESIGN AND IMPLEMENTATION DETAILS
After giving an overview on RAMZzz, we describe the details
for the following components in rank-aware power manage-
ment: dynamic page migration, prediction model and adaptive
demotions. Finally, we discuss some other implementation
issues in integrating RAMZzz into memory systems.

Algorithm 1 Workflow of RAMZzz
1: if any memory reference to rank r then
2: if rank r is in the low-power state then
3: Set r to be ACT;
4: Maintains the prediction model; /*Section 4.2*/
5: else
6: Update the current idle period of rank r;
7: Perform demotions (if necessary) according to the demotion configuration of rank

r; /*Section 4.3*/
8: if the current cycle is the beginning of an epoch then
9: Run page migration algorithm and schedule page migrations; /*Section 4.1*/

10: if the current cycle is the beginning of a slot then
11: Determine the demotion configuration for the new slot; /*Section 4.3*/

4.1 Dynamic Page Migration

When an epoch starts, we first group the pages according to
their locality and each group maps to a rank in the DRAM.
Next, pages are migrated according to the mapping from
groups to ranks.

Rank-aware page grouping. We place the pages with simi-
lar hotness into the same rank. We adopt the MQ structure [37]
to capture the memory access locality. Ideally, RAMZzz can
work with other replacement algorithms. We use MQ because
it can well capture the recency and frequency of data accesses,
as shown in the previous studies [38]. We briefly describe the
idea of MQ, and refer the readers to the original paper for more
details. MQ has M LRU queues numbered from 0 to M -1.
We assume M = 16 following previous studies [37], [38].
Each queue stores the page descriptor including the page ID,
a frequency counter and a logical expiration time. The queue
with a larger ID stores the page descriptors of those most
frequently used pages. On the first access, the page descriptor
is placed to the head of queue zero, with initialization on its
expiration time. A page descriptor in Queue i is promoted to
Queue i+1 when its frequency counter reaches 2i+1. On the
other hand, if a page in Queue i is not accessed recently based
on the expiration time, its page descriptor will be demoted
to Queue i − 1. We use a modified MQ structure to group
physical memory pages [38]. The updates to the MQ structure
are performed by the memory controller, which is designed to
be off the critical path of memory accesses (more details can
be found in Section 4.4).

An observation in MQ is that MQ has clustered the pages
with similar access locality into the same queue [36], [38].
Moreover, unlike LRU, MQ considers both frequency and
recency in page accesses. As a result, we have a simple yet
effective approach to place the pages in the ranks. Suppose
each rank has a distinct hotness value. We assign the rank
that a page is placed in a manner such that: given any two
pages p and p′ with the descriptors in Queues q and q′, p and
p′ are stored in ranks r and r′ (r is hotter than r′) if and
only if q > q′ or if q = q′ and p is ahead of p′ in the queue.
That means, the pages whose descriptors are stored in a higher
queue in MQ are stored in hotter ranks. Within the same queue
in MQ, the more recently accessed pages are stored in hotter
ranks. Algorithm 2 shows the process of grouping the pages
into R sets, and each set of pages is stored in a memory rank.
Each rank has a capacity of C pages.

Figure 2 illustrates an example of page placement onto the
ranks. There are four ranks in DRAM, and each rank can
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Algorithm 2 Obtain R page groups in the increasing hotness
1: initiate R empty sets, S0, S1, ..., SR−1;
2: curSet = 0;
3: for Queue i = M − 1, M − 2, ..., 0 in MQ do
4: for Page p from head to tail in Queue i do
5: Add p to ScurSet ;
6: if |ScurSet | = C then
7: curSet + +;

Q0

Q1

Q2

Q3

P0 P1

P2 P3

P4 P5

P6 P7

At the start of epoch i

At the start of epoch i+1

Q0

Q1
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Q3

P0 P1

P5

P4 P3

P2 P7

P6

P6 P7

P4 P5

P2 P3

P0 P1

DRAM
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r2

r3

r0

P2 P7

P4 P3

P6 P5

P0 P1
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r2

r3

r0

hot

hot

Fig. 2. An example of page placement on ranks.

hold two pages. At epoch i, we run Algorithm 2 on the MQ
structures, and obtain the page placement on the right. For
example, P6 and P7 belong to Q3, which are the hottest pages,
and they are placed into the hottest rank (here r0). At epoch
i+1, there are some changes in the MQ (the underlined page
descriptors) and the update page placement is shown on the
right.

Page migrations. To update page placement at each epoch,
we first need to determine the mappings from groups to
ranks, i.e., which rank stores which set (or group) of pages
determined in Algorithm 2. According to the current page
placement among ranks, different mappings from groups to
ranks can result in different amounts of page migrations,
leading to different amounts of penalty in energy and latency.
We should find a mapping to minimize page migrations.

We formulate this problem as finding a maximum weighted
matching on a balanced bipartite graph. The bipartite graph
is defined as G whose partition has the parts U and V .
Here, U and V are defined as the page placement among
ranks in the previous epoch and the page groups obtained
with Algorithm 2 in the current epoch respectively. An edge
between ri and Sj has a weight equaling to the number of
pages that exist in both rank ri and Sj . Since |U | = |V |,
that is, the two subsets have equal cardinality, G is a balanced
bipartite graph. We find the maximum weighted matching of
such a balanced bipartite graph with the classic Hopcroft-
Karp algorithm. The maximum weighted matching means
the maximum number of pages that are common in both
sides, and equivalently the matching minimizes the number of
page migrations. Figure 3(a) illustrates the calculation of the
maximum matching for the bipartite graph for the example
in Figure 2. In this example, there are multiple possible
matchings with the same maximum matching weight. The
thick edges represent one of such maximum matchings.

After the page mappings to individual ranks are determined,
we know which pages should be migrated from one rank to
another. Then, we need to schedule the page migrations in
a manner to minimize the runtime overhead. Inspired by the
Eulerian cycle in graph theory, we develop a novel approach
to perform multiple page migrations in parallel. We consider

Placement

at epoch i

P6 P7

P4 P5

P2 P3

P0 P1

r1

r2

r3

r0 P2 P7

P4 P3

P6 P5

P0 P1

hothot

2

1

1

1

1
1

1 r0 r1 r2

P6
P4

P2

(a) (b)

Fig. 3. An example of page migrations: (a) calculate the
maximum matching on the bipartite graph; (b) calculate
Eulerian cycle for page migrations.

a labeled directed graph Gm where each node represents a
distinct rank. An edge from node ri to node rj is labeled with
a page descriptor, representing the pages to be migrated from
rank ri to rank rj .

Each strongly connected component of Gm has Eulerian
cycles. According to graph theory, a directed graph has a
Eulerian cycle if and only if every vertex has equal in
degree and out degree, and all of its vertices with nonzero
degree belong to a single strongly connected component. By
definition, each strongly connected component of Gm satisfies
both properties, and thus we can find Eulerian cycles in Gm.
The page migration follows the Eulerian cycle. We divide the
Eulerian cycle into multiple segments so that each segment
is a simple path or cycle. Then, the page migrations in each
segment can be performed concurrently. Figure 3(b) illustrates
one example of Eulerian cycle according to the maximum
matching on the left. The three migrations form a Eulerian
cycle, and they are performed in one segment.

To facilitate concurrent page migrations according to the
Eulerian cycle, each rank is equipped with one extra row-
buffer for storing the incoming page. When migrating a page,
a rank first writes the outgoing page to the buffer of the target
rank, and then reads the incoming page from its buffer (more
details can be found in Section 4.4).

4.2 Prediction Model
When a new slot starts, we run a prediction model against
each rank. The model predicts the idle period distribution. Our
estimation should be adapted to the potential changes in the
page locality as well as the set of pages in each rank.

We use the histogram to represent the idle period distri-
bution. Suppose the slot size is T cycles, and the histogram
has T buckets. We denote the histogram to be Hist [i ], i = 0,
1, ..., T . The histogram means there are Hist [i ] number of
idle periods with the length of i cycles each. One issue is the
storage overhead of the histogram. A basic approach is to store
the histogram into an array, and each bucket is represented as
a 32-bit integer. However, the storage overhead of this basic
approach is too high. Consider a slot size of 108 cycles in our
experiments. The basic approach consumes around 400MB per
rank. In practice, the histogram is usually very sparse, and
there are at most

√
T idle periods longer than

√
T cycles.

Thus, we develop a simple approach to store the short and the
long idle periods separately. In particular, we maintain two
small arrays: the histogram counters for the short idle periods
no longer than

√
T cycles, and another array of

√
T integers to

store the actual lengths of the long idle periods that are longer
than

√
T cycles. This simple approach reduces the storage
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overhead to 2
√
T integers. It takes only 80KB per rank to

support a slot size of 108 cycles. We calculate the histogram
for idle periods longer than

√
T cycles with just one scan on

the array.
Our estimation specifically consider page migrations. If the

new slot is not the beginning of an epoch, there is no page
migration and we use the actual histogram in the previous
slot, Hist ′[i], to be the prediction of the current slot, i.e.,
Hist [i] = Hist ′[i] (0 ≤ i ≤ T ). Otherwise, we need to
combine the access locality of the migrated pages with the
historical histogram.

Our estimation after page migration works as follows. We
model the references to the same page conforming to a Poisson
distribution. Suppose a page i is accessed with f times in a
slot. Under the Poisson distribution, the probability of having
one access to page i within a cycle is pi =

g·f
T , where g is

the memory access latency. In our implementation, we take
advantage of the frequency counter and the expiration time
in the MQ structure (as described in the previous section)
to approximate pi. This already offers a sufficiently accurate
approximation in practice. Given a rank consisting of N pages
(pages 0, 1, ..., N − 1), the probability of an idle cycle in the
rank is Q = (1 − p0) · (1 − p1)... · (1 − pN−1). Based on
Q, we can estimate the probability of forming an idle period
with length of k cycles (followed by a busy cycle in (k+1)th

cycle). That is, the probability of having an idle period of k
cycles is Wk = Qk · (1−Q).

We denote the old values of those probability values in
the previous epoch to be W ′

k (k=0, 1, 2, ..., T ). After page
migrations, we calculate Wk (k=0, 1, 2, ..., T ) according to
the updated pages in the rank. Given the actual histogram
in the previous slot, Hist ′[i], we can estimate the histogram
of the new slot with the ratio Wi/W

′
i , that is, Hist+[i] =

Wi/W
′
i ·Hist

′[i]. Finally, we normalize the histogram so that
the histogram represents the total time length of a slot. Denote
s′=

∑T
i=0(Hist

+[i] · (i+g)). We normalize the histogram with
the value of T

s′ , i.e., Hist [i] = Hist+[i] × T
s′ . We use Hist [i]

as the prediction on the idle period distribution for the new
slot.

Based on the prediction model, we will estimate the power-
down timeout for the new slot in the next sub-section.

4.3 Adaptive Demotions
With the predicted idle period distribution, there are opportuni-
ties to avoid the state transitions upon those short idle periods,
and to have instant state transitions for long idle periods. For
example, if we know all the idle periods are expected to be
very long, we can set the power-down timeout to be zero, thus
performing instant state transitions. Thus, we have developed a
simple approach to reduce the total penalty of state transitions.
The basic idea is, for each low-power state, we use one power-
down timeout to determine the state transition within the entire
slot. Suppose a DDR-series memory architecture has M low-
power states, denoted as S1, . . . , SM in the descending order
of their power consumptions. For each low-power state Si,
RAMZzz performs the state transition to Si after an idle period
threshold ∆i. If the idle period is shorter than ∆i, RAMZzz
does not make the state transition to Si.

Since we need to exploit all power states in order to adapt
to different workloads and different memory architectures, a
naive approach is to consider all the possible state transitions.
However, the demotion configuration of the naive approach
is too complex to derive. Instead of considering all state
transitions, we view multiple state transitions as a chain
of state transitions from higher-power states to lower-power
states. We will show that our adaptive demotion scheme can
identify the unnecessary power states in a chain of states,
and thus further simplify the demotion scheme. We define the
demotion configuration to be a vector of power-down timeouts
∆⃗ = (∆1, . . . ,∆M ) where ∆i represents the power-down
timeout of low-power state Si, i = 1, · · · ,M . In the chain,
when the idle period length is longer than ∆i, we perform
states transition from Si−1 to Si .

Given the estimated histogram on idle periods, we estimate
the demotion configuration of each rank for a given optimiza-
tion goal. We use energy consumption as the optimization goal
to illustrate our algorithm design on estimating the demotion
configuration. One can similarly extend it to other goals such
as ED2. Since the choice on different power-down timeouts
does not affect the energy consumption of memory reads
and writes, our metric can be simplified as the total energy
consumption of background power and the state transition
penalty.

We analyze the energy consumption on different demotions
over an idle period. Suppose the idle period length is t cycles,
and the power consumption of active state ACT and a low-
power state Si are PACT and PSi

(i = 1, · · · ,M ), respec-
tively. Given a demotion configuration ∆⃗, if t ≤ ∆1, there is
no state transition to low-power states. Otherwise, denote I(t)
to be the maximum i such that ∆i < t (i = 1, · · · ,M ). In the
chain, there are at most I(t) state transitions, from S1 to SI (t).
At the end of the idle period, a memory access comes and the
rank transits from low-power state SI (t) back to ACT. Thus,
the energy consumption of the idle period can be calculated
as B(∆⃗, t) in Eq. (1).

B(∆⃗, t) = PACT · ∆1 +
∑I(t)−1

j=1 (PSj
· (∆j+1 − ∆j))

+PSI(t)
· (t − ∆I(t)) + ESI(t)

(1)

where ESI(t)
is resynchronization energy penalty from low-

power state SI (t) back to ACT.
Given the histogram Hist [t] (t = 0, 1, · · · , T ), each Hist [t]

means there are Hist [t] idle periods with length t cycles. We
can calculate the total energy consumption for all the idle
periods, as E(∆⃗) in Eq. (2).

E(∆⃗) =

∆1∑
t=0

(PACT · t · Hist[t]) +

T∑
t=∆1+1

(B(∆⃗, t) · Hist[t]) (2)

RAMZzz also allows users to specify a delay budget to limit
the delay penalty incurred by state resynchronization. We
calculate the total resynchronization delay as D(∆⃗) in Eq. (3).

D(∆⃗) =
T∑

t=∆1+1

(RSI(t)
· Hist[t]) (3)

where RSI(t)
is resynchronization delay from low-power state

SI (t) back to ACT. Our goal is to determine the suitable
demotion configuration ∆⃗ so that E(∆⃗) is minimized. If a
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Algorithm 3 The greedy algorithm to find the suitable demo-
tion configuration ∆⃗
Input:

All low-power states set S⃗ = (S1, . . . , SM ), and associated power consumptions
set P⃗ = (PS1 , . . . , PSM

);
Initialization:

∆⃗ = ϕ, S⃗select = ϕ;
1: while |S⃗select | ̸= M do
2: for all Si ∈ S⃗ do
3: Add Si into S⃗select ;
4: for each possible ∆i value do
5: Calculate E(∆⃗) using Eq. (2) with selected low-power states subset

S⃗select ;
6: Find the suitable ∆i that has the best E(∆⃗);
7: Remove Si from S⃗select ;
8: Find the low-power state Sk that has a best E(∆⃗);
9: Add ∆k into ∆⃗;

10: Remove Sk from S⃗;
Output:

power-down timeout set ∆⃗

delay budget is given, we choose the ∆⃗ value that minimizes
E(∆⃗) with the constraint that the total delay D(∆⃗) is no larger
than the given delay budget.

We note that E(∆⃗) is neither concave nor monotonic.
Therefore, we have to iterate all the possible values for ∆i=0,
1, ..., T (i = 1, · · · ,M ), and find the best combination of
∆i (i = 1, · · · ,M ). The complexity of this naive approach of
increases exponentially with the number of low-power states
in the DRAM architecture. In the following, we develop an
efficient greedy algorithm to find a reasonably good demotion
configuration (illustrated in Algorithm 3).

We start by assuming that only one low-power state is
used in the entire slot, and select the best suitable low-power
state and its power-down timeout which leads to a smallest
estimated E(∆⃗) among all M low-power states. Then, we
keep the estimated power-down timeout of the selected low-
power state unchanged, and select a new low-power state
and its power-down timeout from the rest M − 1 low-power
states, which results in a smallest estimated E(∆⃗). We repeat
this process to add one more new low-power state into the
previous selected subset of low-power states together with its
power-down timeout in each step. Algorithm 3 has much lower
computational complexity than the naive approach.

Algorithm 3 has a low runtime overhead in most cases.
First, it does not need to iterate through all values from 0 to
T (T is the slot size). Instead, it only searches those values
with non-zero frequencies in the predicted histogram. This
number is far smaller than T in practice. Second, as more
low-power states are selected during the process (one state
per step), the search space for rest low-power states is further
reduced since the power-down timeout of Si is bounded by
that of Si−1 and Si+1 , i.e., ∆i−1 ≤ ∆i ≤ ∆i+1 . Moreover,
we further optimize Algorithm 3 in two ways. First, we adopt
the branch-bound optimization in order to further reduce the
search space (That is, we try possible values from the highest
to the lowest until the program performance penalty violates
the given budget). Second, we use an exponential search
approach by iterating in the form of 2i (0 ≤ i ≤ log2T ) for
each power-down timeout. On the current architectures, the
greedy algorithm has a low runtime overhead and provides
near-optimal demotion configurations, as shall be shown in

our evaluation (Section 5).
The adaptive demotion scheme is applied on each rank at

the beginning of a slot. The demotion configurations can be
different among different ranks and at different slots. This is a
distinct feature of adaptive demotion, in comparison with the
previous work on static demotion schemes [5], [6], [7], [9].

4.4 Other Implementation Issues
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Fig. 4. Memory controller and operating system with
RAMZzz’s new modules highlighted.

RAMZzz can be implemented with a combination of mod-
est hardware and software supports. Following the previous
study [38], RAMZzz extends a programmable controller [39]
by adding its own new components (shaded in Figure 4).
Other functionalities including page grouping and the predic-
tion model are offloaded to operating systems (like previous
studies [5], [38]).

Memory Controller Structure. The memory controller
(MC) receives read/write requests from the cache controller
via the CMD FIFOs. The Arbiter dequeues requests from
those FIFO queues, and the controller converts those requests
into the necessary instructions and sequences required to
communicate with the memory. The Datapath module handles
the flow of reads and writes between the memory devices. The
physical interface converts the controller instructions into the
actual timing relationships and signals required for accessing
the memory device. We assume the MC exploits cache-block-
level bank interleaving and page-level channel interleaving
following previous studies [28], [38]. This address mapping
scheme is a common cache-line interleaving technique used
in real systems. Our proposed mechanism can also be applied
to other address mapping schemes (or interleaving schemes).

Four new modules including MQ, Migration, Remap and
Demotion are added into the memory controller for imple-
menting the functionality of page grouping, page migration,
page remapping and power state control in RAMZzz, respec-
tively. All the logics of the new modules are performed by the
memory controller, and are designed off the critical path of
memory accesses, giving the priority to the memory accesses
from applications. We add a flag bit to indicate whether this
request is from applications or new modules. The total on-
chip storage of new MC modules in our design is 112KB (as
described in the following).

MQ Module. To avoid performance degradation, MQ mod-
ule contains the small on-chip cache (64KB with 4K entries)
to store the MQ structure and a separate queue (10KB) for
the updates to the MQ structure. To find the MQ entry of a
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physical page, MC uses hashing with the corresponding page
number. Misses in the entry cache produce requests to DRAM.
MQ module’s logic snoops the CMD FIFO queue, creating
one update per new request. The updates to the MQ structure
are performed by the MC off the critical path of memory
accesses (via the aforementioned flag bit). The update queue
is implemented as a small circular buffer, where a new update
precludes any currently queued update to the same entry. In
our design, each physical page descriptor in the MQ queues
takes 124 bits. Each descriptor contains the corresponding
page number (22 bits), the reference counter (14 bits), the
queue number in MQ (4 bits), the last-access time (27 bits),
the pointers to other descriptors (54 bits), and the reserved bit
for flags (3 bits). The space overhead of our design is low.
For the 2GB DRAM, the total space taken by the descriptors
is about 8MB (only 0.4% of the total DRAM space).

Migration Module. The Migration module contains the
queue of scheduled migrations. The migrations are enqueued
in a manner such that concurrent migrations of a Eulerian
cycle are put in consecutive positions. At the beginning of
each epoch, the OS accesses the current MQ structure to
perform grouping and calculate the Eulerian cycle. Then, the
OS updates the queue of scheduled migrations (10KB) which
is stored in the Migration module. Page migrations start from
the beginning of an epoch, and is scheduled once there are
idle periods. Priority is given to longer segments because they
involve more pages. Memory requests are buffered until the
migration is concluded. To facilitate concurrent page migra-
tions according to the Eulerian cycle, each rank is equipped
with one extra row-buffer for storing the incoming page. When
migrating a page, a rank first writes the outgoing page to the
buffer of the target rank, and then reads the incoming page
from its buffer.

Remap Module. Similar to the previous design [38], we in-
troduce a new layer of translation between physical addresses
assigned by the OS (and stored in the OS page table) and
those used by the MC to access DRAM devices. Specifically,
the MC maintains the Remapping Table, a hash table for
translating physical page addresses coming from the LLC to
actual remapped physical page addresses. The OS can access
the Remapping Table as well. After the migration is completed
at the beginning of an epoch, the Remapping Table is updated
accordingly. Periodically or when the table fills up (at which
point the MC interrupts the CPU), the OS commits the new
translations to its page table and invalidates the corresponding
TLB entries. For example, if the OS uses a hashed inverted
page table, e.g., UltraSparc and PowerPC architectures, it
considerably simplifies the commit operation. Then, the OS
sets a flag in a memory-mapped register in the MC to make
sure that the MC prevents from migrating pages during the
commit process, and clears the Remapping Table.

When a memory request (with physical address assigned
by the OS) arrives at the MC, it searches the address in the
Remapping Table. On a hit, the new physical page address is
used by the MC to issue the appropriate commands to retrieve
the data from its new location. Otherwise, the original address
is used. In terms of access latency, the remapping operation
happens when a request is added to the MC queues and does

not extend the critical path in the common case because queu-
ing delays at the MC are substantial. For memory-intensive
workloads, memory requests usually wait in the MC queues for
a long time before being serviced. The above translation can
begin when the request is queued and the delay for translation
can be easily hidden behind the long waiting time. The notion
of introducing Remapping Table for the MC has been widely
used in the past [19], [38], [40].

The Remap module maintains the Remapping Table (28KB
with 4K entries) and the logic to remap target addresses.
At the end of migration, the Migration module submits the
migration information to the Remap module, which creates
new mappings in the Remapping Table. The Remap module
snoops the CMD queue to check if it is necessary to remap its
entries. We assume each Remapping Table lookup and each
remapping take 1 memory cycle. However, these operations
only delay a memory request if it finds the CMD queue empty
(which is not the common case). Note that the migration
and remapping of a segment blocks the accesses to only the
pages involved, and concurrent accesses to other pages are still
possible.

Demotion Module. The Demotion module performs the
demotion to control the power state of each rank according
to its demotion configuration. The demotion configuration of
each rank is updated by the OS at the beginning of a slot.

OS Modules. Two major new components Grouping and
Prediction Model are added to the memory management sub-
system in operating system. The Grouping module performs
grouping and calculates the Eulerian cycle according to the
MQ structure at the beginning of an epoch. At the beginning
of each epoch, the OS accesses the current MQ structure to
perform grouping and calculate the Eulerian cycle. Then, the
OS updates the queue of scheduled migrations which is stored
in the Migration module. The Prediction Model module runs
the prediction model and obtains the demotion configuration
for memory controller at the beginning of each slot.

5 EVALUATION

5.1 Methodology
Our evaluation is based on trace-driven simulations. In the
first step, we use cycle-accurate simulators to collect memory
access traces (last-level cache misses and writebacks) from
running benchmark workloads. In the second step, we replay
the traces using our detailed memory system simulator. Our
simulation models all the relevant aspects of the OS, memory
controller, and memory devices, including page replacements,
memory channel and bank contention, memory device power
and timing, and row buffer management. We evaluate work-
loads from SPEC 2006 and PARSEC [11].

SPEC 2006 Workloads. We use PTLSim [41] to collect
memory access traces of SPEC 2006 workloads. The main
architectural characteristics of the simulated machine are listed
in Table 2. We model and conduct the evaluation with an in-
order processor following previous studies [28], [38]. More
complex and recent processors are studied with Sniper-based
simulations. We evaluate our techniques with three different
memory architectures, as shown in Table 1 (Section 2.1).
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TABLE 2
Architectural configurations of PTLSim. The default

setting is highlighted.
Component Features
CPU In-order cores running at 2.66GHz
Cores 4
TLB 64 entries
L1 I/D cache (per core) 48KB
L2/L3 cache (shared) 256KB/4MB
Cache line/OS page size 64B/4KB
DRAM DDR3-1333, DDR2-800, LPDDR2-800
Channels 4
Ranks 4, 8, 12, 16
Capacity (GB) 1, 2, 4
Delay and Power see Table 1

TABLE 3
Mixed workload: memory footprint (FP), memory

accesses statistics per 5× 108 cycles (Mean and Stdev
Mean ).

Name FP (MB) Mean
(106 )

Stdev
Mean

Applications

M1 661.3 0.6 1.02 gromacs, gobmk, hmmer, bzip
M2 1477.4 1.7 1.11 bzip, soplex, sjeng, cactusADM
M3 626.6 2.9 0.59 soplex, sjeng, gcc, zeusmp
M4 537.8 3.5 0.47 zeusmp, gcc, leslie3d, omnetpp
M5 1082.9 4.4 0.71 gcc, leslie3d, calculix, gemsFDTD
M6 988.2 7.8 0.40 libquantum, milc, mcf, lbm

Those memory architectures are used in different computing
systems. We simulate different capacities (1GB, 2GB and
4GB) and different numbers of ranks (4, 8, 12 and 16) for the
memory system. All the ranks have the same configurations
(DRAM parameters) and capacities. By default, we assume a
2GB DRAM with 8 ranks. We pick these small memory sizes
to match the footprint of the workloads’ simulation points. We
calculate the memory power consumption following Micron’s
System Power Calculator [17], with the power and delay
illustrated in Table 1. The energy and performance overheads
caused by new MC and OS modules (e.g., remapping, migra-
tion and demotion) are derived from our analysis in Section 4,
which are consistent with those of others [38], [40], [42].

We have used 19 applications from SPEC 2006 with the
ref inputs. These workloads have widely different memory
memory access rates, footprints and localities. Due to space
limitations, we do not present the results for single ap-
plications; instead, we report their geometric mean (GM),
and also four particular applications with different memory
intensiveness. They are omnetpp, cactusADM, mcf and lbm
(denoted as S1, S2, S3 and S4, respectively). To assess our
algorithm under the context of multi-core CPUs, we study
mixed workloads of four different applications from SPEC
2006 (Table 3). The four workloads start at the same time.
The mixed workloads form multi-programmed executions on
a four-core CPU, ordered by the average number of memory
accesses (Mean). The standard deviation and mean values are
calculated based on memory access statistics per 5×108 CPU
cycles. For each workload, we select the simulation period
of 15× 109 cycles in the original PTLSim simulation, which
represents a stable and sufficiently long execution behavior.

PARSEC Workloads. Since current PTLSim cannot
support PARSEC benchmarks, we use another simulator–
Sniper [43] to collect memory access traces of PARSEC. By
default, we use the simulated CPU architecture as shown in Ta-
ble 4 (Intel’s Gainestown CPUs), which simulates a four-core
processor running at 2.66 GHz based on the Intel’s Nehalem
micro architecture. By default, we simulate a four-core CPU,
and 2GB DRAM with 8 ranks. The memory architecture has

TABLE 4
Architectural configurations of Sniper. The default setting

is highlighted.
Component Features
CPU Out-order cores running at 2.66GHz
Cores 4, 8, 16
DTLB/ITLB 64/128 entries
L1 I/D cache (per core) 32KB/32KB
L2 cache (per core) 256KB
L3 cache (shared) 8MB
Cache line/OS page size 64B/4KB
DRAM DDR3-1333
Channels 4
Ranks 8, 16
Capacity (GB) 2, 32, 64
Delay and Power see Table 1
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Fig. 5. The histogram of idle periods with M2 on Rank 0.

the same power consumption and performance configurations
as the PTLSim-based simulations. We also observe similar
results on simulated machines with larger number of cores
and memory capacities. Each PARSEC workload runs with
four threads, and each thread is assigned to one core. We use
the sim-medium inputs for PARSEC workloads, and perform
the measurement on the specified Region-of-Interest (ROI) of
PARSEC workloads [11].

Comparisons. In our previous study [36], we have already
demonstrated that the preliminary version of RAMZzz outper-
forms other state-of-the-art power management techniques [6],
[9], [12] in terms of both ED2 and energy consumption. For
completeness, we show the comparison between RAMZzz
and other state-of-the-art power management policies in Sec-
tion 5.5. Overall, RAMZzz has significantly outperformed the
state-of-the-art approaches [6], [9], [12], [36]. In this paper,
we consider two RAMZzz variants namely RZ–SP and RZ–
SD to evaluate the impact of individual techniques. They are
the same as RAMZzz except that RZ–SP uses the static page
management scheme without page migrations, whereas RZ–
SD uses the static demotion scheme. The static demotion
scheme simply transits a rank to a pre-selected low-power state
according to the prediction model.

In addition to RAMZzz variants, we also simulate the
following techniques for comparison. All our experimental
results of RAMZzz and its variants have included the energy
and performance penalty caused by page migrations and
adaptive demotions. All the metrics reported in this paper are
normalized to those of BASE.

• No Power Management (BASE): no power management
technique is used, and ranks are kept active even when
they are idle.

• Ideal Oracle Approach (ORACLE): ORACLE is the
same as RAMZzz, except the power-down timeout in
ORACLE is determined with the future information,
instead of history. Specifically, at the beginning of each
slot, we perform an offline profiling on the current slot,
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(c) Results on ED2 for LPDDR2

Fig. 6. Comparing ED2 of RAMZzz and ORACLE with the optimization goal of ED2 on three memory architectures.
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(c) The breakdown of time for LPDDR2

Fig. 7. The breakdown of time stayed in different power states for RAMZzz with the optimization goal of ED2.

and get the real histogram of idle periods. Based on the
histogram, we calculate the optimal power-down timeout.

RAMZzz allows users to specify the slot and epoch sizes
and delay budgets. In our simulation, we pre-set default
values for RAMZzz as a compromise between the prediction
overhead and the accuracy. By default, the slot size is 108

cycles and an epoch consists of ten slots (109 cycles), and
delay budget is set to be 4% of the slot size.

Idle Period Distribution. We study the distribution of idle
periods. Figure 5 shows the histogram of idle period lengths
of the collected traces on Rank 0 on DDR3 under BASE
approach. Many idle periods are too short to be exploited for
state transitions, e.g., shorter than the threshold idle period
length for demoting to SR FAST (2500 cycles on DDR3).
We observe similar results on other ranks.

In the following sections, we first study the behavior of
RAMZzz, BASE, ORACLE, RZ–SP and RZ–SD to show the
effectiveness of RAMZzz on different memory architectures,
and the impact of individual techniques (Sections 5.2–5.4).
Next, we compare RAMZzz with other state-of-the-art mem-
ory power management policies in Section 5.5. We focus on
the DRAM component. Our models and optimizations are able
to work for different goals such as energy consumption and
ED2. In this section, we focus on the optimization goal of min-
imizing the ED2 while keeping the performance penalty within
a given budget. For the optimization goal of minimizing energy
consumption, we find that RAMZzz also has a high potential
of energy saving, which is consistent with our observations in
the ED2 experiment. We have evaluated the individual impact
of RAMZzz (page migrations and adaptive demotions) by
comparing RAMZzz, RZ–SP and RZ–SD. The results show
that page migrations achieve an average ED2 improvement
of 17.1–23.3% over schemes without page migrations, and
adaptive demotions achieve an average ED2 improvement of
22.4–36.4% over static demotions. Due to the space constraint,
we put those results in Appendix A of the supplementary file.

5.2 Results on SPEC 2006 Workloads
We first compare the algorithms with the optimization goal of
ED2 on SPEC 2006 workloads, because ED2 is a widely used
metric for energy efficiency.

We study the overall impact of RAMZzz in comparison with
BASE and ORACLE. The comparison with BASE shows the
overall effectiveness of energy saving techniques of RAMZzz,
and the comparison with ORACLE shows the effectiveness of
our prediction model. Figure 6 presents normalized ED2 re-
sults for RAMZzz and ORACLE approaches on three different
DRAM architectures. If the normalized ED2 of an approach
is smaller than 1.0, the approach is more energy efficient than
BASE.

Thanks to the rank-aware power management, RAMZzz is
significantly more energy-efficient than BASE. Compared with
BASE, the reduction on ED2 is 64.2%, 63.3% and 63.0%
on average on DDR3, DDR2 and LPDDR2, respectively.
The reduction is more significant on the workloads of single
applications (e.g., S1–S4) than the mixed workloads. There are
two main reasons. First, since the single-application workload
has a smaller memory footprint, the page migration has a
smaller overhead and the number of cold ranks is larger.
The number of page migrations becomes very small after the
first few epochs. In contrast, the execution process of the
workloads with a large memory footprint (such as M5 and
M6) consistently has a fair amount of page migrations at all
epochs. Secondly, on single-application workloads, there are
more opportunities for saving background power using lower-
power states (such as SR FAST and SR SLOW in DDR3,
SR in DDR2 and LPDDR2). Figure 7 shows the breakdown
of time stayed in different power states for RAMZzz on
DDR3, DDR2 and LPDDR2. In Figure 7, each power state
represents the percentage of time when ranks are in this
state during the total simulation period. And Others represents
the percentage of time that includes DRAM operations, page
remapping delay, page migration delay and resynchronization
delay. As the workload becomes more memory-intensive, the
portion of time that a rank is in lower-power states becomes



LU et al.: RANK-AWARE DYNAMIC MIGRATIONS AND ADAPTIVE DEMOTIONS FOR DRAM POWER MANAGEMENT 11

0

10000

20000

30000

40000

50000

60000

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0
6

1
1
3

1
2
0

1
2
7

1
3
4

1
4
1

1
4
8

D
e
m
o
ti
o
n
ti
m
e
(c
y
c) Rank0 (OPT)

Rank0 (RAMZzz)

0

50000

100000

150000

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0
6

1
1
3

1
2
0

1
2
7

1
3
4

1
4
1

1
4
8

D
e
m
o
ti
o
n
ti
m
e
(c
y
c) Rank2 (OPT) Rank2 (RAMZzz)

Fig. 8. Power-down time-
outs comparison.
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Fig. 9. The predicted idle
histogram: Case 1.
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Fig. 10. The predicted idle
histogram: Case 2.
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time for BASE.
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Fig. 12. The breakdown of
time for ORACLE.
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of page migration delay.
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Fig. 15. Comparing full-
system ED2 on DDR3.

less significant, indicating that many idle periods are too short
and they are not worthwhile to perform state transitions into
lower-power states (even with page migration).

We briefly present the results of the extra energy overhead
of RAMZzz on DDR3. The energy penalties of page migra-
tions and adaptive demotions (i.e., resynchronization energy
consumption) contribute to 0.4% and 0.8% of the total energy
consumption on average, respectively (less than 1.4% and
1.6% on all workloads). The energy overhead is much smaller
than the energy saving gained by RAMZzz (67% on average).

It can also be seen from Figure 6 that RAMZzz achieves a
very close ED2 to ORACLE on all workloads and memory ar-
chitectures. RAMZzz achieves 5.7%, 4.4% and 3.7% on aver-
age larger ED2 than ORACLE on DDR3, DDR2 and LPDDR2,
respectively. This good result is because our histogram-based
prediction model is able to accurately estimate the suitable
power-down timeout for the sake of minimizing ED2. Fig-
ure 8 compares RAMZzz’s estimated power-down timeouts to
SR FAST with ORACLE on ranks 0 and 2 of executing M4 on
DDR3. Our estimation is very close to the optimal value on the
two ranks. We observe similar results for different ranks and
different workloads and also for the power-down timeouts of
other low-power states and other DRAM architectures. We also
find that our model has high accuracy in predicting rank idle
period distribution. We compare the predicted idle histogram
to the actual idle histogram of RAMZzz on rank 0 of executing
M4 on DDR3. The predicted histogram is close to the actual
histogram in our evaluation in both cases: 1) the slot is not
the beginning of an epoch as shown in Figure 9; 2) the slot is
the beginning of an epoch as shown in Figure 10.

We have further made the following observations on the
result of breakdown in Figure 7. First, on a specific memory
architecture, the portion of time for different low-power states
varies significantly across different workloads. Different work-
loads have different choices on the most energy-effective low-
power state. For most single-application workloads, RAMZzz
makes the decision to demote into SR SLOW on DDR3 in
most idle periods, whereas the decision of demotion is to

SR FAST or PRE PDN SLOW for the mixed workloads.
Second, on different DRAM architectures, the portion of time
for different low-power states varies significantly, even for
the same workload. SR on LPDDR2 has a much higher
significance in all workloads than on DDR3 and DDR2. That
is because, as we have seen in Table 1, SR on LPDDR2
consumes a similar normalized power consumption but a rel-
ative smaller resynchronization time when compared with the
other two DRAM architectures. These two observations have
actually demonstrated the effectiveness of adaptive demotions
of RAMZzz for different workloads and different memory
architectures.

Figures 11 and 12 show the breakdown of time stayed in
different power states for BASE and ORACLE on DDR3,
respectively. Compared with Figure 7(a), RAMZzz has a very
similar power state distribution to ORACLE on all workloads,
which again demonstrates the effectiveness of our estimation.
Compared to BASE, both RAMZzz and ORACLE signifi-
cantly reduce the percentage of time when ranks are in the
ACT state by the adaptive use of all available low-power states.
We observe similar results for other workloads and DRAM
architectures.

Next, we study the performance delay in detail. Figure 13
shows the breakdown of performance delay for RAMZzz on
DDR3. We divide the delay into three parts: resynchronization
delay (caused by state transitions), migration delay (caused by
page migrations) and remapping delay (caused by Remapping
Table lookup and address remapping). The performance delay
of RAMZzz is well controlled under the pre-defined penalty
budget (i.e., 4% in this experiment). The results demonstrate
that our model is able to limit the performance delay within the
pre-defined threshold. The resynchronization delay contributes
the largest portion of performance delay on most workloads
(2% on average).

As seen from Figure 13, the migration delay is higher on
the workloads with a large memory footprint (such as S3,
M5 and M6). To further study the migration delay, Figure 14
presents the total migration delay of RAMZzz with/without
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IPD, PP, RZ–SP, RAMZzz.

our graph-based optimizations on DDR3. Thanks to our graph-
based optimizations (as described in Section 4.1), the total
migration delay is significantly decreased, with the reduction
of 50.0% to 74.4%. Concurrent migrations prevent significant
performance degradation in all workloads.

Finally, we discuss the overhead of calculating the demotion
configuration and the migration information (Eulerian cycle).
We find that the number of those values with non-zero fre-
quencies in the predicted histogram is far smaller than the slot
size (108) in practice. Thus, the search space of Algorithm 3
is acceptable at runtime. The average time for calculating of
the demotion configuration is around several milliseconds on
current architectures. Such calculation is performed only once
per slot. Moreover, the average time for calculating the mi-
gration information is around tens of milliseconds on current
architectures, which is much smaller than our selected epoch
size. Thus, their overheads are low on current architectures.

5.3 Studies on Full System ED2

In this section, we evaluate the impact of RAMZzz on full-
system energy consumption and performance with SPEC 2006
workloads. We start by performing back-of-envelop calcula-
tions, following previous studies [28], [44]. We assume that
the average power consumption of memory system accounts
for 40% of the total system power in the baseline policy
(i.e., BASE), and calculate a fixed average power estimate
(i.e., the remaining 60%) for all other components. Thus, the
energy consumption of all other components (i.e., non-memory
system energy) is proportional to the program execution time,
which is usually consistent with the real-world case [28], [44].
This ratio (40%) has been chosen as the current contribution
of memory system to entire system power consumption [1],
[45], [46]. We also study the impact of varying this ratio in
this evaluation. Architectural characteristics and experimental
parameters are the same as those used in Section 5.2.

Figure 15 presents full system ED2 of RAMZzz, RZ–SP
and RZ–SD (SR FAST is used as the pre-selected low-power
state) when the optimization metric is set to ED2 on DDR3.
All three approaches still outperform BASE on all workloads
in terms of full system ED2. Compared with BASE, the
reduction in full system ED2 is 23.0%, 18.0% and 17.8%
on average for RAMZzz, RZ–SP and RZ–SD, respectively.
RAMZzz outperforms both RZ–SP and RZ–SD in full-system
ED2, but leads to slightly higher performance degradations.
We observe that RAMZzz has an average reduction of 4.8%
(from 1.6% to 17.9%) and 5.6% (from 1.7% to 8.6%) over RZ–
SP and RZ–SD in full system ED2, respectively. We observe

similar results on other DRAM architectures.
We further study the ratio of power consumption of the

memory subsystem to the overall power consumption of the
full system. Particularly, we vary the ratio from 30% to
50%. Figure 16 shows that the fraction of memory power
has a significant effect on both full system ED2 and energy
consumption. Increasing the ratio from 30% to 50% (i.e., the
power contribution of other components are reduced from
70% to 50%), the normalized full-system ED2 and energy
consumption of RAMZzz decrease from 0.84 to 0.70 and 0.83
to 0.68, respectively.

5.4 Results on PARSEC Workloads

Figure 17 shows the normalized ED2 results of RAMZzz and
ORACLE approaches on DDR3 architecture using PARSEC
workloads. We use the default experimental setting (e.g., the
delay budget is 4%). RAMZzz is also significantly more
energy-efficient than BASE on PARSEC workloads, with an
average reduction of 45.2%. We observe similar results to
those on the SPEC 2006 workloads. For example, the reduction
is more significant for the workloads with less intensive mem-
ory accesses (such as blackscholes). RAMZzz achieves a very
close ED2 to ORACLE on PARSEC workloads (as shown in
Figure 17). Furthermore, the comparisons between RAMZzz
and RZ-SP/RZ-SD show that on average, page migrations
bring 16.2% ED2 saving, and adaptive demotions bring 25.3%
ED2 saving. RAMZzz is consistently and significantly more
energy-efficient than other approaches on both PARSEC and
SPEC 2006 benchmarks.

5.5 Comparisons with Other Approaches

For completeness, we show the comparison between RAMZzz
and two typical state-of-the-art memory power management
policies: the preliminary version of RAMZzz [36] (namely
RAMZzz’), and the approach developed in [9] (namely IPD).

Comparison with RAMZzz’. Figure 18 presents normal-
ized ED2 results for RAMZzz and RAMZzz’ approaches
on SPEC 2006 workloads for DDR3 memory architecture.
Architectural characteristics and experimental parameters are
the same as those used in Section 5.2. Note, RAMZzz’ only
uses two pre-selected low-power states (PRE PDN FAST and
SR FAST) for demotions.

RAMZzz is vastly superior to the preliminary one proposed
in [36] (i.e., RAMZzz’), with an average reduction of 24%
in ED2 on DDR3. Furthermore, RAMZzz’ cannot work with
other DRAM architectures without modifications, such as
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DDR2 and LPDDR2. Since RAMZzz’ only uses two pre-
selected low-power states (PRE PDN FAST and SR FAST
on DDR3) for demotions, it loses the opportunities in ex-
ploiting the most energy-effective low-power state for different
workloads and different memory architectures. This observa-
tion demonstrates the effectiveness of adaptive demotions of
RAMZzz.

Comparison with IPD. We conduct a detailed study on the
comparison between RAMZzz and IPD [9] with SPEC 2006
workloads on DDR3 memory architecture. To evaluate the
effectiveness of RAMZzz over IPD, we simulate the following
techniques:

• Immediate Power-down (IPD): IPD is the approach
developed in [9]. We choose PRE PDN FAST as the
target low-power state when the optimization goal is ED2.

• Predicted Power-down (PP): PP arguments IPD by
using our histogram-based perdition on the idle period
distributions and finding the suitable power-down timeout
for state transitions.

• RZ–SP: RZ–SP arguments PP with adaptive demotions.
Figure 19 presents normalized ED2 comparison for these

energy saving approaches. Architectural characteristics and
experimental parameters are the same as those used in Sec-
tion 5.2. RAMZzz has much lower ED2 than other techniques,
on average 54%, 40% and 23% lower than IPD, PP and RZ–
SP, respectively.

RAMZzz outperforms IPD with three main reasons: 1) a
histogram-based prediction model that estimates the idle pe-
riod distributions and the suitable power-down timeout (which
brings 23% ED2 saving on average); 2) an adaptive demotion
scheme that exploits energy saving capabilities of all power
states for different memory architectures and different work-
loads (which brings 22% ED2 saving on average); 3) a page
migration approach that consolidates the idle periods among
memory ranks (which brings 23% ED2 saving on average).
The former two aspects form the adaptive demotions technique
developed in RAMZzz. All these techniques are additive to
the overall ED2 improvement of RAMZzz. Particularly, the
difference between IPD and PP represents the saving from
the histogram-based power-down timeout prediction, the dif-
ference between PP and RZ–SP represents the saving from the
adaptive demotion scheme, and the difference between RZ–SP
and RAMZzz represents the saving from page migrations.

6 CONCLUSION
In this paper, we have proposed a novel memory design
RAMZzz to reduce the DRAM energy consumption. It em-
braces two rank-aware power saving techniques to address
the major obstacles in state transition-based power saving ap-
proaches: dynamic page migrations and adaptive demotions. A
cost model is developed to guide the optimizations for different
workloads and different memory architectures. We evaluate
RAMZzz with SPEC 2006 and PAESEC benchmarks in com-
parison with other power saving techniques on three main
memory architectures including DDR3, DDR2 and LPDDR2.
Our simulation results demonstrate significant improvement
in ED2 and energy consumption over other power saving
techniques.
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