
1

Play Request Dispatching for Efficient Virtual
Machine Usage in Cloud Gaming

Yusen Li, Xueyan Tang, Senior Member, IEEE, and Wentong Cai, Member, IEEE

Abstract—Cloud gaming is becoming increasingly popular. The
basic idea of cloud gaming is to run games on cloud servers
and let players interact with games through thin clients. As the
player population grows, the cloud gaming service provider needs
to maintain a large number of cloud servers for running the
game instances requested by the players. A primary concern of
the cloud gaming service provider is the total running cost of
the cloud servers. In this paper, we study the problem of how
to dispatch the play requests to the cloud servers in a cloud
gaming system. We show that the dispatching strategy of play
requests may heavily affect the total service cost of the cloud
gaming system. The play request dispatching problem can be
considered as a variant of the dynamic bin packing problem.
However, we show that the classical bin packing algorithms
such as First Fit and Best Fit are not efficient in terms of
resource usage in cloud gaming due to the diurnal workload
pattern of online games. To address this issue, we propose an
efficient request dispatching algorithm that assigns play requests
according to the predicted ending times of game sessions. We
also assess several classes of prediction algorithms and select a
neural-network based algorithm to predict the ending times of
game sessions. We conduct extensive evaluations of the proposed
algorithms using real traces from different types of online games.
The experimental results show that the proposed dispatching
algorithm with neural-network based prediction can reduce the
resource waste of the cloud servers and thus decrease the total
service cost compared to the First Fit and Best Fit algorithms.
The reduction in the resource waste is particularly significant for
match-based games such as DotA and World of Tank.

Index Terms—cloud gaming, service cost, play request dis-
patching, bin packing.

I. INTRODUCTION

Recently, cloud gaming has attracted a great deal of interests
from both academia and industry [1], [2]. In a cloud gaming
system (see Figure 1), the games run on cloud servers and the
players interact with games through thin clients. Specifically,
the cloud servers run the game instances, render the 3D
graphics, encode them into 2D videos, and stream them to
the thin clients. The thin clients then decode and display the
video streams. In this way, players can easily play games
without installing them locally. Moreover, players can play
GPU intensive games on their computers, tablets or even
mobile phones without dedicated hardware equipped. Many
companies have started to offer cloud gaming services, such
as OnLive [1] and GaiKai [3]. The cloud gaming market has
been forecasted to reach 8 billion US dollars in 2017 [4].

Yusen Li, Xueyan Tang and Wentong Cai are with the School of
Computer Engineering, Nanyang Technological University, Nanyang Av-
enue 50, 639798, Singapore. E-mail: {S080007@e.ntu.edu.sg, ASXY-
TANG@ntu.edu.sg, ASWTCAI@ntu.edu.sg}

Cloud Servers

Game Video Stream

PC

Laptop Mobile Phone Pad

Fig. 1. Cloud Gaming

Running a game instance requires a certain amount of
computational resources. Therefore, the number of game in-
stances that can run concurrently on a cloud server is de-
pendent on the server capacity and the resource requirement
of games. In order to serve a large player population, the
cloud gaming service provider needs to prepare sufficient
number of cloud servers for running the game instances.
However, the high workload variability of online gaming
makes server provisioning a challenging issue. As shown by
empirical data (see Figure 3 in Section III), the number of
active players varies greatly over the day. Thus, setting up
too many servers would lead to resource waste during slow
gaming times whereas not maintaining enough servers would
result in servers becoming overloaded during peak gaming
times. The on-demand resource provisioning service in public
clouds provides a promising solution to the above problem. For
example, Amazon EC2 provides g2.2xlarge virtual machine
instances intended for graphics-intensive GPU computing ap-
plications such as cloud gaming. The users can rent the
resources (i.e., virtual machines) on an as-needed basis in
response to workload variation and pay for only the resources
that they actually use. This approach frees the users from
the complexities of purchasing, engineering and maintaining
hardware infrastructures. The famous cloud gaming company
GaiKai [3] has used two public clouds [5].

Consider a cloud gaming system that rents virtual machines
to serve as cloud servers. A main concern of the service
provider is how to minimize the total renting cost of the virtual
machines used. In general, the total renting cost is proportional
to the total running hours of all the virtual machines used.



2

Given a workload, we shall show that the total running hours
of all the virtual machines used is highly dependent on how
the play requests of the players are assigned to the virtual
machines. In our previous work [6], [7], we have modeled
the problem of dispatching play requests to cloud servers
for minimizing the total renting cost as a variant of the
dynamic bin packing (DBP) problem, which is named the
MinTotal DBP problem. We theoretically analyzed the worst-
case performance of the classical bin packing algorithms such
as First Fit and Best Fit for the MinTotal DBP problem. First
Fit attempts to put a new item into the first bin (i.e., the earliest
opened bin) that can accommodate the item, while Best Fit
attempts to assign a new item to the bin with the smallest
residual capacity that can accommodate it. First Fit and Best
Fit are easy to implement in that they make decisions based
on the current system state only. However, in this paper, we
show that First Fit and Best Fit bin packing algorithms may
lead to high resource waste of the virtual machines in cloud
gaming due to the diurnal workload pattern of online games.

This paper considerably extends a preliminary conference
version [8]. The contributions of this paper are as follows. We
propose an efficient play request dispatching algorithm which
assigns play requests according to the predicted ending times
of game sessions. The ending times of game sessions may be
predicted according to user habits, historical user behaviors,
or based on the expected game session length etc. With the
predicted ending times, our request dispatching algorithm aims
to “pack” the game sessions that have similar ending times to
the same virtual machine, so that the virtual machine can keep
a high level of resource utilization during its running hours.
We also assess several classes of prediction algorithms. Based
on the results, we choose a neural-network based approach for
predicting the ending times of game sessions. We evaluate the
proposed dispatching algorithm using real traces from different
types of online games. The experimental results show that the
dispatching algorithm with neural-network based prediction
can reduce the resource waste of the virtual machines, thereby
decreasing the total running hours compared to First Fit and
Best Fit. The reduction in the resource waste is particularly
significant for match-based games.

The rest of this paper is structured as follows. Section II
summarizes the related work. Section III introduces the play
request dispatching problem in cloud gaming and evaluates
the performance of the classical bin packing algorithms. Our
proposed play request dispatching algorithm is presented in
Section IV. In Section V, we evaluate several classes of
prediction algorithms for predicting the ending times of game
sessions. In Section VI, we evaluate the proposed dispatching
algorithm with neural-network based prediction using real
game traces. Finally, conclusions are made and future work
is discussed in the Section VII.

II. RELATED WORKS

Cloud gaming systems have been implemented for both
commercial use and research studies [1], [2], [9]. GamingAny-
Where [2] is the first open source cloud gaming system, which
provides a complete cloud gaming testbed for researchers

and developers. OnLive [1] is the first company offering
a commercial cloud gaming platform. As mentioned in the
introduction, the basic idea of cloud gaming is to render games
on cloud servers and stream videos to thin clients. A large
amount of research work has been conducted towards measur-
ing and optimizing the video-based cloud gaming solution. The
measurement works have mainly concentrated on measuring
the latency and network traffic of the existing commercial
cloud gaming platforms [10], [11], [12], [13]. The optimization
works have mainly focused on video encoding techniques and
graphic rendering techniques for bit rate reduction [14], [15],
[16], [17], [18].

In the area of resource provisioning, extensive research
has been conducted on assigning players among multiple
game servers in large-scale online games, with objectives of
enhancing the interactivity and consistency [19], [20], [21],
[22]. However, not much work has been done on the resource
management issues in cloud gaming systems. Wu et al. [23]
studied the request dispatching and server provisioning issues
in a multi-region multi-datacenter cloud gaming system. The
objective of their work is to reduce queueing delay and
response delay. Hong et al. [24] considered how to consolidate
the game instances on the physical servers to strike a balance
between the Quality of Experience (QoE) perceived by players
and the net profit of the service provider. They found that both
the QoE and the provider’s profit are highly dependent on how
the virtual machines are placed on the physical servers. Some
heuristic algorithms were proposed to maximize the provider’s
profit while guaranteeing the QoE. However, it was assumed
that the operational cost of the cloud gaming service provider
is proportional to the CPU and GPU utilizations of its servers.
This is valid when the service provider maintains its own
server infrastructure. But it does not really match the pay-
as-you-go billing method of the on-demand resources offered
by public clouds, which charges the customers based on the
total running hours of all the virtual machines used. If the
service provider rents server resources from public clouds, the
servers used would be charged according to their running hours
regardless of their utilizations. Thus, to save the total renting
cost, it is important to reduce the total running hours of the
servers.

The play request dispatching problem studied in this paper
is related to the bin packing and interval scheduling problems.
The classical bin packing problem aims to pack the items
into the least number of bins. The problem and its variations
have been studied extensively in both the offline and online
versions [25], [26]. It is well known that even the offline
version of the classical bin packing problem is NP-hard [27].
A variant of the classical bin packing problem is dynamic bin
packing (DBP) [28]. This generalization assumes that items
may arrive and depart at arbitrary times. The objective is to
minimize the maximum number of bins concurrently used over
time. The play request dispatching problem considered in this
paper is a case of dynamic bin packing. However, we study
the problem from a different perspective in that we aim to
minimize the total renting cost. In our previous work [6], [7],
we have formulated the play request dispatching problem for
minimizing the total service cost of a cloud gaming system



3

that rents servers from public clouds. We modeled the problem
as a MinTotal DBP problem that aims to minimize the total
cost of the bins used over time and theoretically analyzed the
worst-case performance of the classical bin packing algorithms
such as Best Fit and First Fit for the MinTotal DBP problem.
However, no experimental evaluation was conducted using
real gaming workloads. The interval scheduling problem [29]
is also related to our play request dispatching problem. The
classical interval scheduling problem considers a set of jobs,
each associated with an interval in which the job should be
processed. Each machine can process only a single job at any
time. Given a fixed number of machines, the objective is to
schedule a maximum feasible subset of jobs [30]. However,
the online version of this problem has seldom been studied.

Our work is also related to the resource consolidation issues
in cloud computing [31], [32], [33], [34], [35]. The works in
[31], [33], [34] addressed the problems of assigning virtual
machines to physical host machines in a cloud so that the
resource utilization is maximized or the energy consumption
is minimized. This problem is generally formulated as a bin
packing problem and various approximation algorithms have
been proposed. However, the MinTotal DBP model has never
been considered in any of the existing works. Meng et al.
[32] addressed the scalability issue of data center networks
with network-aware virtual machine placement. It has been
shown that a careful virtual machine placement can localize
large traffic flows and thus reduce load at high-level switches
in a data center network. They formulated the virtual machine
placement problem as an optimization problem and proved
its hardness. A two-tier algorithm was proposed to obtain an
approximate solution. However, the problem formulated did
not consider optimizing the total renting cost of the virtual
machines. Xu et al. [35] formulated a multi-objective virtual
machine placement problem. The problem aims to simulta-
neously optimize several objectives such as making efficient
usage of multidimensional resources, avoiding hotspots, and
reducing energy consumption. A modified genetic algorithm
was proposed to deal with the huge solution space for large-
scale data centers. However, only the offline scenario was
considered in this paper and the online version of the problem
was not studied.

III. CLASSICAL BIN PACKING ALGORITHMS FOR PLAY
REQUEST DISPATCHING

Suppose the cloud gaming service provider rents virtual
machines as the cloud servers. When a play request is received,
it should be assigned to an active virtual machine that has
enough computational resources to run the game instance
of this request. Several game instances may share the same
virtual machine as long as the computational resources of
the virtual machine are not saturated. If no active virtual
machine is able to accommodate the play request, a new virtual
machine should be started. In general, once a game instance
starts, it will run on the same virtual machine during the
entire game session. The migration of game instances from
one virtual machine to another is not preferable due to large
migration overheads and interruption to game play [24]. A

virtual machine can be shut down and released for saving cost
if no game instance is running on it.

In the online scenario, each play request must be dispatched
immediately upon arrival and without any knowledge of the
future play request arrivals. For a given set of play requests, the
dispatching strategy directly affects the total running hours of
the virtual machines used to serve all the play requests. Con-
sider the example shown in Figure 2. Suppose for simplicity
that all the play requests have the same computational resource
requirements. Assume each virtual machine is able to host at
most 2 game instances concurrently. Let each play request (or
game session) be represented by a pair: (starting time, ending
time). Assume there are three play requests to be served, which
are represented by r1 = (0, 10), r2 = (0, 1), r3 = (0, 10).
Since the three play requests arrive at the same time and two
virtual machines are needed to host them. Suppose r1 and r2
are packed into the same virtual machine, and r3 is assigned
to the other virtual machine (see Figure 2(a)). In this case, the
running hours of the virtual machine serving r1 and r2 would
be max{1, 10} = 10, and the running hours of the virtual
machine serving r3 would also be 10. Therefore, the total
running hours of the two virtual machines is 10 + 10 = 20.
On the other hand, if r1 and r3 are packed into the same
virtual machine, then r2 would be assigned to the other virtual
machine (see Figure 2(b)). In this case, the running hours of
the virtual machine serving r1 and r3 would be 10, and the
running hours of the virtual machine serving r2 would be 1.
Thus, the total running hours of the two virtual machines is
10 + 1 = 11. It can be seen from the above example that the
total running hours of the virtual machines is highly dependent
on how the play requests are dispatched.

r1

time

r2

r3

virtual machines

0 1 10

r1

time

r2

r3

virtual machines

0 1 10
(a) (b)

Fig. 2. Examples of request dispatching

A. Classical Bin Packing Algorithms

Since the play request dispatching is a variant of the bin
packing problem, we first examine how the classical bin
packing algorithms perform for this problem. We conducted
some simulations to evaluate two most commonly used bin
packing algorithms: First Fit and Best Fit. We consider the
following implementations of First Fit and Best Fit for play
request dispatching in cloud gaming:

• First Fit Dispatching: Each time a play request arrives,
First Fit tries to assign it to the earliest started active
virtual machine that has enough resources to run the game
instance for the request. If no such virtual machine is



4

found, a new virtual machine is started and the request
is assigned to the new virtual machine.

• Best Fit Dispatching: Each time a play request arrives,
Best Fit tries to assign it to the “best” active virtual
machine, which is the one with the smallest amount of
spare resources that can accommodate the game instance
for the request. If no such virtual machine is found, a new
virtual machine is started and the request is assigned to
the new virtual machine.

We implemented an event-driven simulator to simulate the
play request dispatching process by First Fit and Best Fit. In
order to make the simulations more realistic, we use the real
trace data from online games including the World of War-
craft Avatar History (WoWAH) dataset [36], the DotAlicious
dataset, and the World of Tank (WoT) dataset [37].

B. WoWAH Dataset

World of Warcraft (WoW) is the most popular MMORPG
which has over 12 million subscribers [38]. Hence, the data of
WoW is often studied by researchers from various areas [39],
[40], [41]. The WoWAH dataset records continual observations
of the status of all players in a WoW realm in Taiwan
over a 3-year period from January 2006 to January 2009.
During the monitored period, 91065 players and 667032 game
sessions associated with the players were observed. For each
game session, the following information is recorded: player
identifier, level, race, class, and zone.

C. DotAlicious Dataset

Defense of the Ancients (DotA) is an archetypal multiplayer
online battle arena game. The players are divided into two
teams with 5 players each. Each player controls an in-game
avatar. In the match, each team tries to conquer the opponent
team’s main building. The DotAlicious dataset is collected
from the DotA community. The DotA community has its
own game servers and maintains lists of tournaments and
results. It publishes information such as player rankings. The
DotAlicious dataset contains 617069 matches that took place
between April 2010 and February 2012. For each match, the
start time, the duration and the community identifiers of the
10 participating players are recorded.

D. WoT Dataset

World of Tank (WoT) is one of the most popular Massively
Multiplayer Online First Person Shooter games. The WoT
dataset contains over 76000 matches which were played from
August 2010 to July 2013. All the matches are team battles
and there are 30 participating players in each match which are
divided into two equal sized teams. For each match, the match
duration and the map used are recorded.

Since DotA and WoT are matched-based games, we gener-
ate a separate game session for each participating player for
each match in the DotAlicious dataset and the WoT dataset.
This is because a separate instance needs to run in the cloud
server for rendering graphics and video encoding for each
player. We assume each player has a random waiting time

between 0 to 60 seconds for matchmaking with other players
before the match starts. Therefore, the start time of the game
session for each player is set as: session start time =
match start time− δ, where δ is randomly generated from
a uniform distribution [0, 60] seconds. The ending time of the
game session for each player is given by the ending time of
the match in which the player participated.

E. Results

In the simulations, each game session represents a play
request in cloud gaming. We assume that all the game ses-
sions have the same computational resource requirements and
each virtual machine is able to run up to 4 game instances
simultaneously (a normal GPU generally can support 3 ∼ 5
game instances concurrently [42]). Figure 3 shows the average
numbers of active players as a function of time over different
days of the week for the entire WoWAH dataset, DotAlicious
dataset and WoT dataset. It is easy to see the diurnal workload
pattern in all the datasets (The blackout period on Thursday
morning in the WoWAH dataset is due to weekly maintenance
downtime scheduled by the operator). According to how the
number of active game sessions changes, the 24 hours of a
day can be divided into two periods: a climbing period (e.g.,
from 7:00 to 23:00 in the WoWAH dataset) and a declining
period (e.g., from 23:00 to 7:00 of the next day in the WoWAH
dataset). The number of active players generally increases
during the climbing period and decreases during the declining
period.

Figure 4 shows the instantaneous numbers of virtual ma-
chines used by different dispatching algorithms over a sample
day for the WoWAH dataset, the DotAlicious dataset and
the WoT dataset. Similar performance trends are observed
for other days. The “Optimal” curve represents the minimum
number of virtual machines required for accommodating all
the active game sessions, which is calculated by dividing the
total number of active game sessions by the virtual machine
capacity (i.e., 4 game sessions on each virtual machine). As
can be seen from Figure 4, the numbers of virtual machines
used by First Fit (FF) and Best Fit (BF) dispatching are very
close to Optimal during the climbing period. This is because
there are more play request arrivals than departures in the
climbing period. In this case, no matter how the play requests
are assigned, all the active virtual machines are almost fully
occupied by the continuously arriving play requests. However,
in the declining period, First Fit and Best Fit occupy many
more virtual machines than Optimal. It implies that the active
virtual machines under First Fit and Best Fit dispatching are
not fully utilized in the declining period. This is because
there are more player departures than arrivals in the declining
period. If the players on the same virtual machine do not leave
the system at the same time, the “leftover” game sessions
would cause many virtual machines to run at low levels of
resource utilization so that these virtual machines cannot be
shut down timely. As indicated in Figure 4(a), the area between
the “Optimal” curve and the First Fit (or Best Fit) curve
represents the “wasted” running hours of virtual machines
under First Fit (or Best Fit) dispatching. It can be seen that



5

 0

 200

 400

 600

 800

0:00 12:00 0:00 12:00 0:00 12:00 0:00 12:00 0:00 12:00 0:00 12:00 0:00 12:00 0:00

Monday Tuesday Wednesday Thursday Friday Saturday Sunday
N

u
m

b
er

 o
f 

A
ct

iv
e 

P
la

y
er

s

Hour

(a) WoWAH dataset

 0

 400

 800

 1200

0:00 12:00 0:00 12:00 0:00 12:00 0:00 12:00 0:00 12:00 0:00 12:00 0:00 12:00 0:00

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

N
u

m
b

er
 o

f 
A

ct
iv

e 
P

la
y

er
s

Hour

(b) DotAlicious dataset

 0

 50

 100

 150

 200

0:00 12:00 0:00 12:00 0:00 12:00 0:00 12:00 0:00 12:00 0:00 12:00 0:00 12:00 0:00

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

N
u
m

b
er

 o
f 

A
ct

iv
e 

P
la

y
er

s

Hour

(c) WoT dataset

Fig. 3. Average number of active players as a function of time over different days of the week

there exist a large number of wasted running hours for both
First Fit and Best Fit dispatching.

IV. ENDING TIME BASED PLAY REQUEST DISPATCHING

In this section, we propose an efficient play request dis-
patching algorithm called ET that can greatly reduce the
wasted running hours compared to First Fit and Best Fit.
The basic idea is to assign play requests according to the
predicted ending times of game sessions, and pack those game
sessions that have “close” ending times into the same virtual
machine. In this way, the game sessions assigned to the same
virtual machine are expected to complete at around the same
time. Therefore, each virtual machine can keep a high level of
resource utilization during its running hours and can be shut
down timely after all of its game sessions end. The detailed
dispatching algorithm is described in Algorithm 1.

Let r denote the play request to be dispatched. We first
predict the ending time of r’s game session, which is denoted
by e(r) (line 1). If there is no active virtual machine that
has enough computational resources to serve r, a new virtual
machine needs to be started and the play request r is assigned
to the new virtual machine (lines 3-4). Otherwise, r would

Algorithm 1 Ending Time based Play Request Dispatching
(ET)

1: Predict e(r) for the play request r
2: Let V denote the set of active virtual machines that have

enough computational resources to run the game instance
for r

3: if V = ∅ then
4: Start a new virtual machine and assign r to the new

virtual machine
5: else
6: Let V ′ ⊆ V denote the set of all the virtual machines

v such that T (v) > e(r)
7: if V ′ 6= ∅ then
8: Assign r to any of the virtual machines in V ′

9: else
10: Assign r to the virtual machine v∗ such that T (v∗)

is the latest (largest) among all the virtual machines
in V

11: end if
12: end if



6

 0

 50

 100

 150

 200

0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 24:00

N
u
m

b
e
r 

o
f 

V
M

s
 U

s
e
d

Hour

Wasted Running Hours

First Fit Best Fit Optimal

(a) WoWAH dataset

 0

 50

 100

 150

 200

0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 24:00

N
u
m

b
e
r 

o
f 

V
M

s
 U

s
e
d

Hour

Wasted Running Hours

First Fit Best Fit Optimal

(b) DotAlicious dataset

 0

 10

 20

 30

 40

 50

 60

0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 24:00

N
u

m
b

e
r 

o
f 

V
M

s
 U

s
e
d

Hour

Wasted Running Hours

First Fit Best Fit Optimal

(c) WoT dataset

Fig. 4. Performance of First Fit and Best Fit dispatching for a sample day

be assigned to one of the active virtual machines that have
sufficient spare computational resources. For each active vir-
tual machine v, let T (v) denote the expected shutdown time
of v, which is defined as the latest predicted ending time
of all the game sessions currently running on v. Among all
the active virtual machines that can accommodate r, we first
consider the virtual machines whose expected shutdown times
are later than e(r) (lines 6-8). The rationale behind is that if
r is assigned to a virtual machine whose expected shutdown
time is later than e(r), the total running hours of the virtual
machines will not be increased after the assignment. This is
because the virtual machine serving r needs to keep active
at least until its expected shutdown time no matter whether
r is assigned to it or not. If all the active virtual machines
that can accommodate r have their expected shutdown times
earlier than e(r), r is then assigned to the virtual machine that
has the latest expected shutdown time. The motivation here is
to minimize the increase of the total running hours after the
assignment (line 10).

V. ENDING TIMES PREDICTION

It is intuitive that the performance of the ET dispatching
algorithm is dependent on how well the ending times of the
game sessions are predicted. In this section, we present the
evaluations of several classes of prediction approaches. Instead
of predicting ending times directly, we focus on predicting the
game session lengths. This is equivalent because the ending
time of a game session can be calculated by the session length.

We first define the prediction problem. With the considera-
tion of the diversity of user habits, we perform the prediction
of the session lengths separately for each player. Suppose a
player has t past game sessions which are denoted by s1, s2,
..., st, where si is the ith game session in order of arrival.
Denote by r(si) the actual session length of si. Our goal is
to predict the length of next game session (denoted by st+1)
when a new play request of the player arrives.

A. Prediction Algorithms

Quantitative prediction can generally be divided into two
classes: time series and explanatory models [43]. Time se-



7

Input Layer

Hidden Layer

Output 

... ...

Fig. 5. Example of Multilayer Perception Model

ries prediction uses only information on the variables to be
predicted. For example, time series may predict the length of
next session by a function of past session lengths. In contrast,
explanatory models assume that the variable to be predict
exhibits an explanatory relationship with one or more other
variables. For example, in our case, the length of the next game
session may be predicted according to many factors such as
session start time and player’s level.

In this paper, we evaluate both the time series prediction
algorithms and the explanatory prediction algorithms. The time
series algorithms to be assessed include Last Value, Average,
Moving Average, Sliding Median, and Exponential Smoothing.
For the explanatory model, the neural-network based approach
is assessed.

1) Time Series Prediction Algorithms: The predicted next
session length p(st+1) by different time series algorithms are
given below.
• Last Value: p(st+1) = r(st)

• Average: p(st+1) =
1
t (r(st) + r(st−1) + · · ·+ r(s1))

• Moving Average: p(st+1) = 1
k (r(st) + r(st−1) + · · · +

r(st−k+1)), k is the moving window size.
• Sliding Median: Sort {r(st), r(st−1), ..., r(st−k+1)} and

label the sorted list as {r1, r2, ..., rk} (r1 ≤ r2 ≤, · · · ,≤
rk). If k is an odd number, p(st+1) = r k+1

2
. Otherwise,

if k is an even number, p(st+1) = (r k
2
+ r k

2+1)/2.
• Exponential Smoothing: p(st+1) = α · (r(st) + (1 −

α)r(st−1) + (1 − α)2r(st−2) + · · · + (1 − α)t−1r(s1),
where 0 < α < 1 is the aging factor.

2) Neural-Network based Approach: The artificial neural
network is a representative explanatory model, which has been
proven to be a very attractive tool for predictions [44]. Neural
networks are composed of a multitude of neurons representing
simple processing elements that operate in parallel [45]. The
advantage of using neural networks for prediction is that they
are able to learn from history data to catch hidden and strongly
non-linear dependencies, even when there is a significant noise
in the training set. In recent years, neural networks have
become very popular for prediction and forecasting in many
domains, including finance, medicine, and environmental sci-

ence. Therefore, for the explanatory model, we adopt neural
networks to predict the session lengths.

Figure 5 shows a commonly used model for neural networks
[44]. It consists of one input layer, one output layer and
one hidden layer. The neural network is established after an
offline training phase using history data. Given an input, the
established neural network can be used to generate an output
for prediction. In this paper, we choose this model for game
session length prediction.

In the construction of a neural network, the selection of
appropriate inputs is important. For our problem, the following
features are selected as the inputs for the neural networks:
session start hour, session start day, player’s level and game
map.1 These are the only four features available from the
datasets that change with different game sessions of a given
player. Since the neural network requires history data for
offline training, we only consider constructing neural networks
for the players who have at least 100 game sessions. For every
such player, we construct a new neural network for online
prediction after every 100 game sessions of the player. At each
construction, the first 90% of the past game sessions of this
player are used to train the neural network and the last 10%
of the past game sessions of the player are used to validate the
neural network2. The constructed neural network is then used
to predict the lengths of the next 100 game sessions of the
player. Note that the first 100 game sessions of each player
(including the players who have less than 100 game sessions
in total) cannot be predicted by the neural network in the
above approach. For such sessions, we simply use the Average
algorithm of time series prediction.

B. Prediction Results

We use the WoWAH, DotAlicious and WoT datasets to
evaluate the prediction algorithms. We separately apply the
prediction algorithms to each player in the datasets and com-
pare the prediction errors produced by each algorithm. For
the WoT dataset, the identifiers of players in each match are
not given. So, we do not differentiate the game sessions by
players in the training and prediction. Suppose a player has
n sessions which are represented by s1, s2, ..., sn. Let r(si)
denote the actual session length of si. Let p(si) denote the
predicted session length of si. The prediction error for the
player is defined by

1

n

n∑
i=1

|p(si)− r(si)|
r(si)

Table I shows the average prediction errors produced by
different algorithms for each dataset. As can be seen, the
neural-network based prediction achieves the lowest prediction
error compared to the time series algorithms for all the three
datasets. Therefore, we shall adopt the neural-network based
approach to predict the ending times of game sessions in
evaluating our proposed request dispatching algorithm.

1Some of these features may not be provided by all the datasets.
2For the number of neurons in the hidden layer, we have varied the number

for each neural network and achieved good prediction results of training with
10 neurons for most of the neural networks.



8

(a) A sample WoWAH player, Variance = 5082 (b) A sample DotAlicious player, Variance = 892 (c) A sample WoT player, Variance = 199

Fig. 6. Distribution of game session lengths

TABLE I
AVERAGE PREDICTION ERRORS

Prediction Algorithms
Average Prediction Error

WoWAH DotAlicious WoT

Average 0.672 0.273 0.242

Moving Average (k = 30) 0.580 0.270 0.181

Moving Average (k = 10) 0.550 0.263 0.116

Last Value 0.780 0.395 0.112

Sliding Median 1.770 0.440 2.210

Exp Smoothing (α = 0.75) 0.794 0.354 0.107

Exp Smoothing (α = 0.5) 0.738 0.324 0.115

Exp Smoothing (α = 0.25) 0.698 0.229 0.116

Neural Network 0.520 0.188 0.074

We also observe from Table I that the prediction errors
produced by the algorithms for the WoWAH dataset are
much larger than the other two datasets. This implies that
the session lengths for the DotAlicious and WoT datasets are
more predictable. This is possibly because DotA and WoT are
match-based games. The duration of a match is determined
by all the team members together and thus the variance
of the match lengths would be small. On the other hand,
WoW is not a match-based game. The game session length
is highly dependent on the players’ willingness, which could
vary greatly and be affected by many factors. Figure 6 shows
the distributions of the game session lengths of some sample
players from different datasets. It can be seen that the session
length variance of the player from the WoW dataset is much
larger than the variances of the players from the DotAlicious
and WoT datasets.

VI. EXPERIMENTAL EVALUATIONS

We conduct extensive experiments using the WoWAH,
DotAlicious and WoT datasets to evaluate the benefit of the
proposed play request dispatching algorithm.

A. Performance with Perfect Prediction

We first consider an ideal situation in which the ending
times of game sessions are perfectly predicted. This represents
a yardstick (upper bound) on the performance of request dis-
patching. We examine the impacts of virtual machine capacity,
the heterogeneity in play requests, and the heterogeneity in
virtual machine types.

1) Impact of virtual machine capacity: First, we evaluate
how the virtual machine capacity (in terms of how many
game instances can run on a virtual machine concurrently)
would affect the performance of the ET algorithm. The virtual
machine capacity is varied in the range from 1 to 32 The
recent GPU technology is able to support up to 32 game
instances on a single board with multiple GPUs [46])3. We
record the wasted running hours (i.e., the additional running
hours compared to the optimal running hours) produced by
different dispatching algorithms on every day over the entire
WoWAH, DotAlicious, and WoT datasets. Figure 7 shows the
average wasted running hours for one day together with the
90th and 10th percentile results. It can be seen that for most
of the virtual machine capacities, ET can save more than 50%
wasted running hours on average compared to First Fit and
Best Fit dispatching for the WoWAH dataset. In the extreme
case where the virtual machine capacity is only 1 (i.e., each
virtual machine can run one game instance only), it is intuitive
that all the dispatching algorithms would occupy exactly the
same number of virtual machines at any time and there is
no wasted running hour at all. On the other hand, when a
virtual machine can accommodate multiple game instances,
the percentage of reduction in wasted running hours by our
ET algorithm compared to First Fit and Best Fit gradually
decreases with increasing virtual machine capacity. This is
because given a set of play requests, when the virtual machine
capacity is larger, it becomes more difficult to find sufficient
number of play requests that share similar ending times to
fill up a virtual machine to its capacity. Similar performance
trends can also be observed in the results for the DotAlicious
and WoT datasets.

It should be noted that a wasted running hour of a high-

3The maximum virtual machine capacity for the WoT dataset is set to 16
because WoT dataset has much less game sessions at peak hours than the
other two datasets.



9

 0

 50

 100

 150

 200

 250

 300

 5  10  15  20  25  30

W
as

te
d

 R
u

n
n

in
g

 H
o

u
rs

Virtual Machine Capacity

First Fit
Best Fit

ET

(a) WoWAH dataset

 0

 20

 40

 60

 80

 100

 120

 140

 5  10  15  20  25  30

W
as

te
d
 R

u
n
n
in

g
 H

o
u
rs

Virtual Machine Capacity

First Fit
Best Fit

ET

(b) DotAlicious dataset

 0

 3

 6

 9

 12

 15

 2  4  6  8  12  16

W
as

te
d

 R
u

n
n

in
g

 H
o

u
rs

Virtual Machine Capacity

First Fit
Best Fit

ET

(c) WoT dataset

Fig. 7. Daily wasted running hours for different virtual machine capacities

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 5  10  15  20  25  30

R
es

o
u
rc

e 
W

as
te

d
 

 (
G

am
e 

In
st

an
ce

 S
lo

t 
x
 H

o
u
r)

Virtual Machine Capacity

First Fit
Best Fit

ET

(a) WoWAH dataset

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 5  10  15  20  25  30

R
es

o
u

rc
e 

W
as

te
d
 

 (
G

am
e 

In
st

an
ce

 S
lo

t 
x

 H
o

u
r)

Virtual Machine Capacity

First Fit
Best Fit

ET

(b) DotAlicious dataset

 0

 30

 60

 90

 120

 2  4  6  8  12  16

R
es

o
u
rc

e 
W

as
te

d
 

 (
G

am
e 

In
st

an
ce

 S
lo

t 
x
 H

o
u
r)

Virtual Machine Capacity

First Fit
Best Fit

ET

(c) WoT dataset

Fig. 8. Daily absolute resource waste for different virtual machine capacities

capacity virtual machine actually wastes more resources than
a wasted running hour of a low-capacity virtual machine. We
also compute the absolute amount of resource waste in terms
of the game instance slots (which is given by the product of
wasted running hours and the virtual machine capacity) on
every day for the WoWAH, DotAlicious and WoT datasets.
Figure 8 shows the average absolute resource waste for one
day together with the 90th and 10th percentile results. It can
be seen that as the virtual machine capacity increases, the
resource waste cut by our ET algorithm compared to First Fit
and Best Fit dispatching also increases.

2) Impact of heterogeneity in play requests: Now, we
evaluate the impact of heterogeneity in the resource demand
of play requests. To do so, we assume the games served in the
system have five types of resource demands 1, 2, 3, 4, and 5
respectively. We randomly assign a type of resource demand
to each play request. Figure 9 shows the average daily wasted
running hours produced by different dispatching algorithms
with different virtual machine capacities for the WoWAH,
DotAlicious and WoT datasets. It can be seen that for most
of the virtual machine capacities, ET can save around 50%
wasted running hours compared to First Fit and Best Fit for
the WoWAH dataset and can save 20%∼30% wasted running
hours for the DotAlicious and WoT datasets.

Figure 10 shows the average daily absolute resource waste
for the WoWAH, DotAlicious and WoT datasets. It can be seen
that as the virtual machine capacity increases, the resource
waste cut by ET algorithm compared to First Fit and Best Fit
dispatching again increases. The above results indicate that
the ET dispatching algorithm can still reduce resource waste

significantly with multiple game types.
3) Impact of heterogeneity in virtual machine instances:

Next, we examine the impact of heterogeneity in the capac-
ities of virtual machine instances. The public cloud provider
generally provides multiple types of virtual machine instances
with different capacities so that the customers can choose
appropriate ones according to their requirements. For example,
Amazon offers both light virtual machine instance types like
t2.small and powerful instance types like m3.large. In order
to evaluate the heterogeneity in virtual machine instances, we
assume there are two types of virtual machine instances: small
instance and large instance. The number of small instances
that can be used is limited by a number N while the supply
of large instances is unlimited. When a new virtual machine
is required in the dispatching, we first try to allocate a small
instance since it has been shown earlier in Section VI-A1 that
small instances generally lead to less resource waste. If the
small instances are used up, a large instance is then allocated.
By default, the capacities of small instances and large instances
are set at 10 and 20 respectively.

Figure 11(a) shows the average daily absolute resource
waste with different values of N for the WoWAH dataset.
When N is smaller than 200, the resource waste decreases with
increasing N . It implies that using small instances wastes less
resource than using large instances. When N is larger than
200, the resource wasted keeps unchanged. This is because
the maximum number of small instances required to serve all
play requests in the WoWAH dataset is around 200. Large
instances are seldom used when N is larger than 200. Similar
trends can also be found for the DotAlicious and WoT datasets



10

 0

 100

 200

 300

 400

 500

 600

 5  10  15  20  25  30

W
as

te
d

 R
u

n
n

in
g

 H
o

u
rs

Virtual Machine Capacity

First Fit
Best Fit

ET

(a) WoWAH dataset

 0

 100

 200

 300

 400

 500

 600

 5  10  15  20  25  30

W
as

te
d

 R
u

n
n

in
g

 H
o

u
rs

Virtual Machine Capacity

First Fit
Best Fit

ET

(b) DotAlicious dataset

 0

 10

 20

 30

 40

 50

 6  8  10  12  14  16

R
es

o
u
rc

e 
W

as
te

d
 

 (
G

am
e 

In
st

an
ce

 S
lo

t 
x
 H

o
u
r)

Virtual Machine Capacity

First Fit
Best Fit

ET

(c) WoT dataset

Fig. 9. Daily wasted running hours for heterogeneous play requests

 0

 1000

 2000

 3000

 4000

 5000

 6000

 5  10  15  20  25  30

R
es

o
u
rc

e 
W

as
te

d
 

 (
G

am
e 

In
st

an
ce

 S
lo

t 
x
 H

o
u
r)

Virtual Machine Capacity

First Fit
Best Fit

ET

(a) WoWAH dataset

 0

 500

 1000

 1500

 2000

 2500

 3000

 5  10  15  20  25  30

R
es

o
u

rc
e 

W
as

te
d

 
 (

G
am

e 
In

st
an

ce
 S

lo
t 

x
 H

o
u

r)

Virtual Machine Capacity

First Fit
Best Fit

ET

(b) DotAlicious dataset

 0

 50

 100

 150

 200

 250

 6  8  10  12  14  16

R
es

o
u

rc
e 

W
as

te
d

 
 (

G
am

e 
In

st
an

ce
 S

lo
t 

x
 H

o
u

r)

Virtual Machine Capacity

First Fit
Best Fit

ET

(c) WoT dataset

Fig. 10. Daily absolute resource waste for heterogeneous play requests

 0

 1000

 2000

 3000

 4000

 5000

 25  50  100  150  200  250  300

R
e
so

u
rc

e
 W

a
st

e
d
 

 (
G

a
m

e
 I

n
st

a
n
c
e
 S

lo
t 

x
 H

o
u
r)

Number of Small Instances

First Fit
Best Fit

ET

(a) WoWAH dataset

 0

 500

 1000

 1500

 2000

 2500

 3000

 25  50  100  150  200  250  300

R
e
so

u
rc

e
 W

a
st

e
d
 

(G
a
m

e
 I

n
st

a
n
c
e
 S

lo
t 

x
 H

o
u
r)

Number of Small Instances

First Fit
Best Fit

ET

(b) DotAlicious dataset

 0

 20

 40

 60

 80

 100

 5  10  15  20  25  30

R
e
so

u
rc

e
 W

a
st

e
d

 
(G

a
m

e
 I

n
st

a
n

c
e
 S

lo
t 

x
 H

o
u

r)

Number of Small Instances

First Fit
Best Fit

ET

(c) WoT dataset

Fig. 11. Daily absolute resource waste for heterogeneous virtual machines

as shown in Figures 11(b) and 11(c). For all datasets, ET can
significantly save the resource waste compared to First Fit and
Best Fit.

B. Performance with Neural-Network based Prediction

In this section, we present the evaluation of the proposed
play request dispatching algorithm with neural-network based
prediction for the session lengths. In the simulations, all
neural-network related calculations are done using Matlab.
The computational time of constructing a neural network for a
player is generally within seconds. The computational time of
predicting a session length using the neural network is much
less than one second. Therefore, the neural-network based
prediction is computationally efficient for online prediction.
The ET dispatching algorithm using neural-network based
prediction is denoted by NEURO-ET.

Figure 12 shows the average daily wasted running hours
produced by different algorithms with different virtual ma-
chine capacities for the WoWAH, DotAlicious and WoT
datasets. It can be seen that for the DotAlicious and WoT
datasets, NEURO-ET can significantly reduce the wasted
running hours compared to First Fit and Best Fit. However,
the performance of NEURO-ET for the WoWAT dataset is
rather close to First Fit and Best Fit. This is in agreement
with the results shown in Table I of Section V-B, which
indicate that the session lengths of match-based games are
more predictable. The performance of the proposed request
dispatching algorithm is dependent on the prediction accuracy.
Therefore, the performance of NEURO-ET for the DotAlicious
and WoT datasets is much better than that for the WoWAH
dataset.

Figure 13 shows the average daily absolute resource waste
in terms of the game instance slots. Similarly, we can see



11

 0

 50

 100

 150

 200

 250

 300

 5  10  15  20  25  30

W
as

te
d
 R

u
n
n
in

g
 H

o
u
rs

Virtual Machine Capacity

First Fit
Best Fit

ET
NEURO-ET

(a) WoWAH dataset

 0

 20

 40

 60

 80

 100

 120

 140

 5  10  15  20  25  30

W
as

te
d
 R

u
n
n
in

g
 H

o
u
rs

Virtual Machine Capacity

First Fit
Best Fit

ET
NEURO-ET

(b) DotAlicious dataset

 0

 3

 6

 9

 12

 15

 2  4  6  8  12  16

W
as

te
d
 R

u
n
n
in

g
 H

o
u
rs

Virtual Machine Capacity

First Fit
Best Fit

ET
NEURO-ET

(c) WoT dataset

Fig. 12. Daily wasted running hours for different virtual machine capacities

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 5  10  15  20  25  30

R
es

o
u
rc

e 
W

as
te

d
 

 (
G

am
e 

In
st

an
ce

 S
lo

t 
x
 H

o
u
r)

Virtual Machine Capacity

First Fit
Best Fit

ET
NEURO-ET

(a) WoWAH dataset

 0

 200

 400

 600

 800

 1000

 5  10  15  20  25  30

R
es

o
u

rc
e 

W
as

te
d

 
 (

G
am

e 
In

st
an

ce
 S

lo
t 

x
 H

o
u

r)

Virtual Machine Capacity

First Fit
Best Fit

ET
NEURO-ET

(b) DotAlicious dataset

 0

 30

 60

 90

 120

 2  4  6  8  12  16

R
es

o
u
rc

e 
W

as
te

d
 

 (
G

am
e 

In
st

an
ce

 S
lo

t 
x
 H

o
u
r)

Virtual Machine Capacity

First Fit
Best Fit

ET
NEURO-ET

(c) WoT dataset

Fig. 13. Daily absolute resource waste for different virtual machine capacities

that NEURO-ET can greatly save the resource waste for the
DotAlicious and WoT datasets while it achieves less gain for
the WoWAH dataset.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a play request dispatching
algorithm for cloud gaming systems to optimize their service
costs. The proposed algorithm assigns the play requests ac-
cording to the predicted ending times of game sessions. After
assessing several classes of prediction algorithms, we choose a
neural-network based approach to predict the session lengths.
We use real online game traces to evaluate the proposed
dispatching algorithm. The experimental results show that the
proposed dispatching algorithm can reduce the resource waste
of cloud servers and the benefits are particularly significant
for match-based games.

In the future work, we would like to investigate more
effective algorithms for predicting the ending times of game
sessions. One direction is to use the social structure of the
players in online games to help with the prediction. It has
been shown that the players are more likely to play games
with their “friends” [47]. This may help to predict the ending
times more accurately by considering closely related players
together. In addition, we have assumed in this paper that there
is only one type of dominant resource (e.g., GPU) that can
become the bottleneck of virtual machines. However, some
games may have different types of dominant resources. Then,
different combinations of game instances running on a virtual
machine may cause different types of resources to become the
bottleneck. We would also like to consider multi-dimensional

resource requirements of game sessions in request dispatching
in our future work.

ACKNOWLEDGMENT

This research is supported by Multi-plAtform Game Inno-
vation Centre (MAGIC), funded by the Singapore National
Research Foundation under its IDM Futures Funding Initiative
and administered by the Interactive & Digital Media Pro-
gramme Office, Media Development Authority.

REFERENCES

[1] “Onlive web page.” http://www.onlive.com/.
[2] C.-Y. Huang, C.-H. Hsu, Y.-C. Chang, and K.-T. Chen, “Gamingany-

where: an open cloud gaming system,” in Proceedings of the 4th ACM
Multimedia Systems Conference. ACM, 2013, pp. 36–47.

[3] “Gaikai web page.” http://www.gaikai.com/.
[4] “Distribution and monetization strategies to increase revenues from

cloud gaming.”
[5] R. Shea, J. Liu, E.-H. Ngai, and Y. Cui, “Cloud gaming: Architecture

and performance,” IEEE Network, vol. 27, no. 4, pp. 16–21, 2013.
[6] Y. Li, X. Tang, and W. Cai, “On dynamic bin packing for resource

allocation in the cloud,” in Proceedings of the 26th ACM Symposium on
Parallelism in Algorithms and Architectures. ACM, 2014, pp. 2–11.

[7] Y. Li, X. Tang, and W. Cai, “Dynamic bin packing for on-demand cloud
resource allocation,” IEEE Transactions on Parallel and Distributed
Systems (accepted to appear), 2015.

[8] Y. Li, X. Tang, and W. Cai, “Let’s depart together: Efficient play request
dispatching in cloud gaming,” in The 13th Annual Workshop on Network
and Systems Support for Games. ACM, IEEE, 2014.

[9] “Streammygame web page.” http://www.streammygame.com/smg/index.php.
[10] S. Choy, B. Wong, G. Simon, and C. Rosenberg, “The brewing storm

in cloud gaming: A measurement study on cloud to end-user latency,”
in Proceedings of the 11th annual workshop on network and systems
support for games. IEEE, 2012, p. 2.



12

[11] M. Claypool, D. Finkel, A. Grant, and M. Solano, “On the performance
of onlive thin client games,” Multimedia Systems, vol. 20, no. 5, pp.
471–484, 2014.

[12] Y.-T. Lee, K.-T. Chen, H.-I. Su, and C.-L. Lei, “Are all games equally
cloud-gaming-friendly? an electromyographic approach,” in Proceedings
of the 11th Annual Workshop on Network and Systems Support for
Games (NetGames), 2012. IEEE, 2012, pp. 1–6.

[13] M. Manzano, J. A. Hernández, M. Uruenña, and E. Calle, “An empirical
study of cloud gaming,” in Proceedings of the 11th Annual Workshop
on Network and Systems Support for Games. IEEE, 2012, p. 17.

[14] H. Ahmadi, S. Khoshnood, M. R. Hashemi, and S. Shirmohammadi,
“Efficient bitrate reduction using a game attention model in cloud
gaming,” in Proceeding of the IEEE International Symposium on Haptic
Audio Visual Environments and Games (HAVE). IEEE, 2013, pp. 103–
108.

[15] H. Ahmadi, S. Zad Tootaghaj, M. Hashemi, and S. Shirmohammadi, “A
game attention model for efficient bit rate allocation in cloud gaming,”
Multimedia Systems, vol. 20, no. 5, pp. 485–501, 2014.

[16] S.-P. Chuah and N.-M. Cheung, “Layered coding for mobile cloud gam-
ing,” in Proceedings of International Workshop on Massively Multiuser
Virtual Environments. ACM, 2014, pp. 1–6.

[17] M. Hemmati, A. Javadtalab, A. A. Nazari Shirehjini, S. Shirmohammadi,
and T. Arici, “Game as video: Bit rate reduction through adaptive object
encoding,” in Proceeding of the 23rd ACM Workshop on Network and
Operating Systems Support for Digital Audio and Video. ACM, 2013,
pp. 7–12.

[18] S. Shi, C.-H. Hsu, K. Nahrstedt, and R. Campbell, “Using graphics
rendering contexts to enhance the real-time video coding for mobile
cloud gaming,” in Proceedings of the 19th ACM international conference
on Multimedia. ACM, 2011, pp. 103–112.

[19] Y. Li and W. Cai, “Consistency-aware partitioning algorithm in multi-
server distributed virtual environments,” in Proceeding of the 26th IEEE
International Parallel & Distributed Processing Symposium. IEEE,
2012, pp. 798–807.

[20] Y. Li and W. Cai, “Consistency-aware zone mapping and client assign-
ment in multi-server distributed virtual environments,” IEEE Transac-
tions on Parallel and Distributed Systems (accepted to appear), 2014.

[21] L. Zhang and X. Tang, “Optimizing client assignment for enhancing
interactivity in distributed interactive applications,” IEEE/ACM Trans-
actions on Networking, vol. 20, no. 6, pp. 1707–1720, 2012.

[22] L. Zhang and X. Tang, “The client assignment problem for continuous
distributed interactive applications: analysis, algorithms, and evaluation,”
IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 3,
pp. 785–795, 2014.

[23] D. Wu, Z. Xue, and J. He, “icloudaccess: Cost-effective streaming of
video games from the cloud with low latency,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 24, no. 8, pp. 1405–
1416, 2014.

[24] H.-J. Hong, D.-Y. Chen, C.-Y. Huang, K.-T. Chen, and C.-H. Hsu,
“Placing virtual machines to optimize cloud gaming experience,” IEEE
Transactions on Cloud Computing, vol. 3, no. 1, pp. 42–53, Jan 2015.

[25] E. G. Coffman, J. Csirik, G. Galambos, S. Martello, and D. Vigo, “Bin
packing approximation algorithms: Survey and classification,” Handbook
of Combinatorial Optimization (second ed.), Springer, 2013.

[26] G. Galambos and G. J. Woeginger, “On-line bin packingła restricted
survey,” Zeitschrift für Operations Research, vol. 42, no. 1, pp. 25–45,
1995.

[27] M. R. Gary and D. S. Johnson, “Computers and intractability: A guide
to the theory of np-completeness,” 1979.

[28] E. G. Coffman Jr, M. R. Garey, and D. S. Johnson, “Dynamic bin
packing,” SIAM Journal on Computing, vol. 12, no. 2, pp. 227–258,
1983.

[29] E. L. Lawler, J. K. Lenstra, A. H. Rinnooy Kan, and D. B. Shmoys,
“Sequencing and scheduling: Algorithms and complexity,” Handbooks
in operations research and management science, vol. 4, pp. 445–522,
1993.

[30] A. Bar-Noy, R. Bar-Yehuda, A. Freund, J. Naor, and B. Schieber, “A
unified approach to approximating resource allocation and scheduling,”
Journal of the ACM (JACM), vol. 48, no. 5, pp. 1069–1090, 2001.

[31] M. Cardosa, M. R. Korupolu, and A. Singh, “Shares and utilities based
power consolidation in virtualized server environments,” in Proceeding
of the IFIP/IEEE International Symposium on Integrated Network Man-
agement. IEEE, 2009, pp. 327–334.

[32] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of
data center networks with traffic-aware virtual machine placement,” in
Proceedings of IEEE INFOCOM, 2010, 2010, pp. 1–9.

[33] A. L. Stolyar and Y. Zhong, “A large-scale service system with packing
constraints: Minimizing the number of occupied servers,” in Proceedings
of the ACM SIGMETRICS/international conference on Measurement and
modeling of computer systems. ACM, 2013, pp. 41–52.

[34] M. Wang, X. Meng, and L. Zhang, “Consolidating virtual machines with
dynamic bandwidth demand in data centers,” in Proceedings of IEEE
INFOCOM, 2011. IEEE, 2011, pp. 71–75.

[35] J. Xu and J. A. Fortes, “Multi-objective virtual machine placement
in virtualized data center environments,” in Proceedings of the 2010
IEEE/ACM Int’l Conference on & Int’l Conference on Cyber, Physical
and Social Computing (CPSCom). IEEE, 2010, pp. 179–188.

[36] Y.-T. Lee, K.-T. Chen, Y.-M. Cheng, and C.-L. Lei, “World of warcraft
avatar history dataset,” in Proceedings of the second annual ACM
conference on Multimedia systems. ACM, 2011, pp. 123–128.

[37] Y. Guo and A. Iosup, “The game trace archive,” in Proceedings of the
11th Annual Workshop on Network and Systems Support for Games.
IEEE, 2012, p. 4.

[38] “Mmogdata.net.” http://users.telenet.be/mmodata/Charts/Subs-1.png.
[39] T. Henderson and S. Bhatti, “Modelling user behaviour in networked

games,” in Proceedings of the ninth ACM international conference on
Multimedia. ACM, 2001, pp. 212–220.

[40] C. V. Hsueh-hua and D. H. Been-Lirn, “Understanding social interaction
in world of warcraft,” in Proceedings of the international conference on
Advances in computer entertainment technology. ACM, 2007, pp. 21–
24.

[41] Y.-T. Lee and K.-T. Chen, “Is server consolidation beneficial to mmorpg?
a case study of world of warcraft,” in Proceedings of the 3rd IEEE
International Conference on Cloud Computing (CLOUD). IEEE, 2010,
pp. 435–442.

[42] M. Yu, C. Zhang, Z. Qi, J. Yao, Y. Wang, and H. Guan, “Vgris:
Virtualized gpu resource isolation and scheduling in cloud gaming,” in
Proceedings of the 22nd International Symposium on High-performance
Parallel and Distributed Computing. ACM, 2013, pp. 203–214.

[43] G. C. R. G. E. P. Box, G. M. Jenkins, Time Series Analysis: Forecasting
and Control, 4th Edition. Wiley, 2014.

[44] G. Zhang, B. E. Patuwo, and M. Y. Hu, “Forecasting with artificial neural
networks: The state of the art,” International journal of forecasting,
vol. 14, no. 1, pp. 35–62, 1998.

[45] S. I. Gallant, Neural Network Learning and Expert Systems. MIT press,
1993.

[46] “Nvidiagrid: http://www.nvidia.com/object/grid-technology.html.”
[47] A. Losup, R. V D Bovenkamp, S. Shen, A. Jia, and F. Kuipers,

“Analyzing implicit social networks in multiplayer online games,” IEEE
Internet Computing, vol. 18, no. 3, pp. 36–44, May 2014.

Yusen Li is currently a Research Fellow in the
School of Computer Engineering at Nanyang Tech-
nological University. His research interests include
scheduling, resource management issues in dis-
tributed systems and cloud computing.

Xueyan Tang received the BEng degree in computer
science and engineering from Shanghai Jiao Tong
University in 1998, and the PhD degree in computer
science from the Hong Kong University of Science
and Technology in 2003. He is currently an associate
professor in the School of Computer Engineering
at Nanyang Technological University, Singapore. He
has served as an associate editor of IEEE Trans-
actions on Parallel and Distributed Systems. His
research interests include distributed systems, mo-
bile and pervasive computing, and wireless sensor

networks. He is a senior member of the IEEE.



13

Wentong Cai is a Professor in the School of
Computer Engineering at Nanyang Technological
University, Singapore. His expertise is mainly in the
areas of Modeling and Simulation and Parallel and
Distributed Computing. He is an associate editor of
the ACM Transactions on Modeling and Computer
Simulation (TOMACS) and an editor of the Fu-
ture Generation Computer Systems (FGCS). He has
chaired a number of international conferences. Most
recent ones include CloudCom 2014, SIMUTools
2013, ICPADS 2012, and MACOTS 2011.


