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2-hop+ Sampling: Efficient and Effective
Influence Estimation
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Abstract—With rapidly growing sizes of online social networks, computational challenges arise in analyzing the diffusion process over
networks. Sampling methods are commonly used to study the cascade effect and estimate users’ influence. In this paper, we propose
a brand-new sampling method, called 2-hop+ sampling for quickly and accurately estimating the cascade size generated by a set of
seed users under the independent cascade model. Our method generates only samples with at least one 2-hop live path from the
source to reduce the number of samples. We further enhance the sampling efficiency of our method by a SkipEdge technique.
Moreover, we improve the generalized stopping rule algorithm to obtain an (ε, δ)-estimate of the mean of random variables with fewer
samples needed. Extensive experiments with real-world datasets show that our techniques can significantly improve the estimation
efficiency compared to the state-of-the-art methods.

Index Terms—Online social networks, influence estimation, sampling

F

1 INTRODUCTION

T HE popularity of online social networks (OSNs) has given
birth to the studies on information propagation over OSNs in

the past decade. With the word of mouth effects, a small number
of users can trigger a large cascade of information propagation
through the network. There are many problems about information
propagation such as estimating users’ influence [13, 25, 29],
influence maximization [4, 33, 34, 39, 40], analyzing network
centrality [5], and identifying critical nodes in the network [12].
To tackle these problems, a central task is to analyze the diffusion
process and predict the cascade size in the network, which is
known as influence estimation in marketing campaigns. However,
the growing sizes of OSNs nowadays have made this task exceed-
ingly computationally expensive.

Existing work [4, 6, 10, 20, 28, 29, 30, 34, 40] mostly utilizes
sampling methods to estimate the cascade size. Early studies use
Monte Carlo simulations to generate samples [6, 10, 20, 30].
Recent work [4, 27, 28, 34, 40] adopts the advanced reverse
influence sampling (RIS) [4] technique. In general, to ensure the
accuracy of influence estimation, the computational efficiency of
different sampling methods is dependent on the number of samples
to generate. Thus, a natural direction to improve efficiency is to
reduce the number of samples needed. In this paper, we aim to
speed up the RIS approach for influence estimation with accuracy
guarantees by less samples.
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It is known that each additional hop of propagation usually
contributes progressively less towards the cascade size [1, 14, 33,
36]. Moreover, the cascade size within 2 hops of propagation can
be computed via independent paths [33, 36]. Motivated by these
findings, we design a method, called 2-hop+, to generate reverse
samples that can spread beyond the source with at least one 2-
hop live path. By utilizing such 2-hop samples, our estimations
can have higher concentrations with narrower ranges so that
less samples need to be generated for achieving a predefined
estimation accuracy. Moreover, to speed up the generation of a
2-hop sample, we propose a SkipEdge algorithm that boosts the
sampling process by avoiding flipping a coin on each edge based
on the dependencies in the sampling process.

In addition, we improve the stopping rule algorithm that can
accurately estimate bounded random variables with a theoretically
lenient stopping condition in a more elegant expression. In partic-
ular, we devise more general concentration bounds by relaxing
the restriction that the number of samples must be an integer
as required by previous work [11, 29, 40]. Based on the new
concentration bounds, we theoretically show that our algorithm
requires less samples to return an approximate estimation.

Our contributions can be summarized as follows.

1) We propose a sampling method called 2-hop+ to generate
only the samples spreading influence beyond the source with
at least one 2-hop live path. The samples generated by our
2-hop+ method can improve influence estimation efficiency
with better concentration bounds. We further enhance the
sampling efficiency of our method with a SkipEdge tech-
nique.

2) We improve the stopping rule algorithm to obtain an (ε, δ)-
estimate of bounded random variables with a theoretically
tighter threshold by developing generalized concentration
bounds.

3) We compare our approaches with the state-of-the-art methods,
and demonstrate that our 2-hop+ sampling method is vastly
superior in both asymptotic and practical performance.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

0.5
1v

2v

3v

4v

(a) An Example Graph

1v
2v

3v

4v

(b) Possible Cascade 1

1v
2v

3v

4v

(c) Possible Cascade 2

1v
2v

3v

4v

(d) Possible Cascade 3

1v
2v

3v

4v

(e) Possible Cascade 4

Fig. 1: A social graph with 4 nodes and 5 edges and four possible cascades starting from {v1}. Dashed arrows indicate blocked edges.

The rest of the paper is organized as follows. Section 2
introduces the preliminaries on influence estimation. We propose
the 2-hop+ sampling method in Section 3. We elaborate the
improvement on the stopping rule algorithm in Section 4. Section
5 presents the experiment details and Section 6 reviews the related
work. Finally, Section 7 concludes the paper.

2 PRELIMINARIES

We model an online social network as a directed graph G =
(V,E) comprising a set V of nodes and a set E of directed
edges. For each directed edge (u, v) ∈ E, v is known as u’s
neighbor and u is known as v’s inverse neighbor. For each node
u ∈ V , let Iu denote the set of node u’s inverse neighbors,
i.e., Iu = {w : w ∈ V, (w, u) ∈ E}. Each edge (u, v) is
associated with a propagation probability pu,v , representing the
probability that u influences v. There are many diffusion models
characterizing the influence propagation in the network, among
which the independent cascade (IC) model and the linear threshold
(LT) model [20] are two most commonly used ones. Under
the IC model, each activated node u has a single chance of
probability pu,v to activate each inactive neighbor v. Under the
LT model, the propagation probabilities are normalized to satisfy∑
u∈Iv pu,v ≤ 1. The decision to activate a node v is based on

a threshold λv chosen uniformly and randomly from [0, 1]. A
node v becomes active if

∑
u∈Av pu,v ≥ λv , where Av ⊆ Iv

denotes the set of v’s active inverse neighbors. In both models,
the diffusion process starts from a given set of activated nodes S,
called the seed set, and the remaining nodes are initially inactive.
In the diffusion process, once a node becomes activated, it remains
activated for all subsequent steps. The process ends when no more
node can be activated. Given a diffusion model, the influence
spread of a seed set S, denoted as σ(S), is the expected number
of nodes activated by S when the diffusion process terminates.
Computing the influence spread σ(S) of a seed set S is #P-hard
under both the IC and LT models [7, 8].

Example 1. Fig. 1(a) shows an example graph with 4 nodes
and 5 edges where each edge is associated with a propagation
probability of 0.5. Then, under the IC model, there are a total
number of 25 = 32 possible cascades, each occurring with a
probability of 1/32. Figs. 1(b)–1(e) show four possible cascades
starting from a seed set {v1}, where dashed (resp. solid) arrows
indicate blocked (resp. live) edges. If the cascade in Fig. 1(b)
happens, nodes {v1, v3, v4} are activated with an influence of
3. Similarly, the influences in other three cascades are 2, 3
and 4, respectively. Taking the expectation over all 32 possible
cascades, we can derive that {v1}’s expected influence spread is
σ({v1}) = 2.7.

The influence estimation problem is to obtain an estimation
σ̃(S) of σ(S). The reverse influence sampling (RIS) method
proposed by Borgs et al. [4] is the state-of-the-art approach that
estimates σ(S) by means of sampling. Each sample produced by

RIS is known as a random reverse reachable (RR) set which
basically contains a set of nodes that can influence a randomly
chosen node v. We focus on the IC model in this paper. Under the
IC model, a random RR set R can be generated as follows [4].

1) Select a source node v from V uniformly at random.

2) Perform a stochastic breadth first search (BFS) starting from
v following the reverse direction of the edges in the graph.
For each node u encountered in the BFS, a coin is flipped for
each incoming edge (w, u) to determine whether the edge is
live. That is, with probability pw,u, the edge is set to live and
the BFS traverses to w from u if w has not been visited, and
with probability 1 − pw,u, the edge is set to blocked and is
ignored by the BFS. All the traversed nodes are inserted into
R.

Intuitively, a node has a higher probability to be included in a
random RR set if it has greater influence on other nodes. The
influence spread can be estimated by a set of RR sets.

Lemma 1 ([4]). Given a seed set S ⊆ V , for a random RR set
R, we have

σ(S) = |V | · Pr[R ∩ S 6= ∅],

where |V | denotes the total number of nodes in the graph.

Based on Lemma 1, to estimate σ(S), we can generate a
sequence R of random RR sets, count the number of RR sets
overlapping S, denoted as Λ(R, S), and get an empirical estimate
of Pr[R ∩ S 6= ∅] by Λ(R,S)

|R| . Then, the estimation σ̃(S) is

computed as |V | · Λ(R,S)
|R| .

3 2-HOP+ SAMPLING

The main motivation for our new 2-hop+ sampling method is
that the influence spread within 1 hop of propagation can be
computed exactly and efficiently for any seed set [33, 36]. Our
key idea is to generate only the random RR sets necessary for
estimating the influence spread beyond 1 hop of propagation
and then combine the estimation result with the 1-hop influence
computed to produce an estimate of the overall influence spread.
Since the 1-hop influence can constitute a significant portion of
the overall influence spread [33, 36], the random variables in our
sampling can have a narrower range with higher concentrations
improving the estimation accuracy of the total influence spread. In
addition, we propose a new technique, called SkipEdge, to effi-
ciently sample the incoming edges according to their probability
distribution.

3.1 2-hop Sampling Algorithm
3.1.1 2-hop RR Sets
Let S be a seed set. Recall that the key to computing S’s influence
spread is to estimate the probability for a random RR set R to
overlap S, i.e., Pr[R ∩ S 6= ∅]. We decompose an RR set R
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into three parts: src(R), h1(R), and h2∗(R), where src(R) is the
source node of R, h1(R) is the set of nodes that activate v directly
in the sample, i.e., h1(R) = {u | edge (u, src(R)) is live}, and
h2∗(R) includes all the remaining nodes of R. Then, we have the
following three disjoint cases when R ∩ S 6= ∅:

Ea : src(R) ∈ S,
Eb : src(R) 6∈ S and h1(R) ∩ S 6= ∅,
Ec : src(R) 6∈ S, h1(R) ∩ S = ∅ and h2∗(R) ∩ S 6= ∅.

By Lemma 1, we have

σ(S) = |V | · Pr[R ∩ S 6= ∅]
= |V | · (Pr[Ea] + Pr[Eb] + Pr[Ec]).

(1)

For Ea, since the source node is selected uniformly at random,
we have

Pr[Ea] = Pr[src(R) ∈ S] =
|S|
|V |

. (2)

For Eb, h1(R) ∩ S 6= ∅ holds only if the source src(R) is
activated by a seed in S directly. Since each inverse neighbor
of a node v activates v independently, the probability for all v’s
inverse neighbors in S to fail to activate v directly is

∏
u∈Iv∩S(1−

pu,v). Therefore, given a source node v, the probability for v to
be activated by a seed directly is

pS,v = 1−
∏

u∈Iv∩S
(1− pu,v).

Let Nu denote the set of node u’s neighbors, i.e., Nu = {w : w ∈
V, (u,w) ∈ E}. Let NS =

⋃
u∈S Nu be the set of neighbors of

the seed set. Then, the probability for Eb to happen is given by

Pr[Eb] = Pr[src(R) 6∈ S ∧ h1(R) ∩ S 6= ∅]

=

∑
v∈NS\S pS,v

|V |
.

(3)

Now only Ec is left. We estimate Pr[Ec] by the RIS method.
For Ec to happen, h2∗(R) must be non-empty. By definition, there
must exist two nodes w, u ∈ V such that both edges (w, u)
and (u, src(R)) are live in the sample. We refer to such a path
composed of 2 live edges as a 2-hop live path. We define an RR
set as a 2-hop RR set if the stochastic BFS produces a 2-hop
live path. Our algorithm generates 2-hop RR sets only to measure
Pr[Ec]. To guarantee that the RIS estimation is unbiased, the 2-
hop RR sets should be generated with probabilities proportional
to those in the original sample space of RR sets.

We first define some notations to facilitate the presentation.
For each node v ∈ V , we assume a fixed order on v’s inverse
neighbors Iv = {v1, v2, . . . , v`v}, where `v = |Iv|. Accordingly,
we have a fixed order on the incoming edges to v: (v1, v),
(v2, v), . . . , (v`v,v). Among these edges, let ηvi denote the prob-
ability that the first i edges (1 ≤ i ≤ `v) are all blocked in the
BFS. We have

ηvi =
∏i

k=1
(1− pvk,v). (4)

For notational convenience, define ηv0 = 1.
We start by looking at generating a 2-hop RR set from

a given source node v. For each node vi ∈ Iv , let Ivi =
{vi,1, vi,2, . . . , vi,`vi } denote the order on vi’s inverse neighbors,
where `vi = |Ivi |. First, we derive the probability distribution
of the first 2-hop live path produced in the BFS. Let Avi,j be
the event that the path from vi,j through vi to v is the first
2-hop live path. As illustrated in Fig. 2, when Avi,j happens,

...
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1v 2v

2
2, vl
v

1iv − iv

v

1iv + lv

,1iv , 1i jv − ,i jv , 1i jv + , vii lv

Fig. 2: Event Avi,j : vi,j → vi → v is the first 2-hop live path.
Dashed edges are blocked, solid edges are live and dotted edges
are yet to be checked in the BFS.

(i) the edges (vi,j , vi) and (vi, v) are both live, (ii) for each
node vk where 1 ≤ k ≤ i − 1, there is no 2-hop live path
going through vk, i.e., either the edge (vk, v) is blocked or all
the incoming edges to vk are blocked, and (iii) all the edges
(vi,1, vi), (vi,2, vi) . . . , (vi,j−1, vi) are blocked. The probability
for (i) to happen is pvi,v · pvi,j ,vi . Let αvk denote the probability
that there is no 2-hop live path going through vk. We have
αvk = 1 − pvk,v + pvk,v · η

vk
`vk

and the probability for (ii) to

happen is
∏i−1
k=1 α

v
k. The probability for (iii) to happen is ηvij−1.

Since all the edges involved are distinct, the probability for Avi,j
to happen is given by

Pr[Avi,j ] = pvi,v · pvi,j ,vi · η
vi
j−1 ·

∏i−1

k=1
αvk. (5)

A naive implementation to construct 2-hop RR sets from a
given source node v is to precompute Pr[Avi,j ] for all possible
(i, j) pairs where 1 ≤ i ≤ `v and 1 ≤ j ≤ `vi , and generate the
first 2-hop live path according to the probability distribution. The
space complexity of the probability distribution can be O(|V |).
Since the source node is randomly chosen from V in RIS, the
total space complexity for all the source nodes would be O(|V |2)
which is infeasible for large-scale OSNs.

3.1.2 An Efficient Implementation
An important insight to our algorithm design is that it is not neces-
sary to precompute all the probabilities Pr[Avi,j ]. The computation
and storage complexities can be greatly reduced by decomposing
the selection of the first 2-hop live path into two steps that identify
vi and vi,j respectively.

First, consider the selection of vi. Let Avi be the event that the
first 2-hop live path goes through vi. We have

Pr[Avi ] =
∑`vi

j=1
Pr[Avi,j ]

=
∑`vi

j=1

(
pvi,v · pvi,j ,vi · η

vi
j−1 ·

∏i−1

k=1
αvk

)
= pvi,v ·

∏i−1

k=1
αvk ·

∑`vi

j=1

(
ηvij−1 − η

vi
j

)
= pvi,v ·

∏i−1

k=1
αvk ·

(
1− ηvi`vi

)
= (1− αvi ) ·

∏i−1

k=1
αvk. (6)

Note that Pr[Avi ] is the probability in the original sample space of
RR sets. To generate 2-hop RR sets only, we need to normalize
it by the probability for an RR set to have at least one 2-hop live
path. Let βv be the probability that an RR set generated from
source v has at least one 2-hop live path. We have

βv =
`v∑
i=1

Pr[Avi ] =
`v∑
i=1

(
(1− αvi ) ·

i−1∏
k=1

αvk

)
= 1−

`v∏
i=1

αvi .
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Algorithm 1: Select First 2-Hop Live Path
Input: A source node v, graph G, and precomputed η’s and φ’s
Output: Nodes vi and vi,j

1 Generate a random number r ∈ [0, 1];
2 Find the lowest index i s.t. (1− φvi )/(1− φv`v ) ≥ r via binary

search;
3 r̄ ←

(
r − 1−φvi−1

1−φv
`v

)
/
φvi−1−φ

v
i

1−φv
`v

;

4 Find the lowest index j s.t. (1− ηvij )/(1− ηvi`vi ) ≥ r̄ via binary
search;

5 return vi and vi,j ;

Therefore, the node vi in the first 2-hop live path can be selected
according to the probability distribution of Pr[Avi ]

βv
. The corre-

sponding cumulative probability is given by

i∑
t=1

Pr[Avt ]

βv
=

∑i
t=1

(
(1− αvt ) ·

∏t−1
k=1 α

v
k

)
βv

=
1−

∏i
k=1 α

v
k

1−
∏`v
k=1 α

v
k

.

Thus, vi can be selected by generating a random number r ∈ [0, 1]

and finding the lowest index i such that 1−
∏i
k=1 α

v
k

1−
∏`v
k=1 α

v
k

≥ r via a
binary search.

Next, consider the selection of vi,j given that the first 2-hop
live path goes through vi. By definition, vi,j will be selected with
probability

Pr[Avi,j ]

Pr[Avi ] . It follows from (5) and (6) that

Pr[Avi,j ]

Pr[Avi ]
=
pvi,v · pvi,j ,vi · η

vi
j−1 ·

∏i−1
k=1 α

v
k

(1− αvi ) ·
∏i−1
k=1 α

v
k

=
pvi,v · (η

vi
j−1 − η

vi
j )

pvi,v · (1− η
vi
`vi

)
=
ηvij−1 − η

vi
j

1− ηvi`vi
.

Thus, the corresponding cumulative probability is

j∑
t=1

Pr[Avi,t]

Pr[Avi ]
=

∑j
t=1(ηvit−1 − η

vi
t )

1− ηvi`vi
=

1− ηvij
1− ηvi`vi

.

Let φvi =
∏i
k=1 α

v
k. Consider the random number r generated

for selecting vi. Recall that when vi is selected, the random
number r falls in the range of (

1−φvi−1

1−φv`v
,

1−φvi
1−φv`v

]. Then, the value of

r̄ =
(
r− 1−φvi−1

1−φv`v

)
/
φvi−1−φ

v
i

1−φv`v
falls in the range of [0, 1] uniformly.

Therefore, vi,j can be selected by finding the lowest index j such

that
1−ηvij
1−ηvi`vi

≥ r̄ via a binary search. To implement the selections

of vi and vi,j efficiently, we can precompute all the values ηvi for
every node v and every i ≤ `v . We also precompute all the values
φvi =

∏i
k=1 α

v
k for every node v and every i ≤ `v by computing

αvi based on ηvi`vi . Algorithm 1 shows the details of selecting the
first 2-hop live path from source v.

Selecting Source Node. Note that the probability for an RR set
generated from source v to be a 2-hop RR set is βv , and the
source node is selected uniformly at random in RIS. Thus, in order
to generate 2-hop RR sets only while following the probability
distribution in the original sample space, we select a source node
v in 2-hop sampling with probability being proportional to βv .
That is, the probability of selecting v as source node is given by

Pr[src = v] =
βv
κ
, where κ =

∑
v∈V

βv. (7)

Adding Nodes {v1, v2, . . . , vi−1}. Suppose that vi is selected
for the first 2-hop live path from the source node v. For each

Algorithm 2: 2-hop Sampling
Input: A graph G = (V,E)
Output: A 2-hop RR set R = 〈src(R),h1(R), h2∗(R)〉

1 Select v ∈ V according to probability distribution in (7);
2 src(R)← v, mark v as traversed;
3 Select the first 2-hop live path vi,j → vi → v via Algorithm 1;
4 h1(R)← {vi}, mark vi as traversed;
5 foreach k ← 1 to i− 1 do
6 With probability Pr[Tk] in (8) do: h1(R)← h1(R) ∪ {vk},

mark vk as traversed;

7 h2∗(R)← ∅;
8 foreach k ← i+ 1 to `v do
9 if vk is not traversed then

10 With probability pvk,v do: h1(R)← h1(R) ∪ {vk}, add
vk into Q, mark vk as traversed;

11 if vi,j is not traversed then
12 h2∗(R)← h2∗(R) ∪ {vi,j}, add vi,j into Q, mark vi,j as

traversed;

13 foreach k ← j + 1 to `vi do
14 if vi,k is not traversed then
15 With probability pvi,k,vi do:

h2∗(R)← h2∗(R) ∪ {vi,k}, add vi,k into Q, mark vi,k
as traversed;

16 while Q is not empty do
17 v ← the first node in Q;
18 foreach u ∈ Iv do
19 if u is not traversed then
20 With probability pu,v do: h2∗(R)← h2∗(R) ∪ {u},

add u into Q, mark u as traversed;

21 return R = 〈src(R), h1(R), h2∗(R)〉;

v’s inverse neighbor vk where k < i, there is no 2-hop live
path going through vk. As a result, two cases may happen: (i)
edge (vk, v) is blocked, or (ii) edge (vk, v) is live and edges
(vk,1, vk), (vk,2, vk), . . . , (vk,`vk , vk) are all blocked. The prob-
ability for (i) to happen is 1 − pvk,v , and the probability for (ii)
to happen is pvk,v · η

vk
`vk

= αvk − (1 − pvk,v). For case (i), node
vk should not be marked as traversed in the BFS because the
incoming edges to vk are possibly live and may give rise to new
nodes to be added to the RR set if there is a live path (more than
1 hop) from vk to the source node v. For case (ii), node vk is
added to the RR set and should be marked as traversed since no
incoming edge to vk is live. Thus, for each node vk where k < i,
we add it to the RR set and mark it as traversed with probability

Pr[Tk] =
αvk − (1− pvk,v)

αvk
=

pvk,v · η
vk
`vk

1− pvk,v + pvk,v · η
vk
`vk

. (8)

Algorithm 2 summarizes the generation of a 2-hop RR set.
The 2-hop RR set R returned by Algorithm 2 distinguishes
between the nodes src(R), h1(R) and h2∗(R). First, a node
v is selected as the source with the probability distribution of
Pr[src = v] according to (7) (line 1). Then, the first 2-hop live
path vi,j → vi → v is chosen using Algorithm 1 (line 3) and
vi is added to h1(R) (line 4). Next, each inverse neighbor vk of
v where k < i is marked as traversed and added to h1(R) with
probability Pr[Tk] (line 6). Each inverse neighbor vk of v where
i < k ≤ `v is marked as traversed and added to h1(R) with
probability pvk,v (line 10). After that, vi,j is added to h2∗(R) if
it is not traversed before (line 12). Note that vi,j can be added to
h2∗(R) only after all the inverse neighbors of v are checked so
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as to ensure that vi,j does not belong to h1(R). The remaining
sampling process follows normal RIS.

3.2 SkipEdge: A Fast Sampling Method

In a vanilla implementation of the RR set construction, we need to
generate a random number for each edge encountered in the BFS
to determine whether the edge is live or blocked. In this section, we
develop a new algorithm, referred to as SkipEdge, to speed up the
generation of 2-hop RR sets. Our SkipEdge algorithm attempts
to skip some edges if they are likely to be blocked together.

Consider a node u encountered in the BFS. Let Pr[Bui ] be
the probability that (ui, u) is the first live edge among all the
incoming edges (u1, u), (u2, u), . . . , (u`u , u) to u. That is, edges
(u1, u), (u2, u), . . . , (ui−1, u) are all blocked and edge (ui, u)
is live. Then, Pr[Bui ] is given by

Pr[Bui ] = ηui−1 · pui,u = ηui−1 − ηui .

Let ζu0 be the probability that there is at least one live edge among
all the incoming edges to u. We have

ζu0 =
∑`u

k=1
Pr[Buk ] =

∑`u

k=1

(
ηuk−1 − ηuk

)
= 1− ηu`u . (9)

Note that ηu`u is the probability that all the incoming nodes to u
are blocked. Therefore, with probability 1 − ζu0 , we can directly
terminate the sampling process for the incoming edges to u. With
the other ζu0 probability, we can select the first live edge according
to the probability distribution of Pr[Bui ] (1 ≤ i ≤ `u).

This idea can be extended to locate all the subsequent live
edges since the probability distribution of each new live edge
depends on only the last live edge identified. In general, let (ui, u)
be a live edge identified. Given that (ui, u) is a live edge, let
Pr[Buj|i] be the probability that (uj , u) is the next live edge
(j > i). That is, edges (ui+1, u), (ui+2, u), . . . , (uj−1, u) are
all blocked and edge (uj , u) is live. Then, Pr[Buj|i] is given by

Pr[Buj|i] =
ηuj−1

ηui
· puj ,u =

ηuj−1 − ηuj
ηui

.

Let ζui be the probability that there is at least one live edge from
an inverse neighbor of u indexed higher than i. Similar to the
derivation of (9), we have

ζui =
∑`u

k=i+1
Pr[Buk|i] = 1−

ηu`u
ηui

.

Hence, with probability 1 − ζui , we can terminate the sampling
process after finding the live edge (ui, u). With the other ζui
probability, we can select the next live edge according to the
probability distribution of Pr[Buj|i] (i < j ≤ `u).

To make the selection efficient, we can use a binary search. In
particular, the cumulative probability is given by∑j

k=i+1
Pr[Buk|i] = 1−

ηuj
ηui
.

Thus, the selection of the next live edge can be conducted by
generating a random number r ∈ [0, 1] and identifying the lowest
index j such that 1 − ηuj

ηui
≥ r via a binary search. Note that all

the values ηui are precomputed in our 2-hop sampling method.
Algorithm 3 shows the details of the SkipEdge algorithm to
compute the list of u’s inverse neighbors to traverse when a node
u is encountered in the BFS.

Algorithm 3: SkipEdge
Input: Node u’s inverse neighbors Iu = {u1, u2, . . . , u`u} and the

corresponding (ηu1 , η
u
2 , . . . , η

u
`u)

Output: A list of u’s inverse neighbors to traverse
1 Initialize i← 0, Actu ← ∅;
2 while i < `u do
3 Generate a random number r ∈ [0, 1];
4 if r > 1− ηu`u/η

u
i then break;

5 Find the lowest index j s.t. 1− ηuj /ηui ≥ r via binary search;
6 Add uj into Actu;
7 Update i← j;

8 return Actu;

Complexity. The SkipEdge algorithm takes Θ(log(`u)) time
(binary search in line 5) to identify each live edge to u. Let
Eu be the total number of live edges and E[Eu] be its expected
value. We have E[Eu] = µu, where µu =

∑`u
k=1 puk,u is

the total propagation probability of all the incoming edges to
u. As a result, the expected time complexity of SkipEdge is
Θ
(

log(`u) · (1 +µu)
)
. Note that the time complexity of a vanilla

implementation that flips a coin for each edge is Θ(`u). Since
it normally holds that µu � `u (e.g., under the widely-used
Weighted Cascade model [28], [39], µu = 1), our SkipEdge
algorithm can significantly improve the sampling efficiency.

2-hop+: Improved 2-hop by SkipEdge. The normal RIS parts
of the 2-hop sampling method (lines 8–10, 13–15 and 18–20 of
Algorithm 2) can be augmented with the SkipEdge algorithm.
In addition, SkipEdge can be applied to adding the nodes from
{v1, v2, . . . , vi−1} to the RR set (lines 5–6 of Algorithm 2)
by inputting η̃vj =

∏j
k=1

1−pvk,v
αvk

. We shall refer to the 2-hop
sampling method equipped with SkipEdge as 2-hop+.

Remark. The value of ηui can be 0 if there exists an edge (uk, u)
where puk,u equals 1. In this case, we can place all the inverse
neighbors uk where puk,u = 1 at the end of the ordered set Iu and
exclude them from the sampling process since the edge (uk, u) is
always live. In addition, when all the incoming edges to a node v
have the same propagation probability p, our SkipEdge technique
leverages the geometric distribution sampling [22] to identify the
index i1 of the first live edge using a random number r ∈ [0, 1]
by i1 = dlog(r)/ log(1 − p)e and then the process iterates from
the index i1 + 1 until the index exceeds `u. The time complexity
to select all the live edges to a given node u is Θ(1 + µu).

3.3 Influence Estimation by 2-hop RR sets

Let ΩRIS be the sample space of the standard RIS method. We
use RRIS to denote a random RR set generated by the RIS method
with respect to the probability distribution Pr[RRIS = R] for each
R ∈ ΩRIS. Similarly, let Ω2-hop be the sample space of our 2-
hop (or 2-hop+) sampling method. We use R2-hop to denote a
random 2-hop RR set generated by our 2-hop sampling method
with respect to the probability distribution Pr[R2-hop = R] for
each R ∈ Ω2-hop. Then, for any 2-hop RR set R(v) ∈ Ω2-hop
with source node v, the probability that RIS generates R(v) under
the given source node v equals βv times the probability that the
2-hop method generates R(v) under the given source node v, i.e.,

Pr[RRIS = R(v) | src(RRIS) = v]

= βv · Pr[R2-hop = R(v) | src(R2-hop) = v].
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In addition, the probability of selecting source node v satisfies
that Pr[src(RRIS) = v] = 1

|V | and Pr[src(R2-hop) = v] = βv
κ .

Therefore, for any node v ∈ V and any 2-hop RR set R(v) ∈
Ω2-hop with source node v, we have

Pr[RRIS = R(v)]

= Pr[RRIS = R(v) | src(RRIS) = v] · Pr[src(RRIS) = v]

= Pr[R2-hop = R(v) | src(R2-hop) = v] · βv ·
1

|V |

= Pr[R2-hop = R(v) | src(R2-hop) = v] · κPr[src(R2-hop) = v]

|V |
= Pr[R2-hop = R(v)] · κ

|V |
. (10)

For a random RR set RRIS generated by the standard RIS
method, recall that only Ea, Eb, and Ec can happen when RRIS ∩
S 6= ∅. By (2) and (3) shown earlier, we have Pr[Ea] = |S|

|V |
and Pr[Eb] = 1

|V | ·
∑
v∈NS\S pS,v . Now let us come back to the

estimation of Pr[Ec] in (1).
Let Ωc denote the set of all possible RR sets making event

Ec happen. Recall that when event Ec happens, RRIS must be a
2-hop RR set, which indicates that Ωc ⊆ Ω2-hop, Thus, according
to (10), we have

Pr[Ec] =
∑
R∈Ωc

Pr[RRIS = R] =
∑
R∈Ωc

(
Pr[R2-hop = R] · κ

|V |

)
.

For a random 2-hop RR set R2-hop returned by Algorithm 2,
let us define a subset R2-hop* ⊆ R2-hop as follows: R2-hop* =
h2∗(R2-hop) if src(R2-hop) /∈ S and h1(R2-hop) ∩ S = ∅, and
R2-hop* = ∅ otherwise. Then, Pr[Ec] can be rewritten as

Pr[Ec] = Pr[R2-hop* ∩ S 6= ∅] ·
κ

|V |
.

Together with (1), (2) and (3) shown earlier, we can establish
the relationship between the set R2-hop* ⊆ R2-hop and the influ-
ence spread σ(S) as follows.

Theorem 1. Given a seed set S and the subset R2-hop* of a
random 2-hop RR set R2-hop returned by Algorithm 2, we have

σ(S) = |S|+
∑

v∈NS\S
pS,v + Pr[R2-hop* ∩ S 6= ∅] · κ.

Influence Estimation. For a random 2-hop RR set R2-hop gen-
erated by the 2-hop method, let X be a random variable defined
as

X =

{
1 if R2-hop* ∩ S 6= ∅,
0 otherwise.

By Theorem 1, we can get that

E[X] = Pr[R2-hop* ∩ S 6= ∅] =
σ(S)− |S| −

∑
v∈NS\S pS,v

κ
.

Let Z = X · κ
|V | +

|S|+
∑
v∈NS\S

pS,v

|V | . Then, we have

E[Z] = E[X] · κ
|V |

+
|S|+

∑
v∈NS\S pS,v

|V |
=
σ(S)

|V |
.

Consequently, the influence spread σ(S) can be obtained by
estimating E[Z] and scaling it up by a factor of |V |. Note that
Z is a random variable bounded by 0 ≤ a ≤ Z ≤ b, where
a =

|S|+
∑
v∈NS\S

pS,v

|V | and b = a+ κ
|V | .

In practice, we can estimate E[X] or E[Z] by generating a
sequence of random 2-hop RR sets. Specifically, let R2-hop be a
set of 2-hop RR sets. Let Λ(R2-hop*, S) be the number of R2-hop*
samples in R2-hop that overlap S. Then, we can estimate E[X] by
Λ(R2-hop*,S)
|R2-hop| . Thus, the influence spread σ(S) can be estimated by

σ̃(S) = |S|+
∑

v∈NS\S

pS,v +
Λ(R2-hop*, S)

|R2-hop|
· κ.

3.4 Complexity Analysis of 2-hop+
In an online social network, the number of edges is normally much
larger than the number of nodes. We focus on the case when |E| >
|V | in the complexity analysis. For our 2-hop+ sampling method,
the space complexity to store ηvk , φvk and Pr[Tk] (1 ≤ k ≤ `v) for
a node v is O(`v) and the total space complexity is thus O(|E|).
The expected time complexity for generating a 2-hop RR set by
our 2-hop+ sampling method is given as follows. Due to space
limitations, details of all the missing proofs in the analysis are
given in Appendix A of the supplementary file.

Lemma 2. 2-hop+ sampling takes O
(

TP
κ · E[σ2({v�})]

)
time

in expectation to generate a 2-hop RR set, where TP =∑
v∈V

(
log(`v) ·(1+µv)

)
, σ2({v}) = Pr[R2-hop∩{v} 6= ∅] ·κ

and the expectation is over the randomness of v� being chosen
from V with probability Pr[v� = v] = log(`v)·(1+µv)

TP .

Taking the weighted cascade (WC) model as an example where∑`v
k=1 pvk,v = 1, we have TP = 2

∑
v∈V log(`v) ≤ 2|V | ·

log( |E||V | ) where the maximal is achieved when `v = |E|
|V | for each

node v ∈ V . Hence, under the WC model, the expected time

complexity is O
( |V |·log( |E||V | )

κ · E[σ2({v�})]
)
.

Comparison with Previous Work. Sadeh et al. [31] proposed a
sampling method on the basis of Monte Carlo (MC) simulations.
MC takes O(E) space to record the graph. In a MC simulation, if
a node v is activated, all its neighbors will be examined. Denote
by Pr[S → v] the probability that S activates v and by dv the
out-degree of v. Then, the expected time complexity of MC is
O
(∑

v∈V
(

Pr[S → v] · dv
))

= O
(
|E| · E[Pr[S → vM]]

)
,

where the expectation is taken over the randomness of vM being
chosen from V with probability proportional to its out-degree,
i.e., Pr[vM = v] = dv

|E| .
In addition, the standard RIS method [4] takes O(E) space

to record the graph and O
( |E|
|V | · E[σ({v∗})]

)
time in expectation

to generate a random RR set [39], where v∗ is a random node
chosen from V with probability proportional to its in-degree, i.e.,
Pr[v∗ = v] = `v

|E| .
We note that Nguyen et al. [28] proposed an importance

influence sampling method, called SKIS, to generate only the non-
singular RR sets which contain at least one node other than the
source. Such a random non-singular RR set RSKIS satisfies that

σ(S) = Pr[RSKIS ∩ S 6= ∅] · Γ +
∑

v∈S
(1− γv),

where γv is the probability for the source v to have a non-singular
sample and Γ =

∑
v∈V γv . SKIS requires to precompute and

store all the values ηvk (1 ≤ k ≤ `v), which uses a total of O(|E|)
space. Let σ1({v}) = Pr[RSKIS ∩ {v} 6= ∅] · Γ. Similar to our
analysis for 2-hop+, the expected time complexity to generate an
SKIS sample is O

( |E|
Γ ·E[σ1({v∗})]

)
where v∗ is a random node

chosen from V with probability proportional to its in-degree, i.e.,
Pr[v∗ = v] = `v

|E| .
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TABLE 1: Complexity Results under General Cases.

Method Space Time

MC [31] O(|E|) O
(
|E| · E[Pr[S → vM]]

)
RIS [4] O(|E|) O

( |E|
|V | · E[σ({v∗})]

)
SKIS [28] O(|E|) O

( |E|
Γ
· E[σ1({v∗})]

)
SUBSIM [16] O(|E|) O

(
ITP
|V | · E[σ({v◦})]

)
2-hop+ O(|E|) O

(
TP
κ
· E[σ2({v�})]

)
Very recently, Guo et al. [16] proposed a sampling technique,

called SUBSIM, to improve the sampling efficiency of RIS. An
index-free method is adopted by SUBSIM to sample the live
edges to a node. Specifically, for a node v, the probabilities of the
incoming edges {p1, p2, . . . , p`v} are first sorted in descending
order. Then, those in the index range of [2k, 2k+1] are put into
a bucket bk with k = 0, 1, . . . , blog2 `vc. In each bucket bk,
p2k is used as the probability for the geometric distribution
G(p2k). When the index i sampled from G(p2k) is greater than
2k, no live edge is sampled from bk. Otherwise, it switches to
position 2k + i and sample the incoming neighbor v2k+i with
probability p2k+i/p2k . The time complexity for this technique to
sample the incoming edges to v is O(1 + µv + log(`v)). Let
ITP =

∑
v∈V

(
1 + µv + log(`v)

)
. Similar to our analysis for

2-hop+, the expected time complexity to generate an RIS sample
by SUBSIM is O

(
ITP
|V | · E[σ({v◦})]

)
where v◦ is a random node

chosen from V with probability Pr[v◦ = v] = 1+µv+log(`v)
ITP .

Note that in the special case when all the incoming edges to
a node v have the same propagation probability p, SUBSIM
leverages the geometric distribution sampling [22] to identify
each live edge using a random number r ∈ [0, 1] by computing
dlog(r)/ log(1 − p)e. Let STP =

∑
v∈V (1 + µv). In such a

special case, the expected time complexity of SUBSIM to generate
an RIS sample is O

(
STP
|V | · E[σ({v?})]

)
, where v? is a random

node chosen from V with probability Pr[v? = v] = 1+µv
STP . We

also use the geometric distribution sampling [22] in our method
when all the incoming edges to a node share the same probability.
In particular, we adopt the geometric distribution to identify the
live edges for lines 8–10, 13–15 and 18–20 of Algorithm 2 and
adopt our general SkipEdge for lines 5–6 of Algorithm 2 since the
probabilities Pr[Tk] (1 ≤ k < i) are not uniform. As a result, the
expected time complexity to generate a 2-hop sample by 2-hop+
is between O

(
STP
κ · E[σ2({v?})]

)
and O

(
TP
κ · E[σ2({v�})]

)
.

For ease of reference, Table 1 summarizes the complexity
results of algorithms for general cases, including the existing
MC [31], RIS [4], SKIS [28] and SUBSIM [16] algorithms, and
our 2-hop+ algorithm.

3.5 Influence Maximization by 2-hop RR Sets

Influence maximization [20] is one of the most important ap-
plications on the basis of influence estimation. Leveraging the
monotonicity and submodularity of influence spread [20], the
standard greedy algorithm is used for seed selection that can
achieve an approximation ratio of 1 − 1/e [26]. However, we
find that the relation between the influence spread and a random
2-hop+ RR set given in Theorem 1 may not suitable for influence
maximization, since the term Pr[R2-hop* ∩ S 6= ∅] is no longer
monotone and submodular. To tackle the application of influence
maximization, we establish a new relation as follows.

Theorem 2. For notational convenience, let pu,u = 1 for every
node u ∈ V . Moreover, let αu,v = 1− pu,v + pu,v · ηu`u . Given a
seed set S, for a random RR set R2-hop returned by Algorithm 2,
we have

σ(S) =
∑

v∈NS∪S

(
(1− βv) ·

(
1−

∏
u∈(Iv∪{v})∩S

1− pu,v
αu,v

))
+ Pr[R2-hop ∩ S 6= ∅] · κ. (11)

Note that both two terms in the right hand side of (11)
are monotone and submodular which indicates that the greedy
algorithm can be applied to tackle the influence maximization
problem with approximation ratio of 1 − 1/e. Specifically, let
σ̃(S) be an estimate of σ(S) by generating a set R2-hop of 2-hop
RR sets using Algorithm 2, which replaces Pr[R2-hop ∩ S 6= ∅]
with Λ(R2-hop,S)

|R2-hop| in (11), where Λ(R2-hop, S) is the number of 2-
hop RR sets in R2-hop that overlap S. We can see that the two
terms in the right hand side are also monotone and submodular.
Consequently, we can apply our 2-hop sampling method to the
state-of-the-art OPIM-C framework [34] to address the influence
maximization problem that can provide an approximation ratio of
(1− 1/e− ε) with high probability efficiently.

4 IMPROVED STOPPING RULE ALGORITHM

In this section, we propose an improved stopping rule algorithm
based on the original stopping rule algorithm in [11] to estimate
the mean of random variables falling in a given range of [a, b]
(0 ≤ a < b) using the martingale-based concentration bounds.
Our algorithm can be used to estimate the influence spread or
E[Z] (discussed earlier) with (ε, δ)-approximation.

4.1 Martingale Concentration Bounds
Definition 1 ( [9]). A sequence of random variables Y1, Y2, . . . is
a martingale if and only if E[Yk | Y1, Y2, . . . , Yk−1] = Yk−1 and
E[|Yk|] <∞ for any k.

Lemma 3 ( [9]). Let M1,M2, . . . ,Mt be a martingale, such that
M1 ≤ α, Mk −Mk−1 ≤ α for any 2 ≤ k ≤ t, and Var[M1] +∑t
k=2 Var[Mk | M1,M2, . . . ,Mk−1] ≤ β. Then, for any η >

0,

Pr[Mt − E[Mt] ≥ η] ≤ exp
(
− η2

2
3αη + 2β

)
.

Let X1, X2, . . . be a sequence of random variables satisfying:
for each k ≥ 1, 0 ≤ Xk ≤ 1 and E[Xk | X1, X2, . . . , Xk−1] =
µX where µX is a constant. Applying Lemma 3, we have the
following result.

Lemma 4. Given a fixed real number θ, let X̄ = 1
θ

(∑bθc
k=1Xk+

(θ − bθc)Xdθe
)
. Then, for any λ > 0,

Pr[X̄ ≥ µX + λ] ≤ exp
(
− λ2θ

2µX + 2
3λ

)
, (12)

Pr[X̄ ≤ µX − λ] ≤ exp
(
− λ2θ

2µX

)
. (13)

To our knowledge, almost all the previous work [29, 40, 43]
gives similar concentration bounds that require θ to be an integer.
Interestingly, via a non-trivial analysis, we show that these con-
centration bounds also hold even when θ is a real number, which
generalizes existing results. Lemma 4 is the core to devising our
improved stopping rule algorithm with (ε, δ)-approximation that
requires less samples.
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Algorithm 4: Generalized Stopping Rule Algorithm
Input: Random variables Z1, Z2, . . . and 0 < ε, δ < 1
Output: An (ε, δ)-estimate µ̃Z of µZ

1 Υ← 2(b− a)(1 + ε)( b−a
b

+ 1
3
ε) ln( 2

δ
) 1
ε2

;
2 Initialize θ ← 0, Σ← 0;
3 while Σ < Υ do
4 Σ← Σ + Zθ , θ ← θ + 1;

5 θ ← θ − Σ−Υ
Zθ

;
6 return µ̃Z = Υ

θ
;

4.2 Improved Stopping Rule Algorithm
Based on Lemma 4, we give an improved stopping rule algorithm
(Algorithm 4) that yields an (ε, δ)-estimate of the mean µZ of
random variables Zk satisfying: for each k ≥ 1, (i) a ≤ Zk ≤ b
where 0 ≤ a < b, and (ii) E[Zk+1 | Z1, Z2, . . . , Zk] = µZ .
Algorithm 4 first computes a threshold Υ that guards the stopping
time on the basis of the bounds a and b of random variables and the
input accuracy parameters ε and δ (Line 1). Then, it accumulates
the observed values of random samples until the accumulation Σ
reaches the threshold Υ (Lines 3–4). Finally, it slightly adjusts the
total number of samples θ to θ − Σ−Υ

Zθ
and returns an estimate Υ

θ
(Line 5–6), where the adjustment of sample size is a key step to
ensure the accuracy of influence estimation leveraging Lemma 4.

Theorem 3. Algorithm 4 returns an (ε, δ)-estimate µ̃Z of µZ ,
i.e.,

Pr[(1− ε)µZ ≤ µ̃Z ≤ (1 + ε)µZ ] ≥ 1− δ, (14)

and the number of samples θ satisfies

Pr
[
θ ≤ Υ

(1− ε)µZ

]
≥ 1− δ

2
. (15)

Comparison with Previous Work [29]. Nguyen et al. [29] also
proposed a stopping rule algorithm to estimate the mean of random
variables in a given range [a, b]. The setting of Υ by Nguyen et al.
[29] is

ΥN = 2(b− a)(1 + ε)(1 +
1

3
ε′) ln(

2

δ
)

1

ε′2
,

where ε′ = ε(1 − εb
(2+ 2

3 ε) ln( 2
δ )(b−a)

) < ε. It is easy to see
that ΥN is not only rather complicated but also larger than our
setting of Υ, which indicates that our algorithm always requires
less number of samples than Nguyen et al. [29]. We argue that
the key reason behind is that our Lemma 4 no longer limits θ
to integers only and θ can be any real number. This property
allows our algorithm (Algorithm 4) to ensure that the total value
of all observed random variables equals to a fixed constant Υ,
i.e.,

∑bθc
k=1 Zk + (θ − bθc)Zdθe = Υ (Line 5). In contrast,

Nguyen et al.’s algorithm [29] utilizes concentration bounds that
require θ to be an integer so that

∑θ
k=1 Zk is in the range of

[ΥN,ΥN + b). Such an uncertainty requires an extra relation
between b and ΥN to ensure the estimation accuracy, resulting
in more samples than our algorithm.

4.3 (ε, δ)-Approximate Influence Estimation
Recall from Section 3 that by the 2-hop+ sampling method,
influence estimation degenerates to estimating the mean µZ of
a sequence of random variables Z1, Z2, . . . , where a ≤ Zk ≤ b,
a =

|S|+
∑
v∈NS\S

pS,v

|V | and b = a + κ
|V | . Since each 2-hop

RR set is generated independently, for each k ≥ 1, we have
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(c) A 2-hop Sample R′

Fig. 3: A social graph and 2 possible 2-hop samples. Dashed
arrows indicate blocked edges. Seed set is {v6}.

E[Zk | Z1, Z2, . . . , Zk−1] = µZ = σ(S)
|V | . Based on Theorem 3,

an (ε, δ)-estimate µ̃Z of µZ can be obtained by using Algorithm 4
and then an (ε, δ)-estimate of the influence spread can be obtained
by σ̃(S) = |V | · µ̃Z .

Example 2. Fig. 3 shows an example social graph and 2 possible
2-hop samples. The graph in Fig. 3(a) has 7 nodes and 6 edges
where each edge is associated with a probability of 0.5. In this
example, there are three 2-hop paths, i.e., v4 → v5 → v1, v7 →
v5 → v1 and v6 → v3 → v1. Thus, by definition, only v1 can be
selected as the source node for generating 2-hop samples, since
there is no 2-hop path ending at other nodes than v1. That is,
βvk = 0 for k ≥ 2. Meanwhile, we can compute that κ = βv1 =
1−αv1v3 ·α

v1
v5 = 17

32 where αv1v3 = 1−pv3,v1pv6,v3 = 3
4 and αv1v5 =

1−pv5,v1(1−(1−pv4,v5)(1−pv7,v5)) = 5
8 are the probabilities

of no 2-hop path going through v3 and v5, respectively. Consider
a seed set S = {v6}. For the RR set R in Fig. 3(b), we have
src(R) = v1, h1(R) = {v3, v5} and h2∗(R) = {v4, v6}, while
for the RR set R′ in Fig. 3(c), src(R′) = v1, h1(R′) = {v3, v5}
and h2∗(R

′) = {v7}. This indicates that R2-hop* ∩ S 6= ∅ and
R′2-hop*∩S = ∅. According to Algorithm 4 (Line 4), if an RR setR
in Fig. 3(b) is generated, Σ is increased by Z = b, whereas if an
RR setR in Fig. 3(c) is generated, Σ is increased by Z = a, where
a =

|S|+
∑
v∈NS\S

pS,v

|V | = 3
14 and b = a + κ

|V | = 65
224 . Given

ε = 0.01 and δ = 0.001, Algorithm 4 first gets the threshold Υ =
3086.41 (Line 1). Then, it keeps generating 2-hop samples until Σ
reaches the threshold Υ (Lines 3–4). Suppose that a total of 12385
RR sets are generated with the accumulation Σ = 3086.67 and
the last RR set has Zθ = 0.29. Then, it slightly adjusts the total
number of samples to 12384.1 and obtains µ̃Z = 0.2492 (Line 5–
6). As a result, by Theorem 1, we can get an estimate of σ({v6})
as σ̃({v6}) = 1.745. On the other hand, it is easy to verify that
σ({v6}) = 1.75 such that the estimate via Algorithm 4 is clearly
within a relative error of 0.01.

Complexity Analysis. Sadeh et al. [31] used a fixed number
of τε−2δ−1 Monte Carlo simulations to estimate the expected
influence spread σ(S) with (ε, δ) guarantee under the assumption
that the influence spread within τ hops can be a good estimate
of the total influence spread where τ is the number of diffusion
steps satisfying 1 ≤ τ ≤ |V |. Thus, the total time complexity is
O
(
|E| · τ

ε2·δ · E[Pr[S → vM]]
)
. Meanwhile, the expected size of

each sample is O(
∑
v∈V Pr[S → v]) = O(|V | ·E[Pr[S → v̄]]),

where the expectation is over the randomness of v̄ being uniformly
chosen from V . Thus, the total expected size of samples is(
|V | · τ

ε2·δ · E[Pr[S → v̄]]
)
.

In addition, according to Wald’s equation [41], our stop-
ping rule algorithm generates an expected number of samples
in the range of [ Υ

µZ
, Υ
µZ

+ 1] and takes an expected time of

O
(

EPT · Υ
µZ

)
= O

(
EPT ·Υ·|V |σ(S)

)
, where EPT is the expected

time complexity for generating one sample. The value of Υ is
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TABLE 2: Expected total sample size and time complexity for
obtaining an (ε, δ)-estimate of the influence spread σ(S).

Method Total Sample Size Time

MC [31] O
( |V |τ
ε2δ
· E[Pr[S → v̄]]

)
O
( |E|τ
ε2δ
· E[Pr[S → vM]]

)
RIS [4] O

( |V | ln( 1
δ

)

σ(S)ε2
· E[σ({v̄})]

)
O
( |E| ln( 1

δ
)

σ(S)ε2
· E[σ({v∗})]

)
SKIS [28] O

(Γ ln( 1
δ

)

σ(S)ε2
· E[σ1({v̄})]

)
O
( |E| ln( 1

δ
)

σ(S)ε2
· E[σ1({v∗})]

)
SUBSIM [16] O

( |V | ln( 1
δ

)

σ(S)ε2
· E[σ({v̄})]

)
O
( ITP ln( 1

δ
)

σ(S)ε2
· E[σ({v◦})]

)
2-hop+ O

(κ ln( 1
δ

)

σ(S)ε2
· E[σ2({v̄})]

)
O
(TP ln( 1

δ
)

σ(S)ε2
· E[σ2({v�})]

)
TABLE 3: Datasets.

Dataset #nodes #edges Avg. degree Type

Google+ 107.6K 13.7M 254.1 Directed
LiveJournal 4.8M 69.0M 28.5 Directed
Orkut 3.1M 117.2M 76.3 Undirected
Twitter 41.7M 1.5G 70.5 Directed

O
(
κ
|V | ·

ln( 1
δ )

ε2

)
, O
(

Γ
|V | ·

ln( 1
δ )

ε2

)
and O

( ln( 1
δ )

ε2

)
for 2-hop+, SKIS

and RIS/SUBSIM respectively. Finally, together with EPT shown
in Table 1, the expected time complexity to get an (ε, δ)-estimate
of σ(S) for different sampling methods is summarized in Table
2. Meanwhile, let EPS denote the expected size of one sample.
Then, for RIS/SUBSIM, EPS = E[|R|] = E[σ({v̄})], where
Pr[v̄ = v] = 1

|V | for each v ∈ V . Similarly, for SKIS and
2-hop+, EPS is E[σ1({v̄})] and E[σ2({v̄})], respectively. As a
result, combining with the expected number of samples generated
gives the total expected size of samples for different algorithms as
summarized in Table 2.

5 EXPERIMENTAL EVALUATION

We evaluate the effectiveness and efficiency of our algorithms
against the state-of-the-art solutions. All the experiments are run
on a machine with Intel Xeon 2.4GHz CPU with 384GB memory.

5.1 Experimental Settings

Datasets. We use several real-world datasets [23, 24] with ranging
from thousands to tens of millions of nodes. Table 3 shows the
details of each dataset.

Parameter Settings. We focus on the IC model and adopt the
following widely-used models to set the propagation probabilities.

- Weighted Cascade (WC) [28, 39]: The propagation probabil-
ity pu,v of each edge (u, v) is set to the reciprocal of v’s
in-degree, i.e., pu,v = 1

|Iv| .

- Uniform (UNI) [20, 36]: The propagation probabilities of all
the edges are set to the same value p. We set p = 0.001 in
our experiments.

- Exponential distribution (EXP) [16]: The propagation proba-
bility of each edge is first randomly generated according to
the probability density function f(x) = λe−λx, where λ is
set to 1. For each node v, the sum of the probabilities of its
incoming edges is then scaled to 1.

- Weibull distribution (WEI) [16]: The propagation probability
of each edge is first randomly generated according to the
probability density function f(x) = a

b · (xb )a−1e−(x/b)a ,
where a and b are sampled from the range of [0,10] uniformly

WC WEIUNI EXP

1 10 100 1000

size of seed set

0.4

0.6

0.8

ra
ti
o

Fig. 4: Ratio of influence spread in 1 hop for Google+.

at random for each edge. For each node v, the sum of the
probabilities of its incoming edges is then scaled to 1.

Algorithms. We compare our 2-hop+ method with the following
four sampling methods.

- MC [31]. We generate ε−2δ−1 Monte Carlo samples with
τ = 1 assuming that the total influence spread can be well
approximated by the 1-hop influence.

- RIS [4]: The standard Reverse Influence Sampling method.

- SKIS [28]: The state-of-the-art reverse influence sampling
method that generates non-singular samples only.

- SUBSIM [16]: The Subset Sampling method based on RIS.

To compare the efficiency of the methods, we implement all
algorithms in C++ and equip the reverse sampling methods with
our improved stopping rule algorithm (Section 4).

5.2 Experimental Results
5.2.1 Efficiency of Influence Estimation
We run our improved stopping rule algorithm to get an (ε, δ)-
estimate of the influence spread for a given seed set. We exper-
iment with different seed sets and observe similar performance
trends since the trends of time complexities can hardly be affected
by changing seed sets alone. Due to space limitations, we focus
on reporting the results for the seed set that includes the top-k
highest-degree nodes in the network. We test seed sets of size
k = 1, 10, 100 and 1000. We conduct experiments for ε = 0.01
and δ = 0.001.

Running Time. Figs. 5–8 show the running time. We cap the
running time at 24 hours and do not plot the results for unfinished
methods (e.g., under the UNI model for the Twitter dataset as
shown in Fig. 6, only 2-hop+ and SUBSIM methods can complete
the estimation well within 24 hours whereas no other method can
do it).

As shown in Figs. 5–8, the running time to generate ε−2δ−1 =
107 Monte Carlo simulations is significantly longer than the
reverse sampling methods under various models. In fact, the
execution can be finished within 24 hours only when both the
seed size and the dataset are small, i.e., |S| = 1 or |S| = 10 on
Google+. In addition, Fig. 4 plots the ratio of the 1-hop influence
spread to the total influence spread for Google+. As can be seen,
the 1-hop influence constitutes up to only around 80% under
the UNIFORM model on Google+, which is far from reaching
the approximation guarantee of (0.01, 0.001). In other words,
we need to further increase the value of τ until the influence
spread within τ hops can be a good estimate of the total influence
spread and thus more samples would be needed to achieve the
approximation guarantee. However, as validated by Figs. 5–8,
generating 107 samples already incurs much longer running time
compared with other reverse sampling methods.
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Fig. 5: Running time for WC model.
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Fig. 6: Running time for UNI model.
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Fig. 7: Running time for EXP model.
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Fig. 8: Running time for WEI model.

Figs. 5 and 6 show that our 2-hop+ method can always outper-
form the other baselines for both WC and UNI models. The speed-
up is up to 90× times and 30× times for the WC and UNI models
respectively compared with SKIS, and 92× times and 408× times
for the WC and UNI models respectively compared with RIS.
Compared with the state-of-the-art SUBSIM, our 2-hop+ method
can achieve the speed-up up to 1.7× times and 224× times under
the WC and UNI models respectively. In particular, our 2-hop+
method achieves the most notable speed-up for the LiveJournal
dataset under the UNI model. This is because the propagation
probability is relatively low under the UNI model and LiveJournal
is more sparse compared to other datasets and thus we can avoid
generating a greater number of samples with only 1-hop paths
to improve the efficiency. Figs. 7 and 8 show that for the EXP
and WEI models, our 2-hop+ method is still the best one with
minimal running time to reach (ε, δ)-estimate. The speed-up is
up to 56× times and 40× times for the EXP and WEI models
respectively compared with SKIS, and 60× times and 48× times
for the EXP and WEI models respectively compared with RIS.
Compared with the state-of-the-art SUBSIM, our 2-hop+ method
can achieve the speed-up up to 2.6× times and 2× times under the
EXP and WEI models respectively.

In summary, the experimental results validate that our pro-
posed 2-hop+ method can significantly boost the efficiency of
influence estimation.

Sample Size. Figs. 9–12 show the number of samples generated
by different algorithms to reach (ε, δ)-estimate under the WC,
UNI, EXP and WEI models respectively, and Figs. 13–16 show
the corresponding total size of these samples. Note that the results
for the pair of RIS and SUBSIM are almost the same as the latter
just accelerates the sampling procedure and retains the sample
outcomes. We can see from Figs. 9–12 that our 2-hop+ method
generate substantially less samples than other baselines, despite
that a 2-hop sample can have a larger expected size than an
SKIS or RIS sample. This is because our 2-hop+ method can
reduce the number of samples by avoiding generating samples
with only 1-hop live paths which consist of a large portion of the
samples. It can also be seen that the reduction in samples by our
2-hop+ method is more significant for the UNI model (Figs. 10
and 14) than other models because the UNI model generally has
lower propagation probabilities and more samples with only 1-
hop live paths are avoided generation in the sampling process. As
a result, the total sample size returned by our 2-hop+ method is
significantly reduced compared with SKIS and RIS, which makes
our 2-hop+ method run faster than SKIS and RIS based methods.
This confirms the results in Fig. 6. We can also see from Figs. 9–
12 that different from the reverse samples consisting of only a
few active nodes, each Monte Carlo simulation can activate a
large number of nodes and the total size of the samples can be
significantly larger than other reverse samples.
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Fig. 9: Number of samples generated for WC model.
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Fig. 10: Number of samples generated for UNI model.
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Fig. 11: Number of samples generated for EXP model.
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Fig. 12: Number of samples generated for WEI model.

TABLE 4: Average relative error (%) of influence estimation.

Datasets Google+ LiveJournal Orkut Twitter

k 1 10 100 1000 1 10 100 1000 1 10 100 1000 1 10 100 1000

W
C SKIS 2.3 1.9 2.1 2.0 2.4 2.4 2.2 2.1 2.3 2.5 2.2 2.0 2.4 2.2 2.0 1.5

SUBSIM 2.3 2.2 2.3 2.1 2.4 2.3 2.5 2.2 2.4 2.4 2.2 2.1 2.4 2.3 2.2 1.8
2-hop+ 1.6 1.7 1.8 1.7 2.1 1.9 2.1 1.9 2.2 2.3 2.0 1.9 2.0 1.6 1.5 1.4

U
N

I SKIS 2.1 2.1 2.2 2.1 2.1 2.2 2.1 2.0 2.5 2.5 2.1 2.2 2.2 2.3 1.9 1.9
SUBSIM 2.5 2.3 2.5 2.7 2.4 2.5 2.5 2.4 2.6 2.7 2.1 2.6 2.2 2.3 2.5 2.1
2-hop+ 1.4 1.6 1.3 1.8 0.8 0.6 0.8 0.7 1.8 1.9 1.7 1.5 1.5 1.5 1.3 1.4

E
X

P SKIS 2.0 2.2 2.0 1.7 2.3 2.2 2.5 2.3 2.7 2.3 2.1 2.0 2.1 2.1 1.9 1.8
SUBSIM 2.3 2.3 2.7 2.1 2.7 2.4 2.4 2.5 2.7 2.5 2.3 2.3 2.2 2.1 2.0 2.0
2-hop+ 1.6 1.9 1.7 1.5 2.0 2.1 1.8 1.9 2.3 2.0 2.0 1.8 2.0 1.9 1.6 1.4

W
E

I SKIS 2.4 2.3 2.1 1.9 2.3 2.5 2.4 2.1 2.2 2.2 2.0 2.3 2.2 2.0 1.8 1.6
SUBSIM 2.8 2.4 2.4 2.2 2.4 2.7 2.6 2.3 2.2 2.3 2.1 2.3 2.2 2.2 2.0 1.8
2-hop+ 1.9 1.9 1.4 1.5 2.0 2.0 2.0 1.8 1.9 2.0 1.9 1.9 2.1 1.9 1.5 1.4

5.2.2 Accuracy of Influence Estimation

To compare the accuracy, we take the influence estimates gen-
erated under the (ε, δ) setting of ε = 0.01 and δ = 0.001
as the ground-truth. We run SKIS, SUBSIM and our 2-hop+
methods each for 100 times under the (ε, δ) setting of ε = 0.1 and
δ = 0.01 and compare the influence estimates generated against
the ground-truth. Note that the results of RIS and SUBSIM are
almost the same, since SUBSIM just accelerates the sampling
procedure of RIS and retains the sample outcomes of RIS. The

results of RIS are omitted here. Table 4 shows the average relative
error from the ground-truth for the three methods under the
WC, UNI, EXP and WEI models respectively. As can be seen,
our 2-hop+ method consistently achieves smaller relative errors
compared with the other two baselines for all the datasets and seed
set sizes tested. This is because our 2-hop+ method estimates a
smaller portion of the influence spread via sampling than SKIS
and SUBSIM. These results demonstrate that our 2-hop+ method
can not only reduce the sample generation time but also improve
the accuracy of influence estimation.
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Fig. 13: Total size of samples for WC model.
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Fig. 14: Total size of samples for UNI model.
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Fig. 15: Total size of samples for EXP model.
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Fig. 16: Total size of samples for WEI model.
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Fig. 17: Running time for influence maximization.

5.2.3 Influence Maximization

We apply the state-of-the-art technique in [34] to tackle the
influence maximization problem where the number of samples
is doubled in each round until the examined approximation guar-
antee is satisfied. The accuracy parameters of (ε, δ) are set as
(0.01, 0.001) and the target seed set size is set as 50. There are
mainly two phases to tackle the influence maximization problem,
i.e., the sampling phase and the seed selection phase. As our 2-
hop+ sampling method generally requires less samples to achieve
the accuracy guarantee compared with other methods, it takes
relatively less time to build the samples under various models,
where the sampling phase would cost a considerable portion of
total time. To further reduce the overhead in the seed selection
phase of our 2-hop+ method, we enlarge the number of samples
in the initial round to reduce the number of iterations to reach the

accuracy guarantee. As can be seen in Fig. 17, our 2-hop+ method
can outperform RIS and SKIS in all cases and is comparable
to SUBSIM. Similar to the performance in influence estimation,
our 2-hop+ method can be much more efficient under the UNI
model as 2-hop+ can significantly reduce the number of required
samples to reach the accuracy guarantee. This shows that our 2-
hop sampling method can work on the application of influence
maximization efficiently.

5.2.4 Initialization
In our 2-hop+ sampling method, we need to precompute the
parameters ηvi , φvi , Pr[Ti] (1 ≤ i ≤ `v) and βv for each node
v ∈ V as discussed in Section 3. Similarly, the SKIS method
[28] needs to precompute its parameters γv . Meanwhile, we use
the alias method [42] to select the source node according to
the probability distribution of Pr[src = v] which incurs some
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TABLE 5: Time for initialization (seconds) under general cases.

Method Google+ LiveJournal Orkut Twitter

SKIS 0.3 4.0 7.3 84.7
SUBSIM 0.3 1.0 4.1 30.4
2-hop+ 0.9 12.9 26.7 300.3

additional preprocessing time for both methods. SUBSIM also
needs to sort the probabilities of the incoming edges when they
are non-uniform. Table 5 shows the running time of initialization
under general cases. As expected, our 2-hop+ method has longer
time of initialization than others since it needs to precompute
more parameters but the increase in time is rather mild. Since
the initialization of the parameters is one-off before generating
samples to evaluate any number of seed sets, its impact on the
running time of influence estimation is insignificant.

The additional experimental evaluations are presented in Ap-
pendix B of the supplementary file.

6 RELATED WORK

Kempe et al. [20] first proposed two well-known influence diffu-
sion models, i.e., independent cascade (IC) and linear threshold
(LT), based on which, they defined an influence maximization
problem and developed an approximation solution using Monte
Carlo simulations. Since then, there has been a large body of
research on influence estimation or maximization [1, 4, 6, 8,
15, 21, 25, 33, 34, 36, 39, 40]. Chen et al. [7, 8] showed that
computing the exact influence spread of a seed set is #P-hard
under both the IC and LT models. Borgs et al. [4] proposed
the reverse influence sampling (RIS) method, which substantially
improves the efficiency of influence estimation over Monte Carlo
simulations. Many follow-up studies have made use of the RIS
method to design efficient influence maximization algorithms with
worst-case guarantees [27, 34, 39, 40]. In addition, the RIS
method is extensively used to address a plethora of influence based
optimization problems, including regret minimization [2], revenue
maximization [3], profit maximization [32, 35, 37], adaptive influ-
ence maximization [17, 18], adaptive seed minimization [38], and
adaptive profit maximization [19]. Nguyen et al. [28] improved
the RIS method for influence estimation by proposing a SKIS
method that generates only non-singular samples in which the RR
set contains at least one additional node than the source node.
In this way, the samples can have smaller variance and better
concentration bounds. Meanwhile, some studies have observed
that the majority of the influence spread is produced in the first few
hops of propagation [1, 14, 36]. Our 2-hop sampling method takes
advantage of this observation to enhance RIS by analytically com-
puting the portion of influence spread within 1 hop of propagation
and cutting the portion of influence spread to estimate experimen-
tally through sampling. To further reduce the number of samples
required, we develop some novel concentration bounds that im-
prove the stopping rule algorithm to estimate the mean of random
variables with (ε, δ)-approximation. Moreover, we also develop
a SkipEdge algorithm to improve the sampling efficiency of our
2-hop RR sets. Our proposed techniques can be integrated with
existing RIS based algorithms for the aforementioned optimiza-
tion problems [2, 3, 4, 17, 18, 19, 27, 32, 34, 35, 37, 38, 39, 40]
to improve their efficiency.

7 CONCLUSION

In this paper, we boost the sampling process for influence estima-
tion in online social networks by two key techniques. First, we

propose a 2-hop+ sampling method to generate 2-hop samples
leading to tighter concentration bounds for imposing less samples
and a SkipEdge algorithm to improve the sampling efficiency.
Second, we improve the stopping rule algorithm with tighter
threshold and thus further reduce the number of samples required.
We show that our 2-hop+ method can significantly improve the
efficiency of influence estimation by 1–2 orders of magnitudes
compared to the state-of-the-art methods.

While this paper has focused on the IC model, our ideas and
techniques can be easily extended and applied to the LT model as
well. Under the LT model, the sampling process of the incoming
edges to a given node can be accelerated by using the alias
method [42] directly. To conduct 2-hop sampling, the probability
distributions required can be derived similarly for the LT model.
Finally, our stopping rule algorithm can be applied to any bounded
random variables, including those representing the 2-hop samples
generated under the LT model.
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APPENDIX A
MISSING PROOFS

Proof of Lemma 2. In 2-hop+ sampling, the source node is cho-
sen from V according to the probability distribution of Pr[src =
v], which can be finished inO(1) time using the alias method [42].
Let EPT2-hop+ denote the expected time complexity of 2-hop+
sampling for generating a 2-hop RR set R2-hop, and Ev(R2-hop)
denote the number of live edges to v in R2-hop. Then,

EPT2-hop+ = O
(
E
[∑

v∈R2-hop

(
log(`v)·

(
1+Ev(R2-hop)

))])
,

where the expectation is over the randomness of R2-hop. Ob-
serve that given any node v, the expected number of active
edges to v in all 2-hop RR sets containing v is µv , i.e.,
E[Ev(R2-hop) | v ∈ R2-hop] = µv . For notational convenience,
we define Ev(R2-hop) = −1 if v /∈ R2-hop. Thus,

E
[ ∑
v∈R2-hop

(
log(`v) ·

(
1 + Ev(R2-hop)

))]
= E

[ ∑
v∈V

(
log(`v) ·

(
1 + Ev(R2-hop)

))]
=
∑
v∈V

E
[

log(`v) ·
(
1 + Ev(R2-hop)

)]
=
∑
v∈V

(
Pr[v ∈ R2-hop] · log(`v)

· E
[(

1 + Ev(R2-hop)
)
| v ∈ R2-hop

])
=
∑
v∈V

(
Pr[v ∈ R2-hop] · log(`v) · (1 + µv)

)
=

TP

κ
·
∑
v∈V

(
σ2({v}) · log(`v) · (1 + µv)

TP

)
=

TP

κ
· E[σ2({v�})].

This completes the proof.

Proof of Lemma 4. With respect to X1, X2, . . . , Xdθe, define a
sequence of random variables Y1, Y2, . . . , Ybθc+1 with Yk = Xk

for each 1 ≤ k ≤ bθc, and Ybθc+1 = (θ− bθc) ·Xdθe. Note that
when θ is an integer, i.e., θ = bθc, we have Ybθc+1 = 0. Thus,
for each 1 ≤ k ≤ bθc,

E[Yk | Y1, Y2, . . . , Yk−1] = E[Xk | X1, X2, . . . , Xk−1] = µX .

Meanwhile,

E[Ybθc+1 | Y1, Y2, . . . , Ybθc] = (θ − bθc)µX .

Define Mt =
∑t
k=1(Yk − ckµX) for each 1 ≤ t ≤ bθc +

1, where ck = 1 if 1 ≤ k ≤ bθc and cbθc+1 = θ − bθc.
Thus, we can get that E[Mk | M1,M2, . . . ,Mk−1] = Mk−1

and E[|Mk|] < ∞ for any k ≤ bθc + 1. Therefore, according to
Definition 1, M1,M2, . . . ,Mbθc+1 form a martingale. Similarly,
−M1,−M2, . . . ,−Mbθc+1 also form a martingale.

In the martingale M1,M2, . . . ,Mbθc+1, we have M1 ≤ 1
and Mk −Mk−1 ≤ 1 for any 2 ≤ k ≤ bθc+ 1. In addition,

Var[M1] +
∑bθc+1

k=2
Var[Mk |M1,M2, . . . ,Mk−1]

= Var[Y1] +
∑bθc+1

k=2
Var[Yk | Y1, Y2, . . . , Yk−1]

= Var[X1] +
∑bθc

k=2
Var[Xk | X1, X2, . . . , Xk−1]

+(θ − bθc)2 ·Var[Xdθe | X1, X2 . . . , Xbθc]

≤ bθcµX(1− µX) + (θ − bθc)2µX(1− µX)

≤ bθcµX(1− µX) + (θ − bθc)µX(1− µX)

= θµX(1− µX).

Since E[Mbθc+1] = 0, by Lemma 3, we have

Pr[X̄ ≥ µX + λ] = Pr
[∑bθc+1

k=1
Yk − θ · µX ≥ θλ

]
= Pr[Mbθc+1 ≥ θλ]

≤ exp
(
− θ2λ2

2
3θλ+ 2θµX(1− µX)

)
≤ exp

(
− λ2θ

2µX + 2
3λ

)
.

In the martingale −M1,−M2, . . . ,−Mbθc+1, we have
−M1 ≤ µX and −Mk+Mk−1 ≤ µX for any 2 ≤ k ≤ bθc+1.
In addition,

Var[−M1] +
∑bθc+1

k=2
Var[−Mk | −M1,−M2, . . . ,−Mk−1]

= Var[Y1] +
∑bθc+1

k=2
Var[Yk | Y1, Y2, . . . , Yk−1]

≤ θµX(1− µX).

If λ > µX , (13) is trivial. If λ ≤ µX , since E[−Mbθc+1] = 0,
by Lemma 3, we have

Pr[X̄ ≤ µX − λ] = Pr
[∑bθc+1

k=1
Yk − θ · µX ≤ −θλ

]
= Pr[−Mbθc+1 ≥ θλ]

≤ exp
(
− θ2λ2

2
3µXθλ+ 2θµX(1− µX)

)
≤ exp

(
− λ2θ

2µX + 2
3µ

2
X − 2µ2

X

)
≤ exp

(
− λ2θ

2µX

)
.

This completes the proof.

Proof of Theorem 3. To prove (14), we prove the following two
inequalities:

Pr[µ̃Z < (1− ε)µZ ] ≤ δ

2
, (16)

Pr[µ̃Z > (1 + ε)µZ ] ≤ δ

2
. (17)

When Algorithm 4 terminates, we have

µ̃Z =
Υ

θ
, and

∑bθc

k=1
Zk + (θ − bθc)Zdθe = Υ.

Let Z ′k = Zk−a
b−a so that Z ′k ∈ [0, 1]. Define µZ′ = E[Z ′k] =

µZ−a
b−a . Let ϑ1 = Υ

(1−ε)µZ . Then, we have

Pr[µ̃Z < (1− ε)µZ ]

= Pr[Υ < (1− ε)µZθ]
= Pr[ϑ1 < θ]

≤ Pr

[ bϑ1c∑
k=1

Zk + (ϑ1 − bϑ1c)Zdϑ1e

≤
bθc∑
k=1

Zk + (θ − bθc)Zdθe
]
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= Pr

[∑bϑ1c

k=1
Zk + (ϑ1 − bϑ1c)Zdϑ1e ≤ Υ

]
= Pr

[∑bϑ1c
k=1 Zk + (ϑ1 − bϑ1c)Zdϑ1e

ϑ1
≤ Υ

ϑ1

]
= Pr

[∑bϑ1c
k=1 Zk + (ϑ1 − bϑ1c)Zdϑ1e

ϑ1
≤ (1− ε)µZ

]

= Pr

[∑bϑ1c
k=1 Z

′
k + (ϑ1 − bϑ1c)Z ′dϑ1e

ϑ1

≤ µZ′ − ε(µZ′ +
a

b− a
)

]
.

Next, we prove (17). Let ϑ2 = Υ
(1+ε)µZ

. Similarly, we have

Pr[µ̃Z > (1 + ε)µZ ]

= Pr[Υ > (1 + ε)µZθ]

= Pr[ϑ2 > θ]

≤ Pr

[∑bϑ2c

k=1
Zk + (ϑ2 − bϑ2c)Zdϑ2e

≥
∑bθc

k=1
Zk + (θ − bθc)Zdϑe

]
= Pr

[∑bϑ2c

k=1
Zk + (ϑ2 − bϑ2c)Zdϑ2e ≥ Υ

]
= Pr

[∑bϑ2c
k=1 Zk + (ϑ2 − bϑ2c)Zdϑ2e

ϑ2
≥ Υ

ϑ2

]
= Pr

[∑bϑ2c
k=1 Zk + (ϑ2 − bϑ2c)Zdϑ2e

ϑ2
≥ (1 + ε)µZ

]

= Pr

[∑bϑ2c
k=1 Z

′
k + (ϑ2 − bϑ2c)Z ′dϑ2e

ϑ2

≥ µZ′ + ε(µZ′ +
a

b− a
)

]
.

Applying (12) of Lemma 4, we obtain that

Pr[µ̃Z > (1 + ε)µZ ]

≤ exp
(
−

ε2(µZ′ + a
b−a )2ϑ2

2µZ′ + 2
3ε(µZ′ + a

b−a )

)
= exp

(
− ε2µZϑ2

2(b− a)( µZ′
µZ′+

a
b−a

+ 1
3ε)

)
≤ exp

(
− ε2µZϑ2

2(b− a)( b−ab + 1
3ε)

)
= exp

(
− ε2Υ

2(b− a)( b−ab + 1
3ε)(1 + ε)

)
=
δ

2
.

Applying (13) of Lemma 4, we obtain that

Pr[µ̃Z ≤ (1− ε)µZ ]

≤ exp
(
−
ε2(µZ′ + a

b−a )2ϑ1

2µZ′

)
= exp

(
−
ε2(1 + a

(b−a)µZ′
)µZϑ1

2(b− a)

)
≤ exp

(
−
ε2 b
b−aµZϑ1

2(b− a)

)

= exp
(
−

ε2 b
b−aΥ

2(b− a)(1− ε)

)
= exp

(
−

(1 + ε)(1 + bε
3(b−a) ) ln( 2

δ )

(1− ε)

)
≤ δ

2
.

By the union bound, (16) and (17) give rise to (14). Meanwhile,
based on (16), we have

Pr
[
θ >

Υ

(1− ε)µZ

]
= Pr[µ̃Z < (1− ε)µZ ] ≤ δ

2
,

which completes the proof of (15).

Proof of Theorem 2. For a random RR set RRIS generated by the
RIS method, let E ′a and E ′b denote the following events

E ′a : RRIS ∩ S 6= ∅ ∧ h2∗(RRIS) = ∅,
E ′b : RRIS ∩ S 6= ∅ ∧ h2∗(RRIS) 6= ∅.

Therefore,

σ(S)

|V |
= Pr[S ∩RRIS 6= ∅] = Pr[E ′a] + Pr[E ′b]. (18)

An RR set RRIS is a 2-hop RR set if and only if h2∗(RRIS) 6= ∅.
Thus, when event E ′b occurs, RRIS is a 2-hop RR set, indicating
that

Pr[E ′b] = Pr[R2-hop ∩ S 6= ∅] ·
κ

|V |
. (19)

On the other hand, when event E ′a occurs, h2∗(RRIS) = ∅ and
the source node v = src(RRIS) must satisfy either (i) v ∈ S or
(ii) v ∈ NS \ S and h1(RRIS) ∩ S 6= ∅. In fact, we know that
the probability of RRIS generated from source node v satisfying
h2∗(RRIS) = ∅ is

Pr[h2∗(RRIS) = ∅ | src(RRIS) = v] = 1− βv.

As a result, given v ∈ S,

Pr[E ′a ∧ src(RRIS) = v]

= Pr[src(RRIS) = v] · Pr[h2∗(RRIS) = ∅ | src(RRIS) = v]

=
1− βv
|V |

.

Moreover, αu,v is the probability that there is no 2-hop live path
going through node u from source node v. Thus, conditional on
h2∗(RRIS) = ∅, for any given u ∈ Iv , the probability of edge
(u, v) being blocked is

Pr[u ∈ h1(RRIS) | h2∗(RRIS) = ∅∧src(RRIS) = v] =
1− pu,v
αu,v

.

Therefore, the probability that there exists a node u ∈ Iv ∩ S
satisfying edge (u, v) being live is

Pr[h1(RRIS) ∩ S 6= ∅ | h2∗(RRIS) = ∅ ∧ src(RRIS) = v]

= 1−
∏

u∈Iv∩S

1− pu,v
αu,v

.

As a result, given v ∈ NS \ S,

Pr[E ′a ∧ src(RRIS) = v]

= Pr[src(RRIS) = v] · Pr[h2∗(RRIS) = ∅ | src(RRIS) = v]

·Pr[h1(RRIS) ∩ S 6= ∅ | h2∗(RRIS) = ∅ ∧ src(RRIS) = v]
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Fig. 18: Influence spread within hops.
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Fig. 19: Empirical relative error.
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Fig. 20: Expected influence spread of influence maximization.

=
1− βv
|V |

·
(

1−
∏

u∈Iv∩S

1− pu,v
αu,v

)
.

Finally, we have

Pr[E ′a]

=
∑
v∈S

Pr[E ′a ∧ src(RRIS) = v]

+
∑

v∈NS\S

Pr[E ′a ∧ src(RRIS) = v]

=
∑
v∈S

1− βv
|V |

+
∑

v∈NS\S

(1− βv
|V |

·
(

1−
∏

u∈Iv∩S

1− pu,v
αu,v

))
=

1

|V |
∑

v∈NS∪S

(
(1− βv) ·

(
1−

∏
u∈(Iv∪{v})∩S

1− pu,v
αu,v

))
.

(20)

Putting it all together of (18)–(20) completes the proof.

APPENDIX B
ADDITIONAL EVALUATIONS

Influence Spread in Hops. Fig. 18 shows the influence spread of
10 top-degree nodes within hops of propagation on the dataset
of Google+. The ground-truth influence spread is obtained by
a (0.01,0.001)-estimate. As can be seen from Fig. 18, when the
diffusion steps τ ≤ 4, the influence spread is significantly smaller
than the ground truth. Applying the diffusion step constraint with
a small value of τ can improve the efficiency but at the cost
of accuracy, which is far from the desire of (ε, δ)-estimate of
influence spread.

Empirical Relative Error. To measure the empirical quality of
estimation, we run different sampling algorithms on the dataset of
Google+ with 10 top-degree nodes as seeds and use a (0.01,0.001)-
estimate as the ground-truth. We plot the curves of empirical
relative error delivered by different sampling methods. As shown
in Fig. 19, the empirical accuracy of Monte-Carlo simulation
is comparable to other reverse sampling methods when running
within a given time limit. However, it remains a challenge for
devising practical MC-based algorithms with rigorous (ε, δ) ap-
proximation guarantees.

Influence Maximization. Fig. 20 shows that our 2-hop sampling
method can achieve similar expected influence spread compared
with other baselines for influence maximization.

Statistical Significance. We perform the statistical significance
test for time, space complexity and accuracy results as follows.
We run our algorithm together with the baselines for 100 times
to obtain the (0.01, 0.001)-estimate on Google+ and record the
relative standard deviation of the number of samples, the running
time and the total size of samples in Table 6. The performance on
other datasets is similar. It can be seen that the standard deviation
is small among 100 runs which can hardly affect the relative
performance among different algorithms and the result is stable
and reliable.

We calculate the confidence interval characterizing the range
of relative error where the influence estimation will lie in with
probability 0.95. As can be seen from Tables 7–10, our 2-hop+
method can deliver an estimation of influence spread falling in an
interval with smaller relative error compared with other methods.
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TABLE 6: Standard deviation (%).

Metrics Num. of samples Running time Total size

k 1 10 100 1000 1 10 100 1000 1 10 100 1000

W
C RIS 0.18 0.15 0.15 0.13 3.5 4.2 4.9 1.5 0.18 0.15 0.12 0.13

SUBSIM 0.14 0.14 0.15 0.14 2.5 1.5 3.9 1.4 0.14 0.12 0.12 0.12
SKIS 0.15 0.14 0.13 0.12 2.9 5.8 3.3 5.4 0.15 0.15 0.13 0.15
2-hop+ 0.11 0.09 0.1 0.09 2.7 3.3 2.9 4.5 0.12 0.09 0.14 0.17

U
N

I RIS 0.14 0.15 0.14 0.13 0.9 1.4 1.6 4.9 0.12 0.15 0.13 0.13
SUBSIM 0.13 0.14 0.16 0.17 1.3 0.8 1.3 4.6 0.14 0.13 0.14 0.15
SKIS 0.15 0.16 0.15 0.12 1.4 3.6 2.1 1.7 0.15 0.16 0.14 0.14
2-hop+ 0.08 0.09 0.09 0.08 2.8 3.2 1.5 1.8 0.08 0.08 0.12 0.26

E
X

P RIS 0.14 0.15 0.14 0.16 0.4 1.4 6.0 4.9 0.14 0.15 0.12 0.13
SUBSIM 0.16 0.15 0.15 0.12 2.3 0.9 1.7 3.2 0.16 0.15 0.12 0.11
SKIS 0.16 0.13 0.12 0.13 2.5 4.5 4.3 4.2 0.15 0.13 0.12 0.14
2-hop+ 0.13 0.11 0.11 0.09 2.9 1.8 2.9 2.5 0.12 0.11 0.11 0.18

W
E

I RIS 0.15 0.15 0.14 0.13 0.17 1.9 1.6 3.6 0.15 0.13 0.13 0.11
SUBSIM 0.15 0.17 0.14 0.14 1.0 1.9 3.8 2.4 0.15 0.16 0.11 0.13
SKIS 0.13 0.14 0.15 0.11 0.9 3.0 2.6 1.9 0.13 0.14 0.16 0.13
2-hop+ 0.14 0.11 0.09 0.10 3.5 1.9 1.6 2.2 0.14 0.11 0.10 0.14

TABLE 7: Confidence interval of relative error (%) for influence estimation on Google+.

Models WC UNI

k 1 10 100 1000 1 10 100 1000

SUBSIM [2.0,2.7] [1.8,2.5] [2.0,2.6] [1.8,2.4] [2.2,2.8] [2.0,2.7] [2.1,2.8] [2.3,3.0]
SKIS [2.0,2.6] [1.6,2.3] [1.8,2.4] [1.7,2.3] [1.8,2.4] [1.8,2.4] [1.9,2.5] [1.8,2.4]
2-hop+ [1.4,1.8] [1.4,1.9] [1.6,2.1] [1.5,2.0] [1.2,1.6] [1.4,1.8] [1.1,1.4] [1.6,2.0]

Models EXP WEI

SUBSIM [2.0,2.6] [1.9,2.7] [2.3,3.0] [1.8,2.4] [2.4,3.1] [2.0,2.7] [2.0,2.7] [1.8,2.5]
SKIS [1.7,2.4] [1.8,2.5] [1.7,2.3] [1.4,1.9] [2.1,2.7] [1.9,2.5] [1.7,2.4] [1.6,2.2]
2-hop+ [1.4,1.8] [1.6,2.2] [1.5,1.9] [1.3,1.6] [1.7,2.1] [1.6,2.1] [1.2,1.6] [1.3,1.7]

TABLE 8: Confidence interval of relative error (%) for influence estimation on LiveJournal.

Models WC UNI

k 1 10 100 1000 1 10 100 1000

SUBSIM [2.0,2.7] [1.9,2.6] [2.1,2.9] [1.9,2.5] [2.1,2.8] [2.1,2.8] [2.1,2.9] [2.1,2.8]
SKIS [2.1,2.7] [2.0,2.7] [1.9,2.6] [1.8,2.4] [1.8,2.4] [1.9,2.5] [1.8,2.4] [1.7,2.3]
2-hop+ [1.7,2.4] [1.6,2.2] [1.8,2.4] [1.7,2.2] [0.7,0.9] [0.5,0.7] [0.7,0.9] [0.6,0.8]

Models EXP WEI

SUBSIM [2.3,3.1] [2.1,2.8] [2.1,2.7] [2.2,2.8] [2.1,2.8] [2.3,3.0] [2.2,3.0] [2.0,2.6]
SKIS [2.0,2.6] [1.9,2.5] [2.1,2.8] [1.9,2.6] [2.0,2.7] [2.1,2.8] [2.1,2.7] [1.8,2.5]
2-hop+ [1.7,2.3] [1.8,2.3] [1.5,2.1] [1.6,2.1] [1.7,2.3] [1.8,2.3] [1.7,2.2] [1.5,2.0]

TABLE 9: Confidence interval of relative error (%) for influence estimation on Orkut.

Models WC UNI

k 1 10 100 1000 1 10 100 1000

SUBSIM [2.0,2.8] [2.0,2.7] [1.9,2.6] [1.8,2.4] [2.2,2.9] [2.3,3.1] [1.7,2.4] [2.2,3.0]
SKIS [2.0,2.6] [2.1,2.8] [1.9,2.6] [1.7,2.3] [2.1,2.9] [2.1,2.8] [1.7,2.4] [1.9,2.4]
2-hop+ [1.9,2.5] [2.0,2.7] [1.6,2.3] [1.6,2.2] [1.6,2.0] [1.6,2.1] [1.4,1.9] [1.3,1.7]

Models EXP WEI

SUBSIM [2.3,3.1] [2.0,2.9] [2.0,2.7] [1.9,2.6] [1.9,2.6] [1.9,2.7] [1.7,2.5] [1.9,2.7]
SKIS [2.3,3.0] [1.9,2.7] [1.7,2.4] [1.6,2.3] [1.8,2.6] [1.8,2.5] [1.7,2.4] [1.9,2.6]
2-hop+ [2.0,2.7] [1.7,2.3] [1.7,2.3] [1.6,2.1] [1.6,2.3] [1.6,2.3] [1.6,2.2] [1.7,2.1]

TABLE 10: Confidence interval of relative error (%) for influence estimation on Twitter.

Models WC UNI

k 1 10 100 1000 1 10 100 1000

SUBSIM [2.1,2.7] [2.0,2.6] [1.9,2.5] [1.6,2.1] [1.9,2.5] [1.9,2.7] [2.1,2.8] [1.8,2.4]
SKIS [2.1,2.7] [1.9,2.6] [1.7,2.3] [1.3,1.7] [1.9,2.5] [1.9,2.6] [1.6,2.1] [1.6,2.1]
2-hop+ [1.8,2.3] [1.4,1.9] [1.2,1.7] [1.2,1.6] [1.3,1.8] [1.3,1.7] [1.2,1.5] [1.2,1.6]

Models EXP WEI

SUBSIM [1.9,2.7] [1.7,2.5] [1.7,2.3] [1.7,2.2] [1.9,2.6] [1.8,2.5] [1.7,2.3] [1.5,2.0]
SKIS [1.7,2.5] [1.8,2.4] [1.6,2.1] [1.6,2.0] [1.9,2.5] [1.7,2.3] [1.5,2.0] [1.4,1.8]
2-hop+ [1.7,2.3] [1.6,2.1] [1.4,1.9] [1.2,1.6] [1.8,2.4] [1.6,2.2] [1.3,1.7] [1.2,1.6]


