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Abstract—Advances in cloud computing and GPU
virtualization are allowing the game industry to move into a
cloud gaming era. In this paper, we consider multiplayer cloud
gaming (MCG), which is the natural integration of multiplayer
online gaming and cloud gaming paradigms. With MCG, a
game server and a set of rendering servers for the players need
to be located and launched in the clouds for each game session.
We formulate an MCG server allocation problem with the
objective of minimizing the total server rental and bandwidth
cost charged by the cloud to support an MCG session. The
MCG server allocation problem is hard to solve optimally. We
propose several efficient heuristics to address the problem and
carry out theoretical analysis for the proposed hill-climbing
algorithm. We conduct extensive experiments using real Internet
latency and cloud pricing datasets to evaluate the effectiveness
of our proposed algorithms as well as several alternatives.
Experimental results show that our best algorithm can achieve
near-optimal cost under real-time latency constraints.

Index Terms—Cloud gaming, multiplayer online games,
real-time multimedia, resource allocation, cloud computing.

I. INTRODUCTION

NOWADAYS, real-time multimedia applications are
getting increasingly rich and demanding, which

motivates the trend for offloading certain media computing
tasks (e.g., video transcoding, image recognition) from users’
electronic devices to the cloud in an interactive manner
[1]. Following this trend, a new paradigm of gaming –
cloud gaming, has emerged [2]–[4]. In cloud gaming, a
video game is hosted on a cloud server and virtually all the
graphics required for the game are processed by the server.
An end user’s machine only needs to display/play the game
screen/audio captured and streamed by the server, as well
as to relay the user’s game input commands (e.g., mouse
clicks, keystrokes, touch gestures) to the server for game
controls. With cloud gaming, users can play resource-intensive
video games on less powerful devices (e.g. mobile phones)
anywhere and anytime over the Internet. Cloud gaming also
has the potential to reduce the energy consumption of user
devices compared to running native games [5].

In this paper, we focus on multiplayer cloud gaming (MCG),
a new form of multiplayer online gaming in the cloud gaming
era. In conventional multiplayer online gaming, a game server,
which is the authoritative source of game events, disseminates
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Fig. 1. A typical MCG architecture.

state updates about the game session to its connected clients,
allowing them to maintain their own versions of the game
world. Meanwhile, the games are also required to run on the
clients’ devices. Therefore, the clients not only need sufficient
hardware resources to render the games, but also require the
games to be installed locally on their devices. By contrast,
in MCG, the clients can enjoy multiplayer online gaming
without these hassles thanks to the advantages brought by
cloud gaming. Figure 1 depicts the architecture of MCG. The
game server is identical to that in traditional multiplayer online
gaming. The rendering servers, on the one hand, act as the
“clients” that are connected to the game server in traditional
multiplayer online gaming to receive/exchange state updates,
and on the other hand, function as the servers which host the
game application instances for their connected clients in cloud
gaming. The rendering servers process game graphics and
logics and capture the game scenes for the clients to display.
The clients are known as “thin-clients” which merely transit
user interaction (UI) input to the rendering servers. A number
of cloud gaming systems supporting MCG have emerged in
recent years [6]–[9]. A recent position paper [10] anticipates
that MCG will be one of the future directions of cloud gaming,
due to several additional benefits introduced by applying cloud
gaming to multiplayer games, such as instant engagement and
fair competition, etc.

With MCG, a game server and a set of rendering servers for
the players need to be located and launched in the clouds for
each game session. In this paper, we focus on the provisioning
and acquisition of these servers from available data centers
with the minimum cost. Heterogeneous server and bandwidth
prices from different datacenters together with the real-time
interaction requirements of gaming applications present unique
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opportunities and challenges for MCG server allocation. The
main contributions of this paper are:
• We formulate an MCG server allocation problem, with

the objective of minimizing the total server rental
and bandwidth cost charged by the cloud to support
an MCG session. This problem can be viewed as a
natural extension to the traditional game server selection
problem, with several distinctive characteristics related to
the cloud gaming paradigm.

• We propose a set of efficient heuristic algorithms to
address the MCG server allocation problem, and conduct
extensive experiments using real-world data to evaluate
the performance of the proposed algorithms as well
as several alternatives. Our best algorithm can achieve
near-optimal cost while satisfying the latency constraints.

• In addition to the experimental evaluation, we also
carry out theoretical analysis on the approximability
of our proposed hill-climbing algorithm (i.e., the LAC
algorithm) to the MCG server allocation problem which
is NP-hard.

This paper is extended from our preliminary work [11], with
several key novel aspects including:
• The generalization of the system model and problem

formulation by considering heterogeneous video
streaming (downloading) bitrates for clients (Section
IV).

• A newly proposed hill-climbing greedy algorithm for
the MCG server allocation problem which considers
all the cost-effectiveness factors in assigning clients
to datacenters in an integrated manner (Section V.C).
Experimental results show that the new algorithm
outperforms the earlier algorithms (Section VI).

• The theoretical analysis of the new hill-climbing greedy
algorithm to show that it provides strong approximation
guarantees on the server allocation results (Section V.D).

• The extension of the proposed algorithms to deal with
scenarios where clients come and leave dynamically
(Section VI-C).

The rest of this paper is organized as follows. Section
II presents a summary of the related work. Section III
discusses the requirements of MCG. Section IV formulates
the MCG server allocation problem. Section V proposes a
set of cost-aware client-to-datacenter assignment algorithms
to efficiently address the MCG server allocation problem. The
experimental setup and results are shown and discussed in
Section VI. Section VII discusses some possible extensions
and future work. Finally, Section VIII concludes the paper.

II. RELATED WORK

Cloud computing provides a scalable and cost-effective
way for hosting and delivering large-scale services over
the Internet to geo-distributed end users. The problem of
how to place services in multiple data centers is a key
challenge and has been extensively studied. Existing work
on this problem generally targeted at minimizing energy
consumption (or electricity cost) while guaranteeing some
performance requirement such as response time [12], [13].

In more complicated scenarios, the demand and resource
price fluctuations were also considered [14], [15]. However,
these service placement models are quite different from our
problem which aims to minimize the total cost of cloud server
rental and bandwidth usage while satisfying the real-time
delay constraint among clients in a multiplayer cloud gaming
session.

Our work is also relevant to the game server selection
problems for online gaming or Distributed Interactive
Applications (DIAs) in general. In DIAs, given a set of
clients and a set of candidate server locations, the objective
is to choose one or more servers to minimize the interaction
delay among the clients [16]–[20], or to place the minimum
number of servers while satisfying some QoS requirements
[21]–[24]. However, cloud gaming is quite different from
traditional online gaming. In addition to the game servers,
the rendering servers for the clients also need to be deployed
in cloud gaming, which makes the problem much more
challenging. There is also some work [25] focusing on
exploiting well-provisioned inter-datacenter connections to
reduce the communication latency from clients to servers.
In contrast, the purpose of cloud gaming is to leverage the
rich computing resources in the clouds for clients to play
high-quality games without dedicated hardware equipped.

Some server provisioning issues in cloud gaming have been
studied recently. Hong et al. [26] considered the problem
of how to consolidate multiple rendering servers (virtual
machines) on a physical machine in order to provide high
gaming Quality of Experience (QoE) in a cost-effective way.
The request dispatching and admission control issues were
studied in [27] with the goal of cutting down the provisioning
cost while guaranteeing the queuing delay requirement.
However, all of the above work has focused on cloud gaming
operators with their own private datacenters, and monetary
cost issues for hosting cloud gaming in public clouds were not
considered. A server rented from the public cloud is normally
charged at a fixed rate regardless of whether it is fully or
partially utilized. Many cloud gaming systems have acquired
resources (virtual machines) from public clouds to serve as
rendering and game servers [8], [9]. The problem of how
to allocate cloud resources to minimize the interaction delay
among clients was studied in [28]. However, the rental cost
of servers was not considered either. Very recently, Tian et
al. [29] studied the cost for running single-player games in
cloud gaming where each player is assigned to a separate and
dedicated server. In contrast, we focus on multiplayer cloud
gaming where server sharing among clients plays an important
role in optimizing the server cost.

Basiri et al. [30] studied cost-efficient resource provisioning
for cloud gaming by constructing detailed queuing and delay
models. They assumed that the cloud gaming provider has
fine-grained control of managing the virtual machines on the
physical machines, which is normally available in proprietary
cloud systems only. In contrast, we consider a public cloud
environment where the mapping of virtual machines to
physical machines is transparent to the cloud gaming provider.
Moreover, they assumed a coordination cost among the players
playing together that is proportional to the number of physical
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machines to which these players are allocated. Different from
[30], we explicitly model the placement of a dedicated game
server that acts as a central coordinator for processing game
actions and managing game states, and the network latencies
between the game server and the rendering servers of players.
Zhang et al. [31] carried out experimental studies and proposed
a performance model to analyze the resource consumption of
games and the capacities of cloud gaming servers. We make
use of some empirical results in [31] to guide the setting of
server capacity in our experiments.

Since our focus in this paper is on the server allocation issue
in cloud gaming, for the detailed review of recent advances on
other research topics in cloud gaming, readers are referred to
a recent comprehensive survey [32] and the references therein.

III. REQUIREMENTS OF MCG

In an MCG session, each player connects to a cloud server
that captures and streams the game screen to the player. This
cloud server is called the rendering server or R-server for that
player. A single R-server may be shared by multiple players
in the same session, if the server has sufficient capacity to
process all the rendering and streaming workloads of these
players. All the R-servers communicate with a game server or
G-server which manages and updates the game state during
the session.

In conventional multiplayer online gaming, matchmaking is
the process of setting up game sessions with the goal of finding
a required number of players for each game session subject to
some constraint on the network latency between any player and
the game server [16], [33]. In MCG, matchmaking becomes
more complicated due to the presence of R-servers in-between
the players and the G-server. Consider the scenario where we
are given a set of clients C that form the player group, a set of
datacenters D, and the G-server located at a network location
g which may either be one of the datacenters or outside all
datacenters. An MCG session is called feasible if we can find
at least one datacenter to place an R-server for each player
such that, 1) the connection latency from each player to the
G-server through his R-server is below a threshold LG, and
2) the connection latency from each player to his R-server
is below another threshold LR. That is, for each client c ∈
C, there exists at least one datacenter dc ∈ D to satisfy the
following constraints:

l(c, dc
)

+ l(dc, g) ≤ LG and l(c, dc) ≤ LR, (1)

where l(c, dc) is the network latency from c to dc, and l(dc, g)
is the network latency from dc to g, while LG and LR are the
latency thresholds.

The first latency threshold LG is related to the maximum
tolerable network latency for traditional online gaming. Note
that, in traditional online gaming, the actual game is stored,
executed and rendered on the player’s computer locally and the
player’s global in-game actions such as firing at the enemies
are sent to the G-server. The consequences of an in-game
action such as an enemy being killed are only seen by the
player after the lag caused by the time taken for the action to
reach the G-server and the time taken for the update to come

back to the player’s computer over the Internet. The second
latency threshold LR is related to the maximum tolerable
network latency for cloud gaming. Note that, in cloud gaming,
the actual game is stored, executed, and rendered on the
R-server remotely and the player’s raw input commands such
as keystrokes are sent to the R-server for controlling the game.
The consequences of an input command such as “moving
forward”, can only be displayed on the player’s computer
screen after a time lag. This lag is caused by the time taken
for the input command to reach the R-server for rendering and
the time taken for the game scene updates to be streamed back
to the player’s computer over the Internet.

The network latency is the major source of lag for traditional
online gaming [34]. The delay caused by video coding (i.e.,
server-side encoding and client-side decoding) adds another
source of lag for cloud gaming [35]. In addition, in traditional
online gaming, lag can often be hidden to some extent using
client-side compensation techniques such as dead-reckoning
[36], [37], but in cloud gaming, lag is far more difficult to
hide as the client does not maintain any game state locally
[38]. Moreover, the smoothness of live video streaming in
cloud gaming is heavily dependent on the network quality
which is likely to degrade as the network latency (distance)
increases. Therefore, LR is often required to be smaller than
LG. Several empirical studies [39], [40] have been conducted
for traditional online gaming and cloud gaming, respectively.
These studies confirmed that the network latency requirement
in cloud gaming is generally more stringent than that in
traditional online gaming.

Both latency thresholds LG and LR are dependent on
the game genre [39], [40]. In general, fast-paced games
such as first-person shooter or car racing games, have more
stringent latency requirements (i.e., lower latency thresholds)
than moderate-paced games such as third-person role-playing
or strategy/simulation games (e.g., LG = 150 ms and LR =
100 ms for fast-paced games, and LG = 300 ms and LR =
200 ms for moderate-paced games according to [39], [40]).
Once the connection latencies are below the corresponding
thresholds, any further reduction of them would not necessarily
bring along easily-noticeable improvement in the player’s
perceived playability [39], [40]. Thus, our objective of MCG
server allocation is not to minimize the above two connection
latencies, but to optimize the server allocation cost subject
to the latency thresholds. Specifically, our objective is to
minimize the total monetary cost of server and network
resources charged by the cloud to support an MCG session,
from the perspective of the game host that can be either the
player who initiates the session or a cloud gaming service
provider.

IV. PROBLEM FORMULATION

Once a feasible MCG session is set up after matchmaking,
we need to allocate servers to ensure that each client can be
serviced by an R-server launched at some datacenter.

A. Definitions and Notations
For each client c ∈ C, all the datacenters that satisfy

constraints (1) are called the eligible datacenters for c. Let
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Ec ⊆ D denote the set of eligible datacenters for each
client c. We define the server price, denoted by s(d) →
R+, to be the price for renting one server instance from a
datacenter d ∈ D to act as an R-server. Prevalent cloud billing
schemes (e.g., Amazon EC2’s pricing model) normally charge
each server instance rented at a fixed rate regardless of its
utilization. For simplicity, we assume that the servers rented
from different datacenters have the same capacity k ∈ Z+.
That is, each server rented can handle the rendering and
streaming workloads of up to k clients. Note that the actual
delays experienced by clients may increase with the number
of clients connected to the server. Some existing work has
constructed models to predict the experienced delay based on
the number of users served [26], [30]. These models can be
used to determine the maximum delay at the server side due to
factors such as queueing for up to k clients connecting to the
server. Then, such amount of delay can be deducted from the
latency thresholds LG and LR in constraint (1) when deriving
the eligible datacenters of clients. This would ensure that the
overall delays experienced by clients are within the original
thresholds if the number of clients assigned to the server does
not exceed the limit.

Since cloud gaming is bandwidth-intensive due to the need
of high-definition video streaming, we also take bandwidth
cost into account in the problem formulation. We define the
bandwidth price, denoted by b(d) → R+, to be the unit
price of data transfer from a datacenter d ∈ D to clients.1

We further denote v(c) → R+ as the amount of outbound
data transfer induced by each client c ∈ C from its assigned
datacenter during an MCG session. In practice, v(c) can be
obtained according to the estimated video streaming bitrate of
each client and the duration of the MCG session. The video
streaming bitrate and other codec parameters (e.g., frame rate
and resolution) can affect the energy consumption of the client
device and may be set by taking into account the clients battery
lifetime requirements and the type of wireless access links [5],
[41].

In general, a multiplayer online game session usually spans
some tens of minutes [42], which matches the billing interval
of on-demand server instances offered by most public cloud
providers. Thus, for the convenience of presentation, we
consider the situation where a new set of servers needs to be
opened to service a requested MCG session. The possibilities
of server sharing across sessions will be discussed in Section
VI-C.

B. MCG Server Allocation Problem

We formulate the MCG server allocation problem with
the goal of finding the number of servers to open at each
datacenter such that each client can be assigned to one
R-server located at one of its eligible datacenters and the total
server and bandwidth cost is minimized. For each client c and
each of its eligible datacenters d ∈ Ec, we define a binary

1In major public cloud service providers such as Amazon EC2 and
Microsoft Azure, only the outbound data transfer is charged while the inbound
data transfer is for free.

variable Xd
c ∈ {0, 1} to describe whether c is assigned to d.

The MCG server allocation problem can be written as follows:

min
∑
d∈D

(
s(d) ·

⌈∑
c∈C X

d
c

k

⌉
+ b(d) ·

∑
c∈C

(
Xd
c · v(c)

))
, (2)

subject to ∑
d∈Ec

Xd
c = 1, ∀c ∈ C, (3)

Xd
c ∈ {0, 1}, ∀c ∈ C, d ∈ Ec, (4)

The term
⌈(∑

c∈C X
d
c

)
/k
⌉

in objective (2) calculates the
number of servers opened at datacenter d to run games for
all the clients assigned to it. Constraint (3) ensures that each
client is assigned to exactly one of its eligible datacenters.

In general, the server capacity k is dependent on the server’s
resource volume and the rendering workload of the particular
game. In the special case where k = 1, objective (2) can be
minimized by simply opening a server to serve as the R-server
for each client c at its eligible datacenter in Ec with the
minimum value of s(d) + b(d) · v(c), i.e., the aggregate server
rental and bandwidth cost. When k ≥ 2, this may not minimize
the total cost, since it does not consider server sharing among
clients. If a datacenter is assigned less than k clients, the
server opened at the datacenter cannot be fully utilized, leading
to capacity wastage and unnecessary cost. It is easy to see
that the server allocation problem is tightly coupled with the
assignment of clients to datacenters.

C. Problem Variants

The MCG server allocation problem defined so far assumes
that the G-server is given whose location is fixed prior to
the allocation of R-servers. We call it the basic problem. A
typical scenario for the basic problem is that G-servers are
offered and hosted by some multiplayer game server providers
[43], [44] and cloud gaming providers only need to set up the
R-servers in an on-demand manner for game sessions. Besides
the basic problem, we further consider a more general problem
where the G-server did not exist and needs to be launched
in one of the datacenters to support a game session as well.
Nowadays, public clouds such as Amazon EC2 have already
offered a comprehensive suite of services and products for
game hosting [45], so that one can easily set up multiplayer
game servers similar to those offered by game server providers.
This motivates us to study the above variation of the problem
in which the G-server location also needs to be determined
along with R-servers. We call it the general problem. In the
general problem, changing the G-server’s location may result
in different sets of eligible datacenters Ec for each client
c ∈ C. Thus, an MCG session is feasible only if there exists
at least one datacenter dg ∈ D for running the G-server
such that for all clients c ∈ C, Ec 6= ∅. We call such a
datacenter eligible for placing the G-server. Let DG ⊆ D
denote the set of eligible datacenters for placing the G-server.
Apparently, choosing different G-server locations in DG may
lead to different assignments of clients to datacenters, which
consequently may give rise to different total costs of the server
allocation solutions for the same set of clients. Note that the
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basic problem can be viewed as a special case of the general
problem when there is only one eligible datacenter for placing
the G-server.

D. NP-hardness

It is easy to establish polynomial reductions from the
set cover problem to show that both our basic and general
problems are NP-hard. Specifically, the basic MCG server
allocation problem degenerates to the classic set cover problem
when all datacenters have the same server/bandwidth cost and
the server capacity k is larger than the number of clients in a
session. In such a case, at most one server is needed at each
datacenter and the objective is equivalent to minimizing the
number of datacenters chosen to cover all clients of a session
subject to the latency constraints.

In the next section, we propose a set of greedy heuristic
algorithms to address MCG server allocation problems.

V. GREEDY HEURISTICS

We first present the algorithms for the basic problem and
then we extend them for the general problem. All these
algorithms assume that a feasible MCG session is already
set up by matchmaking. These algorithms can be used for
online resource allocation. When a request for running a new
MCG session arrives, the algorithms can be executed based
on the requested session size and cloud resource prices etc. to
compute the server allocation for the clients in the session and
open cloud servers to serve the clients and host the session.

A. Price-based Assignment

We begin with a simple algorithm that determines the
assigned datacenter dc for each client c ∈ C individually based
on the price consideration.

Lowest-Combined-Price (LCP) Algorithm: Every client is
assigned to the datacenter with the minimum combined price
among all of its eligible datacenters. The combined price
associated with each datacenter d is defined as s(d)/k+ b(d) ·
v(c), which assumes that the servers can be “partially” rented
to serve individual clients.

In the LCP algorithm, if a client has more than one eligible
datacenters offering the same lowest price, ties can be broken
by assigning the client to the nearest datacenter in terms of
network latency. The time complexities of the LCP is O

(
|C| ·

|D|
)
. Once the client-to-datacenter assignment is determined,

the next procedure is to open servers at each datacenter to serve
as R-servers for clients. We call this procedure client-to-server
assignment which proceeds as follows:

1) At each datacenter d ∈ D, open
⌈(∑

c∈C X
d
c

)
/k
⌉

servers where
∑
c∈C X

d
c is the total number of clients

assigned to d, and k is the capacity of each server.
2) Assign each client c ∈ C to a server opened at dc which

has spare capacity, that is, it has been assigned less than
k clients so far.

In the above client-to-server assignment procedure, there is
at most a capacity of k − 1 wasted at each datacenter. It is
intuitive that the LCP algorithm would produce an optimal

server allocation for the case of k = 1, since there is no wasted
capacity at any datacenter and each client incurs the lowest
total server and bandwidth cost. For the cases of k ≥ 2,
however, it is possible for the LCP algorithm to result in
significant capacity wastage at some datacenters. For instance,
if the clients’ eligible datacenters with the lowest combined
prices are very diverse, most clients may be assigned to distinct
datacenters when using the LCP algorithm, which loses the
opportunity of server sharing, especially when the number
of clients are small or the number of datacenters available
are large. The next algorithm we present determines the
client-to-datacenter assignment on a datacenter basis instead
of on an individual client basis in order to promote server
sharing among clients.

B. Wastage-aware Assignment

For the convenience of presentation, we introduce the
following definitions. Let Cd ⊆ C be the set of clients that can
be covered by datacenter d ∈ D (i.e., d is an eligible datacenter
for each of these clients) and have not been assigned to any
datacenter. Let w(d) be the projected capacity wastage if all
the clients in Cd are assigned to d, which is given below based
on the aforementioned client-to-server assignment procedure:

w(d) =

{
0 if |Cd| mod k = 0,

k − (|Cd| mod k) if |Cd| mod k > 0.

Intuitively, the server cost, the bandwidth cost and the
capacity wastage are major factors to consider for minimizing
the total cost of server allocation. While the price-based
assignment algorithms consider one or both of the first two
factors, the next heuristic called Lowest-Capacity-Wastage
(LCW) attempts to improve the cost-effectiveness of server
allocation by explicitly avoiding the capacity wastage at each
datacenter in the server allocation.

Algorithm Lowest-Capacity-Wastage (LCW)
1: For each datacenter d ∈ D, initialize Cd as the set of all

the clients that can be covered by d.
2: Let d∗ = arg min{d∈D,Cd 6=∅} w(d) be the datacenter with

the lowest projected capacity wastage whose Cd is not
empty. If more than one datacenter is found with the same
lowest projected capacity wastage, let d∗ be the one with
the lowest server price. If there are still ties, break them
arbitrarily.

3: Assign all the clients in Cd∗ to d∗. That is, for each client
c ∈ Cd∗ , set dc = d∗.

4: For each datacenter d ∈ D, set Cd ← Cd \ Cd∗ .
5: Stop if Cd = ∅ for every datacenter d ∈ D; else, go to

Step 2.

In the LCW algorithm, the number of iterations is at most
|D|. In each iteration, finding d∗ can be done in O

(
|D|
)

time. For each datacenter d, the set Cd can only shrink over
iterations, and therefore the time complexity for updating Cd
over all iterations is bounded by O(|C|). Hence, the overall
time complexity is O

(
|D|·(|C|+|D|)

)
. Similar to the previous

algorithms, after determining dc for each client c ∈ C, the
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client-to-server assignment procedure is executed to finalize
the server allocation for the requested MCG session.

The LCW algorithm explicitly considers minimizing the
projected capacity wastage at each datacenter by trading off
the chance to assign each individual client to its cheapest
datacenter in terms of server, bandwidth or combined price.
To consider all the three factors (i.e., server cost, bandwidth
cost and capacity wastage) in an integrated manner, we next
explore a greedy hill-climbing approach which determines the
client-to-datacenter assignment on a server basis instead of on
an individual client or datacenter basis.

C. Hill-Climbing Assignment

The proposed hill-climbing approach works as follows.
Starting from an empty assignment, the algorithm assigns a
group of clients to a selected datacenter in each iteration.
At each iteration, we consider the options of opening a new
server at each datacenter d ∈ D with Cd 6= ∅ to service a
selected group of clients, denoted by Nd ⊆ Cd. Suppose that
the clients ci ∈ Cd are sorted in the ascending order of v(ci).
When considering the option of opening a new server at d,
Nd is chosen to include the first n clients in Cd that minimize
the amortized cost per client subject to the server capacity
constraint, i.e.,

n = arg min1≤m≤min{|Cd|,k}

{s(d) +
∑m
i=1 v(ci) · b(d)

m

}
,

where k is the server capacity. Here, the amortized cost(
s(d) +

∑m
i=1 v(ci) · b(d)

)
/m is the total server rental and

bandwidth cost of the new server normalized by the number
clients assigned to it. Then, we denote α(d) as the amortized
cost per client if a new server is opened at datacenter d to
service clients Nd:

α(d) =
s(d) +

∑
ci∈Nd

v(ci) · b(d)

|Nd|
.

In each iteration, we choose the option with the lowest
amortized cost per client and assign the selected group of
clients Nd to the corresponding datacenter d. The algorithm
proceeds until all the clients are assigned to datacenters. We
call this heuristic Lowest-Amortized-Cost (LAC), and present
it formally as follows.

Algorithm Lowest-Amortized-Cost (LAC)
1: For each datacenter d ∈ D, initialize Cd as the set of all

the clients that can be covered by d, and sort Cd in the
ascending order of v(ci) of its clients ci.

2: Compute Nd and α(d) for each datacenter d ∈ D where
Cd 6= ∅.

3: Let d∗ = arg min{d∈D,Cd 6=∅} α(d) be the datacenter with
the lowest amortized cost per client. If there are ties, break
them arbitrarily.

4: Assign all the clients in Nd∗ to d∗. That is, for each client
c ∈ Nd∗ , set dc = d∗.

5: For each datacenter d ∈ D, set Cd ← Cd \Nd∗ .
6: Stop if Cd = ∅ for every datacenter d ∈ D; else, go to

Step 2.

In the LAC algorithm, the number of iterations is at most
|C|. In each iteration, finding d∗ can be done in O

(
|D| ·

|C|
)

time where O
(
|C|
)

is contributed by finding Nd for
each datacenter d ∈ D. Similar to the LCW algorithm,
the time complexity for updating Cd over all iterations is
bounded by O

(
|C|
)
. Thus, the overall time complexity is

O
(
|C| · (|D| · |C|+ |C|)

)
= O

(
|C|2 · |D|

)
. Like the previous

algorithms, after determining dc for each client c ∈ C, the
client-to-server assignment procedure is executed to finalize
the server allocation for the requested MCG session.

D. Approximability Analysis of LAC Algorithm

Since the amortized cost per client of each option increases
monotonically over iterations in the LAC algorithm, this
hill-climbing heuristic can provide strong approximation
guarantees on the server set constructed for each MCG session.

Theorem 1. The LAC algorithm returns a server allocation
solution with cost of at most (ln k + 1) times the cost of the
optimal solution, where k is the server capacity.

Proof. When the LAC algorithm assigns a group of clients
Nd to a chosen datacenter d in an iteration, imagine that it
charges the cost per client for that iteration to each newly
assigned client. That is, each client assigned is charged a cost
of
(
s(d)+

∑
ci∈Nd

v(ci)·b(d)
)
/|Nd| and the total cost charged

on all the clients in Nd is s(d) +
∑
ci∈Nd

v(ci) · b(d), i.e., the
aggregate server rental and bandwidth cost for opening a new
server at datacenter d to service the clients in Nd. Then, the
total cost of the server allocation solution constructed by the
algorithm equals the total amount charged on all the clients
C, and each client is charged exactly once.

Let R∗ = {R1, R2, ..., Ro} be the set of R-servers opened
by the optimal server allocation solution. For notational
convenience, we use each Ri ∈ R∗ to denote the set of clients
assigned to the corresponding R-server as specified by the
optimal solution, and use dRi

to denote the datacenter at which
the R-server is opened. Consider any Ri = {cp, cp−1, ..., c1}
in R∗ and we know p ≤ k where k is the server capacity. Let’s
examine the assignment of these clients by the LAC algorithm.
Without loss of generality, suppose that cp, cp−1, ..., c1 is
the order in which the LAC algorithm assigns the clients
of Ri. Consider each client ch ∈ Ri and the iteration in
which the LAC algorithm assigns client ch. Assume that the
LAC algorithm assigns client ch to a datacenter d (note that
d may be different from the datacenter dRi

where Ri is
assigned in the optimal solution). In this iteration, the LAC
algorithm may assign multiple clients in Ri to d together
and by definition, these clients have successive indexes in the
sequence of cp, cp−1, ..., c1. Assume that ch+σ(σ ≥ 0) is the
highest-indexed client assigned to d by the LAC algorithm in
the iteration. Then, at the start of the iteration, h+σ clients of
Ri are unassigned. Thus, if the LAC algorithm were to choose
datacenter dRi

in that iteration and assign these h+ σ clients



TRANSACTIONS ON MULTIMEDIA, VOL. XX, NO. XX, SEPTEMBER 2017 7

to dRi
, it would pay a cost per client of

s(dRi
) +

∑h+σ
j=1 v(cj) · b(dRi

)

h+ σ

≤
s(dRi) +

∑h+σ
j=1 v(cj) · b(dRi)

h

≤
s(dRi

) +
∑
cj∈Ri

v(cj) · b(dRi
)

h

=
∆Ri

h
,

where ∆Ri is the aggregate server rental and bandwidth cost
paid by the optimal solution for Ri. Due to its greedy nature,
the LAC algorithm pays at most ∆Ri

/h per assigned client
on average in this iteration. As a result, the LAC algorithm
charges a cost of at most ∆Ri/h for client ch. Summing over
h, the total amount charged to all the clients in Ri is at most
∆Ri · Hp, where Hp =

∑p
j=1 1/j ≤

∑k
j=1 1/j < ln k + 1,

and k is the server capacity. Summing over all Ri ∈ R∗, and
noting that every client is assigned to some R-server inR∗, the
LAC algorithm charges a total cost of at most

∑
Ri∈R∗ ∆Ri

·
(ln k + 1) = (ln k + 1) · OPT for all clients, where OPT is
the cost of the optimal server allocation solution. Hence, the
theorem is proven.

E. Extension for the General Problem

For the general problem where there are a set of eligible
datacenters DG for placing the G-server, we extend each of
the above algorithms by examining every possible choice of
the G-server location dg in DG and choosing the one which
results in the minimum server allocation cost. For example,
the extended LAC algorithm works as follows:

1) For each choice of dg in DG, find the set of
eligible datacenters Ec for each client c, apply the
LAC algorithm to determine the client-to-datacenter
assignment, and calculate the total cost2 of all servers
opened after the client-to-server assignment procedure.

2) Find the lowest cost among all the costs calculated
in Step 1 and then return the corresponding dg and
client-to-datacenter assignment solution.

Since we need to iterate through all the choices of dg in DG

and DG ⊆ D, the time complexity of the extended LAC
algorithm for the general problem is bounded by O

(
|C|2 ·

|D|2
)
. Likewise, the time complexities of the extended LCP

and LCW algorithms for the general problem are O
(
|C|·|D|2

)
and O

(
|D|2 · (|C| + |D|)

)
, respectively. In practice, the

number of datacenters |D| offered by public clouds is typically
in the order of tens. For example, Amazon and Microsoft
currently operate 30 datacenters in total globally. Normally,
the number of clients |C| is also in the order of tens in a
multiplayer online game session [46], [47]. Therefore, all the
above algorithms should be efficient enough to instantly solve
the MCG server allocation problem so that players will not

2The total cost in the general problem also includes the cost for renting
the G-server which can be much cheaper than that for renting an R-server
because the R-server requires GPU resources for game rendering and/or video
encoding.

TABLE I
SERVER RENTAL AND DATA TRANSFER PRICES (US$).

Datacenter Baseline server price GPU server price Data transfer price

EC2-Virginia 0.532 2.600 0.090
EC2-Oregon 0.532 2.600 0.090
EC2-California 0.616 2.808 0.090
EC2-Ireland 0.585 2.808 0.090
EC2-Singapore 0.784 4.000 0.120
EC2-Tokyo 0.770 3.592 0.140
EC2-Sao Paulo 0.761 3.720 0.250
Azure-Hong Kong 0.902 4.604 0.138
Azure-Virginia 0.616 3.012 0.870
Azure-Ireland 0.584 2.804 0.870
Azure-Singapore 0.784 4.000 0.138
Azure-Amsterdam 0.672 3.224 0.870
Azure-California 0.616 2.808 0.870

suffer from undesirable waiting times. In fact, according to our
experiments, the running times of our algorithms are typically
less than a few milliseconds on a commodity computer, which
are negligible compared to the cloud server startup times.3

VI. EXPERIMENTAL EVALUATION

We evaluate the performance of our proposed algorithms by
making use of real-world Internet latency measurement data
[48], [49] and cloud pricing models of two leading public
cloud service providers – Amazon EC2 and Microsoft Azure.

A. Evaluation Methodology

Network latency datasets. We make use of two network
latency datasets to set up trace-driven experiments. The first
dataset collected by Wu et al. [48] contains latency (RTT)
measurements between PlanetLab nodes and datacenters
from Amazon and Microsoft. The second dataset collected
by Garcia-Dorado et al. [49] contains latency (RTT)
measurements between all pairs of datacenters from Amazon
and Microsoft. By integrating these two datasets, we simulate
a network that is formed by 253 PlanetLab nodes and 13
datacenters with 7 from Amazon and 6 from Microsoft.
Assuming that a client is located at each PlanetLab node, we
have a total number of 253 clients which is sufficiently large
for setting up MCG sessions.

Cloud pricing datasets. Since an R-server handles the
game rendering workload for its assigned clients, it is
necessary to use cloud servers equipped with GPUs to serve as
the R-servers. GPU servers are available in Amazon EC2 (we
choose the g2.8xlarge model as the GPU server), but this is not
the case in Microsoft Azure. To deal with this, we derive the
prices of GPU servers in Microsoft’s datacenters (assuming
that they will be available in the future) based on the prices
of GPU servers in Amazon’s datacenters as follows. First,
we find two non-GPU baseline server types from Amazon
and Microsoft respectively which are best-matched in terms
of CPU core count and memory size: the m3.2xlarge model
from EC2 and the D4 model from Azure. Then, for each
Azure datacenter, we approximate its GPU server’s price via
multiplying its non-GPU baseline server’s price by the ratio

3The startup times of cloud servers are normally within one minute based
on our measurements on Amazon EC2.
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TABLE II
LG AND LR SETTINGS ACCORDING TO [39], [40].

(LG, LR) Game Genre Game Pace

(150, 100) racing or action, etc. fast
(300, 200) strategy or simulation, etc. moderate

Fig. 2. Heaven Benchmark’s average frame rate against the number of clients
served by an R-server concurrently.

between the GPU server’s price and the non-GPU baseline
server’s price in the nearest EC2 datacenter to this Azure
datacenter. Table I shows the rental price per server4 used
in our experimental evaluation. Also shown in Table I is the
outbound data transfer price per GB from each datacenter.
The amount of outbound data transfer induced by each client
from its assigned datacenter during an MCG session is set to
1 GB to 5 GB in a random manner, in order to reflect different
video streaming bitrates across clients of the same session. For
instance, a client with video streaming at a bitrate of 2 Mbps
(the minimum requirement for HD streaming) for 1 hour will
induce about 1 GB data transfer from its assigned datacenter.

Latency thresholds. The thresholds for the latencies from
the clients to the G-server (LG) and the R-servers (LR) are
set according to the empirical data provided by [39] and
[40], respectively. Table II summarizes the settings of LG and
LR for different game genres (all are round-trip delay times
in milliseconds). Having the latencies below such thresholds
offers satisfactory playability according to the above studies.

Session size. In general, the number of clients |C| in a
multiplayer game session is in the order of tens, thereby we
let |C| ∈ {10, 20, 30, 40, 50} in our experiments. For each
setting of |C| and each setting of (LG, LR), we generate
1000 feasible MCG sessions where the clients are randomly
chosen from the 253 PlanetLab nodes subject to the latency
thresholds. Note that, for simplicity, we use the median latency
provided by the aforementioned dataset in all the matchmaking
processes that generate the feasible sessions. The latency
between client-server pairs is expected to be relatively stable
during a game session period since each session typically
lasts for just a few tens of minutes [42]. If this is not the
case, a higher percentile (e.g., 90th percentile) of network
latency can be compared against the latency thresholds in the

4The GPU servers are not available in the EC2 Sao Paulo datacenter, thereby
we derive the price for this datacenter according to its non-GPU server’s price
ratio to the EC2 Virginia datacenter.
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Fig. 4. CDF of the number of eligible datacenters (i.e., |Ec|) per client across
all sessions for the basic problem.

matchmaking process to cater for the latency variation. In the
experimental results, we compute and plot the average server
allocation cost and standard deviation of these 1,000 sessions
resulting from each algorithm for performance comparison.

Server capacity. The server capacity k is dependent on
the R-server’s resource volume and the game’s rendering
workload. To emulate a range of workload intensities imposed
on each R-server (i.e., a g2.8xlarge instance), we set k ∈
{2, 4, 6, 8}. We have conducted a set of measurements to verify
the feasibility of these settings of k, based on a widely-used
real-time graphics performance benchmarking tool5 and a
cloud gaming system prototype developed by ourselves [8].
The core of our prototype is a virtual client solution that
contains two components: a thin client and a v-client. The
thin client is a browser-based client program that runs on the
users computer or mobile device. It sends the users command
inputs to the applications running on the cloud servers, and
decodes and displays the video streams received from the
cloud servers. The v-client runs on the cloud server. It takes
charge of launching an application instance, replaying the
users command inputs received from the thin client, and
capturing and encoding the applications user interface into a
video, and streaming the video to the thin client. With our
prototype, a single cloud server can serve as the R-servers
for multiple clients concurrently. In our measurements, we
run instances of the heaven benchmark software on the cloud
server for the v-client to capture, encode and stream to the
client. Thus, the process at the cloud server includes all the
components of rendering, obtaining display data, compression
and transmission.

Figure 2 shows the frame rate (i.e., frames per second) of the
Unigine Heaven Benchmark running at 1280x720 resolution
and different rendering quality levels for each setting of k.
From Figure 2 we can see that even for k = 8, the frame rate
of the Unigine Heaven Benchmark is still above 30 frames
per second (the threshold for an acceptable frame rate for
most video games). Since the Unigine Heaven Benchmark is
a widely used tool for determining the gaming performance of
a computer under extremely stressful conditions, we believe
that our measurements are representative and the settings of
k are reasonable. Our settings of the server capacity are also
consistent with other empirical studies [31].

5Unigine Heaven Benchmark – http://goo.gl/sWqG7k.
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Fig. 3. Normalized costs of different algorithms for the basic problem.

Theoretical lower bound. To benchmark the performance
of our algorithms, we calculate a theoretical lower bound on
the total server rental and bandwidth cost for an MCG session
as follows:∑

d∈D

(
s(d) ·

(∑
c∈C

Xd
c

)
/k + b(d) ·

∑
c∈C

(
Xd
c · v(c)

))
(5)

where each Xd
c is obtained via the LCP algorithm (Section

V.A) that assigns each client to the datacenter with the
minimum combined price. The above calculation assumes
that the number of servers to be opened at datacenter d is(∑

c∈C X
d
c

)
/k which can be a fraction just enough to serve

all of its clients. Thus, this lower bound is a super-optimum
and may not be achievable by any real server allocation when
k ≥ 2. To quantify the relative performance, we normalize the
server allocation cost produced by each algorithm with respect
to the above lower bound.

Baseline algorithms. We also evaluate the following naive
algorithms which are neither aware of the server/bandwidth
price nor aware of the projected capacity wastage when
assigning clients to datacenters:
• Random Assignment (RA): Every client is assigned to a

random datacenter from the set of its eligible datacenters.
This algorithm serves as a baseline.

• Nearest Assignment (NA): Every client is assigned to the
nearest datacenter in terms of network latency among all
of its eligible datacenters. If a client has more than one
eligible datacenters with the same lowest network latency
to it, ties are broken by assigning the client to the one
with the minimum server price.

B. Results and Analysis

Figure 3 shows the normalized cost of each algorithm for the
basic problem (we only show the results for |C| = 10 and |C|
= 50 due to the space limitation). In all these experiments, the

G-server location for each session is randomly picked from the
13 datacenters. In general, the LCP, LCW, and LAC algorithms
consistently produce significantly lower normalized costs than
other algorithms, with the LCW and LAC algorithms being
closest to the super-optimum lower bound. This demonstrates
the importance of being aware of the server/bandwidth price
and/or the projected capacity wastage in assigning clients to
datacenters. The superior performance of the LCW algorithm
over the LCP algorithm reflects that it is rational to trade
the chance of assigning each individual client to its eligible
datacenter with the minimum server or combined price for the
chance of reducing the capacity wastage. In most situations,
the LAC algorithm shows noticeable advantages over the LCW
algorithm and performs the best among all the algorithms
tested, which stresses the importance of considering all the
cost-effectiveness factors in an integrated manner.

Figure 3 also shows that, for the same session size |C|,
as the latency thresholds (LG, LR) get larger (i.e., from
faster-paced games to slower-paced games), the RA and NA
algorithms deteriorate significantly, while the LCP, LCW, and
LAC algorithms remain stable. For instance, the normalized
cost produced by the RA algorithm is 2.3 for (LG = 150,
LR = 100) with |C| = 10 and k = 8, and it increases to 3.4
(nearly a 50% increase) for (LG = 300, LR = 200) with the
same |C| and k. This can be explained using Figure 4 which
shows the cumulative distribution of the number of eligible
datacenters per client for all the sessions. As seen from Figure
4, the clients tend to have more eligible datacenters for larger
latency thresholds (LG, LR). For instance, for (LG = 300,
LR = 200), over 40% of the clients have at least 5 eligible
datacenters, while for (LG = 150, LR = 100), over 80% of
the clients have only 1 or 2 eligible datacenters. In the former
case, clients are more likely to be scattered over different
datacenters if we apply the RA algorithm. This is also true for
the NA algorithm, since the nearest datacenters for clients may
be more dispersed. Hence, these two algorithms generate more
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Fig. 5. Capacity wastage ratios of different algorithms for the basic problem.
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Fig. 7. CDF of the number of eligible datacenters (i.e., |DG|) for placing
the G-server across all sessions for the general problem.

capacity wastage for larger (LG, LR) and produce higher total
costs eventually. This is confirmed by the capacity wastage
ratios shown in Figure 5, where the capacity wastage ratio is
defined as the excessive capacity (i.e., the total allocated server
capacity minus the actually requested capacity) normalized by
the actually requested capacity (i.e., the session size |C|).

From Figure 3, we can further see that, as the server
capacity k gets larger (from 2 to 8), every algorithm produces
increasingly a higher normalized cost. This is mainly due to
the increasing capacity wastage generated by every algorithm
as k gets larger, which can be again observed from Figure
5. Apparently it would be more difficult to fill up a larger
server with clients than fulling up a smaller one. On the
other hand, the theoretical lower bound assumes that a server
can be “partially” rented to perfectly fit to the number of
assigned clients with no capacity wastage at all. Thus, the
normalized cost increases with the server capacity. Moreover,
we can see from Figure 3 that, as the session size |C| gets
larger (from 10 to 50), the normalized cost produced by every
algorithm decreases. This is mainly due to the decreasing
capacity wastage generated by every algorithm as |C| gets
larger as can be observed from Figure 5.

Figure 6 shows the normalized cost of each algorithm for
the general problem. These results have similar performance
trends to the results for the basic problem, with the LCW and
LAC algorithms significantly outperforming other algorithms.
The main difference is that the normalized costs generated by
all the algorithms for the general problem are slightly lower
than those for the basic problem, especially for larger latency
thresholds. This can be explained by comparing the results
of capacity wastage ratios in the general and basic problems.
Figure 8 shows the capacity wastage ratios for the general
problem. Having the chance to choose the G-server location
from a list of eligible datacenters implicitly makes all the
algorithms assign clients to datacenters with relatively low
capacity wastages as they evaluate different options of the
G-server location. This is even more likely to happen for larger
latency thresholds since there are more eligible datacenters for
placing the G-server as shown in Figure 7.

In short, the LAC algorithm which considers all the
cost-effectiveness factors (i.e., the server price, the bandwidth
price, and the capacity wastage) in an integrated manner
in assigning clients to datacenters, produces the most
cost-effective solutions for both the basic and general problems
of MCG server allocation.

C. Dynamic Scenario
So far, our discussion has focused on the situation where we

need to open a new set of servers to support a requested MCG
session. In practice, in a system operated by a cloud gaming
service provider, sessions may arrive and depart dynamically,
which may create the situation where a new session request
arrives prior to the ending of the previous session. In this
case, it may be beneficial to consider utilizing the remaining
capacities (if any) of the servers allocated for the previous
session for servicing the new session. Our problem definition
and the proposed algorithms can be directly used to handle
such dynamic scenarios.
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Fig. 6. Normalized costs of different algorithms for the general problem.
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Fig. 8. Capacity wastage ratios of different algorithms for the general problem.

Specifically, when a request for running a new MCG
session arrives, the algorithms can be executed to compute the
client-to-datacenter assignments. Once the client-to-datacenter
assignment is determined, we then need to assign the clients
to the servers in the datacenters. If a new client is assigned to
an open but not saturated server, no additional server cost is
introduced. Only the data transfer induced by the new client
needs to be paid. Thus, to save cost, it is preferable to use
existing open servers as much as possible. New servers are
opened to serve the clients only when all existing servers
have filled up to their capacities. Assigning clients to existing
servers is like a bin packing process where the servers and the
clients correspond to the bins and items respectively. The total
computation resource demand of all the new clients assigned

to a server must be within the server’s left-over capacity. To
reduce the number of servers to which the clients of a new
session are distributed, we can assign clients to servers in
each datacenter in a best fit manner. Best Fit is a classical bin
packing algorithm that assigns each new item to the bin with
the smallest residual capacity that can accommodate it [50]. In
our context of server allocation, we can examine existing open
servers in the descending order of their left-over capacities. If
the total computation resource demand of all the unassigned
clients is higher than the left-over capacity of the first existing
server (with the highest left-over capacity), we fill up the first
server and then examine the next existing server. If the total
resource demand of all the unassigned clients is lower than the
first existing server, we assign all these clients to the existing
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Fig. 9. Normalized costs for the basic problem under dynamic scenario.

server with the best-matching left-over capacity.
To evaluate our algorithms under the dynamic scenario,

we simulate a sequence of 1000 randomly generated session
arrival and departure events. The first 20 events are all session
arrivals to warm up the system (around 600 clients will be
in the system after the warm up). Each subsequent event is
generated as a session arrival or a session departure with
equal probabilities. For each session arrival, the session size
is randomly chosen from the set {10, 20, 30, 40, 50} and the
clients forming the session are randomly selected as described
in Section VI-A. To simulate different computation resource
demands for different games, for each new session, we set the
resource demand of a client to a fraction of the server capacity,
where the fraction is randomly picked from the set {1/2, 1/4,
1/6, 1/8} following the discussion in Section VI-A. For each
session departure, the session to depart is randomly chosen
from the active sessions. After each event, we compute the
server allocation cost of all active sessions normalized by the
lower bound for these active sessions as discussed in Section
VI-A. Figure 9 shows the average and standard deviation of
the normalized costs produced by each algorithm for the basic
problem. The relative performance of the algorithms remains
similar under the dynamic scenario. Our proposed algorithms
significantly outperform the baseline RA and NA algorithms.
The performance of the algorithms for the general problem
shows similar trends and is not shown here due to the space
limitation.

VII. DISCUSSIONS

We have considered only the network latency as the
quality-of-service metric for cloud gaming. Besides the
network latency, other network metrics like bandwidth are also
important to the gaming experience. In our model, additional
network metrics can be addressed by adding new constraints
in determining the eligible datacenters for each client. For
example, a requirement can be added to stipulate that the
available bandwidth between the client and the datacenter
must be more than the estimated video streaming bitrate.6

Our proposed server allocation algorithms are orthogonal to
the decisions of eligible datacenters and can be applied for
any sets of eligible datacenters.

Our proposed solutions can be used by the players who
initiate the session or a cloud gaming service provider to

6There are existing tools for available bandwidth estimation [51].

optimize the operational cost for hosting an MCG session.
In the former scenario, a group of friends that wish to play an
online game but do not have powerful machines available may
decide to rent cloud servers for an evening to host their game
session. They may use our algorithms to determine where and
how many cloud servers to rent with the minimum expense.
In the latter scenario, a cloud gaming service provider that
offer services to customers by acquiring resources from public
clouds can also use our algorithms to allocate and open servers
for each MCG session requested by customers.

Our proposed solutions can also be extended to optimize the
energy consumption of cloud servers for MCG. Specifically,
we can substitute the server and bandwidth prices in our model
for their energy consumptions. The power usage of a server
typically includes a flat component representing the power
consumed by an idle server and a variable component that
is proportional to the server load [52]. While the aggregate
amount of the latter is mostly fixed for serving a given number
of clients, the aggregate amount of the former largely depends
on the number of servers used. Thus, server sharing among
clients can potentially enhance the energy efficiency at the
server side.

VIII. CONCLUSION

In this paper, we have investigated the server allocation
problem for MCG with the objective of reducing the total
server and bandwidth cost to support an MCG session.
We have discussed two versions of the problem and
proposed several efficient algorithms to address both of them.
Theoretical analysis is conducted to show that our proposed
LAC algorithm can produce provably good server allocations.
Extensive trace-driven experiments show that simply assigning
clients to some random, the nearest, or the cheapest eligible
datacenters can make the total cost far worse than optimum.
It is important to also consider the server capacity wastage in
order to achieve the most cost-effective MCG server allocation.
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