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Abstract—Communication is a primary source of energy consumption in wireless sensor networks. Due to resource constraints, the
sensor nodes may not have enough energy to report every reading to the base station over a required network lifetime. This paper
investigates data collection strategies in lifetime-constrained wireless sensor networks. Our objective is to maximize the accuracy of
data collected by the base station over the network lifetime. Instead of sending sensor readings periodically, the relative importance
of the readings is considered in data collection: the sensor nodes send data updates to the base station when the new readings differ
more substantially from the previous ones. We analyze the optimal update strategy and develop adaptive update strategies for both
individual and aggregate data collections. We also present two methods to cope with message losses in wireless transmission. To
make full use of the energy budgets, we design an algorithm to allocate the numbers of updates allowed to be sent by the sensor
nodes based on their topological relations. Experimental results using real data traces show that, compared with the periodic strategy,
adaptive strategies significantly improve the accuracy of data collected by the base station.

Index Terms—data collection, energy efficiency, network lifetime, data accuracy, sensor network.
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1 INTRODUCTION

The primary functions of wireless sensor networks are
to observe and analyze physical phenomena [1], [2], [3].
A wireless sensor network typically consists of a base
station and a group of geographically distributed sensor
nodes. The sensor nodes are responsible for sampling
real-world phenomena such as temperature and solar
radiation. They also communicate with each other and
the base station through radios to exchange information.
The base station, on the other hand, collects the data
acquired by the sensor nodes for relevant applications.
The data collected by the base station may include in-
dividual sensor readings or an aggregate form of sensor
readings. Primarily designed for monitoring purposes,
many sensor applications request continuous collection
of up-to-date sensor data.

In wireless sensor networks, the sensor nodes are
usually battery powered. Replacing the batteries is not
only costly but also inconvenient in many situations.
Thus, many sensor networks are deployed to operate for
a designated time period called network lifetime [4]. Due
to resource constraints, however, a sensor node may not
have enough energy to report every reading to the base
station over the required network lifetime, since commu-
nication is a primary source of energy consumption [5],
[6]. Therefore, the node has to decide which readings to
send to the base station on the fly.

A straightforward method is to let the sensor nodes
periodically report readings at the maximum rate subject
to the energy constraint [7]. However, this approach is
not effective. Consider, for example, a series of solar
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radiation readings 369, 330, 264, 266, 274, 279, 260, 233,
225 (W/m2) logged in the LEM project1 at 9 successive
time units [8]. Suppose the energy budget is sufficient for
a sensor node to send only 3 updates to the base station.
This implies the maximum report rate is once every 3
time units. If the node reports periodically, the 1st, 4th
and 7th readings would be sent to the base station. Then,
the readings observed by the base station in real time
are 369, 369, 369, 266, 266, 266, 260, 260 and 260 over
the 9 time units (see Figure 1(a)). So, the instantaneous
deviations from up-to-date sensor readings are 0, 39,
105, 0, 8, 13, 0, 27 and 35. As a result, the cumulative
deviation is 227. In contrast, if the sensor node sends
the 1st, 3rd and 8th readings to the base station, the base
station would observe 369, 369, 264, 264, 264, 264, 264,
233 and 233 over the 9 time units (see Figure 1(b)). The
instantaneous deviations are thus 0, 39, 0, 2, 10, 15, 4,
0 and 8. Therefore, the cumulative deviation is 78 — a
66% reduction compared to the periodic approach. This
example motivates us to consider the relative importance
of sensor readings when making update decisions. In the
above example, the 1st, 3rd and 8th readings are more
important because they differ more substantially from
the previous readings. It is desirable to update the base
station with these readings to reduce the deviation of the
data observed by the base station.

In this paper, we investigate data collection strategies
in lifetime-constrained wireless sensor networks. Given
a network lifetime requirement, we are interested in
determining which sensor readings to send to the base
station with an objective of minimizing the deviations
of the readings observed by the base station over the
network lifetime. Our contributions are as follows:

1. Please refer to Section 6.1 for a description of the traces collected
by the LEM project [8].
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Fig. 1. Deviation of Data Collected by Base Station

• We formulate the lifetime-constrained data collec-
tion problem in sensor networks. An offline algo-
rithm is developed to compute the optimal data
update strategy.

• We propose an adaptive strategy that makes data
update decisions on the fly based on sensor readings
to meet network lifetime requirements. The basic
strategy applies directly to individual data collection
where the application monitors the reading of an
individual sensor node. It is also extended to deal
with aggregate data collection where the application
continuously requests an aggregate form of sensor
data (e.g., the average reading of all sensor nodes).

• We develop two methods, History and Expected, for
the adaptive strategy to cope with message losses
in wireless transmission. The key idea is to take
into consideration the possibility of update losses
in estimating the importance of sensor readings.

• In connection with the adaptive strategy for ag-
gregate data collection, we develop an algorithm
to allocate the numbers of updates allowed to be
sent by the sensor nodes based on their topological
relations. The goal is to make full use of the energy
budgets of the sensor nodes to improve the quality
of collected data.

• We conduct an experimental evaluation using a
wide range of real data traces for both individual
and aggregate data collections. The results show
that, compared to the periodic strategy, the pro-
posed adaptive strategy significantly improves the
accuracy of data collected by the base station over
the network lifetime.

The rest of this paper is organized as follows. Sec-
tion 2 summarizes the related work. Section 3 describes
the system model. Section 4 analyzes the optimal data
update strategy and proposes a basic adaptive update
strategy for individual data collection. Section 5 extends
the adaptive strategy to aggregate data collection. The
experimental setup and results are discussed in Section 6.
Finally, Section 7 concludes the paper.

2 RELATED WORK

Several approaches have been proposed to trade the
quality of data collection for energy efficiency in wireless
sensor networks. One approach is to relax data semantics
to allow a specified degree of error to be tolerated
in the collected data. Studies have been carried out
for individual data collection [9], [10], [11], aggregate
data collection [12], [13], [14], [15], [16] and quantile
tracking [17], [18], [19]. In our earlier work, we designed
a two-tier storage scheme for one-shot individual data
collection in object tracking sensor networks [20]. We
also developed precision allocation schemes to extend
network lifetime for continuous aggregate data collec-
tion [21], [22]. Different from existing work, in this paper,
we target at improving the accuracy of continuous data
collection given the requirements of network lifetime.
Without a priori knowledge of the changing pattern
of sensor readings, it is difficult to pre-set appropriate
precision constraints on sensor data collection to meet
a given network lifetime requirement. Moreover, a static
precision constraint is insufficient if the changing pattern
of sensor readings keeps evolving over time. In this
paper, we propose techniques to dynamically adjust the
precision of data collection on the fly.

Another approach exploits the spatial correlation be-
tween sensor readings [23], [24]. In this approach, groups
of sensor nodes that are geographically clustered and
have similar sensor readings are identified. Data are then
collected from an elected representative node in each
group only, thereby saving the energy at the other nodes.
Our approach complements this one in that we exploit
the temporal correlation between sensor readings. We
instruct the sensor nodes to send fewer data updates
when the physical phenomena in their immediate sur-
roundings change slowly. The saved energy is then used
to send more updates when the physical phenomena
change rapidly to improve the quality of data collected
in real time.

In addition, Considine et al. [25] and Nath et al. [26] im-
plemented approximate data aggregation under multi-
path routing by means of sketches and synopses. How-
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ever, they did not make use of temporal locality to
suppress data updates. Work has also been done on com-
pressing historical sensor readings for transmission [27],
[28]. These methods are applicable to archival data col-
lection where the application wants to log historical
sensor readings and analyze them at a later time. In
contrast, we consider monitoring applications such as
environmental and structural monitoring that continu-
ously request up-to-date sensor readings.

3 SYSTEM MODEL

We consider a network of sensor nodes that periodically
sample local measurements (e.g., temperature and solar
radiation) at a designated rate. Without loss of generality,
the period between two successive samplings is assumed
to be 1 time unit. The base station gathers data from the
sensor nodes. The sensor network has a lifetime require-
ment of T time units. Due to the energy constraints of
sensor nodes, not all sensor readings can be sent to the
base station over the required network lifetime. Thus,
the data collected by the base station are likely to deviate
from up-to-date sensor readings at some time units. Let
B(t) be the data value observed by the base station at
time t, and Q(t) be the exact data value at time t. The
instantaneous deviation at time t is then given by

|B(t)−Q(t)|.

Note that the definitions of B(t) and Q(t) vary with
the type of data collection. In individual data collection,
they refer to the reading of an individual sensor node. In
aggregate data collection, they refer to an aggregate form
of the readings acquired by all sensor nodes (e.g., the
maximum or the average reading of all sensor nodes).
We measure the quality of data collection as the root
mean square error of collected data with respect to exact
data over the network lifetime [26], [7], i.e.,

√

∑T

t=1
|B(t)−Q(t)|2

T
.

Root mean square error is a well-known metric to mea-
sure deviation in statistics. The smaller is the root mean
square error, the higher is the accuracy of collected data.
Our objective is to determine for the sensor nodes which
readings to send to the base station (called the data update
strategy) so as to minimize the root mean square error
over the network lifetime.

4 BASIC DATA UPDATE STRATEGIES

We start by investigating the simple case where a single
sensor node sends its readings to the base station directly
in individual data collection. The data update strategies
developed for this simple case serve as a building block
for the strategies we shall propose for aggregate data
collection in a network of sensor nodes (Section 5).

4.1 Problem Formulation

For simplicity, we assume the base station maintains the
reading last updated by the sensor node until the next
update. Our analysis and algorithms can be extended
in a straightforward manner to include more sophisti-
cated prediction models [23], [27] for the base station to
extrapolate sensor readings on the fly over inter-update
periods (see Section 4.3).

Let d1, d2, · · · , dT be the T readings acquired by a
sensor node over the network lifetime, i.e., for any
1 ≤ t ≤ T ,

Q(t) = dt.

Assume the sensor node can send at most M ≤ T data
updates to the base station due to its energy constraint.
Suppose the data updates are sent at times v1, v2, · · · , vM

where 1 = v1 < v2 < · · · < vM ≤ T .2 Then, for each
1 ≤ i < M , the data observed by the base station3 from
time vi to vi+1 − 1 is dvi

, and that from time vM to T is
dvM

, i.e.,

B(t) =

{

dvi
if vi ≤ t < vi+1,

dvM
if vM ≤ t ≤ T.

Thus, the root mean square error is given by

D(T : v1, v2, · · · , vM ) =

√

∑T

t=1
|B(t)−Q(t)|2

T

=

√

∑M−1

i=1

∑vi+1−1

j=vi
|dj − dvi

|2 +
∑T

j=vM
|dj − dvM

|2

T
.

The data collection problem can therefore be formu-
lated as finding v1, v2, · · · , vM that minimize D(T :
v1, v2, · · · , vM ).

4.2 Optimal Data Update Strategy

We develop an optimal data update strategy assuming
that all sensor readings are known a priori. It will
be used as a yardstick (lower bound) in performance
evaluation (Section 6).

The data collection problem defined above can be
solved by a dynamic programming algorithm. Note that
given a network lifetime requirement, to minimize the
root mean square error, it is equivalent to minimize the
total square error. Consider a more generalized problem
of finding 1 = v1 < v2 < · · · < vm ≤ t (where m ≤ M
and t ≤ T ) that minimize

T · D(t : v1, v2, · · · , vm)2

=

m−1
∑

i=1

vi+1−1
∑

j=vi

|dj − dvi
|2 +

t
∑

j=vm

|dj − dvm
|2.

We shall call it the (t,m)-optimization problem.

2. We stipulate that v1 = 1 because the data collected by the base
station are undefined initially. Thus, the sensor node must send its
reading to the base station at the first time unit.

3. We neglect the transmission delay in the network since it simply
shifts the data observed by the base station by a time offset that is
independent of any data update strategy.
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Let v∗
1 , v∗

2 , · · · , v∗
m be an optimal solution to the (t,m)-

optimization problem. We show that v∗
1 , v∗

2 , · · · , v∗
m−1

must be an optimal solution to the (v∗
m − 1,m − 1)-

optimization problem. Assume on the contrary that there
exists a better solution u∗

1, u
∗
2, · · · , u

∗
m−1 to the (v∗

m −
1,m− 1)-optimization problem, i.e.,

T · D(v∗
m − 1 : u∗

1, u
∗
2, · · · , u

∗
m−1)

2

< T · D(v∗
m − 1 : v∗

1 , v∗
2 , · · · , v∗

m−1)
2.

It follows that

T · D(t : u∗
1, u

∗
2, · · · , u

∗
m−1, v

∗
m)2

= T · D(v∗
m − 1 : u∗

1, u
∗
2, · · · , u

∗
m−1)

2 +

t
∑

j=v∗
m

|dj − dv∗
m
|2

< T · D(v∗
m − 1 : v∗

1 , v∗
2 , · · · , v∗

m−1)
2 +

t
∑

j=v∗
m

|dj − dv∗
m
|2

= T · D(t : v∗
1 , v∗

2 , · · · , v∗
m−1, v

∗
m)2,

which contradicts the optimality of v∗
1 , v∗

2 , · · · , v∗
m. There-

fore, the optimal solution to the (t,m)-optimization prob-
lem must contain optimal solutions to some subprob-
lems.

Let A(t,m) be the minimal achievable total square
error in the (t,m)-optimization problem, and let B(t,m)
be the time of the last data update in the optimal
solution. The recurrences for dynamic programming are
then given by

A(t,m) =











min
m≤i≤t

(

A(i− 1,m− 1) +
∑t

j=i |dj − di|
2

)

if m > 1,
∑t

j=1
|dj − d1|

2 if m = 1,

and

B(t,m) =











arg min
m≤i≤t

(

A(i− 1,m− 1) +
∑t

j=i |dj − di|
2

)

if m > 1,
1 if m = 1.

Starting from A(t, 1)’s and B(t, 1)’s, we can compute
all A(t,m)’s and B(t,m)’s in increasing orders of t and
m. To solve the problem defined in Section 4.1, on
obtaining all A- and B-entries, the optimal times for
sending data updates are calculated by tracing back the
B-entries:

vM = B(T,M),

and for each 1 ≤ i < M ,

vi = B(vi+1 − 1, i).

Given any i, the computation complexity of
∑t

j=i |dj−

di|
2 for all different t’s is O(T ). Hence,

∑t

j=i |dj−di|
2 for

all pairs of i and t can be computed in a pre-processing
stage in O(T 2) time. Then, the time complexity to com-
pute each A-/B-entry is given by O(T ). Since there are a
total of O(M ·T ) A-/B-entries, the total time complexity
of the dynamic programming algorithm is O(MT 2).

4.3 Adaptive Data Update Strategy

The dynamic programming solution presented above
is an offline algorithm — all sensor readings over the
network lifetime are required in the computation. In
real-time monitoring applications, however, future sen-
sor readings are not known a priori and data update
decisions must be made on the fly. So now, we propose
an adaptive online data update strategy.

The basic idea is to let the sensor node update a
new reading with the base station only when the new
reading substantially differs from the last update to the
base station. The rationale behind is that these sensor
readings, as shown by the example in Section 1, are more
effective in reducing the instantaneous deviations of the
data observed by the base station. It is similar in spirit
to the idea of prioritizing sensor data delivery based on
their differences from the data most recently transmitted
when the radio queue of a sensor node overflows [7].

Specifically, the sensor node maintains the reading U
last updated with the base station. When a new reading
V is generated, the difference between V and U is
computed. The sensor node updates the new reading
with the base station only if the difference is greater than
a threshold W .

It is intuitive that the rate of data updates sent by the
sensor node depends on the threshold W . We propose
to dynamically adjust the threshold to meet the network
lifetime requirement. Our design is inspired by the work
of Olston et al. [13] which used thresholds to filter
streams of data updates and adapted the thresholds
to control stream rates. Their purpose of adaptation,
however, was to minimize the total communication cost
between a set of data sources and the data sink. In
contrast, our objective here is to adjust the threshold of a
data source over time to meet the lifetime requirement.
To this end, the sensor node measures the data update
period I (i.e., the duration between two successive data
updates to the base station) using an exponential aging
method. At each data update, the estimate of I is recom-
puted as

I = α · (Tc − Tl) + (1− α) · Iold,

where Tc is the current time, Tl is the time of the last data
update to the base station, Iold is the estimate of I at the
last data update, and α is a factor weighing the impor-
tance of the current update period against past ones. On
the other hand, the expected data update period under
the network lifetime requirement is computed as

IE =
T − Tc

R
,

where T − Tc is the remaining network lifetime and R
is the remaining number of data updates allowed. If
the total allowable number of updates due to energy
constraints is M , then R is given by M − C, where C
is the number of data updates sent so far.

I is compared with IE whenever the sensor node
updates its reading with the base station. If I is greater
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than IE by a factor ε (i.e., I > IE · (1 + ε)), the threshold
W is reduced by a factor δ: W = W · (1− δ) to increase
the data update rate and hence improve the accuracy of
data collected by the base station. On the other hand, if
I is less than IE by a factor ε (i.e., I < IE · (1 − ε)), the
threshold W is increased by a factor δ: W = W · (1 + δ)
to extend the data update period. We shall investigate
the impact of algorithm parameters α, δ and ε with
simulation experiments in Section 6.

If we check (and adjust if necessary) the threshold
each time the sensor node updates with the base station,
the adaptive algorithm would react quickly to increase
the threshold when the changing of physical phenom-
ena becomes more intensive. This is because when the
changes increase in magnitude, the data update rate
increases, thereby giving more chances of adjustment.
However, when the changing of physical phenomena be-
comes less intensive, the algorithm would react slowly to
reduce the threshold. This is because when the changes
decrease in magnitude, the data update rate decreases,
leading to fewer chances of adjustment. To remedy it,
we deliberately make some adjustments to the threshold
in addition to those performed when the sensor node
updates its reading with the base station. Specifically, if
there has been no data update to the base station for
twice the expected update period IE , we decrease the
threshold W by a factor of δ.

To initialize the threshold, the sensor node is in-
structed to send data updates periodically (at the ex-
pected data update period IE) for a small number of
h times at the beginning of data collection. The aver-
age difference between successively updated readings is
used to initialize the threshold. The adaptive data update
strategy is summarized in Algorithm 1.

We remark that this basic adaptive strategy applies
directly to individual data collection that requests the
reading of an individual sensor node. If the commu-
nication between the source sensor node and the base
station has to go through multiple hops in a wireless
sensor network, the energy constraints at the intermedi-
ate nodes should be taken account of in calculating the
total allowable number of data updates M .

The basic adaptive strategy can also be tailored to
include prediction models for the base station to extrapo-
late sensor readings on the fly over inter-update periods.
To do so, the sensor node maintains the same prediction
model as that used by the base station and applies the
threshold W to the difference between the actual sensor
reading and the reading predicted by the model. That
is, the sensor node updates a new reading with the
base station only if the new readings differs from the
predicted reading by more than W . Again, the threshold
W is adjusted dynamically to meet the network lifetime
requirement. A good extrapolation model is expected to
reduce the threshold W , thereby improving the accuracy
of data observed by the base station.

Algorithm 1 Adaptive Data Update Strategy

1: set W ← 0;
2: for each time unit Tc = T/M ∗ i + 1 (0 ≤ i ≤ h − 1)

do
3: let V be the sensor reading acquired at time Tc;
4: send a data update V to the base station;
5: if i 6= 0 then
6: set W ←W + |V − U |;
7: end if
8: set U ← V , Tl ← Tc;
9: end for

10: set W ←W/(h− 1);
11: set C ← h, I ← T/M , IE ← T/M ;
12: for each time unit Tc > T/M ∗ (h− 1) + 1 do
13: let V be the sensor reading acquired at time Tc;
14: if |V − U | > W and C < M then
15: send a data update V to the base station;
16: set C ← C + 1;
17: set I ← α · (Tc − Tl) + (1− α) · I ;
18: set IE ← (T − Tc)/(M − C);
19: if I > IE · (1 + ε) then
20: set W ←W · (1− δ);
21: else if I < IE · (1− ε) then
22: set W ←W · (1 + δ);
23: end if
24: set U ← V , Tl ← Tc;
25: else if Tc − Tl > 2 · IE then
26: set W ←W · (1− δ);
27: set Tl ← Tc;
28: end if
29: end for

4.4 Coping with Message Losses

In general, messages transmitted over wireless links
are subject to losses due to environmental interference,
packet collision and low signal-to-noise ratios [25], [26].
So far, we have assumed reliable transmission of data
updates. The adaptive strategy described in Section 4.3
is directly applicable if a reliable transfer protocol is
used by the sensor network to guarantee the delivery
of every single data update [29]. If the transfer proto-
col is not reliable, however, data updates may be lost
in transmission. Losing a data update in the adaptive
strategy has an adverse effect on the accuracy of data
collection that may be even more severe than losing an
update in the periodic strategy. This is because update
decisions in the adaptive strategy are made based on
sensor readings. For example, if the physical phenomena
measured by a sensor node undergo a dramatic change
and then remain stable for a long time period, the
adaptive strategy would transmit only one data update.
In case the update is lost, the base station would retain
obsolete and incorrect data until the phenomena change
again significantly to trigger the next data update. In
contrast, under the periodic strategy, the sensor readings
are transmitted periodically even if the phenomena are
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stable. As a result, the data observed by the base station
would be corrected sooner.

In this section, we propose two methods to cope with
message losses in the adaptive strategy. The key idea is
to take into consideration the possibility of update losses
in calculating the difference of a new sensor reading
with respect to previously updated readings. Let p be the
message loss rate from a sensor node to the base station.4

Our first method maintains the last k updated readings
Uk, Uk−1, . . . , U2, U1 sent by the sensor node, where k is
a given number and Ui is the ith most recently updated
reading. The data currently observed by the base station
would be Ui (i = 1, 2, . . . , k) if and only if the updates
of Ui−1, Ui−2, . . . , U2, U1 were all lost and the update
of Ui was successful. Assuming that message losses
occur independently, the probability of the base station
observing Ui at present is then pi−1(1− p). When a new
sensor reading V is generated, the expected difference
of V from the data at the base station is given by

k
∑

i=1

pi−1(1− p)·|V − Ui|

k
∑

i=1

pi−1(1− p)

=

k
∑

i=1

pi−1(1− p)·|V − Ui|

1− pk
. (1)

The sensor node compares the expected difference (1)
with the threshold W and updates the new reading
with the base station only if the expected difference is
greater than W . On sending a data update, the sensor
node updates the set of last k updated readings. We
shall refer to this method as History. In fact, the original
adaptive strategy of Section 4.3 is a special case of the
History method with k = 1. Note that in calculating the
expected difference (1), we do not take into consideration
the situation where all the last k updates were lost. This
is because the sensor node maintains the readings of
the last k updates only. We remark that the effect of
such simplification is insignificant since the probability
of losing all the last k updates is pk, which decreases
exponentially with increasing k. A k value of 8 would
make this probability lower than 0.4% even if the mes-
sage loss rate p is as high as 50%.

It is intuitive that the accuracy of the History method
improves with increasing k (i.e., maintaining a longer
history of updated readings). However, the storage cost
as well as the computation cost of (1) both increase with
k. Our second method attempts to reduce these costs by
maintaining at the sensor node only one updated read-
ing — the expected updated reading. Let Ui be the ith
most recently updated reading sent by the sensor node.
Taking all past updated readings into consideration, the

4. Message losses can be inferred by tracking the sequence numbers
of the messages successfully received at the destination. A number of
efficient estimators exist for link reliability based on message losses
observed [30]. The effect of imperfect loss rate estimation will be
investigated by simulation experiments in Section 6.

expected updated reading is computed as
∑

i

pi−1(1− p) · Ui.

The expected updated reading can be maintained in-
crementally at the sensor node. Let Ue be the expected
updated reading. On sending a data update V , the sensor
node simply updates Ue by setting

Ue = Ue · p + V · (1− p).

On generating a new reading, the sensor node computes
its difference from the expected updated reading Ue.
The new reading is updated with the base station only
if the difference is greater than the threshold W . We
shall refer to this method as Expected. Note that the
Expected method trades the accuracy of estimation for
storage and computation complexities. In general, the
difference between a new sensor reading V and Ue is
smaller than the expected difference (1) defined in the
History method (with a complete history of updated
readings maintained) since

|V−Ue| =
∣

∣

∣
V−

∑

i

pi−1(1−p)·Ui

∣

∣

∣
≤

∑

i

pi−1(1−p)·|V−Ui|.

The two differences are equivalent only if V together
with all past updated readings U1, U2, U3, . . . increase
or decrease monotonically.

The adaptive data update strategy can be augmented
with the History or Expected method to cope with
update losses. Like that in the original adaptive strategy
of Section 4.3, the threshold W in the History and
Expected methods is also dynamically adjusted to meet
the network lifetime requirement.

5 ADAPTIVE AGGREGATE DATA COLLECTION

Now, we consider aggregate data collection that requests
an aggregate form of sensor data over a network of
sensor nodes (e.g., the maximum or the average reading
of all sensor nodes).

5.1 Applying Adaptive Data Update Strategy

Due to limited radio transmission range, a routing infras-
tructure has to be established to transport data from the
sensor nodes to the base station. A common practice is
to organize the sensor nodes into a tree structure rooted
at the base station (e.g., by flooding a routing request
over the network) [7], [11], [18], [31]. To collect data,
each intermediate node is responsible for forwarding the
data updates received from its children to its parent.5 In-
network aggregation is often used to cut down the volume
of data sent over the upper-level links in the tree for
aggregate data collection [34]. That is, the data update
sent by an intermediate node to its parent is a partial
aggregate result of the sensor readings in the subtree

5. A number of MAC protocols exist to coordinate the switches
between sleep and active modes among the sensor nodes [32], [33].
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rooted at the intermediate node. For example, at a node
i, the partial result for maximum aggregation is the
maximum sensor reading in the subtree Ti rooted at node
i; the partial result for average aggregation has the form
of 〈Si, |Ti|〉, where Si is the sum of the sensor readings
in Ti, and |Ti| is the size of Ti [34].

If all sensor nodes send data updates periodically and
at the same rate, the same number of data updates
are sent over each link in the tree. Assuming there is
one update every 3 time units, Figure 3 shows some
sample update behaviors of the sensor nodes in Figure 2.
Each row in the figure shows the behavior of one node
(specified at the left side) and each arrow represents
a data update sent by the node to its parent. As seen
from Figure 3, over the 9 time units, each sensor node
sends 3 updates at times 1, 4, and 7. Note that sending
and receiving data updates both consume energy. Thus,
under the periodic update strategy, the energy bottleneck
in each subtree rooted at a child of the base station is the
node with the highest degree in the subtree. Let i be the
bottleneck node in the subtree rooted at a child node j of
the base station. Suppose node i has an energy budget
ei. Then, the number of data updates each node in Tj

can send is given by ei/(s+ |Ci| ·v), where Ci is the set of
i’s children, |Ci| is the number of i’s children, s and v are
the energy costs for a sensor node to send and receive a
data update respectively.

However, unlike individual data collection, we cannot
simply apply the adaptive update strategy in Section 4.3
to the local readings of each sensor node for aggregate
data collection. This is because if each sensor node makes
update decisions based on its local readings indepen-
dently, the data updates initiated by different nodes may
not be synchronized. If an intermediate node forwards
a data update to its parent immediately upon receiving
an update from any child, it may end up in sending as

time

time

time

time

21 3 4 5 6 7 8 9

A

A
(local)

B

C

Fig. 4. Improper Use of Adaptive Update Strategy

many updates as the total of those sent by its children,
thus defeating the purpose of in-network aggregation.
Figure 4 shows some sample update behaviors of the
sensor nodes in Figure 2. Assume that node B sends data
updates at times 1, 5 and 8 based on its local readings,
and node C sends updates at times 3, 8 and 9. The
row marked “A(local)” shows the data updates initiated
by node A based on its local readings. Integrating the
three update streams of “A(local)”, “B” and “C”, the
intermediate node A would need to send 8 updates
over the 9 time units. The situation deteriorates if an
intermediate node has more descendants.

To leverage the advantages of both adaptive update
strategy and in-network aggregation, we propose to let
each intermediate node apply the adaptive update strat-
egy for its partial aggregate results rather than its local
readings. Specifically, in addition to the local reading, an
intermediate node also maintains the latest data value
reported by each child. The data value maintained for a
child is refreshed when the intermediate node receives a
new update from the child. When this happens or when
the intermediate node acquires a new local reading, it
re-aggregates the data values to produce a new partial
aggregate result. The result is then sent to the parent
if it differs from the last updated data value to the
parent by more than a threshold W . In general, not every
data update from the children of an intermediate node
leads to an immediate update from the intermediate
node to its parent. Figure 5 shows some sample update
behaviors of the sensor nodes in Figure 2. Using the
adaptive strategy in Section 4.3, the number of updates
sent by an intermediate node is controlled by adjusting

time

time

time

21 3 4 5 6 7 8 9

A

B

C

Fig. 5. Proper Use of Adaptive Update Strategy
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Fig. 6. An Example Network and Its Update Allocation

the threshold dynamically. The intermediate node can
also employ the History or Expected method developed
in Section 4.4 to cope with update losses. In this case,
the loss rate p refers to the link loss rate between the
intermediate node and its parent.

5.2 Allocating Numbers of Updates

In addition to the energy constraints of individual sensor
nodes, aggregate data collection over a network of sen-
sor nodes is also restricted by the topological relations
among the nodes. We now study the number of updates
each sensor node can send in adaptive aggregate data
collection. Note that in periodic data collection, since
the update decisions are not made based on sensor
readings, there is no need for a sensor node to send
more updates to its parent than those sent by its parent
to its grandparent. As a result, the rate of updates sent
by a sensor node does not exceed that by its parent
– it either equals the parent’s rate or is an integral
divisor of the parent’s rate [7]. However, adaptive data
collection is different. Consider an example topology in
Figure 6(a). Suppose all nodes have the same energy
budget e. Following the periodic strategy, since B and C
have a degree 3, each of them can send at most e/(s+3·v)
data updates to their parent A, where s and v are the
energy costs for a sensor node to send and receive a
data update respectively. If each of the remaining nodes
sends the same number of updates as B and C, their
energy budgets are underutilized. Node A consumes a
portion (s + 2 · v)/(s + 3 · v) of the energy budget, nodes
D to F each consumes a portion (s + v)/(s + 3 · v) of
the budget, and nodes G to L each consumes a portion
s/(s + 3 · v) of the budget only. Thus, nodes J , K, L
can send more data updates to D, E, F respectively
without breaking the energy constraints. This would
improve the accuracy of data values maintained at D,
E, F for J , K, L respectively, and hence improve the
quality of data update decisions made by D, E, F .
It in turn improves the accuracy of data collected by
the base station. Similarly, A can also send more data
updates to the base station to improve the quality of
data collection without breaking the energy constraints.

In the following, we propose an algorithm to allocate
the numbers of updates allowed to be sent by the sensor
nodes based on their topological relations. Our objective
is to let the sensor nodes send as many updates as
possible subject to the energy constraints.

The allocation algorithm works in iterations. Starting
from a zero allocation for all nodes, the algorithm con-
tinues to increase their allowable numbers of updates
through energy reservation until no further update can
be added. Algorithm 2 shows the pesudocode. We main-
tain an unreserved energy budget ui for each node i and
a total allowable number of updates ci allocated to node
i. ui is initialized with the energy budget ei of node i
(step 4), and ci is initialized with 0 (step 5). For any
set of nodes I, let f(I) be the subset of nodes in I
whose energy budgets have not been fully reserved, i.e.,
f(I) = {i | i ∈ I and ui > 0}. In each round of allocation,
we first compute the number of updates, xi, each node
i can send under its unreserved energy budget (step 9).
Let Ci be the set of i’s children and pi be i’s parent.
Then, i is able to send xi = ui/(|f({pi})| · s + |f(Ci)| · v)

Algorithm 2 Update Allocation Algorithm

1: set s← energy cost to send a data update;
2: set v ← energy cost to receive a data update;
3: for each i do
4: set ui ← energy budget of node i;
5: initialize its allowable number of updates: ci ← 0;
6: end for
7: repeat
8: for each i do
9: set xi ← ui/(|f({pi})| · s + |f(Ci)| · v);

10: end for
11: for each i do
12: set ∆i ← min(xi, xpi

);
13: end for
14: for each i do
15: set ci ← ci + ∆i;
16: set ui ← ui −∆i · s−

∑

j∈Ci
∆j · v;

17: end for
18: until ∆i = 0 for all i
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updates to its parent pi if pi’s energy budget has not
been fully reserved, and is able to receive xi updates
from each child whose energy budget has not been fully
reserved. Taking into consideration the energy constraint
at i’s parent pi, node i is added an allowable number of
updates ∆i = min(xi, xpi

) (step 12), where xpi
is the

number of updates pi is able to receive from i (xpi
is set

to infinity if node i is a child of the base station). After
incrementing the total allowable number of updates ci

(step 15), the unreserved energy budget of each node is
updated according to the number of updates allocated
to itself (for sending energy cost) and to its children (for
receiving energy cost) before the next round of allocation
(step 16). The algorithm terminates when ∆i = 0 for
all nodes (step 18). Since the allocation for each node
requires the information of its parent and children only,
it is easy to execute Algorithm 2 in a distributed fashion.
The algorithm is executed only once at the beginning of
data collection, so the associated overhead, amortized
over network lifetime, is minimal.

We show an example execution of Algorithm 2 on the
tree in Figure 6(a). Assume each node has an energy
budget of 12 units, and the costs for a sensor node to
send and receive a data update are 1 unit of energy
each. Figure 6(b) shows the allocation results of the first
round, where each node i is labelled ui/xi/ci. Since
nodes B and C are the highest degree nodes, their
energy budgets are fully reserved in the first round.
B, C and their children are each allocated 3 allowable
updates. Nodes J , K, L, however, are not constrained
by the energy budget of B. Each of them is allocated 6
allowable updates because xD = xE = xF = 6. Node A
has two children, so it is allocated 12/3 = 4 allowable
updates. Figure 6(c) shows the allocation results of the
second round. Since nodes D, E, F each has 3 units of
energy left unreserved, nodes J , K, L each is allocated
3 more allowable updates in this round. Node A, on
the other hand, has 2 units of energy left unreserved.
As a result, it is allocated 2 more allowable updates. At
the end of the second round, each node either has fully
reserved its own energy budget or its parent has fully
reserved the energy budget. Therefore, no more update
can be allocated in the third round and the algorithm
terminates. It is seen from the final allocation results
that nodes A, J , K and L are allowed to send more
updates than the highest degree nodes B and C. This
helps improve the accuracy of data collected by the base
station.

6 PERFORMANCE EVALUATION

6.1 Experimental Setup

We have developed a simulator to evaluate the proposed
adaptive data collection strategy. We considered, for the
sensor nodes, the energy costs of sending data updates,
receiving data updates and acquiring sensor readings.
Following [35], [24], Table 1 summarizes the power
requirements for different activities of sensor motes.

TABLE 1
Energy Consumption for Different Activities

Activity Energy Consumption
Transmit a data update 20 nAh
Receive a data update 8 nAh

Acquire a sensor reading 1.08 nAh

We simulated a network of 100 sensor nodes. The
network topology was generated as follows. We ran-
domly placed the base station and 100 sensor nodes in
a 1×1 area. The sensor nodes were assumed to have a
radio transmission range of 0.2. If two sensor nodes were
within the radio range of each other, they were consid-
ered neighbors in the network connectivity graph. The
breadth first search tree rooted at the base station was
then computed from the connectivity graph and used
as the routing infrastructure for data collection [18], [7].
We have experimented with many randomly generated
network topologies and observed similar performance
trends. Due to space limitations, we shall only report
the results of a sample network topology in this paper.
The layout of the topology is shown in Figure 7, where
the solid circle represents the base station, the remaining
circles represent the sensor nodes and the lines represent
the links in the routing tree.

 0
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 0  0.2  0.4  0.6  0.8  1
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Fig. 7. A Sample Network Topology in the Experiments

We made use of the data provided by the Live from
Earth and Mars (LEM) project [8] at the University of
Washington to simulate the physical phenomena in the
immediate surroundings of sensor nodes. Weather data
were collected in the LEM project from several stations in
the Washington and Oregon states. We used the temper-
ature (TEMP), solar radiation (SOLAR) and cumulative
rain (RAIN) traces logged by the station at the University
of Washington from August 2004 to August 2005 in our
experiments. Each trace consisted of more than 500,000
readings acquired at a sampling interval of 1 minute.
The data in these traces have different changing patterns.
Figure 8 shows some representative segments of these
traces. Both TEMP and SOLAR data fluctuate over time
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– their readings are higher in the daytime and lower
at night. As seen from Figure 8, the SOLAR data vary
more widely than the TEMP data. A remarkable feature
of the SOLAR data is that the SOLAR readings remain
unchanged regularly because the solar radiation is 0 at
night. The RAIN data differ from the TEMP and SOLAR
data in that the (cumulative) RAIN readings increase
monotonically over time. There also exist periods in
which the RAIN readings remain unchanged because
there is no rainfall. However, unlike the SOLAR trace,
the occurance of these periods is not regular in the
RAIN trace. For each of the TEMP, SOLAR and RAIN
traces, we extracted 100 different subtraces starting at
the same timepoint of different days and associated them
with the sensor nodes in our simulated network. Each
subtrace contained 20,000 readings. The period between
two successive readings in the trace was assumed to be
1 time unit.

We simulated the periodic, adaptive, and optimal
data update strategies under different requirements of
network lifetime. As defined in Section 3, we measured
the root mean square error of the data collected at
the base station with respect to the up-to-date sensor
readings over the required network lifetime. Recall that
the adaptive strategy has three parameters: α, δ and ε.
The following values were chosen as the default settings:
α = 0.8, δ = 0.1, and ε = 0.1. As shall be shown in
Section 6.2, the performance of the adaptive strategy is
generally not sensitive to the parameter settings.

6.2 Performance for Individual Data Collection

First, we evaluate the performance of different strategies
for individual data collection in which the base station
collects the reading of an individual sensor node. For
simplicity, we selected a source sensor node that is a
child of the base station in the routing tree (i.e., the
source node sends its readings to the base station di-
rectly). The initial energy budget of the source node was
set to allow it to acquire 2500 local sensor readings and
send 2500 data updates to the base station, i.e., 2500
×1.08 + 2500×20 = 5.27×104 nAh.

In the periodic strategy, the data update decisions are
not made based on sensor readings. Hence, there is no

need for a sensor node to acquire more readings than
the number of updates it sends for its local readings.
So, we instructed the source sensor node to periodically
acquire readings and send updates at the maximum rate
subject to the energy constraint. For example, given a
network lifetime requirement of 10,000 time units, the
node acquires and sends one reading every 4 time units,
i.e., at times 1, 5, 9, 13, 17, · · · . The adaptive and optimal
strategies, on the other hand, are capable of selecting
and sending a subset of the acquired readings on the fly
based on their relative importance. In the experiments,
we instructed the source sensor node to acquire one
reading every time unit over the network lifetime (i.e.,
acquire all readings in the trace). As a result, more
energy was spent in acquiring sensor readings in these
two strategies than in the periodic strategy. The energy
left over was used for data updates.

Figure 9 shows the root mean square error as a
function of network lifetime requirement (from 2500 to
20,000 time units) for different strategies and traces. At
a network lifetime requirement of 2500 time units, the
source sensor node is able to acquire one reading every
time unit and send all readings to the base station. The
root mean square error, as shown in Figure 9, increases
with network lifetime requirement for all strategies.
Since the optimal strategy assumes a priori knowledge of
all sensor readings over the network lifetime, it is used as
a yardstick (lower bound) on root mean square error. As
seen from Figure 9, there is a substantial performance
gap between the periodic and optimal strategies. The
optimal strategy is able to cut down root mean square
error by over 50% and 80% for the TEMP and SOLAR
traces respectively. It maintains zero error for the RAIN
trace throughout the range of network lifetime require-
ment tested. This strongly motivates the consideration
of the relative importance of sensor readings in data
collection. By making update decisions on the fly based
on sensor readings, the proposed adaptive strategy sig-
nificantly reduces root mean square error against the
periodic strategy. As seen from Figure 9, the relative
improvement is up to 54%, 89% and 100% for the TEMP,
SOLAR and RAIN traces respectively. This demonstrates
the effectiveness of the adaptive strategy in selecting
more important sensor readings to update with the base
station.

Figure 10 shows the effect of parameter settings in the
adaptive strategy for the TEMP trace. We varied each
of the three parameters α, δ, and ε while keeping the
remaining two at their default settings. As shown in Fig-
ure 10, the adaptive strategy is not very sensitive to the
parameter settings. It produces similar results through-
out the ranges of parameter settings tested. These perfor-
mance trends have been consistently observed for both
individual and aggregate data collections over different
traces and network topologies. Therefore, we shall report
only the experimental results for the default parameter
settings in the remainder of this paper.
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Fig. 9. Root Mean Square Error vs. Network Lifetime Requirement (Individual Data Collection)
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Fig. 10. Performance for Different Parameter Settings in the Adaptive Strategy (TEMP Trace)
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Fig. 11. Root Mean Square Error vs. Network Lifetime Requirement (MAX Aggregation)
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6.3 Performance for Aggregate Data Collection

Now, we compare the adaptive strategy against the
periodic strategy for aggregate data collection. The same
initial energy budget was assigned to each sensor node
in the simulated network. The budget was set to allow
the bottleneck node (i.e., the highest-degree node in
the routing tree, as discussed in Section 5) to acquire
2500 local sensor readings, send 2500 data updates to its
parent, and receive 2500 updates from each of its chil-
dren. For example, the highest-degree node in Figure 7
has 11 children, so the initial energy budget was set at
2500×1.08 + 2500×20 + 11×2500×8 = 2.727×105 nAh.

Similar to the experimental methodology in Sec-
tion 6.2, for the periodic strategy, we instructed each
sensor node to acquire readings and send updates at
the same rate. We computed the rates for different
sensor nodes subject to their energy budgets. The rate of
updates sent by a sensor node either equals the parent’s
rate or is an integral divisor of the parent’s rate [7]. For
the adaptive strategy, we instructed each sensor node
to acquire one reading every time unit (i.e., acquire
all readings in the trace). On reserving the energy for
acquiring sensor readings over the required network
lifetime, the remaining energy budget was used for
data updates. The number of updates each sensor node
can send to its parent was computed by the allocation
algorithm described in Section 5.2.

We tested two commonly used aggregates: MAX and
AVG, which refer to the maximum and average of the
readings at all sensor nodes respectively. Figures 11
and 12 show the root mean square errors of MAX and
AVG aggregations respectively. At a network lifetime
requirement of 2500 time units, the sensor nodes are
each able to acquire one reading every time unit and
send all readings to the base station through in-network
aggregation. The root mean square error increases with
network lifetime requirement for both strategies. By
making update decisions based on sensor readings, the
adaptive strategy would not send any update when the
physical phenomena change slowly. The saved energy
is then used to send more updates when the physical
phenomena change rapidly. The periodic strategy, on the
other hand, does not take sensor readings into consid-
eration. It continues to send updates periodically even
when the physical phenomena do not change, thereby
wasting much energy. Therefore, as seen from Figures 11
and 12, the adaptive strategy significantly outperforms
the periodic strategy. For example, for MAX aggregation,
the adaptive strategy cuts down root mean square error
by 53%, 47% and 100% for the TEMP, SOLAR and RAIN
traces respectively at a network lifetime requirement of
10000 time units.

6.4 Impact of Update Losses

So far, we have evaluated the data collection strategies
under reliable transmission of data updates. Now, we
investigate the impact of message losses. In addition to

the periodic strategy and the original adaptive strategy
(Section 4.3), we also simulated the adaptive strategies
augmented with the History and Expected methods (Sec-
tion 4.4) to cope with update losses. They shall be called
Adaptive-History and Adaptive-Expected strategies. In
our experiments, we randomly determined whether each
data update transmitted over a link was lost based on
the link loss rate. We conducted 20 different simulation
runs for each loss rate value. The average performance
of these 20 simulation runs are plotted for performance
comparison.

Figures 13 and 14 show the root mean square er-
ror as a function of link loss rate for a network life-
time requirement of 10000 time units, where Adaptive-
History(k) denotes the Adaptive-History strategy that
maintains the last k updated data values at the sensor
nodes. Note that all adaptive strategies perform the same
in the absence of message losses (the leftmost points
in Figures 13 and 14) since the Adaptive-History and
Adaptive-Expected strategies degenerate to the original
adaptive strategy at a link loss rate of 0. As expected,
the quality of data collection deteriorates with increasing
link loss rate for all strategies. Comparing the peri-
odic and original adaptive strategies, it is seen that the
performance of the original adaptive strategy normally
degrades more rapidly than the periodic strategy. This
verifies that losing a data update in the adaptive strategy
has a more adverse effect on data accuracy than that in
the periodic strategy. In particular, at high link loss rates
(above 20%), the adaptive strategy often collects data
that are even less accurate than the periodic strategy. In
contrast, by taking possible update losses into consider-
ation in making update decisions, the Adaptive-History
and Adaptive-Expected strategies significantly outper-
form the original adaptive strategy in terms of root mean
square error. Figures 13 and 14 show that the perfor-
mance of the Adaptive-History strategy improves with
increasing k up to 8 (i.e., maintaining a longer history of
updated readings at the sensor nodes) and remains quite
stable when k exceeds 8. The Adaptive-Expected strategy
performs similarly to Adaptive-History(8). Both of them
are able to maintain substantial improvement over the
periodic strategy in terms of data accuracy even if the
link loss rate is as high as 50%. The performance results
for other network lifetime requirements have similar
trends and are not shown here due to space limitations.

Finally, we study the effect of imperfect loss rate
knowledge. In this set of experiments, we used k = 8 as
the history length maintained by the Adaptive-History
strategy. We tested two scenarios in which the link loss
rate was overestimated and underestimated relatively by
50% in the augmented adaptive strategies. These two
scenarios are identified by “(+)” and “(−)” in Figures 15
and 16 (e.g., Adaptive-History(+)/Adaptive-History(−)
denotes the Adaptive-History strategy that overesti-
mates/underestimates the link loss rate relatively by
50% in calculating the difference of a new data value
with respect to previously updated data values). As
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Fig. 13. Root Mean Square Error vs. Link Loss Rate (MAX Aggregation)
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Fig. 14. Root Mean Square Error vs. Link Loss Rate (AVG Aggregation)
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Fig. 15. Performance Results in the Absence of Perfect Loss Rate Knowledge (MAX Aggregation)
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Fig. 16. Performance Results in the Absence of Perfect Loss Rate Knowledge (AVG Aggregation)
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seen from Figures 15 and 16, the Adaptive-History and
Adaptive-Expected strategies are generally not sensitive
to the error in the knowledge of link loss rate. They
continue to outperform the periodic strategy in terms
of the accuracy of data collection even in the absence of
perfect loss rate knowledge.

7 CONCLUSION

In this paper, we have studied adaptive data collection
strategies for lifetime-constrained wireless sensor net-
works. Instead of collecting sensor readings periodically,
the relative importance of the readings is considered
in data collection. The sensor nodes send data updates
to the base station when the new readings differ more
substantially from the previous ones. We have developed
adaptive strategies for both individual and aggregate
data collections. To make full use of the energy budgets,
we have designed an algorithm to allocate the numbers
of updates allowed to be sent by the sensor nodes based
on their topological relations. We have also presented
two methods to cope with message losses in wireless
transmission. Experimental results using real data traces
show that, compared to the periodic strategy, adaptive
strategies significantly improve the accuracy of data
collected by the base station over the network lifetime.

ACKNOWLEDGMENTS

This work was supported in part by a grant
from Nanyang Technological University (Project No.
RG47/06). Jianliang Xu’s work was supported in part
by the Research Grants Council of Hong Kong under
Projects HKBU211505, HKBU211307, FRG/05-06/II-65.

REFERENCES

[1] P. Bonnet, J. Gehrke, and P. Seshadri, “Towards sensor database
systems,” in Proc. MDM’01, Jan. 2001, pp. 3–14.

[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,
“A survey on sensor networks,” IEEE Communications Magazine,
vol. 40, no. 8, pp. 102–114, Aug. 2002.

[3] R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton, A. Mainwar-
ing, and D. Estrin, “Habitat monitoring with sensor networks,”
Communications of the ACM, vol. 47, no. 6, pp. 34–40, June 2004.

[4] J. Gehrke and S. Madden, “Query processing in sensor networks,”
IEEE Pervasive Computing, vol. 3, no. 1, pp. 45–55, January–March
2004.

[5] G. J. Pottie and W. J. Kaiser, “Wireless intergrated network
sensors,” Communications of the ACM, vol. 43, no. 5, pp. 51–58,
May 2000.

[6] V. Shnayder, M. Hempstead, B. Chen, G. W. Allen, and M. Welsh,
“Simulating the power consumption of large-scale sensor network
applications,” in Proc. ACM SenSys’04, Nov. 2004, pp. 239–249.

[7] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong,
“Tinydb: An acquisitional query processing system for sensor
networks,” ACM Transactions on Database Systems, vol. 30, no. 1,
pp. 122–173, Mar. 2005.

[8] “Live from Earth and Mars (LEM) Project,” http://www-
k12.atmos.washington.edu/k12/grayskies/.

[9] Q. Han, S. Mehrotra, and N. Venkatasubramanian, “Energy effi-
cient data collection in distributed sensor environments,” in Proc.
IEEE ICDCS’04, Mar. 2004, pp. 590–597.

[10] D. Chu, A. Deshpande, J. M. Hellerstein, and W. Hong, “Ap-
proximate data collection in sensor networks using probabilistic
models,” in Proc. IEEE ICDE’06, Apr. 2006.

[11] A. Silberstein, R. Braynard, and J. Yang, “Constraint chaining: On
energy-efficient continuous monitoring in sensor networks,” in
Proc. ACM SIGMOD’06, June 2006, pp. 157–168.

[12] M. A. Sharaf, J. Beaver, A. Labrinidis, and P. K. Chrysanthis,
“TiNA: A scheme for temporal coherency-aware in-network ag-
gregation,” in Proc. ACM MobiDE’03, Sept. 2003, pp. 69–76.

[13] C. Olston, J. Jiang, and J. Widom, “Adaptive filters for continuous
queries over distributed data streams,” in Proc. ACM SIGMOD’03,
June 2003, pp. 563–574.

[14] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos, “Processing
approximate aggregate queries in wireless sensor networks,”
Information Systems, vol. 31, no. 8, pp. 770–792, Dec. 2006.

[15] W. Xue, Q. Luo, L. Chen, and Y. Liu, “Contour map matching for
event detection in sensor networks,” in Proc. ACM SIGMOD’06,
June 2006, pp. 145–156.

[16] M. Li, Y. Liu, and L. Chen, “Non-threshold based event detection
for 3d environment monitoring in sensor networks,” in Proc. IEEE
ICDCS’07, June 2007.

[17] M. B. Greenwald and S. Khanna, “Power-conserving computation
of order-statistics over sensor networks,” in Proc. ACM PODS’04,
June 2004, pp. 275–285.

[18] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri, “Medians
and beyond: New aggregation techniques for sensor networks,”
in Proc. ACM SenSys’04, Nov. 2004, pp. 188–200.

[19] G. Cormode, M. Garofalakis, S. Muthukrishnan, and R. Rastogi,
“Holistic aggregates in a networked world: Distributed tracking
of approximate quantiles,” in Proc. ACM SIGMOD’05, June 2005,
pp. 25–36.

[20] J. Xu, X. Tang, and W.-C. Lee, “A new storage scheme for
approximate location queries in object tracking sensor networks,”
IEEE Transactions on Parallel and Distributed Systems, vol. 19, no. 2,
pp. 262–275, Feb. 2008.

[21] X. Tang and J. Xu, “Optimizing lifetime for continuous data ag-
gregation with precision guarantees in wireless sensor networks,”
IEEE/ACM Transactions on Networking, accepted to appear, 2008.

[22] M. Wu, J. Xu, X. Tang, and W.-C. Lee, “Top-k monitoring in
wireless sensor networks,” IEEE Transactions on Knowledge and
Data Engineering, vol. 17, no. 7, pp. 962–976, July 2007.

[23] Y. Kotidis, “Snapshot queries: Towards data-centric sensor net-
works,” in Proc. IEEE ICDE’05, Apr. 2005, pp. 131–142.

[24] G. Hartl and B. Li, “infer: A bayesian inference approach towards
energy efficient data collection in dense sensor networks,” in Proc.
IEEE ICDCS’05, June 2005, pp. 371–380.

[25] J. Considine, F. Li, G. Kollios, and J. Byers, “Approximate aggre-
gation techniques for sensor databases,” in Proc. IEEE ICDE’04,
Mar. 2004, pp. 449–460.

[26] S. Nath, P. B. Gibbons, S. Seshan, and Z. R. Anderson, “Synopsis
diffusion for robust aggregation in sensor networks,” in Proc.
ACM SenSys’04, Nov. 2004, pp. 250–262.

[27] I. Lazaridis and S. Mehrotra, “Capturing sensor-generated time
series with quality guarantees,” in Proc. IEEE ICDE’03, Mar. 2003,
pp. 429–440.

[28] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos, “Compressing
historical information in sensor networks,” in Proc. ACM SIG-
MOD’04, June 2004, pp. 527–538.

[29] S. Kim, R. Fonseca, and D. Culler, “Reliable transfer on wireless
sensor networks,” in Proc. IEEE SECON’04, Oct. 2004, pp. 449–459.

[30] A. Woo and D. Culler, “Evaluation of efficient link reliability
estimators for low-power wireless networks,” EECS Department,
University of California, Berkeley, Tech. Rep. UCB/CSD-03-1270,
2003.

[31] C. Buragohain, D. Agrawal, and S. Suri, “Power aware routing
for sensor databases,” in Proc. IEEE INFOCOM’05, Mar. 2005, pp.
1747–1757.

[32] W. Ye, J. Heidemann, and D. Estrin, “Medium access control with
coordinated, adaptive sleeping for wireless sensor networks,”
IEEE/ACM Transactions on Networking, vol. 12, no. 3, pp. 493–506,
June 2004.

[33] J. Polastre, J. Hill, and D. Culler, “Versatile low power media
access for wireless sensor networks,” in Proc. ACM SenSys’04,
Nov. 2004, pp. 95–107.

[34] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TAG:
A tiny aggregation service for ad-hoc sensor networks,” in Proc.
USENIX OSDI’02, Dec. 2002, pp. 131–146.

[35] A. Mainwaring, J. Polastre, R. Szewczyk, and D. Culler, “Wireless
sensor networks for habitat monitoring,” in Proc. ACM WSNA’02,
Sept. 2002, pp. 88–97.


