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Dynamic Bin Packing for On-Demand Cloud
Resource Allocation

Yusen Li, Xueyan Tang, Wentong Cai

Abstract—Dynamic Bin Packing (DBP) is a variant of classical bin packing, which assumes that items may arrive and depart at
arbitrary times. Existing works on DBP generally aim to minimize the maximum number of bins ever used in the packing. In this paper,
we consider a new version of the DBP problem, namely, the MinTotal DBP problem which targets at minimizing the total cost of the
bins used over time. It is motivated by the request dispatching problem arising from cloud gaming systems. We analyze the competitive
ratios of the modified versions of the commonly used First Fit, Best Fit, and Any Fit packing (the family of packing algorithms that open
a new bin only when no currently open bin can accommodate the item to be packed) algorithms for the MinTotal DBP problem. We
show that the competitive ratio of Any Fit packing cannot be better than µ + 1, where µ is the ratio of the maximum item duration to
the minimum item duration. The competitive ratio of Best Fit packing is not bounded for any given µ. For First Fit packing, if all the item
sizes are smaller than 1

β
of the bin capacity (β > 1 is a constant), the competitive ratio has an upper bound of β

β−1
· µ+ 3β

β−1
+ 1. For

the general case, the competitive ratio of First Fit packing has an upper bound of 2µ + 7. We also propose a Hybrid First Fit packing
algorithm that can achieve a competitive ratio no larger than 5

4
µ + 19

4
when µ is not known and can achieve a competitive ratio no

larger than µ+ 5 when µ is known.

Index Terms—Dynamic bin packing, online algorithms, competitive ratios, worst case bounds, theory.
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1 INTRODUCTION

Bin packing is a classical combinatorial optimization problem
which has been studied extensively [11], [13]. In the classical
bin packing problem, given a set of items, the objective is to
pack the items into a minimum number of bins such that the
total size of the items in each bin does not exceed the bin
capacity. Dynamic bin packing (DBP) is a generalization of
the classical bin packing problem [12]. In the DBP problem,
each item has a size, an arrival time and a departure time.
The item stays in the system from its arrival to its departure.
The objective is to pack the items into bins to minimize the
maximum number of bins ever used over time. Dynamic bin
packing has been used in [19] and [26] to model the resource
consolidation problems in cloud computing.

In this paper, we consider a new version of the DBP
problem, which is called the MinTotal DBP problem. In this
problem, we assume that each bin used introduces a cost that
is proportional to the duration of its usage, i.e., the period from
its opening (when the first item is put into the bin) to its close
(when all the items in the bin depart). The objective is to pack
the items into bins to minimize the total cost of packing over
time. We focus on the online version of the problem, where
the items must be assigned to bins as they arrive without any
knowledge of their departure times and future item arrivals.
The arrival time and the size of an item are only known when
the item arrives and the departure time is only known when
the item departs. The items are not allowed to move from one
bin to another once they have been assigned upon arrivals.
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The MinTotal DBP problem considered in this paper is
primarily motivated by the request dispatching problem arising
from cloud gaming systems. In a cloud gaming system,
computer games run on powerful cloud servers, while players
interact with the games via networked thin clients [17]. The
cloud servers run the game instances, render the 3D graphics,
encode them into 2D videos, and stream them to the clients.
The clients then decode and display the video streams. This
approach frees players from the overhead of setting up games,
the hardware/software incompatibility problems, and the need
for upgrading their computers regularly. Cloud gaming is a
promising application of the rapidly expanding cloud com-
puting infrastructure, and it has attracted a great deal of
interests among entrepreneurs and researchers [23]. Several
companies have offered cloud gaming services, such as GaiKai
[2], OnLive [3], and StreamMyGame [4]. The cloud gaming
market has been forecasted to reach 8 billion US dollars in
2017 [1].

Running each game instance demands a certain amount of
GPU resources and the resource requirement can be different
for running different games. In a cloud gaming system, when
a playing request is received by the service provider, it needs
to be dispatched to a game server that has enough GPU
resources to run the game instance of this request. Several
game instances can share the same game server as long as the
server’s GPU resources are not saturated. Each game instance
keeps running in the system until the user stops playing the
game. In general, the migration of game instances from one
game server to another is not preferable due to large migration
overheads and interruption to game play. In order to provide
a good user experience, the gaming service provider needs
to maintain a set of game servers with powerful GPUs for
rendering the game instances. Constant workload fluctuation
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in cloud gaming makes the provisioning of game servers a
challenging issue. The on-demand resource provisioning ser-
vices in public clouds like Amazon EC2 provide an attractive
solution. With these services, game service providers can rent
virtual machines on demand to serve as game servers and pay
for the resources according to their running hours. This frees
game service providers from the complex process of planning,
purchasing, and maintaining hardware. This approach has been
adopted by many cloud gaming service providers like Gaikai
and OnLive [27]. In the cloud gaming systems that use public
clouds, one natural and important issue is how to dispatch the
playing requests to game servers (i.e., virtual machines) so
that the total cost of renting the game servers is minimized.
The online MinTotal DBP problem we have defined exactly
models this issue, where the game servers and playing requests
correspond to the bins and items respectively.

For online bin packing, Any Fit packing algorithms have
been extensively studied since they are simple and make
decisions based on the current system state only. A packing
algorithm is an Any Fit algorithm if it never packs an item
in a new bin when there is a currently open bin with enough
room for the item. First Fit and Best Fit are two commonly
used Any Fit packing algorithms. First Fit puts a new item
into the earliest open bin that can accommodate the item. Best
Fit assigns a new item to the open bin with smallest residual
capacity that can accommodate the item, ties broken in favor
of the lowest-indexed open bin. In this paper, we analyze the
performance of the modified versions of the First Fit, Best
Fit and arbitrary Any Fit packing algorithms for the MinTotal
DBP problem. We assume that an infinite number of bins are
available for packing and all the bins have the same capacity
and the same usage cost per unit time.

This paper extends a preliminary conference version [21]
with significantly improved analysis, particularly on the com-
petitive ratio of First Fit packing. The contributions of this
paper are as follows. Let µ be the ratio of the maximum item
duration to the minimum item duration. We prove that when
µ > 1, the competitive ratio of Any Fit packing cannot be
better than µ+1, and the competitive ratio of Best Fit packing
is not bounded for any given µ. We show that for the case
where all the item sizes are smaller than 1

β of the bin capacity
(β > 1 is a constant). The competitive ratio of First Fit packing
has an upper bound of β

β−1 ·µ+
3β
β−1 +1. For the general case,

First Fit packing has a competitive ratio no larger than 2µ+7.
In addition, we propose a Hybrid First Fit packing algorithm
which classifies and assigns items according to their sizes.
Hybrid First Fit packing can achieve a competitive ratio no
larger than 5

4µ + 19
4 when µ is not known and a competitive

ratio no larger than µ+ 5 when µ is known.
The rest of this paper is structured as follows. The related

work is summarized in Section 2. Section 3 introduces the
system model, notations and packing algorithms. In Sections
4.1 to 4.3, the competitive ratios of First Fit, Best Fit, and
arbitrary Any Fit packing algorithms for the MinTotal DBP
problem are analyzed. Then, the Hybrid First Fit packing al-
gorithm is proposed and its competitive ratio for the MinTotal
DBP problem is analyzed in Section 4.4. Finally, conclusions
are made and future work is discussed in Section 5.

2 RELATED WORK

Cloud gaming systems have been implemented for both com-
mercial use and research studies [4], [17], [3]. However,
most of the existing work has focused on measuring the
performance of cloud gaming systems [10], [25]. To the best
of our knowledge, the resource management issues of cloud
gaming have never been studied. The MinTotal DBP problem
studied in this paper is related to a variety of research topics
including the classical bin packing problem and its variations,
as well as the interval scheduling problem.

The classical bin packing problem aims to put a set of items
into the least number of bins. The problem and its variations
have been studied extensively in both the offline and online
versions [11], [15]. It is well known that the offline version
of the classical bin packing problem is NP-hard [16]. For the
online version, each item must be assigned to a bin without
the knowledge of subsequent items. The items are not allowed
to move from one bin to another. So far, the best upper bound
on the competitive ratio for classical online bin packing is
1.58889, which is achieved by the HARMONIC++ algorithm
proposed in [24]. The best known lower bound for any online
packing algorithm is 1.54037 [5].

Dynamic bin packing is a variant of the classical bin packing
problem [12]. It generalizes the problem by assuming that
items may arrive and depart at arbitrary times. The objective
is to minimize the maximum number of bins ever used in the
packing. Coffman et al. [12] showed that the First Fit packing
algorithm has a competitive ratio between 2.75 to 2.897 and
no online algorithm can achieve a competitive ratio smaller
than 2.5 against an optimal offline adversary that can repack
everything at any time for free. Chan et al. [9] proved that the
lower bound 2.5 on the competitive ratio also holds when the
offline adversary does not repack. Ivkovic et al. [18] studied
an even more general problem called the fully dynamic bin
packing problem, where the online algorithm is also allowed
to move already-packed items to different bins at any time
for free. They proposed an online algorithm that achieves a
competitive ratio of 1.25. Chan et al. [8] studied dynamic bin
packing of unit fractions items (i.e., each item has a size 1

w for
some integer w ≥ 1). They showed that all Any Fit algorithms
have competitive ratios 3.0 or better, that this bound is tight for
Best Fit and Worst Fit, that First Fit has a competitive ratio
between 2.45 and 2.4942, and that no online algorithm can
have a competitive ratio better than 2.428. Classical dynamic
bin packing does not consider bin usage costs and focuses
simply on minimizing the maximum number of bins ever
used. In contrast, the MinTotal DBP problem considered in
this paper aims to minimize the total cost of the bins used in
the packing.

The interval scheduling problem is also related to our prob-
lem [20]. The classical interval scheduling problem considers
a set of jobs, each associated with a weight and an interval
over which the job should be executed. Each machine can
process only a single job at any time. Given a fixed number
of machines, the objective is to schedule a feasible subset of
jobs whose total weight is maximized [6]. Flammini et al.
[14] have extended the classical model to a more general
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version, which is called interval scheduling with bounded
parallelism. In this model, each machine can process g > 1
jobs simultaneously. If there is a job running on a machine,
the machine is called busy. The objective is to assign the jobs
to the machines such that the total busy time of the machines
is minimized. It was proved that the problem to minimize
the total busy time is NP-hard for g ≥ 2 and a 4-competitive
offline algorithm was proposed. Mertzios et al. [22] considered
two special instances: clique instances (the intervals of all
jobs share a common time point) and proper instances (the
intervals of all jobs are not contained in one another), and
provided constant factor approximation algorithms for these
instances. However, the interval scheduling problem differs
from our problem because the ending time of a job is known
at the time of its assignment in interval scheduling, whereas
in our MinTotal DBP model, the departure time of an item
is not known at the time of its assignment. Furthermore, our
MinTotal DBP problem does not assume that all the items have
the same size, so the number of items that can be packed into
a bin is not fixed.

3 PRELIMINARIES

3.1 Notations and Definitions

Table 1 lists some notations used in this paper. Each item r
to pack is associated with a 3-tuple (a(r), d(r), s(r)), where
a(r), d(r) and s(r) denote the arrival time, the departure time
and the size of r respectively. Let I(r) denote the time interval
in which item r stays in the system (assume that d(r) > a(r)
is always true). We say that item r is active during this interval.
The interval length of item r is represented by len(I(r)) =
d(r) − a(r). We extend the definition of len to unions of
intervals by saying that len(∪r∈RI(r)) is the length of time
in which at least one item in R is active, and also refer to
this as span(R). Figure 1 shows an example of the span. Let
u(r) = s(r) · len(I(r)) denote the resource demand of item r.
For any list of items R, we define the total resource demand
of R as u(R) =

∑
r∈R u(r).

time

1r

2r

3r

1( ( ))len I r

2( ( ))len I r

3( ( ))len I r

1 2( ) ( ) I r I r

1 2 3 1 2 3 1 2 3({ , , }) ( ( ) ( ) ( )) ( ( ) ( )) ( ( ))  "   span r r r len I r I r I r len I r I r len I r

Fig. 1. Span of an item list

Without loss of generality, we assume in what follows that
the bins all have unit capacity, and that the cost of using a bin
for an interval of length L is simply L itself. At any time, the
total size of all the items in an open bin is called the level
of the bin. Let P be a packing of a list of items, and define
P (t) to be the number of bins containing items at time t in

TABLE 1
Summary of Key Notations

Notation Definition

a(r) the arrival time of an item r

d(r) the departure time of an item r

s(r) the size of an item r

I(r) the time interval in which an item r is active

len(I(r)) the length of I(r)

u(r) the resource demand of an item r, u(r) = s(r) ·
len(I(r))

span(R) the span of an item list R, span(R) =
len(

∪
r∈R I(r))

u(R) the total resource demand of an item list R, u(R) =∑
r∈R u(r)

TotalCost(PA,R) the total cost of a packing algorithm A applied to an
item list R

OPTtotal(R) the total cost of an optimal offline adversary that can
repack everything at any time

P . Then, the total cost of a packing P of a list of items R is

TotalCost(P ) =

∫ maxr∈R d(r)

minr∈R a(r)

P (t)dt,

where minr∈R a(r) is the time of the first item arrival and
maxr∈R d(r) is the time of the last item departure. Our goal
is to find a packing P of R that minimizes the total cost.

3.2 Packing Algorithms
We consider versions of the standard bin packing algorithms
which are modified as follows. When an empty bin first
receives an item, we shall say that the bin is opened. When
an open bin again becomes empty, we say it has been closed.
Our modification is that, once a bin is closed, it is permanently
closed, and we never place another item in it. Such a decision
would be counterproductive in the Dynamic Bin Packing
problem, where the goal is to minimize the number of bins
used. It makes sense for our applications, however, where once
a bin (server) becomes idle, we no longer pay for it, and it
becomes indistinguishable from all the other idle servers. It
also yields algorithms that are easier to reason about.

According to this set up, a Modified Any Fit (MAF)
algorithm is any packing algorithm that never places an item in
a new bin if it would fit in any of the currently open bins. We
shall prove results that apply to all MAF algorithms, as well
as results about the following two particular MAF algorithms.

• Modified Best Fit: The MAF algorithm which, if there is
one or more open bins that can accommodate the current
item, places the item in the one that accommodates the
item with the least space left over, ties broken in favor
of the lowest-indexed open bin.

• Modified First Fit: The MAF algorithm which, if there is
one or more open bins that can accommodate the current
item, places the item in the lowest-indexed open bin that
has room for it.

For simplicity in what follows, we shall often refer to these
algorithms simply as Best Fit (BF) and First Fit (FF), but
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readers should keep in mind that we are talking about the
modified versions.

The performance of an online algorithm is normally mea-
sured by its competitive ratio, i.e., the worst-case ratio between
the cost of the solution constructed by the algorithm and the
cost of an optimal solution [7]. Given a list of items R, let
OPT (R, t) denote the minimum achievable number of bins
into which all the active items at time t can be repacked.
Define

OPTtotal(R) =

∫ maxr∈R d(r)

minr∈R a(r)

OPT (R, t) dt

It is easy to obtain the following two lower bounds on
OPTtotal(R):

Bound (b.1): OPTtotal(R) ≥ u(R)
Bound (b.2): OPTtotal(R) ≥ span(R)

The first bound is derived by assuming that no bin capacity
is wasted at any time. The second bound is derived from the
fact that at least one bin must be use at any time when there
is at least one active item.

For an algorithm A, let PA,R denote the packing
produced when A is applied to a list of items R.
Then, the total cost of algorithm A applied to R is
TotalCost(PA,R). The competitive ratio for A is the max-
imum of TotalCost(PA,R)/OPTtotal(R) over all lists of
items R. A standard approach to deriving bounds on the
competitive ratio is to prove the following relation for all R:

TotalCost(PA,R) ≤ α ·OPTtotal(R)

where α is a constant [12]. Then, the competitive ratio for
algorithm A is bounded above by α.

4 THE COMPETITIVE RATIOS

In this section, we analyze the competitive ratios of the pack-
ing algorithms for the MinTotal DBP problem. For any item
list R, let µ = maxr∈R len(I(r))

minr∈R len(I(r)) denote what we shall call the
max/min item interval length ratio, where maxr∈R len(I(r))
is the maximum interval length among all the items r ∈ R
and minr∈R len(I(r)) is the minimum interval length among
all the items r ∈ R.

4.1 A Lower Bound for Any Fit Packing
First, we have the following result for Any Fit packing.

Theorem 4.1. For any Modified Any Fit algorithm A, the
MinTotal DBP competitive ratio of A is at least µ+1, assuming
µ > 1.

Proof: Let A be a Modified Any Fit algorithm. Let ∆ be
the minimum item interval length and µ∆ be the maximum
item interval length. Let k be an integer such that 1

k < (µ−1).
At time 0, let k2 items of size 1

k arrive. A needs to open k
bins to pack these items. Then, let one item depart from each
open bin at time ∆. At time ∆+ 1

2k∆, let k items of size 1
k

arrive. It is easy to see that each of the k new items will be
assigned to a different bin by A. After that, let all the “old”
items (i.e., the items arrived at time 0) leave the system at

time ∆ + 1
k∆. At time (µ + 1)∆ + 1

2k∆, all the remaining
items (i.e., the k items arrived at time ∆ + 1

2k∆) leave the
system.

k

1
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1
1
k

"
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Fig. 2. Bin levels by a Modified Any Fit algorithm

As shown in Figure 2, there are always k open bins by
algorithm A from time 0 to (µ+ 1)∆+ 1

2k∆. Thus, the total
cost of A is TotalCost(PA,R) = k(µ+1+ 1

2k )∆. From time
∆+ 1

k∆ to (µ+1)∆+ 1
2k∆, there are only k active items in the

system which can in fact be packed into one bin. Therefore,
OPTtotal(R) ≤ k(∆+ 1

k∆)+(µ∆+ 1
2k∆− 1

k∆) = µ∆− 1
2k∆.

It follows that
TotalCost(PA,R)

OPTtotal(R)
≥ k(µ+ 1)∆

k(∆ + 1
k∆) + (µ∆− 1

2k∆)

=
k(µ+ 1)

k + 1 + µ− 1
2k

≥ k(µ+ 1)

k + 1 + µ

=
µ+ 1

1 + 1
k (µ+ 1)

(1)

It is obvious that expression (1) is monotonically increasing
with k and limk→+∞

µ+1
1+ 1

k (µ+1)
= µ+1. So, given any small

value ε > 0, we can always find an integer k such that
TotalCost(PA,R)

OPTtotal(R) > µ+ 1− ε. Therefore, the competitive ratio
of algorithm A is at least µ+ 1.

4.2 Best Fit Packing
Next, we analyze the performance of Best Fit. Surprisingly,
Best Fit is not competitive at all for the MinTotal DBP
problem.

Theorem 4.2. The MinTotal DBP competitive ratio of Best
Fit is unbounded even when instances are restricted to those
with µ ≤ B for any constant B > 1.

Proof: Let k be an integer. Let ∆ be the minimum item
interval length and µ∆ be the maximum item interval length.
Suppose that all the items have the same size ε, where ε is
sufficiently small and 1

ε is an integer.
At time 0, let k

ε items arrive. Best Fit needs to open k bins
to pack all these items since their total size is k. Denote these
k bins by b1, b2, ..., bk. At time ∆, for each bin bi, let some
items depart to leave the level of bi at 1

k − i · ε.
Then, let items arrive and depart according to the following

iterative process. In the jth (j ≥ 1) iteration, k groups of
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items arrive sequentially in the period [jµ∆− δ, jµ∆], where
δ < (µ − 1)∆. The items in each group arrive at the same
time and the ith group has

1
k−(j·k+i)·ε

ε items. By using Best
Fit, the items in the first group (i.e., i = 1) will be assigned
to b1 since b1 is the bin with the highest level in the system.
After the items in the first group are packed, before the second
group of items arrive, let all the “old” items in b1 (the items
arrived before time jµ∆ − δ) depart. Then, the level of b1
will become 1

k − (jk + 1) · ε. Next, the second group will be
assigned to bin b2, and so on so forth. In general, the items in
the ith group will be packed in bi since bi is the bin with the
highest level in the system when the ith group of items arrive.
Before the (i+1)th group of items arrive, let the “old” items
in bi depart to leave the level of bi at 1

k − (jk+ i) · ε. Figure
3 shows the bin levels in the first few iterations.

1b
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b
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Fig. 3. Bin levels by Best Fit

Consider the time interval [0, nµ∆] in the above pack-
ing process, where n is an integer. Since there are al-
ways k open bins in the system, the total of Best Fit is
TotalCost(PBF,R) = knµ∆. On the other hand, the total
resource demand in the period [0,∆] is k∆. After time ∆,
except the periods [jµ∆ − δ, jµ∆] (for each 1 ≤ j ≤ n), all
the active items in the system can be packed into one bin at
any time. For the periods [jµ∆ − δ, jµ∆], at most two bins
are required to pack all the active items. Therefore,

OPTtotal(R) ≤ k∆+ (nµ∆−∆− nδ) + 2nδ

= k∆+ (nµ∆−∆) + nδ

It follows that

TotalCost(PBF,R)

OPTtotal(R)
≥ knµ∆

k∆+ (nµ∆−∆) + nδ

It can be proved that when n ≥ (k−1)∆
µ∆−δ , we have

TotalCost(PBF,R)

OPTtotal(R)
≥ k

2
(2)

Inequality (2) implies that the ratio TotalCost(PBF,R)
OPTtotal(R) can be

made arbitrarily large as k goes towards infinity. Therefore,
the competitive ratio of Best Fit is unbounded even when µ
is bounded by a constant B > 1.

4.3 First Fit Packing
In this section, we study the competitive ratio of First Fit.
We begin by examining the case of lists consisting of only
“small” items, that is, items with sizes smaller than 1

β for
some constant β > 1. Let ∆ be the minimum item interval
length and µ∆ be the maximum item interval length.

4.3.1 Constructing Reference Periods
Suppose a total of m bins b1, b2, ..., bm are used by First Fit
to pack R. For each bin bi, let Ii denote the usage period of
bi, that is, the interval from the time I−i when bi was opened
until the time I+i when it was closed. For technical reasons,
we shall view this interval as half-open, that is, as [I−i , I+i ).
Denote the length I+i − I−i of Ii by len(Ii). Note that, by
definition of First Fit, we must have I−1 ≤ I−2 ≤ · · · ≤ I−m.

Let Ri denote the set of items that are assigned to bi by
First Fit, then we have Ii =

∪
r∈Ri

I(r). The total cost of
First Fit is given by

TotalCost(PFF,R) =
m∑
i=1

len(Ii)

In what follows, we shall show how to construct lower bounds
on u(R) ≤ OPTtotal(R) in terms of

∑m
i=1 len(Ii), which

will thus yield bounds on the competitive ratio of First Fit.
For each bin bi, let Ei be the latest closing time of all the

bins that are opened before bi, i.e., Ei = max{I+j |1 ≤ j < i},
with E1 = I−1 . We divide period Ii into two parts, ILi and IRi .
If Ei ≤ I−i , ILi = ∅. Otherwise, ILi = [I−i ,min{I+i , Ei}).
In both cases, IRi = Ii − ILi . Note that if IRi is non-
empty, it equals [Ei, I

+
i ). Figure 4 shows an example of these

definitions. According to the definitions, we have len(Ii) =
len(ILi ) + len(IRi ) and it follows that

TotalCost(PFF,R) =

m∑
i=1

(
len(ILi ) + len(IRi )

)
(3)

III
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I4
R

I3
R

E3

I4
L

I3
L

I2
L

I4

I3

I2

I1 (=I1
R)

b4

b3

b2

b1

E2

E4

Fig. 4. An example of usage periods
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Obviously, for any two different bins bi and bj , IRi ∩IRj = ∅.
It is also easy to see that

span(R) =
m∑
i=1

len(IRi ) (4)

According to (3) and (4), we have

TotalCost(PFF,R) =
m∑
i=1

len(ILi ) + span(R) (5)

For each period ILi , if its length len(ILi ) > (µ + 2)∆, we
split ILi into ⌈ len(IL

i )
(µ+2)∆⌉ subperiods by inserting splitter points

that are multiples of (µ + 2)∆ before the end of ILi , i.e., at
times min{I+i , Ei}−k·(µ+2)∆, for k = 1, 2, . . . , ⌈ len(IL

i )
(µ+2)∆⌉−

1. After splitting, if the length of the first subperiod is shorter
than 2∆, we merge the first two subperiods into one. Then, we
label all the subperiods in the temporal order by Ii,1, Ii,2, Ii,3,
. . . , i.e., their left endpoints satisfy I−i,1 < I−i,2 < I−i,3 < · · · .
As before, the intervals are half-open, i.e., [I−i,j , I

+
i,j). Figure

5 shows an example of the period split.

split

merge Ii,1 Ii,2 Ii,3

Ii
L

Ii-1,1 Ii-1,2 Ii-1,3

Ii-1
L

bi

bi-1

Ii-1,4

split

III

p

p

2 ! ( 2 )" # ! ( 2 )" # ! ( 2 )" # !

( 2 )" # !( 2 )" # !( 2 )" # !2$ !

Fig. 5. An example of period split

Note that if the length of ILi does not exceed (µ+2)∆, ILi
is not split. In this case, we define Ii,1 = ILi .

The above splitting and merging process implies the follow-
ing features:

Feature (f.1): len(Ii,j) < (µ+ 4)∆ for any i and j.
Feature (f.2): len(Ii,j) = (µ+ 2)∆ for any j ≥ 2 and any

i.
Feature (f.3): For any i, if subperiod Ii,2 exists, then

len(Ii,1) ≥ 2∆.
For any set of subperiods I, we denote the total length of

the subperiods in I by len(I) =
∑

Ii,j∈I len(Ii,j). Let IL be
the set of all the subperiods produced by the above splitting
and merging process from all ILi ’s. It is obvious that

len(IL) =
∑

Ii,j∈IL

len(Ii,j) =

m∑
i=1

len(ILi ) (6)

For each period Ii,j , it can be shown that at least one new
item must be packed into bin bi during Ii,j = [I−i,j , I

+
i,j). In

fact, if len(Ii,j) ≥ (µ+ 2)∆, there must be at least one new
item packed into bi during [I−i,j , I

−
i,j+µ∆). This is because all

the items packed into bi before I−i,j would have departed by
time I−i,j+µ∆ since µ∆ is the maximum item interval length.
Thus, if no new item is packed into bi during [I−i,j , I

−
i,j+µ∆),

bi would become empty and be closed by time I−i,j +µ∆. On
the other hand, if len(Ii,j) < (µ+ 2)∆, according to Feature
(f.2), Ii,j must be the first subperiod in ILi , i.e., j = 1. Since
bi is opened at time I−i = I−i,1, at least one new item is packed
into bi at time I−i,1.

Let t†i,j denote the time when the first new item is packed
into bi during period Ii,j . We refer to t†i,j as the reference
point of Ii,j . The above analysis implies that:

Feature (f.4): For each period Ii,1, it holds that t†i,1 = I−i,1.
Feature (f.5): For each period Ii,j , it holds that I−i,j ≤

t†i,j ≤ I−i,j + µ∆.

Lemma 4.3. For each reference point t†i,j where i > 1, there
must exist at least one bin bh satisfying h < i and t†i,j < I+h .

Proof: Assume on the contrary that all bins bh with h < i
have I+h ≤ t†i,j . Then, by definition, Ei ≤ t†i,j , and hence
t†i,j ∈ IRi , contradicting our assumption that t†i,j ∈ Ii,j ⊆ ILi .

Among all the bins bh satisfying h < i and t†i,j < I+h , we
define the last opened bin (the bin with the highest index) as
the reference bin of Ii,j , and denote it by b†i,j . We define the
time interval [t†i,j −∆, t†i,j +∆) associated with bin b†i,j as the
reference period of Ii,j , and denote it by p†i,j . Figure 6 shows
an example of reference bins and reference periods.

ib

,3iI,2iI,1iI

†

,1it

Item Arrival Reference Period

†

,2it
†

,3it

†

,1ib

†

,2ib

†

,3ib

†

,1ip

†

,2ip

†

,3ip

Fig. 6. An example of reference bins and periods

Since there is a new item packed into bi at time t†i,j and the
item size is smaller than 1

β , the reference bin b†i,j must have a
level higher than 1− 1

β at time t†i,j according to First Fit. That
is, the total size of the items in b†i,j at time t†i,j is larger than
1 − 1

β . Recall that each of these items resides in the system
for at least ∆ time (the minimum item interval length). Thus,
each of them must stay in bin b†i,j for at least ∆ time during
the reference period p†i,j = [t†i,j − ∆, t†i,j + ∆). Denote by
u(p†i,j) the total resource demand of the items in bin b†i,j over
period p†i,j . It follows that

u(p†i,j) ≥
(
1− 1

β

)
·∆ (7)

In the following, we work towards calculating the total
resource demand of all the reference periods. If two reference
periods are associated with different bins, their total resource
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demand is simply the sum of their respective resource de-
mands. However, if two reference periods are associated with
the same bin, their total resource demand may be smaller than
the sum of their respective demands due to possible temporal
overlap between the reference periods. Two reference periods
intersect if and only if they are associated with the same bin
and their time intervals overlap. Note that the reference periods
for two subperiods Ii1,j1 and Ii2,j2 intersect if and only if
b†i1,j1 = b†i2,j2 and |t†i1,j1 − t†i2,j2 | < 2∆.

The following two lemmas analyze the intersection between
the reference periods.

Lemma 4.4. Suppose i ≤ j. If subperiods Ii,g and Ij,h are
distinct but have intersecting reference periods, then
(a) i < j,
(b) t†j,h ≥ I+i ,
(c) g = 1,
(d) h = 1, and
(e) len(Ii,1) < 2∆.

Proof: (a) If i = j but the subperiods are distinct, we
must have g ̸= h. Without loss of generality, assume g < h.
Thus, Ii has at least two subperiods, len(Ii,1) ≥ 2∆ (Feature
(f.3)), and len(Ii,h) = (µ + 2)∆ (Feature (f.2)). If g = 1,
then t†i,g = I−i , and so t†i,h − t†i,g ≥ len(Ii,1) ≥ 2∆, and the
corresponding reference periods cannot intersect. If g > 1,
t†i,g ≤ I−i,g + µ∆ ≤ I+i,g − 2∆, so, once again, t†i,h − t†i,g ≥
2∆, and the corresponding reference periods cannot intersect.
Thus, we must have i < j.

(b) Since j > i, we must have I−j ≥ I−i . If t†j,h < I+i , we
would thus have t†j,h ∈ Ii and so b†j,h ≥ i. But b†i,g < i by
definition. So, the two reference periods could not intersect.
Therefore, we must have t†j,h ≥ I+i .

(c) Now suppose g > 1. Then, len(Ii,g) = (µ + 2)∆

(Feature (f.2)) and t†i,g ≤ I−i,g+µ∆ = I+i,g−2∆ ≤ I+i −2∆ ≤
t†j,h − 2∆, the last inequality following from (b). Once again
the corresponding reference periods cannot intersect. So, we
must have g = 1.

(d) Now suppose g = 1 and h > 1. Recall that t†i,1 = I−i
and that, since i < j, I−i ≤ I−j . Since h > 1, we also know
that len(Ij,1) ≥ 2∆ (Feature (f.3)). Therefore, t†j,h ≥ I−j,h ≥
I+j,1 ≥ I−j,1+ len(Ij,1) ≥ I−i +2∆ = t†i,1+2∆, and once again
the corresponding reference periods cannot intersect. So, we
must have h = 1.

(e) By (b), we have t†j,1 ≥ I+i , which, if len(Ii,1) ≥ 2∆, is
at least t†i,1+2∆, and once again the corresponding reference
periods would not intersect. Thus, we must have len(Ii,1) <
2∆.

Lemma 4.5. For no i, 1 ≤ i ≤ m, is there any point t ∈
[I−i , I+i ) that is contained in more than two reference periods.

Proof: Suppose there are such an i and t. Then, there are
indices j > h > g > i and reference points t†j,1, t†h,1, and
t†g,1, for which bin bi is the reference bin and such that t is in
the reference period for each. (The second indices of all the
reference points must be 1 by Lemma 4.4(c) and (d), since
each is involved in an intersection).

By Lemma 4.4(b) and the fact that all items are of interval

length at least ∆, we must have t†h,1 ≥ I+g ≥ I−g + ∆.
Similarly, we must have t†j,1 ≥ I−h + ∆. But recall that by
definition we have I−h = t†h,1. Thus, we have t†j,1 ≥ I−g +2∆,
and so the reference periods for t†j,1 and t†g,1 cannot intersect,
and so t cannot belong to both, a contradiction.

By Feature (f.1), we have len(Ii,j) < (µ + 4)∆ for all
subperiods. Thus, by (5) and Bound (b.2), there are at least∑m

i=1 len(I
L
i )

(µ+ 4)∆
=

TotalCost(PFF,R)− span(R)

(µ+ 4)∆

≥ TotalCost(PFF,R)−OPTtotal(R)

(µ+ 4)∆

such periods. Now, by (7), we know that the reference period
for each subperiod contains a total resource demand of at least
(1 − 1

β )∆. By Lemma 4.5, no point is in more than two of
these reference periods, so we have

OPTtotal(R) =
∑
r∈R

u(r)

≥ 1

2
·
(
1− 1

β

)
∆ · TotalCost(PFF,R)−OPTtotal(R)

(µ+ 4)∆

≥
1− 1

β

2µ+ 8
· (TotalCost(PFF,R)−OPTtotal(R))

and hence

OPTtotal(R)

≥

(
1− 1

β

2µ+ 8

)
·

(
2µ+ 8

2µ+ 8 + 1− 1
β

)
· TotalCost(PFF,R)

≥

(
1− 1

β

2µ+ 9

)
· TotalCost(PFF,R)

This implies an upper bound
(

β
β−1

)
· (2µ + 9) on the

competitive ratio for our restricted item lists (with items of
size smaller than 1

β ). The remainder of the section will show
how to improve it by finding as-yet-uncounted quantities of
resource demand to increase the lower bound on OPTtotal(R),
and by providing a way of accounting for the items of size
exceeding 1

β so that the result can be extended to arbitrary
instances.

Let IL,1 be the set of all subperiods of the form Ii,1 and
IL,2 be the set of all subperiods of the form Ii,j where j ≥ 2.
Since all the periods in IL,2 have the same length (Feature
(f.2)), we call them the regular periods.

Lemma 4.4 implies that only the periods in IL,1 may have
intersecting reference periods. If the reference periods of Ii,1
and Ih,1 intersect and i < h (i.e., I−i,1 ≤ I−h,1), we call Ii,1 the
front-intersect period of Ih,1 and call Ih,1 the back-intersect
period of Ii,1. For any period Ii,1, if Ii,1 has two front-intersect
or two back-intersect periods, it implies a common point in
three reference periods, which contradicts Lemma 4.5. Thus,
we have the following corollary.

Lemma 4.6. For each period Ii,1, there is at most one front-
intersect period and at most one back-intersect period of Ii,1.
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Next, we construct pairs for the periods in IL,1 according
to the following rule. Consider each period Ii,1 ∈ IL,1 in the
ascending order of i. If Ii,1 has not been added into any pair
and Ii,1 has a “back-intersect” period (denoted by Ii′,1), we
construct a pair (Ii,1, Ii′,1). We name the pair as a joint period
and denote it by Ji,i′ (where i < i′). We define the reference
period of the joint period Ji,i′ as the reference period of Ii,1,
i.e., p†i,1. Note that a period in IL,1 that has no “back-intersect”
period might not be added into any pair. We name such period
as a single period. An example of the pairing process is shown
in Figure 7.

1
b

2
b

3
b

4
b

5
b

6
b

Reference Period

Joint Period J2,3

Single Period I4,1
Joint Period J5,6

Fig. 7. An example of pairing

Lemma 4.7. The reference periods of all the joint periods and
single periods do not intersect with one another.

Proof: Suppose we have two single/joint periods X1 and
X2, whose reference periods intersect, with the latter having
the rightmost reference point. For j ∈ {1, 2}, let Iij ,1 = Xj

if the latter is a single period, and be the first half of Xj if it
is a joint period. The reference points for X1 and X2 are then
I−i1,1 ≤ I−i2,1. If X1 is a single period, the fact that the reference
periods for X1 and X2 intersect would thus imply that Ii2,1
is the back-intersect period of Ii1,1. But then we would have
made a joint period out of Ii1,1 and Ii2,1, a contradiction of
the fact that it is a single period. On the other hand, if X1 is
a joint period Ji1,h, then the reference periods for Ii1,1 and
Ih,1 must both contain the rightmost point x in the reference
period for Ii1,1. But so would the reference period for I−i2,1,
by our hypothesis that the reference periods for X1 and X2

intersect, and that I−i1,1 ≤ I−i2,1. Thus, x would be contained
in three reference periods, violating Lemma 4.5.

Let J denote the set of all the joint periods and S denote
the set of all the single periods. Now, IL has been divided into
three subsets:

IL = IL,2 ∪ J ∪ S (8)

Let set P(IL,2) denote the reference periods of all the regular
periods in IL,2. Let set P(J) denote the reference periods of
all the joint periods in J, and let set P(S) denote the reference
periods of all the single periods in S. Lemma 4.7 together with
Lemma 4.4 imply that the reference periods of all the joint
periods, single periods and regular periods do not intersect.

Lemma 4.8. All the reference periods in P(IL,2) ∪ P(J) ∪
P(S) do not intersect with one another.

It follows from Lemma 4.8 that the overall resource demand
of the entire item list is at least the sum of the resource de-
mands of all the reference periods in P(IL,2)∪P(J)∪P(S). To

approximate the overall resource demand more closely, in the
next section, we further introduce some extra reference periods
that do not intersect with those in P(IL,2) ∪P(J) ∪P(S).

4.3.2 Adding Extra Reference Periods
We define the length of a joint period as the total length of
the two periods in the pair, that is, len(Ji,i′) = len(Ii,1) +
len(Ii′,1). Note that by Lemma 4.4(b), I+i′,1 ≥ I−i,1+len(Ji,i′).

According to Feature (f.1) and Lemma 4.4(e), the maximum
possible length of a joint period is 2∆+(µ+4)∆ = (µ+6)∆.
We further divide the joint periods in J into long joint periods
and short joint periods. Long joint periods are those longer
than (µ+3)∆, and short joint periods are those shorter than or
equal to (µ+3)∆. Let JL and JS denote the sets of long joint
periods and short joint periods respectively. Then, J = JL∪JS.

For each long joint period Ji,i′ , we are going to introduce
an extra reference point t♯i′,1 in the interval [I−i′,1, I

+
i′,1 − 2∆).

Note that this is a non-empty interval since, by Lemma 4.4(e)
and the definition of long joint period, len(Ii′,1) > (µ+3)∆−
len(Ii,1) > (µ+3)∆−2∆ = (µ+1)∆ > 2∆. If I−i′,1 ≥ I+i′,1−
(µ+2)∆, then t♯i′,1 is simply our old t†i′,1 = I−i′,1. Otherwise,
let t♯i′,1 be the time when the first new item was packed into
bin bi′ during the interval [I+i′,1 − (µ+2)∆, I+i′,1 − 2∆). Such
a time must exist, since the interval is of length µ∆, and if no
items were packed in that interval, the bin would have become
empty at or before time I+i′,1 − 2∆ contradicting the fact that
it remained open until time I+i′,1.

Similar to the reference point, Lemma 4.3 also applies to
the extra reference point. So, there must exist at least one bin
bh satisfying h < i′ and t♯i′,1 < I+h . Among all these bins, we
define the last opened bin (the bin with the highest index) as
the extra reference bin of Ji,i′ , and denote it by b♯i′,1. If the
length of the long joint period fulfils len(Ji,i′) ≥ (µ+4)∆, the
extra reference period of Ji,i′ associated with bin b♯i′,1, denoted
by p♯i′,1, is defined to be the time interval [t♯i′,1−∆, t♯i′,1+∆).
Otherwise, it is the time interval [t♯i′,1−δi,i′ , t

♯
i′,1+δi,i′), where

δi,i′ = len(Ji,i′)−(µ+3)∆ < ∆. Some examples of the extra
reference periods of long joint periods are shown in Figures
8(a), 8(b) and 8(c). It can be proven that the extra reference
period does not intersect with the standard reference period
for Ji,i′ . For the case where len(Ji,i′) ≥ (µ+ 4)∆, since we
have t♯i′,1 ≥ I+i′,1− (µ+2)∆ ≥ I−i,1+2∆ = t†i,1+2∆, the two
reference points are too far apart for their reference periods to
intersect. For the case where (µ + 3)∆ < len(Ji,i′) < (µ +

4)∆, we have t♯i′,1−(t†i,1+∆) ≥ I+i′,1−(µ+2)∆−t†i,1−∆ =

I+i′,1− I−i,1− (µ+3)∆ ≥ len(Ji,i′)− (µ+3)∆ = δi,i′ . Hence,
the extra reference period and the standard reference period
do not intersect either.

According to First Fit, the level of the extra reference bin
b♯i′,1 must be higher than 1 − 1

k at the extra reference point
t♯i′,1. Denote by u(p♯i′,1) the total resource demand of the items
in bin b♯i′,1 over the extra reference period p♯i′,1. Since each
item resides in the system for at least ∆ time (the minimum
item interval length), in the case of len(Ji,i′) ≥ (µ+4)∆, we
have

u(p♯i′,1) ≥
(
1− 1

β

)
·∆ (9)
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Fig. 8. Examples of extra reference periods

In the case of (µ+3)∆ < len(Ji,i′) < (µ+4)∆, since the
extra reference period p♯i′,1 extends from t♯i′,1 forwards and
backwards each by δi,i′ < ∆, the resource demand u(p♯i′,1)
must satisfy

u(p♯i′,1) ≥
(
1− 1

β

)
· δi,i′

=
(
1− 1

β

)
·
(
len(Ji,i′)− (µ+ 3)∆

)
(10)

According to Feature (f.1), the maximum possible length of
a single period is (µ+4)∆. Similar to the classification of joint
periods, we also divide the single periods in S into long single
periods and short single periods. Long single periods are those
longer than (µ+3)∆, and short single periods are those shorter
than or equal to (µ+ 3)∆. Let SL and SS denote the sets of
long single periods and short single periods respectively. Then,
S = SL ∪ SS.

For each long single period Ii,1, its reference point is t†i,1 =

I−i,1 (Feature (f.4)). Since len(Ii,1) = I+i,1 − I−i,1 > (µ+ 3)∆,
we have I+i,1−(µ+2)∆ > I−i,1. Recall that µ∆ is the maximum
item interval length. Thus, at least one new item must be
packed into bin bi during the interval [I+i,1 − (µ+ 2)∆, I+i,1 −
2∆). Let t♯i,1 denote the time when the first new item is packed
into bi during [I+i,1 − (µ+2)∆, I+i,1 − 2∆). We refer to t♯i,1 as
the extra reference point of the long single period Ii,1. Again,
Lemma 4.3 applies to the extra reference point. So, there must
exist at least one bin bh satisfying h < i and t♯i,1 < I+h .
Among all these bins, we define the last opened bin (the bin
with the highest index) as the extra reference bin of Ii,1, and
denote it by b♯i,1. The extra reference period of Ii,1 associated
with bin b♯i,1, denoted by p♯i,1, is [t♯i,1 − δi, t

♯
i,1 + δi), where

δi = len(Ii,1) − (µ + 3)∆ < ∆. An example of the extra
reference period of a long single period is shown in Figure
8(d). Note that t♯i,1−(t†i,1+∆) ≥ I+i,1−(µ+2)∆−I−i,1−∆ =
len(Ii,1)− (µ+ 3)∆ = δi. Hence, the extra reference period

does not intersect with the standard reference period for Ii,1.
Since δi < ∆, similar to (10), the resource demand u(p♯i,1)
for the extra reference period must satisfy

u(p♯i,1) ≥
(
1− 1

β

)
· δi

=
(
1− 1

β

)
· (len(Ii,1)− (µ+ 3)∆) (11)

Lemma 4.4 is also applicable to the extra reference periods
of long joint periods and long single periods. In the following,
we analyze the intersection for the extra reference periods.

Lemma 4.9. No extra reference period intersects with another
valid reference period, either another extra one or one cor-
responding to a reference point for a period other than the
second component for a joint period.

Proof: Consider an extra reference period p♯ in bin bh.
Suppose that this period is generated by an extra reference
point t♯ in bin bi (in particular, t♯ is in Ii,1) and suppose that
the extra reference period is intersected by another reference
period in bh, generated by a reference point t (extra or
standard) in bin bj . Let t+ be the right endpoint of the
joint/single period containing t♯, and recall that by our choices
of extra reference points, we must have t♯ ≤ t+ − 2∆.

If j > i, we know that all reference points in bin bj that
map to bin bh must be at least as large as I+i , and thus be
at least 2∆ away from t♯, and hence cannot yield intersecting
reference periods.

If j = i, then t cannot come from the same period as
t♯, since we have already seen that the extra and standard
reference periods for reference points in the same single period
do not intersect. So, this means that t is in some period Ii,g
with g > 1, and hence is to the right of the interval Ii,1
containing t♯. But, as already observed, t♯ is at least 2∆ from
the right endpoint of that interval, and hence at least that far
from t, so the two reference periods cannot intersect.

Finally, assume j < i, in which case we must have t <
I+j ≤ t♯. If t comes from an interval Ij,g with g > 1, we
know that the interval has length (µ + 2)∆ and t was the
first item to enter the bin during the interval. Hence, it must
have arrived by time t−j,g + µ∆ ≤ I+j,g − 2∆ ≤ I+j − 2∆, and
once again the two points are too far apart to yield intersecting
reference periods. So, t must come from the interval Ij,1. If
it is an extra reference point, then it is at least 2∆ to the left
of I+j , and once again is too far from t♯. If t is a standard
reference point, then it must be I−j,1. But now consider the
subperiod Ii,1 of bin bi that contains t♯. Since j < i, we must
have t = I−j,1 ≤ I−i,1 = t†i,1, and if the reference period for t♯

intersects that for t, then so does that for t†i,1. Consequently,
Ij,1 is the front-intersect period for Ii,1. Since t is a standard
reference point, interval Ij,1 cannot be the second half of a
joint period. But this means that our joint period construction
routine must have made a joint period out of Ij,1 and Ii,1, and
we have already observed that the standard and extra reference
periods for a joint period do not intersect.

Thus, all possibilities lead to a contradiction, and the
Lemma holds.
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Let set P♯(JL) denote the extra reference periods of all the
long joint periods in JL, and let set P♯(SL) denote the extra
reference periods of all the long single periods in SL. Lemmas
4.8 and 4.9 together have shown that all the extra reference
periods in P♯(JL) ∪ P♯(SL) and all the standard reference
periods in P(IL,2) ∪ P(J) ∪ P(S) do not intersect with one
another. Thus, their total resource demand is given by the sum
of their individual resource demands.

4.3.3 Calculating Total Resource Demand

Next, we calculate the ratio of the total resource demand to
the total length of the reference and extra reference periods.
Recall that J = JL ∪ JS and S = SL ∪ SS. It follows from
(8) that IL = IL,2 ∪ JL ∪ JS ∪ SL ∪ SS. For convenience,
we also divide P(J) into P(JL) and P(JS), which are the
reference periods of the long joint periods and the short joint
periods respectively. Similarly, we divide P(S) into P(SL)
and P(SS), which are the reference periods of the long single
periods and the short single periods respectively.

For each regular period Ii,j ∈ IL,2, according to (7), its
reference period p†i,j has the resource demand u(p†i,j) ≥ (1−
1
β )∆. Since len(Ii,j) = (µ + 2)∆ (Feature (f.2)), it follows
that

u(p†i,j) ≥
(1− 1

β )∆

(µ+ 2)∆
· len(Ii,j) >

1− 1
β

µ+ 3
· len(Ii,j)

For convenience, we extend the notation u(·) to a set of
reference periods. For example, u(P(IL,2)) represents the total
resource demand of the reference periods in P(IL,2). Then, we
have

u(P(IL,2)) =
∑

p†
i,j∈P(IL,2)

u(p†i,j)

>
1− 1

β

µ+ 3
·
∑

Ii,j∈IL,2

len(Ii,j)

=
1− 1

β

µ+ 3
· len(IL,2) (12)

where len(IL,2) is the total length of the periods in IL,2.
For each long joint period Ji,i′ ∈ JL, if len(Ji,i′) ≥

(µ + 4)∆, according to (7) and (9), its reference period p†i,1
has the resource demand u(p†i,1) ≥ (1 − 1

β )∆, and its extra
reference period p♯i′,1 has the resource demand u(p♯i′,1) ≥
(1− 1

β )∆. Based on Lemma 4.4(e) and Feature (f.1), we have
len(Ji,i′) < 2∆ + (µ+ 4)∆ = (µ+ 6)∆. Thus,

u(p†i,1) + u(p♯i′,1) ≥ 2 ·
(
1− 1

β

)
∆

>
2 · (1− 1

β )∆

(µ+ 6)∆
· len(Ji,i′)

>
1− 1

β

µ+ 3
·
(
len(Ii,1) + len(Ii′,1)

)
If (µ+3)∆ < len(Ji,i′) < (µ+4)∆, according to (10), the

extra reference period p♯i′,1 has the resource demand u(p♯i′,1) ≥

(1− 1
β ) · (len(Ji,i′)− (µ+ 3)∆). Thus,

u(p†i,1) + u(p♯i′,1)

≥
(
1− 1

β

)
·
(
∆+ len(Ji,i′)− (µ+ 3)∆

)
=
(
1− 1

β

)
·
(
len(Ji,i′)− (µ+ 2)∆

)
Since len(Ji,i′) > (µ+ 3)∆, we have(

µ+ 2

µ+ 3

)
· len(Ji,i′) > (µ+ 2)∆

and hence

len(Ji,i′)− (µ+ 2)∆ >

(
1− µ+ 2

µ+ 3

)
· len(Ji,i′)

=
len(Ji,i′)

µ+ 3

As a result, it again holds that

u(p†i,1) + u(p♯i′,1) >
1− 1

β

µ+ 3
· len(Ji,i′)

=
1− 1

β

µ+ 3
·
(
len(Ii,1) + len(Ii′,1)

)
Therefore,

u(P(JL) ∪P♯(JL))

=
∑

p†
i,1∈P(JL)

u(p†i,1) +
∑

p♯

i′,1∈P♯(JL)

u(p♯i′,1)

>
1− 1

β

µ+ 3
·
∑

Ji,i′∈JL

(
len(Ii,1) + len(Ii′,1)

)

=
1− 1

β

µ+ 3
· len(JL) (13)

For each short joint period Ji,i′ ∈ JS, according to (7),
its reference period p†i,1 has the resource demand u(p†i,1) ≥
(1− 1

β )∆. Since len(Ji,i′) ≤ (µ+ 3)∆, it follows that

u(p†i,1) ≥
(1− 1

β )∆

(µ+ 3)∆
· len(Ji,i′)

=
1− 1

β

µ+ 3
·
(
len(Ii,1) + len(Ii′,1)

)
Thus,

u(P(JS)) =
∑

p†
i,1∈P(JS)

u(p†i,1)

≥
1− 1

β

µ+ 3
·
∑

Ji,i′∈JS

(
len(Ii,1) + len(Ii′,1)

)

=
1− 1

β

µ+ 3
· len(JS) (14)

For each long single period Ii,1 ∈ SL, remember that (µ+
3)∆ < len(Ii,1) < (µ + 4)∆. According to (7) and (11),
its reference period p†i,1 has the resource demand u(p†i,1) ≥
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(1− 1
β )∆, and its extra-reference period p♯i,1 has the resource

demand u(p♯i,1) ≥ (1− 1
β ) · (len(Ii,1)− (µ+ 3)∆). Thus,

u(p†i,1) + u(p♯i,1) ≥
(
1− 1

β

)
·
(
∆+ len(Ii,1)− (µ+ 3)∆

)
=
(
1− 1

β

)
·
(
len(Ii,1)− (µ+ 2)∆

)
Since len(Ii,1) > (µ+ 3)∆, we have(

µ+ 2

µ+ 3

)
· len(Ii,1) > (µ+ 2)∆

and hence

len(Ii,1)− (µ+ 2)∆ >

(
1− µ+ 2

µ+ 3

)
· len(Ii,1)

=
len(Ii,1)

µ+ 3

As a result,

u(p†i,1) + u(p♯i,1) >
1− 1

β

µ+ 3
· len(Ii,1)

Therefore,

u(P(SL) ∪P♯(SL)) =
∑

p†
i,1∈P(SL)

u(p†i,1) +
∑

p♯
i,1∈P♯(SL)

u(p♯i,1)

>
1− 1

β

µ+ 3
·
∑

Ii,1∈SL

len(Ii,1)

=
1− 1

β

µ+ 3
· len(SL) (15)

For each short single period Ii,1 ∈ SS, according to (7),
its reference period p†i,1 has the resource demand u(p†i,1) ≥
(1− 1

β )∆. Since len(Ii,1) ≤ (µ+ 3)∆, it follows that

u(p†i,1) ≥
(1− 1

β )∆

(µ+ 3)∆
· len(Ii,1) =

1− 1
β

µ+ 3
· len(Ii,1)

Thus,

u(P(SS)) =
∑

p†
i,1∈P(SS)

u(p†i,1)

≥
1− 1

β

µ+ 3
·
∑

Ii,1∈SS

len(Ii,1)

=
1− 1

β

µ+ 3
· len(SS) (16)

Combining (12), (13), (14), (15), and (16), we have

u(P(IL,2) ∪P(J) ∪P(S) ∪P♯(JL) ∪P♯(SL))

= u(P(IL,2) ∪P(JL) ∪P(JS) ∪P(SL) ∪P(SS)

∪P♯(JL) ∪P♯(SL))

= u(P(IL,2)) + u(P(JL) ∪P♯(JL)) + u(P(JS))

+u(P(SL) ∪P♯(SL)) + u(P(SS))

≥
1− 1

β

µ+ 3
· (len(IL,2) + len(JL) + len(JS)

+len(SL) + len(SS))

=
1− 1

β

µ+ 3
· len(IL) (17)

The overall resource demand u(R) of the entire item list is
at least u(P(IL,2)∪P(J)∪P(S)∪P♯(JL)∪P♯(SL)). Thus,
it follows that

u(R) ≥
1− 1

β

µ+ 3
· len(IL) (18)

According to (5), (6) and (18), we have

TotalCost(PFF,R) = len(IL) + span(R)

≤ µ+ 3

1− 1
β

· u(R) + span(R) (19)

It follows from Bounds (b.1) and (b.2) that

TotalCost(PFF,R) ≤
(

β

β − 1
· µ+

3β

β − 1
+ 1

)
·OPTtotal(R)

Therefore, we have the following result.

Theorem 4.10. For the MinTotal DBP problem, for any item
list R, if the item size s(r) < 1

β (β > 1 is a constant) for
all the items r ∈ R, the total cost of First Fit is at most
( β
β−1 · µ+ 3β

β−1 + 1) ·OPTtotal(R). �

4.3.4 The General Case
Now, we consider the general case for First Fit. We follow the
above analysis for Theorem 4.10.

Consider a period Ii,j in IL,2 ∪ SL ∪ SS or a joint period
Ji,i′ in JL∪JS. Recall that its reference period p†i,j is the time
interval [t†i,j −∆, t†i,j +∆) associated with the reference bin
b†i,j . Let p‡i,j denote the same time interval [t†i,j −∆, t†i,j +∆)

associated with bin bi. We refer to p‡i,j as the auxiliary period
of Ii,j or Ji,i′ . Figure 9 shows an example of auxiliary periods.

ib

†
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p

I

p

$

 

 
I

I

!
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Item Arrival

#

 

†

,i jb

†

,i jt

Fig. 9. An example of auxiliary periods

In the above analysis for Theorem 4.10, we have shown that
for each reference period p†i,j , a new item was packed into bi at
time t†i,j . According to First Fit, after this item is packed, the
total level of bins bi and b†i,j should exceed 1. Otherwise, the
new item would have been packed into b†i,j instead. Moreover,
since ∆ is the minimum item interval length, all the items
in bin bi at time t†i,j must reside in the system for at least
∆ time during the auxiliary period p‡i,j , and all the items in
bin b†i,j at time t†i,j must reside in the system for at least ∆
time during the reference period p†i,j . It follows that the total
resource demand of the items in bin bi over p‡i,j and the items
in bin b†i,j over p†i,j satisfies

u(p†i,j) + u(p‡i,j) ≥ ∆ (20)
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Similarly, for each long joint period Ji,i′ (and each long
single period Ii′,1), we define its extra auxiliary period p§i′,1
as the same time interval as its extra reference period but
associated with bin bi′ . For the case of a long joint period
Ji,i′ with length between (µ + 3)∆ and (µ + 4)∆, the total
resource demand of the items in bin bi′ over the extra auxiliary
period p§i′,1 and the items in bin b♯i′,1 over the extra reference
period p♯i′,1 satisfies

u(p♯i′,1) + u(p§i′,1) ≥ len(Ii,1) + len(Ii′,1)− (µ+ 3)∆(21)

For the case of a long joint period Ji,i′ with length above
(µ+ 4)∆, the total resource demand satisfies

u(p♯i′,1) + u(p§i′,1) ≥ ∆ (22)

For the case of a long single period Ii′,1, the total resource
demand satisfies

u(p♯i′,1) + u(p§i′,1) ≥ len(Ii′,1)− (µ+ 3)∆ (23)

According to the previous analysis, all the reference/extra
reference periods in P(IL,2)∪P(J)∪P(S)∪P♯(JL)∪P♯(SL)
do not intersect with each other. Next, we examine the
intersection among the auxiliary/extra auxiliary periods.

Lemma 4.11. All the auxiliary/extra auxiliary periods do not
intersect with one another.

Proof: First, it is apparent that any two extra auxiliary
periods p§i′1,1

and p§i′2,1
do not intersect because there is at

most one per bin.
Next, we show that any two auxiliary periods p‡i1,j1 and

p‡i2,j2 do not intersect. If i1 ̸= i2, p‡i1,j1 and p‡i2,j2 do not
intersect since they are associated with different bins. If i1 =
i2, without loss of generality, suppose j1 < j2. Since there are
at least two subperiods in the bin, this means that len(Ii1,j1) ≥
2∆ and so, by now familiar arguments, the reference point
of Ii1,j1 is at least 2∆ to the left of the right endpoint of
Ii1,j1 , and hence the auxiliary reference period of Ii1,j1 cannot
intersect with any subsequent ones. Therefore, p‡i1,j1 and p‡i2,j2
do not intersect.

Finally, we show that an extra auxiliary period p§i′,1 does
not intersect with an auxiliary period p‡j,h. If i′ ̸= j, p§i′,1 and
p‡j,h do not intersect because they are associated with different
bins. If i′ = j and h ≥ 2, we are in the same situation as
in the previous case and there can be no intersection. So,
assume that h = 1 and hence both the auxiliary reference
period and the extra auxiliary reference period come from
the same subperiod Ij,1. We already argued in the proof of
Lemma 4.9 that the reference and extra reference periods for
this subperiod do not intersect even if they are associated with
the same bin. Thus, neither do the corresponding auxiliary and
extra auxiliary periods.

Since all the reference/extra reference periods of those in
P(IL,2) ∪ P(J) ∪ P(S) ∪ P♯(JL) ∪ P♯(SL) do not intersect
and all the auxiliary/extra auxiliary periods do not intersect
either, any time point associated with each bin can be shared
by at most one reference/extra reference period and one auxil-
iary/extra auxiliary period. Therefore, similar to the derivation

of (18), it follows from (20), (21), (22) and (23) that

u(R) ≥ 1

2
· 1

µ+ 3
· len(IL) (24)

According to (5), (6) and (24), we have

TotalCost(PFF,R) ≤ 2(µ+ 3) · u(R) + span(R)

≤ (2µ+ 6) ·OPTtotal(R) +OPTtotal(R)

≤ (2µ+ 7) ·OPTtotal(R)

Therefore, we have the following result.

Theorem 4.12. The MinTotal DBP competitive ratio of First
Fit has an upper bound of 2µ+ 7.

4.4 A Hybrid First Fit Packing Algorithm
Theorem 4.10 shows that the total cost of First Fit is much
related to the item sizes. Inspired by Theorem 4.10, we
propose a new Hybrid First Fit algorithm that can achieve
improved competitive ratios.

• Hybrid First Fit (HFF): Define a variable β > 1. The
items with sizes equal to or larger than 1

β are classified
as large items. The items with sizes smaller than 1

β
are classified as small items. Hybrid First Fit uses the
Modified First Fit algorithm defined in Section 3.2 to
pack the large items and the small items separately.

Theorem 4.13. Hybrid First Fit can achieve a MinTotal DBP
competitive ratio no larger than 5

4µ+
19
4 when µ is not known

and a competitive ratio no larger than µ+5 when µ is known.

Proof: Given an item list R, let RL denote the set of all
the large items and RS denote the set of all the small items.
Then, s(r) ≥ 1

β for all r ∈ RL, and s(r) < 1
β for all r ∈ RS.

The total cost of any packing algorithm is bounded by that
of assigning each item to a new bin, i.e.,

∑
r∈R len(I(r)).

Thus, for the large items, we have

TotalCost(PHFF,RL) ≤
∑
r∈RL

len(I(r))

=
∑
r∈RL

u(r)

s(r)
≤
∑

r∈RL
u(r)

1
β

= β · u(RL) (25)

For the small items, according to (19) in the analysis of
Theorem 4.10, we have

TotalCost(PHFF,RS) ≤
µ+ 3

1− 1
β

· u(RS) + span(RS)

Note that u(RL) ≤ u(R), u(RS) ≤ u(R), and
span(RS) ≤ span(R). Thus, it follows that

TotalCost(PHFF,R)

= TotalCost(PHFF,RL) + TotalCost(PHFF,RS)

≤ β · u(RL) +
µ+ 3

1− 1
β

· u(RS) + span(RS)

≤ max

{
β,

µ+ 3

1− 1
β

}
· u(R) + span(R)
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If the max/min item interval length ratio µ is not known,
we can set β = 5 in Hybrid First Fit. In this case,

max

{
β,

µ+ 3

1− 1
β

}
= max

{
5,

5

4
µ+

15

4

}
Since µ ≥ 1, we have 5

4µ+ 15
4 ≥ 5. Therefore,

TotalCost(PHFF,R) ≤
(5
4
µ+

15

4

)
· u(R) + span(R)

≤
(5
4
µ+

19

4

)
·OPTtotal(R)

Thus, when µ is not known, Hybrid First Fit can achieve a
competitive ratio no larger than 5

4µ+ 19
4 .

If µ is known, it can be derived that when β = µ + 4,
max

{
β, µ+3

1− 1
β

}
achieves the smallest value which is given by

µ+ 4. Therefore, we have

TotalCost(PHFF,R) ≤ (µ+ 4) · u(R) + span(R)

≤ (µ+ 5) ·OPTtotal(R)

Thus, when µ is known,1 Hybrid First Fit can achieve a
competitive ratio no larger than µ+ 5.

5 CONCLUSIONS

In this paper, we have studied the MinTotal Dynamic Bin
Packing problem that aims to minimize the total cost of
the bins used over time. We have analyzed the competitive
ratios of appropriately modified versions of the classic Any
Fit algorithms for ordinary bin packing, including bounds on
the competitive ratios of arbitrary Any Fit algorithms and
more specific bounds for the modified versions of Best Fit
and First Fit. We also introduced a new online algorithm,
Hybrid First Fit, with a better competitive ratio than we were
able to prove for First Fit. There remains an open question
of tightening the gap between the current upper and lower
bounds on the competitive ratios of First Fit and Hybrid First
Fit. Another direction for future work is to further investigate
the constrained Dynamic Bin Packing problem in which each
item is allowed to be assigned to only a subset of bins to cater
for the interactivity constraints of dispatching playing requests
among distributed clouds in cloud gaming.
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1. Since µ is known, Hybrid First Fit in this case is a semi-online algorithm.
In certain applications such as cloud gaming, it is possible to estimate the
max/min item interval length ratio µ according to the statistics of historical
playing data.
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