
1

Cloud Scheduling with Discrete Charging Units
Ming Ming Tan, Runtian Ren, and Xueyan Tang

Abstract—We consider a scheduling problem for running jobs on machines rented from the cloud. Cloud service providers such as
Amazon EC2 and Google Cloud offer machines to rent on demand, and charge the rental usage by a specific interval of time, say at an
hourly rate. This pricing model creates an interesting optimization problem called Interval Scheduling with Discrete Charging Units
(ISDCU) which assigns jobs to run on the machines with the objective of minimizing the rental cost. In this paper, we study the problem
of ISDCU where each machine can process a maximum of g jobs simultaneously. We focus on interval jobs where each job must be
assigned to a machine upon its arrival and run for a required processing length. We show that ISDCU is NP-hard even for the case of
g = 1. We also show that no deterministic online algorithm can achieve a competitive ratio better than max{2, g} in the non-clairvoyant
setting, and better than max{3/2, g} in the clairvoyant setting. Lastly, we develop and analyze several online algorithms, most of which
achieve a competitive ratio of O(g).

Index Terms—Cloud scheduling, interval scheduling, online algorithm.

F

1 INTRODUCTION

”Pay-as-you-go” billing is a most salient feature of clouds.
In practice, many clouds charge the rental of machines by a
discrete unit, such as by the hour in Amazon EC2 [4] or by
the minute in Google Cloud [3]. Every partially used unit is
charged as a full unit. In this paper, we conduct a theoretical
study on job scheduling for optimizing the rental cost with
discrete charging units. We focus on a fundamental form of
job scheduling – to schedule interval jobs with fixed starting
and ending times. The objective is to rent machines and
assign jobs to run on the machines so as to minimize the
rental cost. We call this problem Interval Scheduling with
Discrete Charging Units (ISDCU).

1.1 Problem Description
Formally, the input to the ISDCU problem is a set of jobs
each defined by a processing interval [a, d) where a and d
are the arrival and departure times of the job respectively,
and a positive integer τ specifying the length of a charging
unit. The jobs need to be scheduled on identical machines
where each machine can simultaneously process at most a
fixed number of g jobs at any time. A job must remain in
the same machine throughout its lifetime, unless explicitly
stated otherwise. Machines may be rented for any length of
time. The cost of renting a machine for a duration T is dTτ e.
The goal is to schedule all the jobs in a way that minimizes
the total rental cost incurred.

Essentially, if a machine is launched at time s and ter-
minated at time t, then it is charged for every interval of
[s, s+ τ), [s+ τ, s+ 2τ), . . . , [s+ (i− 1)τ, s+ iτ) that [s, t)
overlaps, where i = d t−sτ e. We refer to each of these length-
τ intervals as a charging unit. The target to minimize the total
rental cost is the same as to minimize the total number of
charging units required to process all jobs.

• The authors are with the School of Computer Science and Engineer-
ing, Nanyang Technological University, Singapore 639798. E-mail: mm-
tan830@gmail.com, {RENR0002, asxytang}@ntu.edu.sg.

1.2 Related Work

In a special case of ISDCU where the length τ of a charging
unit is sufficiently large (longer than the period from the
arrival of the first job to the departure of the last job),
the number of charging units is equivalent to the number
of machines used. Thus, ISDCU degenerates to the basic
interval scheduling problem [10], which aims at minimizing
the number of machines used for processing a set of interval
jobs. The basic interval scheduling problem is polynomially
solvable and the optimal number of machines used to pro-
cess all jobs is dDg e, where D is the maximum number of
jobs that pairwise overlap.

In another special case of ISDCU where the length τ
of a charging unit is infinitely small, the total rental cost
is equivalent to the total busy time of machines, where a
machine is considered busy when there is at least one job
running on it. In this case, ISDCU degenerates to interval
scheduling with bounded parallelism [2], [6], [9], [12], [16],
[17], which aims at minimizing the total busy time of the
machines used for processing a set of interval jobs. Winkler
et al. [17] proved the NP-completeness of this problem
when g ≥ 2. Shalom et al. [16] showed that any online
algorithm for interval scheduling with bounded parallelism
is g-competitive and the competitive ratio is tight in terms
of g. However, as shall be shown, not all online algorithms
are g-competitive for ISDCU. Thus, it is important to design
good online scheduling strategies.

Other related problems that share aspects with our
model include scheduling with calibrations [1], [5] and rent
minimization [15]. Both problems consider machines that
can process only one job at a time and flexible jobs that have
laxity in starting. Each job has a release time, a processing
length and a deadline. The job needs to run for a consecutive
period equal to its processing length between its release time
and deadline. The input to the problem of scheduling with
calibrations includes a set of flexible jobs, a fixed number of
identical machines, and an integer ` specifying a calibration
length. Every job is scheduled without preemption and



2

completely within a single calibrated interval. The goal is
to find a schedule that minimizes the number of calibrations
performed. If an instance of scheduling with calibrations has
the input jobs being interval jobs, then the problem looks
similar to an instance of ISDCU, by viewing each calibration
as a charging unit. However, our ISDCU problem has no
restriction that every job must lie within a single charging
unit. Moreover, the problem of scheduling with calibrations
assumes a fixed number of machines (each machine can
accommodate just one job at any time), while ISDCU can
open as many machines as needed and each machine can
run multiple jobs in parallel. The rent minimization problem
extends the classical machine minimization problem [7] to
optimize the rental cost. Saha [15] developed a constant
factor offline algorithm and an O(logµ)-competitive online
algorithm for rent minimization where µ is the max/min
job processing length ratio. Different from the above two
problems, we focus on interval jobs. We show that it is NP-
hard to optimize the rental cost for interval jobs with fixed
starting and ending times even on machines that can process
only one job at a time.

1.3 Our Results
We show that ISDCU is NP-hard even when the machine
capacity g = 1 (i.e., each job must occupy a machine ex-
clusively). We establish a lower bound of max{2, g} on the
competitiveness of any deterministic online algorithm in the
non-clairvoyant setting, and a lower bound of max{3/2, g}
in the clairvoyant setting. We present and analyze a range
of online algorithms for ISDCU in both the non-clairvoyant
and the clairvoyant settings. The best competitive ratio of
the online algorithms presented achieves a factor of g for
g > 2 which matches the lower bound established.

2 COMPLEXITY

We begin our study by investigating the complexity of
ISDCU. We consider the decision problem of ISDCU: Given
an instance of ISDCU, is there a feasible schedule that incurs
at mostK charging units? The decision problem of ISDCU is
NP-hard for g ≥ 2. This follows from the NP-hardness of the
problem of interval scheduling with bounded parallelism
[17]. We prove that the decision problem of ISDCU is NP-
hard even for the case of g = 1. This can be derived via
reduction from the problem of circular arc coloring (CAC).
Garey et al. [8] proved that CAC is NP-complete. A formal
description of CAC is as follows.

Problem: Circular Arc Coloring (CAC)
Instance: A circle of lengthL, n circular arcs each defined

by a pair of distinct positive integers {si, fi} on
the circle, and a positive integer K .

Question: Does there exist a partition of the circular arcs
into at most K sets such that arcs in each set are
disjoint?

Theorem 1. The ISDCU problem with g = 1 is NP-hard.

Proof. We establish a reduction from CAC to ISDCU with
g = 1. Given an instance of CAC, we build an instance
of ISDCU as follows. We set the length of a charging unit
τ = L. For each arc {si, fi}, if si < fi (the arc does not

Fig. 1. An instance of CAC and its corresponding job representation in
ISDCU.

contain the point L), we create a job [si, fi); otherwise, we
create a job [si, fi + L) (see Figure 1 for illustration). If a
feasible coloring exists for the CAC instance, we turn it into
a feasible schedule for the ISDCU instance by assigning the
corresponding jobs of all the arcs with the same color to one
machine. It is apparent that each machine needs only one
charging unit to process all its jobs. Thus, the total number
of charging units required by this schedule is K .

Finally, observe that all jobs in the ISDCU instance arrive
before time L and we only need at most two charging
units in each machine to process all the jobs. Given a
feasible schedule of the ISDCU instance, we can partition
the machines into K charging units. Each charging unit will
be assigned a different color and a job that falls within a
charging unit will have its corresponding arc assigned the
same color as the charging unit. If a job has its processing
interval crossing two charging units R1 and R2 where R1

precedes R2, we assign the color of R2 to its corresponding
arc. It can be shown that such a coloring is feasible. First,
since all jobs within a single charging unit are disjoint, their
corresponding arcs are disjoint. Second, if a job crosses two
charging units R1 and R2, then the job must end after time
L. Since no job arrives after L, it must be the only job in R2.
Thus, it is feasible to color the corresponding arc with the
color of R2.

3 ONLINE ALGORITHMS

Now, we investigate algorithms for ISDCU in the online
setting where the jobs are released one at a time and each
job has to be assigned before the next one is released. We
shall consider both the non-clairvoyant and the clairvoyant
settings of ISDCU. In the non-clairvoyant setting, the depar-
ture time of each job is not known at its arrival and thus
cannot be used for scheduling purposes. In the clairvoyant
setting, the departure time of each job is known at its arrival
and can be used for scheduling purposes.

Throughout the paper, we shall use the following defini-
tions. A charging unit represented by [s, s+ τ) starts at time
s and expires at time s+ τ . A charging unit [s, s+ τ) is said
to be open at time t if s ≤ t < s + τ . Each charging unit is
associated with a machine. A machine is said to be open at
time t if it has a charging unit open at t. An open machine
is said to be full if there are g jobs running on it, otherwise
it is said to be available if there are less than g jobs running
on it. An open machine is said to be idle if there is no job
running on it, otherwise the machine is said to be non-idle.
A machine is said to be initiated at time t if its first charging
unit starts at t. In general, a machine is said to expire at time



3

t if its ongoing charging unit expires at t. When the ongoing
charging unit of a machine expires, the machine will have
its service extended with a new charging unit only if it is
non-idle.

3.1 A Variant of ISDCU with Job Migration Allowed

We first present an online greedy algorithm for solving
a variant of ISDCU with job migration allowed. In this
variant, a job running on a machine can be interrupted and
migrated to continue running on another machine instanta-
neously.

Our greedy algorithm works as follows. When a job J
arrives, the algorithm checks whether there exists any avail-
able machine. If at least one machine is available, J is placed
on the available machine with the latest expiration time.
Ties are broken by giving preference to non-idle machines.
Otherwise, if there is no available machine, a new machine
is initiated to accommodate J .

The greedy algorithm carries out job migration only at
job departures. When a job departs, the algorithm migrates
the remaining active jobs to fill up the open machines in
decreasing order of their expiration times. Suppose there
remain n active jobs and let M1, M2, M3, . . . be the list
of all the open machines sorted in decreasing order of
their expiration times. Then, by job migration, the algorithm
ensures that the first dng e−1 machines M1, M2, . . . , Mdng e−1
are all full and the dng e-th machine Mdng e has n− (dng e−1)g
jobs running on it. A pseudo code description of the greedy
algorithm is given in Algorithm 1.

Obviously, the greedy algorithm works in both the non-
clairvoyant and clairvoyant settings. The job assignment at
each job arrival and the job migration at each job departure
both have time complexities polynomial in the number of
open machines. Since the number of open machines at any
time is bounded by the total number of jobs to schedule, the
time complexity of Algorithm 1 is polynomial in the total
number of jobs.

By definition, if an incoming job is placed on an idle
machine, all the open machines with earlier expiration times
must be full. Together with the job migration at job depar-
tures, it is straightforward that the schedule produced by
Algorithm 1 has the following property.

Proposition 1. At any time, non-idle machines must have equal
or later expiration times than idle machines.

Proposition 1 implies that when a new charging unit
is started to extend the service of a machine, all the open
machines must be non-idle. Remember that a charging unit
is started to initiate a new machine only if all the open
machines are full. Thus, we can infer the following property.

Proposition 2. At the starting time of any charging unit, all the
open machines are non-idle.

By induction, we can also prove the following property.

Proposition 3. At any time, if there are m non-idle machines,
then there are at least (m− 1)g + 1 active jobs.

The above claim is trivial at the first job arrival. By the
definition of the algorithm, the claim holds after carrying
out job migration at each job departure. If the claim holds

Algorithm 1 A greedy algorithm for the variant of ISDCU
with job migration allowed

1: while true do
2: if a job arrives then
3: if there exists at least one available machine then
4: assign the job to the available machine with

the latest expiration time
5: else
6: initiate a new machine with a charging unit
7: assign the job to the new machine
8: if a job departs then
9: sort all the open machines in decreasing order of

their expiration times
10: let M1, M2, . . . , Mm be the sorted list of open

machines
11: i← 1
12: j ← m
13: while i 6= j do
14: while Mi is full do
15: i← i+ 1
16: while Mj is idle do
17: j ← j − 1

18: if i 6= j then
19: migrate a job from Mj to Mi

prior to a job arrival, it apparently remains true after the job
arrival if the new job is not placed on an idle machine or
a new machine. In the case that the new job is placed on
an idle machine, it follows from Proposition 1 that all the
non-idle machines must be full. In the case that the new job
is placed on a new machine, all the open machines must be
full. Thus, in both cases, the claim must still hold after the
new job is placed.

Now, we show that Algorithm 1 is indeed optimal. Let
R1, R2, R3, . . . be the list of all the charging units used by
Algorithm 1 for scheduling a set of jobs, sorted in increasing
order of their starting times. We show by induction that for
any k ≥ 1, there exists an optimal schedule with the first k
charging units starting at the same times as R1, R2, . . . , Rk.

For k = 1, Algorithm 1 initiates the first machine at
the first job arrival. Obviously, the first charging unit of
an optimal schedule cannot start later than the first job
arrival. If it starts earlier than the first job arrival, we can
delay its starting to the first job arrival without violating
the feasibility of the schedule. Thus, the claim holds for the
first charging unit. Now, suppose the claim holds for the
first k − 1 charging units. Let t be the time when the k-th
charging unit Rk used by Algorithm 1 starts. Let h be the
number of charging units among R1, R2, . . . , Rk−1 that are
still open at time t. By Proposition 2, the machines of all
these h charging units as well as Rk are non-idle at time t.
By Proposition 3, there are at least hg + 1 active jobs at t.
Since the first k − 1 charging units of the optimal schedule
start at the same times as R1, R2, . . . , Rk−1, the optimal
schedule must also have only h charging units remaining
open at time t. Therefore, to accommodate all the active jobs
at t, the k-th charging unit of the optimal schedule cannot
start later than t. On the other hand, R1, R2, . . . , Rk−1 used
by Algorithm 1 can accommodate all the active jobs up till



4

t. If the k-th charging unit of the optimal schedule starts
earlier than t, we can delay its starting to t. As a result, the
claim holds for the first k charging units.

Theorem 2. Algorithm 1 produces an optimal schedule for the
variant of ISDCU with job migration allowed.

3.2 Lower Bounds
For the rest of the paper, we study online algorithms for
ISDCU where each job must run on the same machine
throughout its execution. First, we investigate the lower
bounds on the competitiveness of ISDCU.

We start by deriving the lower bounds on the competi-
tive ratio of any deterministic online algorithm for ISDCU
with g = 1.

Theorem 3. In the non-clairvoyant setting, no deterministic
online algorithm for ISDCU with g = 1 can achieve a competitive
ratio better than 2.

Proof. Consider any deterministic online algorithm O. Let
ε be a small positive value and n be a positive integer
where (n + 1)ε < τ . Let a job arrive at time iε for each
i = 0, 1, · · · , n−1 (see Figure 2 for illustration). These n jobs
all depart at time nε. Hence, these n jobs overlap with one
another and will be assigned to n different machines. We la-
bel these n machines M1,M2, · · · ,Mn, sorted in increasing
order of their initiation times. Let Ri = [(i−1)ε, (i−1)ε+τ)
denote the charging unit of Mi which initiates the machine.
At time (n+1)ε, let a set J of n new jobs arrive. These n new
jobs will be scheduled to run on n different machines. In the
non-clairvoyant setting, the algorithm O has no information
on the departure time of a job when the job is scheduled.
If O schedules a job of J to run on machine Mi, then we
let the job depart at iε + τ . A new charging unit on Mi is
required since the job cannot fit into the charging unit Ri.
If O schedules a job of J by initiating a new machine, then
we let the job depart at τ . In both cases, a new charging unit
is required for each of the n new jobs in J . Hence, the total
number of charging units needed is 2n.

Suppose a machine Mi has two charging units. Let Ji
denote the job in J assigned to Mi. If i < n, then Ji can
fit into Ri+1. If i = n, then Ji cannot fit into any Rj for
1 ≤ j ≤ n. Lastly, a job in J that was assigned to a new
machine by O can fit into any Rj for 1 ≤ j ≤ n. From
these observations, we can deduce an optimal schedule for
this instance in the following way. For each i < n where
Mi has two charging units in the schedule of O, we assign
Ji to Mi+1. If Mn has two charging units in the schedule
of O, we assign Jn to M1. The remaining jobs in J can be
assigned to the rest of the available machines arbitrarily. We
can see that all jobs in J would fit into the charging units
that initiate the machines M1,M2, · · · ,Mn, except job Jn
which departs at nε + τ (if it exists). Hence, in an optimal
schedule, each machine Mi for 2 ≤ i ≤ n needs not extend
its service upon the expiration of Ri. Machine M1 will need
to extend its service after R1 expires if there is a job which
departs at nε + τ . Consequently, the optimal number of
charging units needed is at most n + 1. This suggests that
no deterministic online algorithm can achieve a competitive
ratio less than 2n

n+1 , which can be made arbitrarily close to 2
as n approaches infinity.

Fig. 2. (A) An online schedule in the non-clairvoyant setting. (B) An
optimal schedule for the instance of (A).

Fig. 3. (A) An online schedule in the clairvoyant setting. (B) An optimal
schedule for the instance of (A).

Theorem 4. In the clairvoyant setting, no deterministic online
algorithm for ISDCU with g = 1 can achieve a competitive ratio
better than 3

2 .

Proof. Let l = τ
2 and ε be a small positive value satisfying

3l + 2ε ≤ 2τ . Consider any deterministic online algorithm
O. Let the first job arrive at time 0 and depart at time l. At
time l + ε, let the second job arrive and the departure time
of this job is set to 2l + ε > τ . If O schedules the second
job by initiating a new machine, then we let the third job
arrive at time 2l + 2ε and depart at time 3l + 2ε ≤ 2τ (see
Figure 3 for illustration). In total, three charging units are
needed. However, in the optimal offline solution, all three
jobs would be assigned to the same machine, and only two
charging units are required.

On the other hand, if O schedules the second job on
the first machine, then we let the third job arrive at l +
2ε and depart at τ (see Figure 4 for illustration). Since the
third job overlaps with the second job, the third job must
be assigned to a new machine. In total, three charging units
are required. However, in the optimal offline solution, the



5

Fig. 4. (A) Another online schedule in the clairvoyant setting. (B) An
optimal schedule for the instance of (A).

second job would be assigned to a new machine, and the
third job would be assigned to the first machine. Then, only
two charging units are needed.

Recall from Section 1.2 that ISDCU with an infinitely
small length of charging unit is essentially a problem of
interval scheduling with bounded parallelism. The latter
problem has a lower bound of g on the competitiveness of
any deterministic online algorithm [16]. Thus, we have the
following corollaries.

Corollary 1. In the non-clairvoyant setting, no deterministic
online algorithm for ISDCU can achieve a competitive ratio better
than max{2, g}.

Corollary 2. In the clairvoyant setting, no deterministic online
algorithm for ISDCU can achieve a competitive ratio better than
max{ 32 , g}.

3.3 Upper Bounds
Now, we investigate the upper bounds on the competitive-
ness of ISDCU.

While our ISDCU problem degenerates to Interval
Scheduling with Bounded Parallelism (ISBP) [6] by ignoring
the discrete charging unit, an optimal schedule for ISBP may
not work well for ISDCU in general. In ISBP, idle machines
are indistinguishable. But in ISDCU, idle machines with
different expiration times can give rise to different rental
costs. Consider the following instance. Let n be an integer
and ε be a small positive value such that 2nε < τ . We
release n groups of jobs as follows. At each time 2(i−1)ε for
i = 1, 2, . . . , n, we release g jobs which would all depart at
time (2i−1)ε. In an optimal ISBP schedule, the g jobs in each
group can be placed on a separate machine, which gives a
total busy time of nε. However, in ISDCU, such a schedule
incurs a total rental cost of n charging units. The optimal
ISDCU schedule is to place all the jobs on one machine with
a charging unit [0, τ) so that the rental cost is 1. This example
shows that an optimal ISBP schedule is not necessarily good
for ISDCU. Moreover, any online algorithm is g-competitive
for ISBP and thus optimal since it matches the lower bound
[16]. But this is not true for ISDCU as we discuss next.

An intuitive strategy to address the issue in the above
instance is to favor open machines in job placement and
avoid initiating new machines unless necessary. We refer
to such an online algorithm as a rational algorithm. That
is, a rational algorithm will only initiate a new machine

Fig. 5. (A) A rational schedule. (B) An optimal schedule for the instance
of (A).

if no open machine is available to place an incoming job.
However, simply following this rule is still not adequate. As
the following theorem shows, not all rational algorithms can
achieve bounded competitive ratios.

Theorem 5. There exists a rational algorithm where the compet-
itive ratio is unbounded.

Proof. Consider the following instance of ISDCU with g = 1.
Let n be a positive integer and ε be a small positive value.
The input jobs of the instance are specified by the following
processing intervals (see Figure 5 for illustration):

• [iε, l) for i = 1, 2, . . . , n;
• [ai,j , di,j) for i, j = 1, 2, . . . , n,

where ai,j , di,j and l are positive values satisfying a1,1 >
l > nε and ai,j < jτ + iε < di,j < ai+1,j .

Since the jobs [iε, l) for i = 1, 2, . . . , n overlap at time
nε, a rational algorithm will assign these n jobs to different
machines. Let Mi be the machine to which the job [iε, l) is
assigned. The rest of the jobs [ai,j , di,j) for i, j = 1, 2, . . . , n
are mutually disjoint. As a result, they can be placed on any
of the machines M1,M2, · · · ,Mn.

Suppose a rational algorithm always assigns the job
[ai,j , di,j) to machine Mi. Since the charging units of Mi

would always expire at times of the form jτ + iε where
j ≥ 1, the processing interval of the job [ai,j , di,j) exceeds
the expiration time of Mi’s ongoing charging unit and
results in the starting of a new charging unit. In total,
the rental cost is n2 + n. Note that the jobs [ai,j , di,j) for
i, j = 1, 2, . . . , n can actually be all placed on one machine,
say Mn. Hence, the total rental cost of an optimal schedule
is 2n. Therefore, the competitive ratio of this rational algo-
rithm is at least n

2+n
2n = n+1

2 , which can be made arbitrarily
large as n approaches infinity.

The above theorem indicates that the main challenge in
designing a decent algorithm is to decide which machine
to assign a job to when there is more than one machine
available to process the job. In the following, we propose



6

several rational algorithms and study their competitive ra-
tios. Before presenting these algorithms, we first introduce
some preliminaries necessary for the competitive analysis.

3.3.1 Preliminaries
Consider an instance of ISDCU. Without loss of generality,
we may assume that the first job arrives after time 0 and
no machine is initiated before the arrival of the first job. Let
t0 = 0 and ti = ti−1 + τ for i ≥ 1. Let x∗i be the number of
machines open at ti in an optimal schedule of the instance.
Then, the optimal rental cost OPT =

∑
i≥1 x

∗
i , since the sets

of charging units counted by different x∗i ’s are disjoint and
x∗0 = 0. Let yi be the maximum number of concurrent jobs
in [ti−1, ti].

Consider any schedule S of the instance. Let zi be the
number of machines that are open at ti in S and contain at
least one job [a, d) where a < ti < d. By definition, we have
z0 = 0. Since the number of concurrent jobs at time ti−1 is at
least zi−1, it follows that zi−1 ≤ yi. We have the following
fundamental result to establish lower bounds on OPT.

Lemma 1. Given any instance of ISDCU and any schedule of the
instance, we have

∀i ≥ 1, x∗i−1 + x∗i ≥
⌈
yi
g

⌉
, (1)

∀i ≥ 1, x∗i−1 ≥
⌈
zi−1
g

⌉
, (2)

OPT ≥ 1

2

∑
i≥1

⌈
yi
g

⌉
, (3)

and
OPT ≥

∑
i≥1

⌈
zi−1
g

⌉
. (4)

Proof. To prove (1), note that the set of yi jobs that are
concurrent at some time in [ti−1, ti] must be scheduled
on machines that are open at either ti−1 or ti. Since each
machine can accommodate up to g jobs, we deduce that
there must be at least dyig e machines open at either ti−1
or ti. To prove (2), note that by definition, there are at
least zi−1 jobs concurrent at ti−1. These zi−1 jobs must be
scheduled on machines open at ti−1. Since each machine can
accommodate at most g jobs, we must have at least d zi−1

g e
machines open at ti−1. Lastly, (3) and (4) follow from (1) and
(2) since OPT =

∑
i≥1 x

∗
i and x∗0 = 0.

Let xi be the number of machines open at ti in schedule
S. Similar to the optimal rental cost, it is easy to infer
that the total rental cost of S is

∑
i≥1 xi. We shall analyze

the competitive ratios of various algorithms by establishing
relations between xi and zi as well as yi and using Lemma
1 to bound the total rental cost with OPT.

In many of the proofs, we divide the analysis of xi into
two cases. If there exists a machine initiated in (ti−1, ti], we
make use of Lemma 2 below. If there is no new machine ini-
tiated in (ti−1, ti], we identify a special job in each charging
unit to study the relations between xi, zi and yi according
to the definition of the specific algorithm.

Lemma 2. In a schedule produced by a rational algorithm, if there
is at least one machine initiated in (ti−1, ti], we have xi ≤ dyig e.

Fig. 6. A rational schedule where there is at least one machine initiated
in (ti−1, ti].

Fig. 7. (A) A machine that can fit an incoming job. (B) A machine that
cannot fit an incoming job.

Proof. Consider the machine M which is initiated the latest
in (ti−1, ti] (see Figure 6 for illustration). Let t be the
initiation time of machine M . Note that a machine which
is open at ti is either initiated in (ti−1, ti] or has its service
extended from a charging unit which was open at ti−1. In
either case, the machine has a charging unit containing t.
Thus, all machines which are open at ti must also be open at
t. Since the algorithm is rational, all other machines which
are open at t must be fully occupied in order for the new
machine M to be initiated at time t. Therefore, the number
of active jobs at time t is at least (xi − 1)g + 1. This gives
yi ≥ (xi − 1)g+ 1. Consequently, xi ≤ yi

g + g−1
g . Since xi is

an integer, we must have xi ≤ dyig e.

3.3.2 A simple strategy for clairvoyant setting

In the clairvoyant setting, when a job arrives, the departure
time of the job is known. Thus, we know how long a
machine has to run to complete processing the job at its
arrival. Intuitively, we can avoid starting a new charging
unit if we place a job on an available machine that can fit
the job. Formally, a machine is said to be able to fit a job
if the job can be completed within the period spanned by
the open charging unit and the subsequent charging units
(if any) necessitated by the existing jobs running on the
machine (see Figure 7 for illustration). Motivated by this
idea, we propose a FitFirst strategy for online scheduling in
the clairvoyant setting. The FitFirst strategy always gives
preference to a machine which can fit an incoming job
when there are multiple machines available to place the
job. As shall be shown, the competitive ratio of any rational
algorithm adopting the FitFirst strategy is at most 2g + 2.

Recall that if a charging unit R is not the initiating
charging unit of a machine, there must be at least one job
crossing the starting time of R. Let J(R) be the earliest
arriving job that crosses the starting time of R. We call J(R)
the defining job of R. Essentially, a defining job of a charging



7

Fig. 8. A rational schedule in the clairvoyant setting where each defining
job either arrives before ti−1 or departs after ti.

Fig. 9. A rational schedule in the clairvoyant setting where Mk is the
machine with highest index whose defining job arrives after ti−1 and
departs before ti.

unit R is the job that is responsible for extending the service
of the machine to start the charging unit R.

Theorem 6. In the clairvoyant setting, any rational algorithm
adopting the FitFirst strategy is (2g + 2)-competitive.

Proof. Let xi and zi be defined on a schedule produced by a
rational algorithm adopting the FitFirst strategy. Recall from
Section 3.3.1 that the total rental cost of the schedule is given
by
∑
i≥1 xi. We divide the analysis of xi into two cases. If

there is at least one machine initiated in (ti−1, ti], by Lemma
2, we have

xi ≤
⌈
yi
g

⌉
. (5)

Now suppose there is no new machine initiated in
(ti−1, ti]. Then each charging unit R that is open at ti has a
defining job J(R). Let R1, R2, · · · , Rxi

be the list of charg-
ing units open at ti, such that J(R1), J(R2), · · · , J(Rxi

) are
sorted in non-decreasing order of their arrival times. We
consider the following two cases:

Case 1: If J(R1), J(R2), · · · , J(Rxi) all arrive before
ti−1, then

xi ≤ zi−1. (6)

Case 2: If at least one defining job arrives at or after ti−1,
let l be the lowest index where J(Rl)’s arrival time is at least
ti−1. Then, the jobs J(R1), J(R2), · · · , J(Rl−1) have arrival
times before ti−1. So, we have

l − 1 ≤ zi−1. (7)

We further consider two sub-cases:
Case 2a: If the jobs J(Rl), J(Rl+1), · · · , J(Rxi

) all de-
part after ti (see Figure 8 for illustration), then they all cross
ti. Thus, we have

xi − l + 1 ≤ zi. (8)

In view of (7) and (8), we deduce

xi ≤ zi−1 + zi. (9)

Case 2b: If there exists one or more defining jobs whose
arrival time is at least ti−1 and departure time is before ti, let
k be the highest index where J(Rk) satisfies these properties
(see Figure 9 for illustration). Let Mk be the machine of Rk.
Let t be the arrival time of J(Rk). Consider each Mj where
j < k. Since this is the clairvoyant setting and since J(Rj)
arrives earlier than t, we know that Mj will have a charging
unit open at ti in order to process J(Rj). Now, since J(Rk)
departs before ti, J(Rk) can actually fit into Mj upon its
arrival unless Mj is fully occupied. Hence, if the FitFirst
strategy is applied, we must have R1, R2, . . . , Rk−1 all fully
occupied at time t. By further taking into account of the job
J(Rk), we get yi ≥ (k − 1)g + 1. Since k is an integer, we
obtain

k ≤
⌈
yi
g

⌉
. (10)

If k = xi, then (10) implies that

xi ≤
⌈
yi
g

⌉
. (11)

Otherwise, if k < xi, then for all j > k, J(Rj)’s departure
time is after ti. This means the jobs J(Rk+1), J(Rk+2), . . . ,
J(Rxi

) all cross ti. Hence, xi − k ≤ zi. By (10), we have

xi ≤ zi +
⌈
yi
g

⌉
. (12)

Overall, by (5), (6), (9), (11), (12), we always have

xi ≤ zi−1 + zi +

⌈
yi
g

⌉
.

Since z0 = 0, we have
∑
i≥1 zi =

∑
i≥1 zi−1. Consequently,

by Lemma 1,∑
i≥1

xi ≤ 2
∑
i≥1

zi−1 +
∑
i≥1

⌈
yi
g

⌉
≤ (2g + 2) ·OPT .

3.3.3 ExpireLatest Algorithm
Motivated by the optimal algorithm in Section 3.1 for the
variant of ISDCU with job migration allowed, a natural idea
to reuse open charging units as much as possible is to favor
those with later expiration times. Thus, we propose a ratio-
nal algorithm called ExpireLatest. When multiple machines
are available to process an incoming job, the ExpireLatest
algorithm assigns the job to the available machine which
expires the latest. If there are multiple machines expiring
at the same latest time, preference is given to the machines
which are non-idle. Ties among non-idle machines or among
idle machines (if any) may be broken arbitrarily.

The expiration time of a machine might differ between
the clairvoyant and the non-clairvoyant settings. In the
non-clairvoyant setting, when a job arrives, it is placed
on a machine without any information of its departure
time. Hence, the machine’s expiration time is always the
expiration time of the open charging unit on the machine.
In other words, if a job is assigned to a machine M with an
open charging unit [s, s+ τ), the expiration time of M after
job placement remains s + τ . However, in the clairvoyant
setting, when a job arrives and is placed on a machine, the
departure time of the job is known. Thus, the number of



8

Fig. 10. An ExpireLatest schedule in the non-clairvoyant setting.

charging units required to run the job can be computed at
its arrival. As a result, the expiration time of the machine
depends on the departure time of the job. Specifically, if a
job [a, d) is assigned to a machine M with an open charging
unit [s, s + τ) where s ≤ a < s + τ , then the expiration
time of M after job placement is at least s + iτ where
i ≥ 1 is the largest integer satisfying s + (i − 1)τ < d.
Note that by choosing the available machine which expires
the latest, the ExpireLatest algorithm implicitly adopts the
FitFirst strategy in the clairvoyant setting. In view of these
differences, the ExpireLatest algorithm needs to be analyzed
separately for the clairvoyant and non-clairvoyant settings.

Theorem 7. In the non-clairvoyant setting, the ExpireLatest
algorithm is 2-competitive for g = 1, and is (g + 2)-competitive
otherwise.

Proof. Let xi and zi be defined on a schedule produced by
the ExpireLatest algorithm. By Lemma 2, if there is at least
one machine initiated in (ti−1, ti], we have

xi ≤
⌈
yi
g

⌉
. (13)

Now, we suppose no machine is initiated in (ti−1, ti] (see
Figure 10 for illustration). Then each charging unit R open
at ti has a defining job J(R). We partition the set of charging
units open at ti into two subsets S and T where S consists of
those charging units whose defining jobs arrive before ti−1,
and T consists of those charging units whose defining jobs
arrive at or after ti−1. If the set T is empty, then all charging
units open at ti have their defining jobs arrived before ti−1.
Hence, we have

xi ≤ zi−1 ≤ yi. (14)

On the other hand, if the set T is non-empty, then let s
be the earliest starting time among all charging units in
T . We further partition the set T into three subsets T1, T2
and T3 as follows: T1 consists of those charging units with
starting time s and whose machine contains a job crossing
ti−1 and the machine is never idle from ti−1 onwards until
at least after s (such as RC in Figure 10). T2 consists of those
charging units with starting time s that are not in T1 (such
as RD in Figure 10). T3 consists of those charging units with
starting time after s (such as RE in Figure 10).

Suppose T2 is non-empty. Note that by definition, for the
machine of each charging unit in T2, there must be a time
t′ ∈ [ti−1, s] where the machine is idle immediately before
a job is placed at t′. Since all machines of the charging units
in T2 are non-idle at time s, there must exists a job J∗ that

arrives in [ti−1, s] such that the assignment of J∗ renders
all machines of the charging units in T2 non-idle. In other
words, at the arrival time of J∗, prior to its assignment,
all other machines of the charging units in T2 are non-idle
except J∗’s machine.

Next, we are going to prove the following claims. Let t
be the arrival time of J∗ and let R∗ be the charging unit
open at ti in J∗’s machine.

Claim 1: The machine of each charging unit in T2 \{R∗}
must be fully occupied at time t.

Claim 2: The machine of each charging unit in S ∪ T1
has a job active at t.

Claim 3: The machine of each charging unit in T3 is fully
occupied at t.

Claim 1 is true because the ExpireLatest algorithm never
assigns a job to an available machine which is idle if there is
also an available machine which is non-idle in the event that
there is more than one machine with the latest expiration
time.

To prove Claim 2, note that since t ∈ [ti−1, s], the
machine of each charging unit in T1 has a job active at t by
definition. Hence, we only need to consider each machine
of a charging unit R ∈ S . If the starting time of R is before t
(such asRA in Figure 10), thenR is already open at t and the
expiration time of the machine of R is at least ti. Note that
at time t, prior to the start of R∗, the expiration time of the
machine of R∗ is before ti. Since the machine of R expires
later than the machine of R∗ at t, the machine of R must be
fully occupied at t, for otherwise, J∗ shall be placed on the
machine of R according to the ExpireLatest algorithm. On
the other hand, if the starting time of R is at least t (such as
RB in Figure 10), then by definition, J(R) is still active at t.
As such, regardless of the starting time of R, there is a job
active on the machine of R at time t.

To prove Claim 3, we consider each charging unit
R ∈ T3. By definition, the machine of R expires later
than the machine of R∗ at time t. Hence, following the
same argument as before, the machine of R must be fully
occupied at time t.

Suppose T2 is empty. Then we let J∗ be the defining
job of any charging unit in T1. By definition, J∗ arrives
in [ti−1, s]. It is straightforward to verify that Claim 2 and
Claim 3 still hold using the same arguments.

To summarize, we have shown that there is an arrival
time t of a job J∗ placed on the machine of a charging unit
R∗ where all machines of the charging units in S ∪ T1 have
a job active at t and all machines of the charging units in
T2 ∪ T3 \ {R∗} are fully occupied at t. Suppose there are k
charging units in S ∪ T1. Then, by the definition of S and
T1, we have

k ≤ zi−1. (15)

By taking into account of J∗, we see that there are at least
(xi − k − 1)g + k + 1 concurrent jobs at time t. This gives

yi ≥ (xi − k − 1)g + k + 1. (16)

From (16), we deduce that xi ≤ yi if g = 1, and that xi ≤
yi−k−1

g + k+1 if g > 1. For g > 1, since k ≥ 0 by definition
and k ≤ zi−1 by (15), we further derive that xi ≤ yi−1

g +
zi−1 + 1. Now, since xi is an integer, we have xi ≤ dyig e +



9

Fig. 11. An ExpireLatest schedule in the clairvoyant setting.

zi−1. Together with (14), we conclude that when no machine
is initiated in (ti−1, ti],

xi ≤ yi if g = 1,

and

xi ≤
⌈
yi
g

⌉
+ zi−1 otherwise.

Note that the above two relations also hold by following
(13) in the case that at least one machine is initiated in
(ti−1, ti]. By Lemma 1, we have

∑
i≥1 xi ≤

∑
i≥1 yi ≤

2 ·OPT for g = 1, and
∑
i≥1 xi ≤

∑
i≥1d

yi
g e+

∑
i≥1 zi−1 ≤

(g + 2) ·OPT for g > 1.

Theorem 8. In the clairvoyant setting, the ExpireLatest algo-
rithm is 2-competitive for g = 1, 5

2 -competitive for g = 2, and
g-competitive for g > 2.

Proof. Again, by Lemma 2, if there is a machine initiated
in (ti−1, ti], then we have xi ≤ dyig e. Let T be as defined in
Theorem 7. If T is empty, then following the same argument
as in Theorem 7, we have xi ≤ zi−1.

If T is non-empty, then let R∗ be the charging unit in
T whose defining job J(R∗) arrives the latest (see Figure
11 for illustration). Let t be the arrival time of J(R∗). By
definition, all other charging units open at ti have their
respective defining jobs arrived earlier than t. Since this is a
clairvoyant setting, it is known at the arrival of each defining
job that its departure time will extend beyond the expiration
time of the ongoing charging unit of the machine. Hence, for
any charging unit R 6= R∗ open at ti, after the placement of
J(R), the expiration time of the machine ofR will be at least
the expiration time of R, which is at least ti. At time t, prior
to the start of R∗, the expiration time of the machine of R∗

is the starting time of R∗, which is before ti. Therefore, the
machine of R expires later than the machine of R∗ at time t.
By the definition of the ExpireLatest algorithm, R must be
fully occupied at time t, for otherwise, J(R∗) shall be placed
on the machine of R.

To summarize, we have established that if there is a
machine initiated in (ti−1, ti], then xi ≤ dyig e; otherwise,
either all defining jobs of the charging units open at ti cross
ti−1 which gives xi ≤ zi−1, or all machines of the charging
units open at ti other thanR∗ must be fully occupied at time
t which gives yi ≤ (xi − 1)g + 1 and hence xi ≤ dyig e.

In other words, we have shown that for each xi, either
xi ≤ dyig e or xi ≤ zi−1 holds. In the following, we use the
relations in Lemma 1 to show that

∑
i≥1 xi ≤ 2 · OPT for

g = 1 and
∑
i≥1 xi ≤ max{ 52 , g} ·OPT for g > 1. For g = 1,

since zi−1 ≤ yi by definition, we always have xi ≤ yi and
hence ∑

i≥1

xi ≤
∑
i≥1

yi ≤ 2 ·OPT .

For g > 1, recall that by assumption, the earliest job ar-
rives after time 0. Hence, any machine open at t1 is initiated
in (0, t1]. As such, we have x1 ≤ dy1g e. We see that

∑
i≥1 xi

can be partitioned into a sequence of series S1,m1
, Sm1+1,m2

,
. . . , where each Sm,n is of the form Sm,n =

∑n
i=m xi and

there exists a u (m ≤ u < n) such that xi ≤ dyig e for each
m ≤ i ≤ u and xi ≤ zi−1 for each u + 1 ≤ i ≤ n . As a
result, each Sm,n satisfies

Sm,n ≤
⌈
ym
g

⌉
+

⌈
ym+1

g

⌉
+ · · ·+

⌈
yu
g

⌉
+ zu + · · ·+ zn−1.

Note that zu ≤ xu by definition and xu ≤ dyug e by
assumption. Using Lemma 1, we have

zu ≤
⌈
yu
g

⌉
≤ x∗u−1 + x∗u,

and
zu ≤ gx∗u.

This implies that

zu ≤
1

2
x∗u−1 +

g + 1

2
x∗u. (17)

Also by Lemma 1, for each m ≤ i ≤ u− 1, we have dyig e ≤
x∗i−1 + x∗i and for each u + 1 ≤ i ≤ n, we have zi ≤ gx∗i .
Together with (17), we get

Sm,n ≤ x∗m−1 + 2x∗m + · · ·+ 2x∗u−2 +
5

2
x∗u−1 +

g + 3

2
x∗u

+gx∗u+1 + · · ·+ gx∗n−1.

When g = 2, we have g+3
2 = 5

2 . When g ≥ 3, we have
g+3
2 ≤ g. Hence,

Sm,n ≤ max
{5
2
, g
}
·
n−1∑

i=m−1
x∗i .

Thus, by adding all such series Sm,n and noting that x∗0 = 0,
we get∑

i≥1

xi ≤ max
{5
2
, g
}
·
∑
i≥1

x∗i = max
{5
2
, g
}
·OPT .

Theorem 8 implies that ExpireLatest is an optimal online
algorithm for g > 2 in the clairvoyant setting due to
the lower bound established in Corollary 2. Moreover, we
remark that the competitive ratio for g = 1 in Theorems
7 and 8 is tight. Figure 12 shows a tight example. First, a
sequence of n jobs arrive and give rise to the initiations of n
machines. After the first n jobs depart, another sequence of
n jobs arrive and are placed on the machines in the reverse
order of their initiations by the ExpireLatest algorithm. Each
job leads to the extension of a machine’s service, resulting
in a total of 2n charging units. An optimal schedule, on the
other hand, would assign n− 1 jobs of the second sequence
to machines that can fit them and thus need only n + 1
charging units in total. As n approaches infinity, the ratio
between ExpireLatest and the optimal schedule can be made
arbitrarily close to 2.



10

Fig. 12. (A) An ExpireLatest schedule with g = 1. (B) An optimal
schedule for the instance of (A).

3.3.4 LeastIdle Algorithm

Finally, we introduce a rational algorithm called LeastIdle
that can achieve near-optimal competitive ratios in both the
non-clairvoyant and clairvoyant settings. The idea of the
LeastIdle algorithm is to improve the utilization of open
charging units by reducing the idle periods on the machines.
The algorithm prefers to place a job on the machine with the
least idle period if there are multiple machines available.
Ties may be broken arbitrarily. The idle period of an open
machine at time t is defined as t − s where s ≤ t is the
latest time when the machine is non-idle. If the machine is
non-idle at time t, then the idle period of the machine at
t is 0. Since the idle period of a machine is independent
of the departure time of the incoming job to be placed, the
LeastIdle algorithm produces the same schedule in the non-
clairvoyant and clairvoyant settings.

Theorem 9. The LeastIdle algorithm is 2-competitive for g = 1,
5
2 -competitive for g = 2, and g-competitive for g > 2.

Proof. Let xi and zi be defined on a schedule produced by
the LeastIdle algorithm. Consider the set of machines M
that are open at ti. We define the flag job of a machine to
be the earliest arriving job that runs on the machine during
the interval (ti−1, ti]. Consider the set of machines T ⊆ M
whose flag jobs arrive at or after ti−1. If the set T is non-
empty, consider the machine M in this set whose the flag
job arrives the latest. Denote the flag job of this machine
as J , and its arrival time as t. Then, all other machines in
M \ {M} have their respective flag jobs arrived before t.
Hence, each machine inM\ {M} is non-idle at some time
between ti−1 and t. If machine M is initiated in (ti−1, ti],
by Lemma 2, we have xi ≤ dyig e. Otherwise, machine M
is idle from ti−1 onwards. Then, at time t, the idle periods

of the machines in M \ {M} are less than the idle period
of machine M . By the definition of the LeastIdle algorithm,
all machines inM\ {M} must be fully occupied at time t,
for otherwise, J would be placed on one of the machines in
M \ {M} at time t. Thus, there are at least (xi − 1)g + 1
active jobs at time t. Therefore, yi ≥ (xi−1)g+1. Since xi is
an integer, we have xi ≤ dyig e. On the other hand, if the set
T is empty, then all machines that are open at ti have their
flag jobs arrived before ti−1, which gives xi ≤ zi−1.

We have shown that for each xi, either xi ≤ dyig e or
xi ≤ zi−1 holds. Now, the theorem can be proved using the
same argument as in Theorem 8.

Theorem 9 indicates that LeastIdle is an optimal online
algorithm for g > 2 in both the non-clairvoyant and clair-
voyant settings due to the lower bounds in Corollaries 1
and 2. Moreover, following the instance in Figure 12, the
competitive ratio for g = 1 in Theorem 9 is tight.

We further consider a special case of ISDCU in which
each job has a processing interval no longer than a charging
unit. In this case, we show that the LeastIdle algorithm can
achieve a constant competitive ratio if ties among non-idle
machines are broken with a static ordering of machines.

Theorem 10. When the processing interval of each job is no
longer than τ , the LeastIdle algorithm is 3-competitive if ties
among non-idle machines are broken with a static ordering of
machines.

Proof. The main idea for proving this theorem is to show
that for each i ≥ 1, either xi ≤ dyi−1

g e or xi ≤ dyig e holds.
Then, by (1) of Lemma 1, we have

∑
i≥1 xi ≤ 3 ·

∑
i≥1 x

∗
i =

3 ·OPT.
Let M be the set of machines open at ti. Let T be the

set of machines inM whose flag jobs arrive at or after ti−1.
Following the argument in Theorem 9, when T 6= ∅, we
have xi ≤ dyig e. In what follows, we show that xi ≤ dyi−1

g e
when T = ∅.

If T = ∅, each machine open at ti must have its flag job
arrived before ti−1. This suggests that all the machines open
at ti are non-idle at ti−1 and thus xi ≤ xi−1. Since LeastIdle
is a rational algorithm, by Lemma 2, if any machine inM is
initiated in (ti−2, ti−1], we have xi ≤ xi−1 ≤ dyi−1

g e.
Now, suppose all the machines inM are initiated earlier

than ti−2. Since the processing interval of each job is no
longer than τ , the flag job of each machine inMmust arrive
in (ti−2, ti−1]. This implies that there is at least one new
job placed on each machine in (ti−2, ti−1]. If any machine
in M is idle at any time in (ti−2, ti−1], there must exist
a job arrival that makes all the machines in M non-idle,
since all the machines in M are non-idle at ti−1. That is,
before this job arrival, there is only one idle machine, and
the arriving job is placed on this idle machine to make it
non-idle. By the definition of LeastIdle, there are at least
(xi − 1)g + 1 active jobs after this job arrival, which implies
xi ≤ dyi−1

g e. Suppose, on the other hand, that each machine
in M is non-idle throughout (ti−2, ti−1]. If there is a static
ordering of machines (e.g., by the order of their initiations)
to break ties among non-idle machines, let’s consider the
last ordered machine M in M. When the flag job of M is
placed, all the machines inM\{M}must be fully occupied.



11

This suggests that there are at least (xi − 1)g + 1 active jobs
at that time, which again indicates xi ≤ dyi−1

g e.

4 CONCLUDING REMARKS

Our analysis shows that in the non-clairvoyant setting, the
LeastIdle algorithm is optimal for g = 1 and g > 2 since
it matches the lower bounds for any deterministic online
algorithm. In the clairvoyant setting, both the ExpireLatest
and LeastIdle algorithms are optimal for g > 2. On the
other hand, our analysis does not appear tight for g = 2
in both the non-clairvoyant and clairvoyant settings. There
is a gap of at least 1

2 in these cases. A better analysis may be
conducted or a better algorithm may be designed to close
these gaps.

For future work, it would be interesting to study an
even more general model of ISDCU where the input jobs
have different demands for machine capacity (for example
by using the dynamic bin packing model in [11], [13], [14]).

ACKNOWLEDGMENTS

This work is supported by Singapore Ministry of Education
Academic Research Fund Tier 1 under Grant 2018-T1-002-
063. The authors would like to thank anonymous reviewers
for their valuable suggestions to improve this paper.

REFERENCES

[1] M. A. Bender, D. P. Bunde, V. J. Leung, S. McCauley, and C. A.
Phillips. Efficient scheduling to minimize calibrations. In Proceed-
ings of the 25th ACM Symposium on Parallelism in Algorithms and
Architectures, pages 280–287. ACM, 2013.

[2] J. Chang, S. Khuller, and K. Mukherjee. LP rounding and combi-
natorial algorithms for minimizing active and busy time. Journal
of Scheduling, 20(6):657–680, 2017.

[3] G. Cloud. https://cloud.google.com/.
[4] A. EC2. https://aws.amazon.com/de/ec2/.
[5] J. T. Fineman and B. Sheridan. Scheduling non-unit jobs to

minimize calibrations. In Proceedings of the 27th ACM Symposium
on Parallelism in Algorithms and Architectures, pages 161–170. ACM,
2015.

[6] M. Flammini, G. Monaco, L. Moscardelli, H. Shachnai, M. Shalom,
T. Tamir, and S. Zaks. Minimizing total busy time in parallel
scheduling with application to optical networks. In Proceedings
of IEEE International Symposium on Parallel & Distributed Processing,
pages 1–12. IEEE, 2009.

[7] M. R. Garey and D. S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New
York, NY, USA, 1979.

[8] M. R. Garey, D. S. Johnson, G. L. Miller, and C. H. Papadimitriou.
The complexity of coloring circular arcs and chords. SIAM Journal
on Algebraic Discrete Methods, 1(2):216–227, 1980.

[9] R. Khandekar, B. Schieber, H. Shachnai, and T. Tamir. Real-time
scheduling to minimize machine busy times. Journal of Scheduling,
18(6):561–573, 2015.

[10] A. W. Kolen, J. K. Lenstra, C. H. Papadimitriou, and F. C.
Spieksma. Interval scheduling: A survey. Naval Research Logistics,
54(5):530–543, 2007.

[11] Y. Li, X. Tang, and W. Cai. Dynamic bin packing for on-demand
cloud resource allocation. IEEE Transactions on Parallel and Dis-
tributed Systems, 27(1):157–170, 2016.

[12] G. B. Mertzios, M. Shalom, A. Voloshin, P. W. Wong, and S. Zaks.
Optimizing busy time on parallel machines. Theoretical Computer
Science, 562:524–541, 2015.

[13] R. Ren and X. Tang. Clairvoyant dynamic bin packing for job
scheduling with minimum server usage time. In Proceedings of the
28th ACM Symposium on Parallelism in Algorithms and Architectures,
pages 227–237. ACM, 2016.

[14] R. Ren, X. Tang, Y. Li, and W. Cai. Competitiveness of dynamic bin
packing for online cloud server allocation. IEEE/ACM Transactions
on Networking, 25(3):1324–1331, 2017.

[15] B. Saha. Renting a cloud. In LIPIcs-Leibniz International Proceedings
in Informatics, volume 24. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2013.

[16] M. Shalom, A. Voloshin, P. W. Wong, F. C. Yung, and S. Zaks.
Online optimization of busy time on parallel machines. Theoretical
Computer Science, 560:190–206, 2014.

[17] P. Winkler and L. Zhang. Wavelength assignment and generalized
interval graph coloring. In Proceedings of the fourteenth annual
ACM-SIAM symposium on Discrete algorithms, pages 830–831. So-
ciety for Industrial and Applied Mathematics, 2003.

PLACE
PHOTO
HERE

Ming Ming Tan received her BSc and PhD in
Mathematics from Nanyang Technological Uni-
versity, Singapore. She is currently a research
fellow in the School of Computer Science and
Engineering at Nanyang Technological Univer-
sity.

PLACE
PHOTO
HERE

Runtian Ren received the BSc degree in mathe-
matics and applied mathematics from University
of Science and Technology of China in 2014.
He is currently a PhD student in the School of
Computer Science and Engineering at Nanyang
Technological University, Singapore.

PLACE
PHOTO
HERE

Xueyan Tang received the BEng degree in com-
puter science and engineering from Shanghai
Jiao Tong University in 1998, and the PhD de-
gree in computer science from the Hong Kong
University of Science and Technology in 2003.
He is currently an associate professor in the
School of Computer Science and Engineering
at Nanyang Technological University, Singapore.
His research interests include distributed sys-
tems, cloud computing, mobile and pervasive
computing, and wireless sensor networks. He

has served as an associate editor of IEEE Transactions on Parallel and
Distributed Systems, and a program co-chair of IEEE ICPADS 2012 and
CloudCom 2014. He is a senior member of the IEEE.


