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On Fault-Tolerant Bin Packing for Online
Resource Allocation

Chuanyou Li, Xueyan Tang

Abstract—We study an online fault-tolerant bin packing problem that models reliable resource allocation. In this problem, each item
is replicated and has f + 1 replicas including one primary and f standbys. The packing of items is required to tolerate up to f faulty
bins, i.e., to guarantee that at least one correct replica of each item is available regardless of which f bins turn to be faulty. Any feasible
packing algorithm must satisfy an exclusion constraint and a space constraint. The exclusion constraint is generalized from the fault-
tolerance requirement and the space constraint comes from the capacity planning. The target of bin packing is to minimize the number of
bins used. We first derive a lower bound on the number of bins needed by any feasible packing algorithm. We then study three heuristic
algorithms named mirroring, shifting and mixing under a particular setting where all items have the same size. The mirroring algorithm
has a low utilization of the bin capacity. Compared with the mirroring algorithm, the shifting algorithm requires fewer bins. However, in
online packing, the process of opening bins by the shifting algorithm is not smooth. It turns out that even for packing a few items, the
shifting algorithm needs to quickly open a large number of bins. The mixing algorithm adopts a dual average strategy to gradually open
new bins for incoming items. We prove that the mixing algorithm is feasible and show that it balances the number of bins used and the
process of opening bins. Finally, to pack items with different sizes, we extend the mirroring algorithm by adopting the First-Fit strategy
and extend both the shifting and mixing algorithms by involving the harmonic strategy. The asymptotic competitive ratios of the three
extended algorithms are analyzed respectively.

Index Terms—Fault-tolerance, Bin packing, Heuristic, Online
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1 INTRODUCTION

Cloud-based applications and services are growing explo-
sively. The fast progress of cloud computing needs to face two
fundamental issues. First, resource utilization, which aims at meet-
ing the computational demands with minimum amount of cloud
resources. Second, fault tolerance, whose target is to enhance the
reliability, as failures are more prone to happen when the scale of
the cloud grows.

Resource allocation can be modeled as bin packing [1] in
which the bins and items correspond to the servers and application
instances respectively. In the classical bin packing problem, given
a set of items, the target is to pack the items into a minimum
number of bins while guaranteeing that the aggregate size of the
items in each bin does not exceed the bin capacity. In the online
setting, each item must be placed into a bin without the knowledge
of subsequent items.

Involving fault-tolerance schemes is a common approach to
enhance reliability. In this paper, we consider a primary-standby
replication scheme to achieve fault tolerance: each item is repli-
cated and has f + 1 replicas which are composed of one primary
and f standbys. For the primary-standby replication scheme, the
primary is indispensable. It normally takes more responsibilities
and has a higher workload than a standby replica [2]. When the
primary fails, one of its available standbys will switch to be the
new primary. After a standby switches to be the primary and
takes over new responsibilities, its workload increases. Thus, the
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selection of the standby must ensure that it does not cause any
overflow after switching to be the primary.

To achieve both packing efficiency and system reliability, we
propose and study a new version of the bin packing problem called
fault-tolerant bin packing. This problem requires the packing of
items to tolerate up to f faulty bins which stop serving any
items. In this new problem, any feasible algorithm should satisfy
an exclusion constraint and a space constraint. The exclusion
constraint is generalized from the fault-tolerance requirement. For
each item, its f+1 replicas need to be dispersed to f+1 different
bins, such that no matter which f bins turn to be faulty, one correct
replica is still available. The space constraint comes from the
capacity planning and requires that each correct bin always has
sufficient available space to serve its items. In our fault-tolerant
model, a faulty primary will cause one of its available standbys
to become the new primary and expand the workload. Thus, the
space constraint needs to deal with various cases of failures: even
when there are up to f faulty bins, it is always possible to select
available standbys to become the new primaries without causing
any overflow.

Given a set of items, we first derive a lower bound on the
number of bins required by any feasible algorithm. The lower
bound turns to be a root of an quadratic equation, which is
associated with f , L and η (L is the aggregate workload of all
primary replicas and η is the workload ratio between the primary
and a standby). We then focus on packing algorithms in the online
setting which is usually used to model resource allocation in the
cloud [3]. In the basic case of uniform item sizes, we propose
three heuristic algorithms named mirroring Am, shifting As and
mixing Ax. In the mirroring algorithm Am, any bin that is used to
place the primary replicas has another f bins dedicated to placing
the corresponding standby replicas. Our analysis shows that the
utilization of the bin capacity by Am is generally inefficient.
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Because of failures, all the standby replicas located in the same
bin might switch to primary and expand their workloads together.
To meet the space constraint, a large amount of reserved space
should be maintained in the bin. Different from Am, for primary
replicas hosted in the same bin, the shifting algorithm As disperses
their standby replicas into f bin groups. The amount of reserved
space is saved since in each bin at most one standby replica
might switch to primary in the case of failures. Compared with
Am, As reduces the number of bins used. However, in online
packing, the process of opening bins by As is not smooth. Even for
packing a few items, As needs to quickly open a large number of
bins. In order to smooth the process of opening bins, we propose
the mixing algorithm Ax. The idea is generalized from a dual
average strategy by which all the primary and standby replicas are
uniformly distributed among the open bins. Different from Am and
As, each bin opened by Ax hosts the primary and standby replicas
together. The reserved space in each bin can accommodate one
standby replica switching to primary for handling failures. We
propose a switching strategy to meet the space constraint in the
case of failures. Our analysis shows that the mixing algorithm
Ax achieves better performance than the mirroring algorithm Am.
Meanwhile, compared with the shifting algorithm As, the mixing
algorithm Ax opens new bins much more smoothly in the online
setting.

In the general case where items can have different sizes, we in-
volve additional strategies to extend the three heuristic algorithms.
For the mirroring algorithm, we adopt the First-Fit strategy to pack
primary replicas. For the shifting and mixing algorithms, we adopt
the harmonic strategy to pack items in different ranges of size
separately. We analyze the asymptotic competitive ratios of these
extended algorithms.

For ease of reference, Table 1 summarizes the notations used
in this paper. The rest of this paper is organized as follows. Section
2 sketches out the related work. Section 3 introduces the model
and provides a formal definition of the fault-tolerant bin packing
problem. Section 4 establishes a lower bound on the number of
bins needed by any feasible algorithm. In Section 5, we propose
three feasible heuristic algorithms and analyze their performance.
In Section 6, we extend these algorithms to pack items of different
sizes. Section 7 briefly discusses future work. Some preliminary
results of our work were presented as a brief announcement [4].

2 RELATED WORK

The classical bin packing problem has been extensively studied
in both the offline and online settings [1] [5]. It is well-known
that the classical bin packing problem is NP-hard [6]. So far, the
best known lower bound on the competitive ratio of online bin
packing is 1.54037 [7]. The best upper bound on the competitive
ratio of online bin packing is 1.57828956, which is achieved by
the advanced harmonic algorithm [8].

Fault tolerance is a key issue in parallel and distributed com-
puting. Replication is a fundamental mechanism to achieve fault
tolerance. Based on various replication schemes, there are a large
number of fault-tolerance protocols (e.g., a family of protocols
based on Paxos [9]) which focus on the consistency problem
among different replicas. Recently, replication is receiving increas-
ing attention to enhance the reliability of resource allocation in
the cloud. Shen et al. [10] proposed an Availability-on-Demand
mechanism which consists of a scheduler that manages computing
resources. To enhance the availability, each virtual machine (VM)

TABLE 1: Summary of notations

Notation Description
B the set of bins
Bi the ith bin
R the set of services to be released
Ri the ith service to be released
pi the primary replica of Ri

ski the kth standby replica of Ri

f the assumed upper bound on the number of failures
`i the workload of the primary replica pi of Ri

η the workload ratio between the primary and a standby
L the aggregate workload of all primary replicas of R
Am the mirroring algorithm
As the shifting algorithm
Ax the mixing algorithm
Afm the First-Fit mirroring algorithm
Ahs the Harmonic shifting algorithm
Ahx the Harmonic mixing algorithm

is replicated. When placing VMs to the physical servers, the
scheduler uses a First-Fit strategy and ensures the primary and
the backups are located on different servers. Yanagisawa et al. [2]
studied dependable VM allocation in a bank private cloud. Similar
to our work, they also considered that the resource demands might
change in the case of failures. A mixed integer programming ap-
proach was proposed to solve the resource allocation problem. The
above two papers focused on empirical performance and did not
provide any theoretical analysis. Beaumont et al. [11] studied the
impact of the reliability constraint on the complexity of resource
allocation problems. Korupolu et al. [12] defined an adversarial
optimization problem which aims at finding a fractional number
of tasks placed in each server. They also proposed a randomized
approach to reach the optimum value of the fractional solution in
expectation. Both [11] and [12] target to minimize the number of
faulty items in the case of failures. In contrast, we seek to ensure
that each item always has at least one surviving replica as long as
the number of faulty bins is no more than a given number.

Our problem is closely related to a fault-tolerant server con-
solidation problem studied recently [13], [14], [15]. In the latter
problem, to achieve fault tolerance, each task is divided into
several replicas which are dispersed in different servers. Every
replica inherits part of the original task workload. In the case of
failures, the faulty replica’s workload can be directed to other
replicas hosted by correct servers. One typical application area of
this model is multi-tenant database systems. Schaffner et al. [13]
studied robust tenant placement for in-memory database clusters.
Daudjee et al. [14] conducted a follow-up study and proposed
a heuristic algorithm called the shifting algorithm. Compared
with the mirroring algorithm proposed in [13], the shifting al-
gorithm achieves a better performance. Mate et al. [15] proposed
a CUBEFIT algorithm which extends the shifting algorithm to
tolerate multiple server failures while ensuring no server becomes
overloaded. A major difference of our fault-tolerant bin packing
problem from the above problem is that each standby replica
created has a base workload that is independent of whether the
standby switches to the primary or not. This is a reasonable model
for many practical scenarios. For example, in the case of database
replication, read requests are normally executed by the primary
only, whereas write requests must be executed by all the replicas
for maintaining the consistency [13] [2]. The studies of [14]
and [15], however, did not consider such a constraint. If standby
replicas do not involve any base workload, one can in fact simply
create idle servers to host standby replicas and let these servers
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Fig. 1: Primary fails and standby expands

take over the faulty servers when failures occur. We also study
both the mirroring and shifting algorithms for our problem. We
further propose a new algorithm named mixing which can balance
the number of bins used and the process of opening bins.

Another recent variant of the bin packing problem for mod-
eling cloud resource allocation is called MinUsageTime dynamic
bin packing [16] [17]. The objective of this variant is to minimize
the accumulated bin usage time, which is different from our target
to minimize the number of bins used. Besides, no fault-tolerance
constraint was considered in the above variant.

3 MODEL AND PROBLEM

3.1 Model
We consider a system which consists of homogeneous servers
B = {B1, B2, B3, ...}. The system is not reliable: servers may
suffer from crash failures and stop executing any tasks. Failures
can happen at any time on any server and are not foreknown. We
refer to the applications undertaken by the system as services. We
seek to achieve the following fault-tolerance guarantee: as long as
the number of faulty servers is no more than a given number f , the
system should keep its correctness such that no running services
are blocked or discarded.

For each service, the system needs to allocate resources to
run it. We consider the online setting: services are released
sequentially and when allocating resources for a new service,
the system has no idea about when and how many services will
be released in the future. Let R = {R1, R2, R3, ...} denote the
sequence of services to be released.

To achieve fault tolerance, we consider the primary-standby
replication scheme. Specifically, when a service is released, it is
replicated and has f + 1 replicas (to avoid FLP impossibility
[18], we suppose the system is synchronous, such that all the
f + 1 replicas can make agreement and always keep a consistent
state with each other.). To facilitate presentation, replicas placed
on faulty servers are also called faulty and replicas placed on
correct servers are called correct. Among the f+1 replicas, one is
named primary and the other f are named standbys. In general, the
primary takes more responsibilities than a standby, e.g., acting as a
coordinator or synchronizing the states of standby replicas. Thus,
a correct primary is indispensable: when the primary turns to be
faulty, one of its correct standbys will switch the role and become
the new primary. Based on this replication scheme, we model each
service Ri as a set of f + 1 replicas Ri = {pi, s1i , s2i , ..., s

f
i },

where pi represents the primary replica and ski (1 ≤ k ≤ f )
represents the kth standby replica. In the following text, we also
use si to denote one of Ri’s standby replicas.

Each server has a limited amount of resources. We assume the
capacity of each server is fixed and equal to 1. The amount of
resources to run a service Ri is called Ri’s workload. Let `i ∈

(0, 1) denote the workload of the primary replica pi of service
Ri. As discussed, the primary takes more responsibilities and has
a higher workload than a standby. We assume the workload of each
standby replica ski is equal to `i/η where η > 1 is the workload
ratio between the primary and a standby. In the case of failures,
when a standby replica becomes the new primary, its workload
increases to `. For example, in Figure 1, there are two servers
B1, B2 and two services R1, R2. Each service has 2 replicas.
Suppose primary p1 and standby s12 are placed in B1 and primary
p2 and standby s11 are placed in B2. If B1 fails (so that p1 turns
to faulty), s11 becomes the new primary of service R1 and its
workload increases to `.

3.2 Fault-Tolerant Bin Packing
When a service is released, it is assigned to run on a set of
servers. We assume that once the service (including all its f + 1
replicas) is assigned, it will not be moved to other servers due
to reasons such as interruption to the service or high migration
overheads. We model the resource allocation for services as a
bin packing problem which we refer to as the fault-tolerant bin
packing problem. The objective of the problem is to place the
items (replicas) into a minimum number of bins (servers) while
satisfying an exclusion constraint and a space constraint.

Definition 1. A fault-tolerant bin packing algorithm satisfies the
exclusion constraint if and only if it never places two (or more
than two) replicas of the same service in the same bin.

The exclusion constraint arises from the fault-tolerance re-
quirement. To tolerate up to f faulty bins, clearly the f+1 replicas
of the same service should be placed in f + 1 different bins.
The space constraint arises from the capacity limitation of a bin.
The space constraint in our problem is more complex than that in
classical bin packing. Besides ensuring that the total workload of
the replicas in a bin does not exceed the bin capacity at the time
of placement, we also need to consider replica switching in the
case of failures: when a faulty primary arises, a correct standby
will have to switch the role and become the new primary without
violating the space constraint.

Definition 2. Given a set of faulty bins, a switching strategy
(standby to primary) satisfies the following two properties:

1) for each faulty primary replica, one of its correct standby
replicas is selected to become the new primary;

2) there are no overloaded bins after workload expansion.

Definition 3. A fault-tolerant bin packing algorithm satisfies
the space constraint if and only if it satisfies the following two
properties:

1) there are no overloaded bins before any failure happens;
2) a switching strategy always exists as long as there are no

more than f faulty bins.

Definition 4. A fault-tolerant bin packing algorithm is named
feasible if and only if it satisfies both the exclusion constraint and
the space constraint.

4 A LOWER BOUND

First, we derive a lower bound on the number of bins needed by
any feasible fault-tolerant bin packing algorithm.
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Theorem 1. To place a set of services R with a total workload L
of all primary replicas, the number of bins required by any feasible
fault-tolerant bin packing algorithm is at least:
(ηL+fL+ηf)+

√
(ηL+fL+ηf)2−4η(f2L+fL)

2η .

Proof. Suppose t bins are opened in total to host the set of
services R. For each bin Bi (1 ≤ i ≤ t), we know Bi may
host some primary replicas, some standby replicas and may also
keep some reserved space for handling failures. Consequently, the
total capacity of Bi can be divided into three disjoint parts: W p

i ,
W s
i and W e

i . W p
i is the part that is occupied by primary replicas,

W s
i is the part that is occupied by standby replicas and W e

i is the
remaining reserved space. Obviously, at least one of W p

i and W s
i

is greater than 0. According to the space constraint, we have:
t∑
i=1

W p
i

(
t− 1

f − 1

)
(1− 1

η
) ≤

t∑
i=1

W e
i

(
t− 1

f

)
(1)

Inequality (1) arises from the fact that there should always be
enough reserved space to accommodate the workload expansion
for handling f failures, where

(t−1
f−1
)

and
(t−1
f

)
are combinatorial

numbers t − 1 over f − 1 and t − 1 over f respectively. Let us
consider a particular scenario that the first f bins (B1 to Bf ) are

faulty. In this case, we have
f∑
i=1

W p
i (1− 1

η ) ≤
t∑

i=f+1
W e
i , where

the left side is the total workload expansion requirement, which
should be no more than the right side which is the total reserved
space of the remaining t − f correct bins. As any f bins can
fail, we have

(t
f

)
similar inequalities. Inequality (1) is derived by

adding up all these inequalities.

Moreover, the total workload of primary replicas
t∑
i=1

W p
i = L

plus the total workload of standby replicas
t∑
i=1

W s
i =

f
t∑
i=1

Wp
i

η =

fL
η plus the total reserved space

t∑
i=1

W e
i should be equal to

the total capacity of t bins, i.e. t. Thus, we have L + fL
η +

t∑
i=1

W e
i = t. Together with the inequality (1), we can derive that

ηt2− (ηL+ fL+ ηf)t+ (f2L+ fL) ≥ 0. Therefore, we have

t ≥ (ηL+fL+ηf)+
√

(ηL+fL+ηf)2−4η(f2L+fL)

2η .

Note that when considering η and f as constants and L to be
a large value, we could use the asymptotic notation to rewrite the
lower bound provided in Theorem 1 as t ≥ L+ fL

η +o(L), where
L+ fL

η is the space occupied by all primary and standby replicas
and o(L) is the reserved space.

5 THREE HEURISTIC ALGORITHMS

We start by considering a basic case in which the primary replicas
of all services have the same workload ` ∈ (0, 1). We present
and study three heuristic algorithms. For ease of presentation, we
shall refer to the total workload of all the replicas (primary and
standby) placed in a bin as the level of the bin.

5.1 The Mirroring Algorithm
The original idea of the mirroring algorithm Am is from [13]
which places primary replicas and standby replicas separately. Any
bin that is used to place primary replicas has f “mirror” bins for
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Fig. 2: Example of the algorithm As

standby replicas. Specifically, the algorithm uses Next-Fit to pack
the primary replicas and creates f copies of each bin opened by
Next-Fit to pack the corresponding standby replicas.

Apparently, the algorithm Am satisfies the exclusion con-
straint. It also meets the space constraint obviously: even if all
the standby replicas in a bin switch to primary together, the level
of the bin increases to `b 1` c, which is still no more than 1.

Theorem 2. The mirroring algorithm Am is feasible.

Theorem 3. To place a set of services R with a total workload
L of all primary replicas, the mirroring algorithm Am requires
d L
`b1/`ce(f + 1) bins.

Theorem 3 is straightforward. Am needs to open f + 1 bins
to host every b 1` c services. Therefore, to place all services of R,
Am requires d L

`b1/`ce(f + 1) bins. Thus, the bound provided in
Theorem 3 is tight. Note that there exists at most one bin hosting
primary replicas whose level is no more than 1

2 . Thus, a simpler
but looser bound on the number of bins opened is 2(f + 1)L+ c
(where c is a constant). For the mirroring algorithm, the utilization
of the bin capacity is generally inefficient. Because of failures, all
standby replicas located the same bin might switch to primary and
expand their workloads together, which requires a large amount of
reserved space.

5.2 The Shifting Algorithm
To reduce the number of bins used, we study a new algorithm
named shifting which is derived from [14]. We generalize the basic
idea by replication and adapt it to tolerate any f faulty bins in our
model.

The shifting algorithm As also places primary replicas and
standby replicas separately. To save the amount of reserved space,
the key idea of As is to let each bin hosting standby replicas
keep a reserved space which can accommodate only one standby
switching to primary: the reserved space is set to `(1 − 1/η).
Suppose that q is the number of standby replicas hosted by a bin.
Then, we should have `(1 − 1/η) + q · `/η ≤ 1. Thus, each
bin can host q = b 1−`(1−1/η)`/η c = b `+η−`η` c standby replicas.
The algorithm uses Next-Fit to pack the primary replicas and then
runs the Round-Robin algorithm f times on b1/`c bins to pack
the standby replicas. As a result, for the primary replicas hosted
in the same bin, their standby replicas are shifted into f groups
of bins, where each group contains b 1` c bins (Figure 2 shows an
example by assuming b 1` c = 3). As ensures that no two standby
replicas share a common bin if their primary replicas are placed
in the same bin.

Theorem 4. The shifting algorithm As is feasible.

Proof. The algorithm definition of As directly ensures the ex-
clusion constraint. For the space constraint, it is easy to show
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that a switching strategy always exists if the number of failures
is no more than f . Suppose x (0 ≤ x ≤ f ) bins which host
primary replicas turn to faulty and up to f − x bins hosting
standby replicas also turn to faulty. Then, at least x groups of bins
for hosting standby replicas do not have any failures. Therefore,
a switching strategy can be found by constructing a one-to-one
mapping between the x faulty bins hosting primary replicas and
the x groups of correct bins hosting standby replicas. For each
primary replica in a faulty bin, its standby in the corresponding
group of correct bins is switched to primary.

Theorem 5. To place a set of services R with a total workload L
of all primary replicas, the shifting algorithm As requires at most
d L
b `+η−`η` cb 1` c`

e(b `+η−`η` c+ fb 1` c) bins.

We know that one bin can host b `+η−`η` c standby repli-
cas. It implies that to pack b `+η−`η` cb 1` c services, As requires
b `+η−`η` c + fb 1` c bins, where b `+η−`η` c is the number of bins
hosting primary replicas and fb 1` c is the number of bins hosting
standby replicas. Therefore, to pack the set of services R, As
requires at most d L

b `+η−`η` cb 1` c`
e(b `+η−`η` c + fb 1` c) bins. The

bound is asymptotically tight (the gap is at most a constant number
of bins no more than b `+η−`η` c+ fb 1` c − (f + 1)).

For easier comparison with the mirroring algorithm, we can
derive another bound for As in a simpler form. Except for at most
one bin, the level of each bin hosting primary replicas is greater
than 1

2 . Similarly, except for f groups of bins, the level of each
bin hosting standby replicas is greater than 1

2 (1−`(1− 1
η )), since

otherwise there is no need to open another f groups of bins to
host new standby replicas. Consequently, we have a bound 2L(1+

f
`+η−`η ) + c (where c is a constant), where 2L corresponds to the
number of bins hosting primary replicas and 2Lf

`+η−`η corresponds
to the number of bins hosting standby replicas. Recall that the
mirroring algorithm Am requires 2L(1+f)+c bins. Since η > 1
ensures ` + η − `η > 1, it implies that As achieves a better
performance than Am especially when L is large.

The shifting algorithm As decreases the amount of reserved
space by guaranteeing that in each bin at most one standby might
switch to primary in the case of failures. However, the process of
opening bins by As is not smooth in the online setting, because
for primary replicas located in the same bin, their standby replicas
span over fb 1` c bins. Even for packing a few services, As needs
to quickly open a large number of bins, especially when ` is small.
Aggregating several small services into one larger service for
packing purposes could relieve the smooth problem. However, the
aggregation would increase the amount of reserved space needed
and decrease the packing performance. Thus, we are interested in
designing a new algorithm which can balance the performance and
the process of opening bins without resorting to aggregation.

5.3 The Mixing Algorithm

5.3.1 An Ideal Case

Let us first study an ideal case by adding two simplifying as-
sumptions. First, the workload ` is a rather small value (e.g., a
value approaching 0) such that no matter how the total workload
L is divided, the workload of each partition can be considered an
integral multiple of `. Second, f = 1: at most one faulty bin can
arise. We propose an offline packing algorithm Aavg that attempts
to mix primary replicas and standby replicas in the same bin.

As f = 1, each released service has two replicas: one primary
and one standby. The specification of Aavg is based on a “dual
average” process. Assume Aavg requires tavg bins to pack the set
of services R. First, all primary replicas are uniformly distributed
in tavg bins, i.e., in each binBi (1 ≤ i ≤ tavg), the total workload
of primary replicas is equal to L

tavg
. Second, for the primary repli-

cas hosted by Bi, their standby replicas are uniformly distributed
in the other tavg − 1 bins. Thus, in each bin Bi, the aggregate
workload of standby replicas is L

ηtavg(tavg−1) (tavg − 1) = L
ηtavg

.
Suppose that a bin Bi becomes faulty. In each correct bin

Bj (1 ≤ j ≤ tavg , j 6= i), there exist standby replicas with
the aggregate workload L

ηtavg(tavg−1) whose primary replicas are
hosted by Bi. Therefore, after standby switching to primary,
the workload expansion in Bj will be (1 − 1

η ) L
tavg(tavg−1) . To

avoid overloading, the reserved space in each bin should be
(1− 1

η ) L
tavg(tavg−1) . Accordingly, the total reserved space of tavg

bins should be (1 − 1
η ) L

tavg−1 . As tavg bins are opened in total,
we have: L + L

η + (1 − 1
η ) L

tavg−1 ≤ tavg . Thus, we can derive

that tavg ≥
(ηL+L+η)+

√
(ηL+L+η)2−8ηL
2η . Note that this result

is exactly the lower bound obtained in Theorem 1 by assuming
f = 1. Thus, Aavg is optimal for the ideal case and Theorem 1 is
tight for this case.

Based on the observations from the above ideal case, we next
introduce an algorithm which follows the idea of “dual average”.

5.3.2 The Algorithm Ax

One possible implementation of the “dual average” idea is to place
primary replicas in a group of bins in a round-robin manner and
place standby replicas for the ith (i ≥ 1) primary replica in bin j
in bins j+(i−1)f+1, j+(i−1)f+2, ... , j+i·f (modulo the size
of the bin group). In this way, except for the first service, at most
one new bin is opened for each new service released. Although this
implementation can smooth the process of opening bins compared
with the shifting algorithm, there is room for further improvement.
In this section, we propose a novel algorithm named mixing that
aims to reuse open bins for new services as much as possible
before opening a new bin in the online setting.

In a nutshell, the mixing algorithm Ax opens new bins gradu-
ally and organizes them into a sequence of bin groups. Each bin
hosts at most α primary replicas. α is a key parameter used by
Ax. At this stage, we only claim that α is a positive integer and
bounds the number of primary replicas hosted in each bin. After
we elaborate Ax, we shall analyze the value of α. When a new
service is released, if there exists one bin in the current bin group
hosting less than α primary replicas but there are not enough bins
to host f more standby replicas, Ax opens f new bins and adds
them into the current group. If no bin in the current group can host
any more primary replica, Ax opens 2f new bins and organizes
them as a new group. To simplify presentation, we use Gg to
represent the gth bin group created and when we mention a bin
Bi ∈ Gg , the subscript i (i ≥ 1) stands for the ith opened bin of
Gg . For each released service, Ax always places its f + 1 replicas
in f + 1 different bins of the same group. The notation |Gg| is
used to express the cardinality (the number of bins) of the group
Gg . |Gg| increases as more bins are added into Gg . We use ϑ to
represent the final cardinality of Gg (i.e., at the moment when
Gg+1 is created). The placement of Ax has a simple feature:
for the α primary replicas hosted in the same bin Bi, their fα
standby replicas are dispersed in the next fα bins starting from
B(i+1) mod ϑ to B(i+fα) mod ϑ.
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1: g ← 1; % the index of the current group;
2: Gg ← ∅;
3: When a new service Ri is released;
4: if Gg = ∅ then
5: Gg ← Gg ∪ {open 2f bins};
6: PlaceService(Gg , Ri, B1);
7: else
8: Set B̃← TryP lacePrimary(Gg , pi);
9: if B̃ 6= ∅ then

10: for each Bj ∈ B̃ do
11: c← TryP laceStandby(Gg , si, Bj);
12: if c = j then
13: break;
14: end if
15: end for
16: if c = default then
17: Gg ← Gg ∪ {open f bins};
18: c← B̃.front();
19: end if
20: PlaceService(Gg , Ri, Bc)
21: else
22: g ← g + 1;
23: Gg ← ∅;
24: Gg ← Gg ∪ {open 2f bins};
25: PlaceService(Gg , Ri, B1);
26: end if
27: end if

Fig. 3: The pseudo code of Ax

Input: Gg , Ri, Bc;
1: Bc ← pi;
2: Bj ← findCompatible(B(c+1) mod |Gg|);
3: for each ski do % 1 ≤ k ≤ f
4: B(j+k−1) mod |Gg| ← ski ;
5: end for

Fig. 4: The method PlaceService

The pseudo code of the algorithm Ax is given in Figure 3. The
parameter g is the index of the current bin group. Initially, g is
set to 1 expressing the first group G1 (line 1). Each group Gg is
empty at the beginning (line 2). When a new serviceRi is released
(line 3), depending on whetherGg is empty (line 4) or not (line 7),
there are two cases to consider. If Gg is empty, Ax opens 2f new
bins for Gg (line 5). The method PlaceService(Gg, Ri, B1)
(line 6) targets to place the service Ri in the group Gg . It includes
two sub-processes: one for placing the primary replica pi and one
for placing the f standby replicas si. A detailed description of
PlaceService is shown in Figure 4. The parameter Bc actually
specifies the bin that will host pi (line 1, Figure 4). To place the
f standby replicas, we first identify a compatible bin Bj (line
2, Figure 4). The term compatible means Bj has not hosted any
standby replica whose corresponding primary replica is located in
Bc. The identification process starts from the bin B(c+1) mod |Gg|
and goes clockwise (B(c+1) mod |Gg|, B(c+2) mod |Gg|, and so
on). The first compatible bin Bj encountered is identified. Then,
each standby replica ski (1 ≤ k ≤ f ) is placed in the bin
B(j+k−1) mod |Gg| (lines 3-5, Figure 4). Now let us go back to
line 6, Figure 3. In this particular scenario where 2f new bins
are just opened for an empty group Gg , the primary replica pi is
placed in B1 and each standby replica ski (1 ≤ k ≤ f ) is placed
in B1+k.

The operations from line 8 to line 26 handles the case that
Gg is not empty. In this scenario, to place the new service Ri,
the first task is to identify the bin Bc where the primary replica
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Fig. 5: Example of the algorithm Ax (f = 3)

pi will be placed (lines 8-19). TryP lacePrimary(Gg, pi) is a
testing method (line 8). It checks whether there is a bin of the
group Gg that still can accommodate one more primary replica.
TryP lacePrimary captures all the bins in Gg that can host pi
and put them in a set B̃. If each bin in Gg has already hosted
α primary replicas (which implies that no bin in Gg can further
host pi), then B̃ is empty and the algorithm turns to open a new
group Gg+1 of bins (lines 22-25). Now consider the case that B̃
is not empty (lines 9-20). For each Bj ∈ B̃, a testing method
TryP laceStandby examines whether there are f compatible
bins to host f standby replicas if pi is placed in Bj . Suppose
Bj has hosted x (x < α) primary replicas before hosting pi. The
testing process proceeds as follows: if |Gg| − (1 + fx) ≥ f , it
returns the index j (c = j), otherwise it returns a default value
(c = default). In the testing inequality |Gg| − (1 + fx) ≥ f ,
1 + fx represents the bin Bj and another fx bins hosting the
fx standby replicas whose primary replicas are in Bj . The testing
requires that except for these 1 + fx bins, the bin group Gg still
has enough bins to pack f standby replicas in f different bins.
c = default (line 16) implies there are not enough compatible
bins to accommodate the f standby replicas. In this scenario, Ax
opens another f new bins and adds them into the group Gg (line
17). Then c is redirected to the value B̃.front() which returns
the minimum index among all the bins in the set B̃ (line 18). After
identifying the bin Bc to place the primary replica, Ax executes
the placement of service Ri: PlaceService(Gg, Ri, Bc) (line
20).

Figure 5 shows an example by assuming α = 2 and f = 3.
When the first service R1 is released, the group is empty. Ax
opens 6 bins and places p1 in B1, s11 in B2, s21 in B3 and s31
in B4 (lines 4-6). When R2 is released, the current group is not
empty anymore. B2 will be identified as the bin to place p2 (line
11). Note that in the method TryP laceStandby, the bin B1 fails
to pass the testing, as |Gg| − (1 + fx) = 2 < 3. The 3 standby
replicas ofR2 will be placed in the binsB3 toB5. For the services
R3 to R6, the placement is similar to R2. When the service R7

is released, there are not enough compatible bins to place R7’s
3 standby replicas. Ax opens three new bins (B7, B8, B9) and
adds them into the current group. Then, the primary replicas p7
is placed in B1. The 3 standby replicas of R7 is placed from B5

to B7. After placing the service R18, the current group cannot
accommodate primary replicas anymore (B̃ = ∅). Ax turns to
open a new group of bins (line 22).

For a given bin Bi, suppose pj is a primary replica placed in
Bi. Property 1 and Property 2 below show the locations of pj’s f
standby replicas.
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Property 1. ∀Bi ∈ Gg , if pj is the first primary replica placed
in Bi, we have:

1) if 1 ≤ i ≤ f , pj’s f standby replicas are placed in f
consecutive bins from Bi+1 to Bi+f ;

2) if i > f and i mod f = 0, pj’s f standby replicas are
placed in f consecutive bins from B1 to Bf ;

3) otherwise, pj’s f standby replicas are placed in the
following f bins: from B1 to Bi mod f and from Bi+1 to
Bi+f−(i mod f).

Property 2. ∀Bi ∈ Gg , if pj is the xth primary replica placed
in Bi, where 1 < x ≤ α, we have:

1) if 1 ≤ i ≤ f , pj’s f standbys are placed in f consecutive
bins from Bi+(x−1)f+1 to Bi+xf ;

2) if f + 1 ≤ i ≤ xf , pj’s f standbys are placed in the f
consecutive bins from Bxf+1 to B(x+1)f ;

3) if i ≥ xf + 1, there are two subcases: (a) i mod f =
0, pj’s f standbys are placed in f consecutive bins
from B(x−1)f+1 to Bxf ; (b) i mod f 6= 0, pj’s
f standbys are placed in f consecutive bins from
Bi mod f+(x−2)f+1 to Bi mod f+(x−1)f .

Property 1 shows the placement of pj’s f standbys when pj
is the first primary placed in Bi. Note that the first two cases
use a special term “f consecutive bins”. In the following text, we
use the word “consecutive” to exclude the placement of standbys
turning around to B1. More formally, during the placement of
pj’s f standbys, the indices of the f successive bins need to keep
increasing. When a new bin group is created, we add 2f bins.
Clearly, if pj is placed in one of the first f bins, its f standbys can
be placed in the next f consecutive compatible bins. Another case
is that pj’s f standbys are placed from B1 to Bf . This happens
only when pj is located in a binBi where i > f and i mod f = 0.
For all the other cases, the placement of pj’s f standby replicas
needs to be turned around to B1. For example, in Figure 5, p6’s
standbys are placed in three consecutive bins B1, B2, B3, and
p5’s standbys are placed in B6, B1, B2 (note that when placing
the services R5 and R6, the three bins B7, B8 and B9 are not
opened yet).

Property 2 shows the placement of pj’s f standbys when pj
is not the first primary placed in Bi. In this case, the f standbys
are always placed in f consecutive bins. As shown in Figure 5,
p7’s standbys are placed in three consecutive bins B5, B6 and B7.
Note that the method TryP laceStandby in line 11 ensures there
exist enough compatible bins in Gg to host f more standbys. For
example, when the service R7 is released, TryP laceStandby
returns a default value. Hence, before placing the service R7, the
bins B7, B8 and B9 are opened first.

Corollary 1. ∀Bi ∈ Gg , for any primary replica pj located in
Bi, if pj’s f standbys are located in f consecutive bins, then
these f bins start from a bin whose index modulo f is equal to
(i+ 1) mod f .

Corollary 1 can be directly obtained from Property 1 (the first
two cases) and Property 2.

Corollary 2. ∀Bi ∈ Gg , for any primary replica pj located in Bi
and any integer r ∈ [0, f − 1], Ax ensures that there exists a bin
By ∈ Gg which hosts one of pj’s standby replicas and satisfies
y mod f = r.

According to Property 1 and Property 2, if pj’s f standby
replicas are located in f consecutive bins, the above claim is
straightforward. Otherwise, pj’s f standby replicas must be placed
from B1 to Bi mod f and from Bi+1 to Bi+f−(i mod f) (case 3
of Property 1). Again, ∀r ∈ [0, f − 1], the claim holds.

Corollary 3. Every standby replica of each service is placed in a
compatible bin.

According to Property 1 and Property 2, it is easy to see that
for all the α services whose primary replicas are located in Bi,
none of their standbys are placed in the same bin.

Property 3. When Ax creates a new group of bins Gg+1, the final
cardinality ϑ of Gg is equal to f(α + 1) and ∀Bi ∈ Gg , there
are α primary replicas and fα standby replicas placed in Bi.

Property 3 shows the final cardinality of a bin group and
the composition of each bin. In the specification of Ax, a
new group of bins is opened only when each bin in the cur-
rent bin group already hosts α primary replicas (the result of
TryP lacePrimary(Gg, pi) is an empty set, line 8). Note that
Ax never places f+1 replicas of the same service across different
bin groups. Furthermore, based on Corollary 3, for the α primary
replicas located in the same bin, we know the corresponding fα
standby replicas are placed in another fα different bins. Hence,
when a new bin group is created, the current bin group includes at
least fα+1 bins. On the other hand, the cardinality of a bin group
is always an integral multiple of f . We can get this conclusion
through the increasing of a bin group’s cardinality. |Gg| increases
at two places. One is opening 2f bins for an empty group (line
5 and line 24) and the other is adding f bins when there are
not enough bins to place standby replicas (line 17). Hence, the
final cardinality of a bin group should be f(α+ 1), the minimum
integral multiple of f which is larger than fα+ 1. From Property
1 and Property 2, we can see that for all the α primary replicas
located in Bi, the fα standby replicas are placed in the fα bins
next to Bi clockwise. Therefore, we can conclude that each bin
accommodates fα standby replicas (whose primary replicas are
located in fα different bins).

Property 4. ∀Bi ∈ Gg , there is a set Ei of f bins not hosting
any standby replica whose primary is placed in Bi. Specifically,

1) if i ≥ f , Ei = {Bi−f+1, Bi−f+2, ..., Bi}.
2) if 1 ≤ i < f , Ei = {Bϑ−f+i+1, ..., Bϑ, B1, ..., Bi}.

We can directly get Property 4 from Property 3 and the
placement of standby replicas (Property 1 and Property 2). The
final cardinality of a bin group is f(α + 1) and for α primary
replicas located in the same bin, their fα standby replicas are
placed in fα different bins. Clearly, there exist f bins hosting
none of these standby replicas. The placement of standby replicas
goes clockwise. Hence, we can identify these f bins starting from
Bi by going anticlockwise.

Lemma 1. Setting α = bη−η`+`η`+f` c ensures the reserved space in
each bin is greater than or equal to `(1− 1

η ).

Proof. According to Property 3, there are at most α primary
replicas and fα standby replicas located in the same bin. Let
W e be the reserved space in each bin. As the capacity of each bin
is 1, we have the following inequality: `α + `

ηfα + W e ≤ 1.
`α stands for the space occupied by primary replicas. `

ηfα is
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the space occupied by standby replicas. Setting α = bη−η`+`η`+f` c
implies α ≤ η−η`+`

η`+f` . Thus, the reserved space W e can be at least
1− (1 + f

η )`η−η`+`η`+f` ≥ `(1−
1
η ).

For each bin, a reserved space `(1 − 1
η ) can accommodate

one standby switching to primary. Therefore, Lemma 1 essentially
derives the maximum value of α. Note that the value bη−η`+`η`+f` c
could be 0 when ` > η

2η+f−1 . If so, we resort to the shifting
algorithm to pack the services. In the following, unless stated
otherwise, we focus on the scenario ` ≤ η

2η+f−1 .

Corollary 4. There is no overloaded bin before failure occurs.

Corollary 4 directly follows from Lemma 1.

Theorem 6. The mixing algorithm Ax is feasible.

To prove Theorem 6, we need to prove that a switching strategy
exists as long as there are no more than f faulty bins. For each
released service, Ax places all the f + 1 replicas into the same
group of bins. Therefore, if faulty bins span over multiple groups,
a switching strategy can operate independently in each group one
by one. Without loss of generality, suppose all the faulty bins are
in the same group Gg and let Fg ⊂ Gg denote all the faulty bins
in Gg . Recall that the bins in the group Gg are indexed from 1 to
ϑ. The switching strategy we propose is based on “the bin index
modulo f”. Suppose Bi ∈ Fg (the bin indexed i in group Gg)
is a faulty bin. Then in general, for the faulty primary replicas in
Bi, the switching strategy prefers to select the standby replicas in
those correct bins whose indices modulo f are equal to i mod f .

We first give a few necessary definitions. The operation
“modulo f” has an integer result ranging from 0 to f − 1. For
each integer r ∈ [0, f − 1], we define a set F̃r as follows:
F̃r = {Bi|Bi ∈ Fg ∧ i mod f = r}. In particular, if ∀Bi ∈ Fg ,
i mod f 6= r holds, then F̃r = ∅. Define Nept = {r|F̃r = ∅},
Nsgl = {r||F̃r| = 1} and Nmul = {r||F̃r| > 1}. It is
easy to see that |Nept| + |Nsgl| + |Nmul| = f . Meanwhile,
since the maximum number of faulty bins is up to f , we have∑
r∈Nsgl

|F̃r|+
∑

r∈Nmul
|F̃r| = |Nsgl|+

∑
r∈Nmul

|F̃r| ≤ f . Conse-

quently, we get |Nept| ≥
∑

r∈Nmul
|F̃r| − |Nmul|. Now for each

nonempty set F̃r, we define its correlative remainder set Cr .

Definition 5. When |F̃r| = 1, its correlative remainder set is
given by Cr = {r}; When |F̃r| > 1, its correlative remainder set
Cr is composed of r and |F̃r| − 1 elements from the set Nept.

When |F̃r| = 1, F̃r’s correlative remainder set is unique
Cr = {r}. When |F̃r| > 1, F̃r could have multiple possible
correlative remainder sets as |Nept| ≥

∑
r∈Nmul

|F̃r| − |Nmul|

implies |Nept| ≥ |F̃r| − 1.

Lemma 2. We can find a correlative remainder set Cr for each
nonempty set F̃r such that for any two nonempty sets F̃ri and F̃rj ,
Cri ∩ Crj = ∅.

Proof. For all the sets F̃r with cardinality greater than 1,∑
r∈Nmul

|F̃r| − |Nmul| gives the total number of elements needed

from Nept. Since |Nept| ≥
∑

r∈Nmul
|F̃r| − |Nmul|, there exist

non-overlapping remainder sets for these F̃r’s.

(a) faulty bins: B2 (b) faulty bins: B2, B5

(c) faulty bins: B5, B8 (d) faulty bins: B2, B5, B8

Fig. 6: Examples of S

In what follows, we shall assume that Cri 6= Crj for any ri 6=
rj , F̃ri 6= ∅ and F̃rj 6= ∅. When |F̃r| > 1, we useBrmax (Brmin )
to represent the faulty bin in F̃r that has the maximum (minimum)
number. For example, suppose f = 3 and F̃1 = {B1, B7, B10}.
Then B1max stands for B10 and B1min stands for B1. Note that
∀F̃r 6= ∅, F̃r and Cr has the same cardinality |F̃r| = |Cr|. We
define a one-to-one mapping as follows.

Definition 6. ξ: F̃r 7→ Cr is a one-to-one mapping that sat-
isfies: if rmin ≤ f , ξ(Brmin) = r; otherwise, if rmin > f ,
ξ(Brmax) = r.

We define a strategy S based on the above mapping.

Definition 7. ∀F̃r 6= ∅, ∀Bi ∈ F̃r , S returns a set of bins ϕi and
∀Bj ∈ ϕi, S switches the standby in Bj whose corresponding
primary is in Bi to primary. The set ϕi is defined as follows:

1) |F̃r| = 1. ∀Bj ∈ Gg , if Bj 6∈ Ei and j mod f = r,
then Bj ∈ ϕi;

2) |F̃r| > 1. There are two cases:

a) ξ(Bi) 6= r. ∀Bj ∈ Gg , if Bj 6∈ Ei and
j mod f = ξ(Bi), then Bj ∈ ϕi;

b) ξ(Bi) = r. ∀Bj ∈ Gg that Bj 6∈ Ei and
j mod f = r: (1) if Bj 6∈ F̃r , then Bj ∈ ϕi;
(2) if Bj ∈ F̃r , then Bk ∈ ϕi which satisfies
Bk ∈ Ej and k mod f = ξ(Bj).

Following the placement example shown in Figure 5, we
construct four examples of S in Figure 6. In Figure 6(a), there
is one faulty bin B2. As 2 mod 3 = 2, the standby replicas s32
and s38 will switch to be the new primary replicas. In Figure 6(b),
there are two faulty bins B2 and B5. As 2 mod 3 = 5 mod 3,
we have |F̃2| = 2. Based on Definition 6, we have ξ(B2) = 2.
Note that F̃0 = ∅, which implies we could define ξ(B5) = 0 to
get a feasible one-to-one mapping ξ. In this scenario, the standby
replicas s15, s311, s38 and s12 will switch to become the new primary
replicas. In Figure 6(c), there are two faulty bins B5 and B8.
According to Definition 6, now ξ(B8) = 2. Similarly, as F̃0 = ∅,
we get ξ(B5) = 0. Therefore, s15, s311, s315 and s116 will become
the new primary replicas. In Figure 6(d), there are three faulty
bins B2, B5 and B8. According to Definition 6, now ξ(B2) = 2.
Note that F̃0 = ∅ and F̃1 = ∅, we could define ξ(B5) = 0 and
ξ(B8) = 1 to get a feasible one-to-one mapping ξ. Thus, s12, s28,
s15, s311, s215 and s216 will become the new primaries.

The following Lemma 3 ensures S always selects correct bins.
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Lemma 3. ∀F̃r 6= ∅, ∀Bi ∈ F̃r , ∀Bj ∈ ϕi, Bj is a correct bin.

Proof. Consider |F̃r| = 1. Bi is the only one faulty bin that
meets i mod f = r. In this case, ϕi includes Bj if Bj 6∈ Ei
and j mod f = r. Note that Bi 6∈ ϕi as Bi ∈ Ei. Therefore, all
bins in ϕi are correct bins. Consider |F̃r| > 1. When ξ(Bi) 6= r,
ϕi includes Bj if Bj 6∈ Ei and j mod f = ξ(Bi). Suppose
ξ(Bi) = r′. According to Definition 5, we know that r′ ∈ Nept,
i.e., F̃r′ = ∅. Therefore, all bins in ϕi are correct. When ξ(Bi) =
r, there are two cases. One case is Bj ∈ ϕi and j mod f = r.
In this case, the condition Bj 6∈ F̃r directly implies Bj is correct.
The other case isBj ∈ ϕi and j mod f 6= r. Again, the definition
of the correlative remainder set ensures Bj is correct.

Lemma 4. ∀F̃r 6= ∅, for all faulty primary replicas hosted by
the bins in F̃r, S ensures that no correct bin has more than one
standby replica switching to primary.

Proof. First, consider |F̃r| = 1. Suppose Bi ∈ F̃r is the faulty
bin. If Bj 6∈ Ei and j mod f = r, then S chooses the
corresponding standby in Bj to be the new primary. Corollary
3 ensures Bj hosts at most one standby replica whose primary is
in Bi, so the claim is true.

Now consider |F̃r| > 1. We need to prove that ∀Bi, Bj ∈
F̃r, ϕi ∩ ϕj = ∅. There are two cases. (1) ξ(Bi) 6= r and
ξ(Bj) 6= r. As ξ is a one-to-one mapping, we have ξ(Bi) 6=
ξ(Bj). According to the specification of S , we know ∀Bk ∈ ϕi,
k mod f = ξ(Bi) and ∀By ∈ ϕj , y mod f = ξ(Bj). Thus,
ϕi ∩ ϕj = ∅. (2) Without loss of generality, suppose ξ(Bi) = r
and ξ(Bj) 6= r. ∀By ∈ ϕj , we know y mod f = ξ(Bj) and
By 6∈ Ej . ∀Bk ∈ ϕi, there are two scenarios: k mod f = ξ(Bi)
or k mod f = ξ(Bj). If k mod f = ξ(Bi), clearly Bk 6∈ ϕj .
If k mod f = ξ(Bj), according to the specification of S , we
have Bk ∈ Ej . Again, Bk 6∈ ϕj . Therefore, ∀Bi, Bj ∈ F̃r ,
ϕi ∩ ϕj = ∅ and the claim follows.

Lemma 5. ∀F̃r 6= ∅, ∀Bi ∈ F̃r , for any primary replica pj
hosted inBi, S ensures one of pj’s correct standby replicas would
switch to primary.

Proof. Consider |F̃r| = 1. Suppose Bi ∈ F̃r is the faulty
bin. In this case, we need to prove ∀pj ∈ Bi, there is a bin
By ∈ ϕi which hosts one of pj’s standby replicas. The algorithm
Ax ensures pj has a standby replica located in a bin By that
y mod f = r (Corollary 2). Meanwhile, according to Property 4,
we have By 6∈ Ei. On the other hand, from the specification of S
(Definition 7), we know when |F̃r| = 1, ∀Bk ∈ Gg ifBk satisfies
k mod f = r and Bk 6∈ Ei, then Bk ∈ ϕi. Consequently, we get
By ∈ ϕi.

Consider |F̃r| > 1. We need to prove ∀Bi ∈ F̃r and ∀pj ∈
Bi, there is a bin By ∈ ϕi which hosts one of pj’s standby
replicas. According to Definition 6, suppose Bi1 stands for a bin
in F̃r that ξ(Bi1) 6= r and suppose Bi2 is the bin in F̃r that
ξ(Bi2) = r. For any primary pj1 located in Bi1 , Corollary 2
ensures that pj1 has a standby replica located in a bin By and
y mod f = ξ(Bi1). Meanwhile, Property 4 confirms that By 6∈
Ei1 . By the specification of S (Definition 7, case 2(a)), we know
that ∀Bk ∈ Gg , if k mod f = ξ(Bi1) and k 6∈ Ei1 , then
Bk ∈ ϕi1 . Therefore, we get By ∈ ϕi1 .

For any primary pj2 located in Bi2 , pj2 has a standby replica
located in a bin Bs and s mod f = ξ(Bi2) = r (Corollary
2). Meanwhile, we know Bs 6∈ Ei2 (Property 4). If Bs 6∈ F̃r ,
according to Definition 7 (case 2(b)), we can easily get Bs ∈

ϕi2 . Now consider Bs ∈ F̃r . We first carry out the proof based
on the hypothesis that pj2 ’s f standby replicas are located in f
consecutive bins from Bk to Bk+f−1 and then in the last step we
prove this hypothesis is true. Among the f bins Bk to Bk+f−1,
we need to prove that there is one bin belonging to ϕi2 . Corollary
1 tells us that k mod f = (i2 + 1) mod f , such that (k + f −
1) mod f = (i2 +1+f−1) mod f = i2 mod f = r. It implies
Bk+f−1 is exactly Bs and Es includes the f bins from Bk to
Bk+f−1. According to Definition 7 (case 2(b)), among the f bins
from Bk to Bk+f−1, there exists a bin Bz belonging to ϕi2 and
satisfying z mod f = ξ(Bs).

Finally, we prove the hypothesis that pj2 ’s f standby replicas
located in f consecutive bins is true. We prove it by contradiction:
suppose pj2 ’s f standby replicas are not located in f consecutive
bins. According to Property 1 and Property 2, we know the only
case is that pj2 is the first primary replica placed in Bi2 and
i2 > f and i2 mod f 6= 0. Remember that now Bs ∈ F̃r and
Bs hosts a standby replica of pj2 . According to s mod f =
i2 mod f and the third case of Property 1, it can be inferred
that 1 ≤ s ≤ f − 1, which implies Bs must be Brmin of F̃r .
According to Definition 6, Bs must be the only bin in F̃r that
satisfies ξ(Bs) = r. However, we already assume ξ(Bi2) = r
and clearly Bs and Bi2 are two different bins. That leads to a
contradiction.

Lemma 6. S is a switching strategy.

Proof. Lemma 4 and Lemma 5 together conclude the validity of S
for the faulty bins in each F̃r . To prove S is a switching strategy,
we still need to prove that for any two nonempty sets F̃ri and
F̃rj , no correct bin has more than one standby replica switching
to primary. Lemma 2 ensures that Cri ∩ Crj = ∅. According to
the specification of S , ∀F̃r 6= ∅ and ∀Bi ∈ F̃r , if Bj ∈ ϕi, then
(j mod f) ∈ Cr. Therefore, ∀By ∈ Fri and ∀Bz ∈ Frj , we
have ϕy ∩ ϕz = ∅. It implies that S focuses on different sets of
bins for F̃ri and F̃rj . Therefore, S is a switching strategy.

Theorem 7. To place a set of services R with a total workload L
of all primary replicas, the mixing algorithm Ax requires at most

L
`b η−η`+`η`+f` c

+ f(bη−η`+`η`+f` c+ 1) bins.

According to Property 3 and Lemma 1, one bin hosts
bη−η`+`η`+f` c primary replicas and one group has f(bη−η`+`η`+f` c +
1) bins. To place all services of R, Ax requires at most

L
`b η−η`+`η`+f` c

+ f(bη−η`+`η`+f` c+ 1) bins. The bound is asymptotically

tight (the gap is at most a constant number of bins no more than
f(bη−η`+`η`+f` c+ 1) ).

For easier comparison with other algorithms, we can also have
a simpler but looser upper bound. Note that by using Ax, each
bin should keep a reserved space equal to `(1− 1

η ). It implies the
level of any bin is at most 1 − `(1 − 1

η ). Consequently, for each
bin (except for a constant number of bins), we know that its level
is at least 1

2 (1 − `(1 − 1
η )). In order to pack all the replicas, Ax

requires at most fL/η+L
1/2(1−`(1−1/η))+c = 2L( f

`+η−`η+ η
`+η−`η )+c

bins. Remember that the mirroring algorithm Am requires at most
2L(f + 1) + c bins and the shifting algorithm As requires at most
2L( f

`+η−`η + 1) + c bins. When ` < f
f+1 , we have f

`+η−`η +
η

`+η−`η < f + 1. Recall that ` ≤ η
2η+f−1 is required when using

Ax to pack services. We have η
2η+f−1 ≤

f
f+1 when f ≥ 1.

Therefore, when the mixing algorithm Ax can be applied to pack
services, it outperforms the mirroring algorithm Am. The number
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Fig. 7: Numerical examples

of bins required by the mixing algorithm may be slightly more
than that by the shifting algorithm, but the process of opening
bins by Ax is much more smooth than that by As. Figure 7 shows
two numerical examples. For both examples, we set f = 2 and
l = 0.02. In Figure 7(a), η is set to 2 and in Figure 7(b), η is set to
4. In both examples, we can see that the number of bins required
by the mixing algorithm increases smoothly. Even for packing
10000 services, the mixing algorithm is still the best among the
three heuristic algorithms. Moreover, when η increases, both Ax
and As use fewer bins. However, Am cannot benefit from the
growth of η.

6 HETEROGENEOUS SERVICES

We have studied the fault-tolerate bin packing problem under the
assumption that all the services have the same workload. Now
we extend the three proposed algorithms to pack services with
different workloads. We first propose First-Fit Mirroring (Afm)
which adopts the classical packing strategy First-Fit [19] [20] to
pack primary replicas. We then propose Harmonic Shifting (Ahs)
and Harmonic Mixing (Ahx) algorithms. Both of them adopt
the harmonic strategy which categorizes services with similar
workloads into the same class. After the classification, the shifting
and mixing algorithms are involved to pack services in each class
separately. The two new algorithms inherit the original merits
that Harmonic Shifting saves the reserved space while Harmonic
Mixing balances the number of bins used and the process of
opening bins in the online setting.

6.1 First-Fit Mirroring
First-Fit (FF) is a greedy packing algorithm. FF attempts to place
each new item in the earliest opened bin that can accommodate the
item. If no open bin can accommodate the item, FF opens a new
bin for the item. By leveraging FF, we propose First-Fit Mirroring
(Afm). Afm uses FF to pack primary replicas. The policy to place
standby replicas is the same as the original mirroring algorithm. It
is clear that Afm is feasible.

If only one bin is used by Afm to place all the primary
replicas, by definition, Afm uses a total of f + 1 bins. In this
case, Afm is optimal because at least f + 1 bins are needed to
host any service due to the exclusive constraint. If more than one
bin is used by Afm to place the primary replicas, the average
level of these bins must be greater than 1

2 . This is because by
the definition of FF, a new bin is opened only when none of the
existing bins can accommodate an item to be placed. As a result,
the total level of any two bins must exceed 1 (the bin capacity) and
hence, the average level of any two bins must exceed 1

2 . By the
definition of Afm, the average level of all the bins hosting standby

replicas must be greater than 1
2η . Since the number of bins hosting

standby replicas is exactly f times that hosting primary replicas,
the average level of all the bins used by Afm must be greater than
1
2+

1
2η f

1+f = η+f
2η(1+f) . From Theorem 1, we know that to pack a set

of services with a total workload L of all primary replicas, it needs
to open at least L+ fL

η +o(L) bins. Thus, the average bin level of

an optimal packing algorithm is no more than
L+ fL

η

L+ fL
η +o(L)

. When

L tends to be large, the asymptotic competitive ratio of Afm is
bounded by 2η(1+f)

η+f .

Theorem 8. The asymptotic competitive ratio of First-Fit mirror-
ing Afm is bounded by 2η(1+f)

η+f .

6.2 Harmonic Shifting

It is well-known that the harmonic strategy places items of similar
sizes together. We now leverage this idea to adapt the shifting
algorithm As to pack services with heterogeneous workloads. We
call the new algorithm Harmonic Shifting (Ahs). Ahs divides the
set of services into M (M is a positive integer) classes and places
services belonging to different classes separately.

When a service Ri is released, Ahs first decides the class
that Ri belongs to. The decision is based on the workload of
Ri’s standby replica. If the workload of an Ri’s standby replica is
within the range ( 1

k+η ,
1

k+η−1 ] (1 ≤ k < M ), then Ri belongs
to the class k. If the workload is within the range (0, 1

M+η−1 ],
then Ri belongs to the last class M . To pack Ri, there are two
cases. If Ri belongs to a class k where 1 ≤ k < M , the
shifting algorithm As is applied directly to pack Ri by treating
a primary replica’s workload as η

k+η−1 . If Ri belongs to the last
class M , Ri is also packed by As but is considered as a part of
an aggregate service. Specifically, we aggregate a set of services
from class M into a larger service. We require the workload of
an aggregate standby replica to be in the range ( 1

η+bηc+1 ,
1

η+bηc ].
Accordingly, each aggregate primary replica has a workload in
the range ( η

η+bηc+1 ,
η

η+bηc ]. When M ≥ 4η2 + η + 1, it holds
that 1

η+bηc −
1

η+bηc+1 ≥
1

M+η−1 . Consequently, we can always
aggregate consecutive services in an arbitrary release sequence
into an aggregate service with its standby replica’s workload
falling in the specified range. Thanks to the aggregation, now each
aggregate replica can be treated as a replica from the class bηc+1.

For each class k where 1 ≤ k < M (the last class is treated as
the class bηc+1), each bin hosts at most dkη e primary replicas or k
standby replicas. Clearly, there are no overloaded bins for packing
primary replicas. The level of a bin hosting standby replica is at
most k

k+η−1 . Thus, the available space is at least η−1
k+η−1 which

is equal to the upper bound of the reserved space needed for
avoiding overflow in case of failures. Together with Theorem 4
and that services from different classes are packed separately, we
can conclude that Ahs is feasible.

Now we study the packing performance of Ahs. Our analysis
makes use of the method from [21]. For each class k where 1 ≤
k < M , except for a constant number of bins, each bin hosts k
standby replicas or dkη e primary replicas. Hence, we consider that
each standby replica costs 1

k bin and each primary replica costs
1/dkη e bin. For the last class M , except for a constant number of
bins, the level of each bin hosting standby replicas is more than
bηc+1
η+bηc+1 and the level of each bin hosting primary replicas is more

than η
η+bηc+1d

bηc+1
η e. Hence, a standby replica of size y costs no
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more than y · η+bηc+1
bηc+1 bin and a primary replica of size x costs

no more than x · η+bηc+1

ηd bηc+1
η e

bin.

We define a weight function ω in (0, 1] as follows. For
a standby replica si with workload yi, if si is from class k
(1 ≤ k < M ), then ω(si) = 1

k ; if si is from the last class M ,
then ω(si) = y · η+bηc+1

bηc+1 . For a primary replica pi with workload
xi, if pi is from class k (1 ≤ k < M ), then ω(pi) = 1/dkη e; if

pi is from the last class M , then ω(pi) = x · η+bηc+1

ηd bηc+1
η e

. Except

for a constant number of bins, the total weight of replicas hosted
by each bin is at least 1. Therefore, to pack a set of services R,
the harmonic shifting algorithm requires at most ω(R) + c bins
where ω(R) is the total weight of all services and c is a constant.

We now estimate an upper bound on the total weight of
replicas that can be placed in one bin. Suppose B is an open
bin. For ease of presentation, we use ω(B) to denote the total
weight of replicas placed in B. B could host four kinds of
replicas together: primary replicas from classes 1, 2, ...,M − 1,
primary replicas from class M , standby replicas from classes
1, 2, ...,M−1 and standby replicas from class M . Hence, we can
write ω(B) =

∑
i ω(pi) +

∑
j ω(pj) +

∑
t ω(st) +

∑
l ω(sl),

where pi is from a class k (1 ≤ k < M ), pj is from class M ,
st is from a class k (1 ≤ k < M ) and sl is from class M .
Suppose pi’s workload is xi, pj’s workload is xj , st’s workload
is yt and sl’s workload is yl. We analyze them one by one. For
ω(pi), we have ω(pi)

xi
= 1

xidk/ηe <
k/η+1
dk/ηe ≤

dk/ηe+1
dk/ηe ≤ 2.

The first inequality comes from the classification: if pi is from
class k, then xi >

η
k+η . Hence, we get ω(pi) < 2xi. For ω(pj),

we have ω(pj) = xj · η+bηc+1

ηd bηc+1
η e

≤ xj · η+bηc+1
bηc+1 ≤ 2xj . For

ω(st), we have ω(st)
yt

= 1
ytk

< k+η
k . The inequality comes

from the classification: if st is from class k, then yt >
1

k+η .
Hence, we get ω(st) < yt · k+ηk . For ω(sl), we directly have
ω(sl) = yl · η+bηc+1

bηc+1 ≤ 2yl. Based on the above results, we can

derive that ω(B) < max(2, k
∗+η
k∗ )·(Σixi+Σjxj+Σtyt+Σlyl),

where k∗ is the lowest-indexed class (among 1, 2, ..., M−1) from
which B hosts a standby replica. If max(2, k

∗+η
k∗ ) = 2, clearly

ω(B) < 2, as the space constraint requires Σixi + Σjxj +

Σtyt + Σlyl ≤ 1. If max(2, k
∗+η
k∗ ) = k∗+η

k∗ , since B hosts
standby replicas from class k∗ where 1 ≤ k∗ < M , the space
constraint requires that the reserved space of B should be at least
η−1
k∗+η . Therefore, Σixi + Σjxj + Σtyt + Σlyl ≤ 1 − η−1

k∗+η ,

so that ω(B) < k∗+η
k∗ (1 − η−1

k∗+η ) ≤ 2. Thus, we always have
ω(B) < 2. It follows that any bin Bopt opened by an optimal
packing algorithm Aopt also satisfies ω(Bopt) < 2. Since the
total weight of all services R is ω(R), Aopt requires at least ω(R)

2
bins. Recall that Ahs requires at most ω(R) + c bins. Therefore,
we have the following result.

Theorem 9. The asymptotic competitive ratio of Ahs is bounded
by 2.

6.3 Harmonic Mixing

We also apply the idea “harmonic” to extend the mixing algorithm
Ax to deal with services with heterogeneous workloads. We call
the new algorithm Harmonic Mixing (Ahx). Ahx has two steps.
First, it decides which class a service belongs to and second, it
packs the service by the original mixing algorithm Ax.

The classification of services is based on the workload
of the primary replica: if a service belongs to the class k
(1 ≤ k < M ), its primary replica’s workload is in the range
( η
(k+2)η+(k+1)f−1 ,

η
(k+1)η+kf−1 ] and if a service belongs to

the last class M , its primary replica’s workload is in the range
(0, η

(M+1)η+Mf−1 ]. This classification is derived from Property
3 in Section 5.3.2, which indicates that the mixing algorithm
Ax places α primary replicas and fα standby replicas together
in one bin. By the capacity constraint, the total workload of
the replicas placed in one bin plus the corresponding reserved
space should be capped by the bin capacity, i.e., the inequality
`α + `

ηfα + `(1− 1
η ) ≤ 1 holds. In this inequality, by setting a

value of α, we can get a corresponding range of `. For example,
when α = 1, we have ` ≤ η

2η+f−1 and when α = 2, we
have ` ≤ η

3η+2f−1 . Clearly, if the workload of any primary
replica is in the range ( η

3η+2f−1 ,
η

2η+f−1 ], one bin can host 1
primary replica and f standby replicas by using Ax. Thus, we
define ( η

3η+2f−1 ,
η

2η+f−1 ] as the workload range for the primary
replicas of the services in the class 1. Increasing α by one at a
time, we can get the complete classification as given earlier.

Ahx packs services in different classes separately. For classes
1, 2, ..., M − 1, the original Ax is directly applied by treating a
primary replica’s workload as η

(k+1)η+kf−1 . For the class M , a
set of services are aggregated together as if it is from class 1. When
M > 5, it holds that η

2η+f−1 −
η

3η+2f−1 ≥
η

(M+1)η+Mf−1 .
This ensures that we can always aggregate consecutive services
in an arbitrary release sequence into an aggregate service with its
primary replica’s workload falling in the range of class 1. Ax is
used to pack the aggregate items.

For each class k where 1 ≤ k < M (the last class is treated as
the class 1), the level of each bin is at most kη+kf

(k+1)η+kf−1 . Thus,

the available space is at least 1 − kη+kf
(k+1)η+kf−1 = η−1

(k+1)η+kf−1
which is exactly the upper bound of the reserved space needed for
avoiding overflow in case of failures. Together with Theorem 6
and that services from different classes are packed separately, we
can conclude that Ahx is feasible.

We now analyze the packing performance of Ahx. For each
class where 1 ≤ k < M , except for a constant number of bins
(specifically, the last group of at most f(α + 1) bins), each bin
hosts k primary replicas and fk standby replicas. Thus, the bin
level is at least k(η+f)

(k+2)η+(k+1)f−1 ≥
η+f

3η+2f−1 . Similarly, for the
class M , except for a constant number of bins, each bin hosts
1 aggregate primary replica and f aggregate standby replicas.
So, the bin level is at least η+f

3η+2f−1 . Therefore, overall, except
for a constant number of bins, the level of each bin is at least
η+f

3η+2f−1 . This implies that the asymptotic competitive ratio of
Ahx is bounded by 3η+2f−1

η+f = 2 + η−1
η+f .

Theorem 10. The asymptotic competitive ratio of Ahx is bounded
by 2 + η−1

η+f .

The above analysis shows that Ahs and Ahx are better than
Afm, as both of their asymptotic competitive ratios can be
bounded by a constant. Let us set η = 2, f = 2 and M = 50 to
have a concrete example. Now the asymptotic competitive ratio of
Afm is bounded by 3, the asymptotic competitive ratio of Ahs
is bounded by 2 and the asymptotic competitive ratio of Ahx
is bounded by 2.25. Figure 8 gives the numerical result in this
setting, where for each service, the workload of the primary replica
is randomly selected from (0, 15 ]. We can see that the number of
bins required by Ahx increases smoothly. Even for packing 20000
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Fig. 8: Numerical example

services, Ahx is the best among the three heuristic algorithms.

7 FUTURE WORK

In the future, we could study a recovery procedure which adds
new servers/replicas into the system to maintain the fault-tolerant
ability after failures occur. A straightforward recovery process
is to add new servers following the configurations of the failed
ones: if some primary replicas were located on the failed servers,
the new joining servers will again host these primary replicas.
However, this method would entail additional role switching of
replicas from primary to standby on existing servers which may
not be preferable due to the overheads/costs involved. A favorable
recovery procedure should not involve any role switching process,
i.e., only adding new standby replicas into the system. Based on
this idea, it will be interesting to study an extension problem
which addresses self-stabilization: after carrying out a recovery
procedure, the system can tolerate another up to f new failures
while still meeting the exclusion and space constraints.
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[7] J. Balogh, J. Békési, and G. Galambos, “New lower bounds for certain
classes of bin packing algorithms,” Theoretical Computer Science, vol.
440-441, pp. 1–13, 2012.
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