Explores the evolution of AI from purely digital, data-driven abstraction toward physically grounded intelligence
aligned with the laws of nature. Advances in physics-informed neural networks (PINNs), Neural Physics, and guided generative models
illustrate how AI can not only simulate and predict, but also plan and create within real-world physical constraints—bridging
digital representations with physical reality.
-
2025
JC Wong, A Gupta, CC Ooi, PH Chiu, J Liu, YS Ong
Evolutionary Optimization of Physics-Informed Neural Networks: Evo-PINN Frontiers and Opportunities.
IEEE Computational Intelligence Magazine, arXiv preprint arXiv:2501.06572 , 2025.
Scholar
Brief: A survey of evolutionary and neuroevolution strategies for improving physics-informed neural models (architecture design / training) for robust neural physics solving.
-
2025
JC Wong, CC Ooi, A Gupta, PH Chiu, JSZ Low, MH Dao, YS Ong
Evolutionary Optimization of Physics-Informed Neural Networks: Advancing Generalizability by the Baldwin Effect.
IEEE Transactions on Evolutionary Computation, arXiv preprint arXiv:2312.03243.
Scholar
Brief: Introduces evolutionary meta-learning framework for PINNs that learns inductive biases to enable strong generalization across a family of PDE problems and unseen conditions.
-
2025
Z Tan, L Luo, H Yin, YS Ong, W Cai
Crowd Dynamics Demand Adaptivity: Self-Adaptive Physics-Informed Neural Network for Crowd Simulation.
Proceedings of the 33rd ACM International Conference on Multimedia, 5913-5921 , 2025.
Scholar
Brief: Proposes a self-adaptive PINN that adjusts physics and data signals during training to yield more accurate and physically plausible crowd simulations under varying conditions.
-
2025
X He, L You, H Tian, B Han, I Tsang, YS Ong
Lang-PINN: From Language to Physics-Informed Neural Networks via a Multi-Agent Framework.
arXiv preprint arXiv:2510.05158 , 2025.
Scholar
Brief: Introduces Lang-PINN, a multi-agent framework that uses language to guide PINN training and enforce physics constraints, improving adaptability and interpretability across tasks.
-
2024
G Jin, JC Wong, A Gupta, S Li, YS Ong
Fourier warm start for physics-informed neural networks.
Engineering Applications of Artificial Intelligence 132, 107887 , 2024.
Scholar
Brief: Mitigates spectral bias in PINNs via a Fourier warm start that accelerates frequency-wise convergence, enabling smoother optimization and improved accuracy on multi-frequency PDE problems.
-
2023
Z Wei, JC Wong, NWY Sung, A Gupta, CC Ooi, PH Chiu, MH Dao, YS Ong
How to select physics-informed neural networks in the absence of ground truth: a pareto front-based strategy.
1st Workshop on the Synergy of Scientific and Machine Learning Modeling@ ICML2023, 2023.
Scholar
Brief: Proposes a Pareto front-based model selection strategy for PINNs that identifies better performing models without ground truth by rescaling losses based on convex Pareto solutions.
-
2023
N Sung, JC Wong, CC Ooi, A Gupta, PH Chiu, YS Ong
Neuroevolution of physics-informed neural nets: Benchmark problems and comparative results.
Proceedings of the Companion Conference on Genetic and Evolutionary Computation, 2023.
Scholar
Brief: Provides benchmark datasets and open-source code for evaluating neuroevolution methods in physics-informed neural networks, with comparative performance results across standard test problems.
-
2023
JC Wong, PH Chiu, C Ooi, MH Dao, YS Ong
LSA-PINN: Linear boundary connectivity loss for solving pdes on complex geometry.
2023 International Joint Conference on Neural Networks (IJCNN), 1-10 , 2023.
Scholar
Brief: Introduces a linear boundary connectivity loss for PINNs that enforces local structure at complex boundaries, enabling accurate PDE solutions with sparser samples and faster training across irregular geometries.
-
2022
PH Chiu, JC Wong, C Ooi, MH Dao, YS Ong
CAN-PINN: A fast physics-informed neural network based on coupled-automatic–numerical differentiation method.
Computer Methods in Applied Mechanics and Engineering 395, 114909 , 2022.
Scholar
Brief: Introduces CAN-PINN, a fast physics-informed neural network using coupled automatic–numerical differentiation for efficient and physically consistent PDE solving.
-
2022
JC Wong, CC Ooi, A Gupta, YS Ong
Learning in sinusoidal spaces with physics-informed neural networks.
IEEE Transactions on Artificial Intelligence 5 (3), 985-1000 , 2022.
Scholar
Brief: Shows that mapping inputs to sinusoidal spaces in PINNs increases gradient variability, helping avoid local minima and improving training accuracy across forward and inverse PDE problems.
-
2021
JC Wong, A Gupta, YS Ong
Can transfer neuroevolution tractably solve your differential equations?.
IEEE Computational Intelligence Magazine 16 (2), 14-30 , 2021.
Scholar
Brief: Proposes a transfer neuroevolution algorithm for solving differential equations with PINNs that leverages prior experience to improve convergence and accuracy across a variety of physics problems.