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Abstract—Ticket routing is a part of software support process,
where multiple expert groups are involved in processing incident
tickets. The goal of routing is to find an expert group which can
resolve a ticket at the initial assignment, or when it needs to be
transferred to another group. Matching a ticket to its potential
resolver effectively provides significant business value for both
service providers and their customers. Previous works used hand-
crafted features to train predictive models to automate or assist in
routing. One of the findings shows that, the similarity between a
ticket and an expert group is prominent in identifying the resolver
among other groups. Meanwhile, numerous studies demonstrate
the effectiveness of deep neural networks in text similarity
modeling problems. In this paper, we propose a multi-view deep
neural network solution to jointly learn a relevance score for a
ticket-group pair, using both text and routing path information.
The text relevance is modeled by a classic deep semantic matching
model, while the routing graph representation is embedded using
a convolutional graph network. Experimental results show that
the proposed approach outperforms baseline models in resolver
ranking and assistive routing tasks. Comparative experiments
also show that text has higher importance than routing path
information.
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I. INTRODUCTION

In enterprise software support services, incidents and issues
are communicated and recorded using electronic tickets. A
ticket is created by an end-user or a helpdesk personnel, then
processed by experts. For the support organization, resolving
a ticket promptly and correctly is a Key Performance Indicator
(KPI) to fulfill Service Level Agreement (SLA) with their
customers. To achieve this, the right expert needs to be
identified for a ticket. This is challenging when the problem
description is unclear, or there is a large number of service
offerings and human experts.

Commonly, human experts are organized by groups, known
as expert groups, which form the basic ticket processing units.
Multiple expert groups form an expert network. In such
network, each group is responsible for a subset of problem
domains. At any given time, only one group is processing a
ticket. For example, assuming group A is processing a ticket
τ . If A cannot resolve τ , it must be transferred to another
group B in the network, i.e., A → B. If τ is resolved by B,
B is the resolver group, i.e., g+τ = B. The sequence of groups
which have processed the ticket, from the first to the current
processing group or the resolver (for a resolved ticket), is the
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Fig. 1. A high-level overview of ticket processing workflow. Ticket routing
includes first group assignment and inter-group ticket transfer.

routing path or routing sequence. For a new ticket, the routing
path is an empty list, i.e., S = ∅. A routing path’s length
is 1 for a ticket, if the first assigned group is the resolver.
Otherwise, the length is the number of groups in the path.

Ticket routing takes place in two scenarios, as illustrated in
Figure 1. Firstly, when the ticket is created and received by
the system, the first processing group needs to be assigned.
In some systems, this can be manually selected by the end-
user during ticket submission. For experienced users, being
specific on who should process their tickets is an ease decision.
But for new and inexperienced users, making such decision
may be challenging. The second scenario happens when the
current processing group is not able to resolve the ticket. A
next group will be chosen by the current group, depending
on their diagnosis of the problem and knowledge about the
other groups. Many service providers follow a similar ticket
processing workflow in their systems, while some may have
some variations, e.g., deploying dispatchers who make cen-
tralized routing decisions. In both scenarios, human routing
requires considerable level of expertise. The chance of finding
the resolver is affected by an individual’s previous experience,
interpretation of the problem, as well as the familiarity with
other expert groups. Routing a ticket to a wrong group would
result in longer turnaround time, higher cost, and customer
dissatisfaction.

The problem has been increasingly drawing interest from
industrial and academic researchers. Focusing on initial group
assignment, previous works [1], [2], [3], [4], [5], [6] model



ticket routing as a text classification problem, using ticket
text to predict a resolver as target. In a different direction,
Shao et al. [7], [8] proposed the EasyTicket to estimate the
probabilities of a group will be selected next, based on the
current processing group and routing path, without considering
ticket text. Miao et al. [9] introduced a generative approach
that makes routing decisions based on both ticket text and
routing paths. Note that, all above methods assume the first
group is already assigned to a ticket by some means. To
combine initial group assignment and ticket routing models,
Sun et al. [10], Xu and He et al. [11] proposed two-step
frameworks. Both of them used ticket text to select a subset
of expert groups as candidate resolvers, then use transfer
probabilities for routing in the next step. Lately, Han et al. [12]
introduced a unified learning-to-rank framework, using hand-
crafted features from both ticket and groups. It is able to
handle both ticket routing scenarios uniformly (i.e.,, initial
assignment and ticket routing). Empirical results demonstrate
that, among the feature types, ticket-group features that model
the similarity between a ticket and an expert group, contribute
the most in the proposed routing setup. On the other hand,
recent studies show neural network models are effective in
modeling text similarities [13], [14], [15], [16], [17], [18].
They are able to generate features automatically from input
data, and are able to scale with large number of training in-
stances. Therefore, we are motivated to leverage their strengths
and apply them to ticket routing problem.

In this work, we propose DeepRouting, a deep neural
network framework for generating feature automatically and
computing a relevance score for a ticket and candidate re-
solver pair. The joint relevance score is a weighted sum of
two individual scores, computed in a multi-view architecture.
Specifically, in the text-view of both ticket and expert group,
we use a classic semantic text matching model to obtain the
text relevance. The graph-view outputs expert groups’ vector
representation in the same size as the text vector. The input
to graph-view is pre-trained graph embedding. In such graph,
expert groups are nodes, routing path are edges, and ticket
text are node features. The relevance scores are computed
from both views, and the joint score is used to for candidate
resolvers ranking during ticket routing.

In summary, our contributions in this work are the follow-
ing:

• To the best of our knowledge, DeepRouting is the first
work to apply deep neural network models for ticket rout-
ing problem, using both text and routing path information.

• This work is also the first attempt to represent an expert
network using a graph convolutional network. We use the
output embedding for ticket routing.

• Empirically, we show performance comparison between
DeepRouting approaches and baseline models.

• Our results show that, among different DeepRouting
settings, multi-view outperforms the single-view settings.

• Our results also show that, the ticket text similarity is
more important than expert graph for ticket routing.

In the remaining of the paper, we discuss related works
in ticket routing and multi-view information matching in
Section II. Section III details the views and components.
Experimental setup and results are presented in Section IV.
Lastly, we conclude and discuss future directions in Section V.

II. RELATED WORK

A. Ticket Routing

The pioneering work of Shao et al. [7], [8] modeled ticket
routing problem using graphical Markov models. In their
formulation, each expert group is represented by a node in a
graph. Directed edges exist between two groups with previous
ticket transfers, with normalized frequencies as weights. For
example, the probability of a ticket to be routed from group A
to B, i.e., P (B|A) is estimated by the frequency of A → B
over all tickets originated from A. Furthermore, the authors
applied frequent pattern mining technique to find common
paths in routing sequences from archived tickets. They showed
that, comparing to individual nodes (e.g., P (C|B)), using ex-
tracted paths collectively as a super-node (e.g., P (C|{A,B}))
improved routing performance, evaluated by Mean Steps To
Resolver (MSTR) score. Miao et al. [9] proposed generative
models to predict the conditional probabilities of each possible
transfer to take place given the terms in a ticket. Both models
are only applicable after an initial group cannot resolve the
ticket. In comparison, our proposed approach is able to handle
both initial group assignment and inter-group transfers.

To make a complete routing solution, Sun et al. [10] pro-
posed a content-aware model with multiple steps. The authors
implemented a filtering step to reduce the number of candidate
groups in routing, based on ticket content similarities. Simi-
larly, Xu and He [11] proposed a Two-stage Expert Routing
(TER) model, different from [10] only in how the initial
group is identified. As a preprocessing step, expert group
representation vectors are trained using their solved tickets
with randomly sampled negative tickets. The representation
method was proposed by Han et al. [19], assuming a group
only handles tickets with matching skills, and low dimensional
group vectors are learned from resolved tickets. In [11], the
first step is to determine the initial group, by taking the
nearest neighboring groups in a distributed representation
space. Thereafter, the probabilistic transition models are used
for ticket transfer. Both [10] and [11] used disjoined and
decoupled features for initial group assignment and ticket
transfer, which could lead to information loss.

Lately, Han et al. [12] proposed a unified framwork for
ticket routing (UFTR), built on the feature-based learning-to-
rank paradigm. When matching an expert group to a ticket,
the framework incorporates hand-crafted features from four
types of information. The ticket features are generated from
the ticket text. The group features are characteristics of the
group based on their resolved tickets; the ticket-group features
are relevance and interactive features computed based on
both ticket and group. Lastly, the group-group features are
transition probabilities between the current routing sequence
and candidate groups. These features can be computed offline
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Fig. 2. Multi-view DeepRouting computes a joint relevance score by
combining relevence scores from different views.

and are easily extensible. Compared to previous methods,
UFTR applies the same model and steps for both ticket
routing scenarios. In this research, we aim to utilize both text
and routing information available, leveraging neural network
models for automatic feature extraction.

There are also works [20], [21], [22] dedicated to analysis
of the contributing factors in routing activities. Particularly,
in [21], the authors concluded that the main factors for
routing decision-making are individual group’s expertise and
awareness of others’ profiles. While the former is relatively
straightforward to obtain, the latter is ambiguous in our
problem setting. In another work, Ma et al. [23] showed the
existence of a theoretical shortest path when applying decen-
tralized search to ticket routing, which is useful in profiling the
overall network performance. However, the proposed approach
requires the problem areas and difficulty level of a ticket to
be known, making it inapplicable to us.

B. Multi-view deep neural network model

Deep neural network models have been increasingly so-
phisticated and popular for many applications in Natural
Language Processing (NLP). Without any expert network
structure, ticket routing can be considered as a text matching
problem in information retrieval. Deep Structured Semantic
Model (DSSM) [13] is a text matching network structure,
generating hidden representations for two inputs in identical
pipelines. Then, a relevance score (e.g., cosine similarity)
between the two representations is computed. DSSM and its
variations are widely adopted models for many text matching
applications, such as information retrieval [13], [14], [15],
recommendation [16], [17], [24], [25], and chatbot [26], [27].
Also working with tickets, Zhou et al. [28] proposed a system
that matches a ticket to its resolution, using a siamese network
architecture, similar to DSSM. Most of these works adopt
homogeneous architecture, implementing the same network
structures for both inputs. Due to the differences between
ticket text and expert network structures, we implement a
heterogeneous variation of DSSM.

Mitra et al. [18] introduced a duet architecture, using two
different deep neural networks to jointly learn local and dis-
tributed representation models from a 〈text query, document〉
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Fig. 3. Overview of text-view processing steps with name labels on the left.
Labels on the right indicate the shape of outputs from each step.

pair for document ranking. The networks for local and dis-
tributed models are different. The joint relevant score is the
sum of scores from each model. On the other hand, Elkahky
et al. [17] extended DSSM to a multi-view architecture,
for recommending items in online marketplaces. The authors
modeled item information from different domains using dif-
ferent networks and train the models jointly. In the multi-view
architecture, one of the views (user-view) is shared, while
auxiliary items views are modeled individually. In this work,
we follow the multi-view architecture in [17] to obtain a joint
relevance score for a ticket and a candidate group, score for
the resolver should be higher than other groups.

III. SYSTEM ARCHITECTURE

DeepRouting architecture is designed for multi-view match-
ing given a ticket and an expert group. As illustrated in
Figure 2, it contains two modules for text matching and graph
matching, respectively. The text-view takes raw text as input
and generates a dense representation vector. Text matching
module computes cosine similarity between the vectors for an
input ticket and group, respectively. An expert group is repre-
sented by a collection of tickets it has resolved. Meanwhile,
graph matching part computes the cosine similarity between
the ticket text-view and a graph-view vector for a group. The
graph-view takes a pretrained graph embedding vector as input
and generates a vector with the same dimension as the text-
view. Thereafter, the joint relevance score is the weighted sum
of scores from both modules. Lastly, the relevance score is
multiplied by a group’s resolver probability, estimated by the
frequency it was the resolver in training set.

A. Text View

We represent each expert group by a collection of tickets it
has resolved previously. We follow the deep neural network ar-
chitecture proposed by [13], [14] for text semantic modeling.
The steps and output data shapes from each step are illustrated
in Figure 3. Note that, text in tickets are noisy, sparse, and
highly domain specific. For this reason, pretrained text embed-
ding methods, such as Word2Vec [29] or GloVe [30] would
suffer from high out-of-vocabulary (OOV) issue and poor



performance. In this regard, we employ word hashing [13], a
character-based tokenization reduces the vocabulary size while
preserving the trigram information. We first apply a word-
based trigram tokenizer, followed by a character-based trigram
tokenizer for each word. The advantage is that, technical
jargon and misspellings words are better handled. Then, the
vectors of 3 words are concatenated to capture multiword
expressions.

Next, features from concatenated vectors are extracted by,

ui = ReLU(W ᵀ
c xi), for i = 1, ..., n (1)

where Wc is a linear projection matrix for feature space
transformation, shared across all input. ReLU is an activation
function, i.e., ReLU(x) = max(0, x).

To reduce variable number of feature vectors to a fixed size
ticket-level feature vector, we perform dimension-wise max-
pooling. Specifically,

vj = max
i=1,...,n

{uij}, uj ∈ u (2)

Lastly, a fully-connected layer is applied to extract the high-
level semantic embedding,

y = ReLU(W ᵀ
f v) (3)

Text-view processes are applied to a ticket and a group text
input, and the relevance between them is computed as the
cosine similarity,

Rtext(τ, g) = cosine(yτ , yg) =
yᵀτ yg

‖yτ‖ ‖yg‖
(4)

B. Graph View

Naturally, an expert network has a graph structure and
its characteristics. It contains expert groups as nodes and
the edges are estimated by inter-group ticket transfers from
archived tickets. Some previous works in ticket routing ex-
plored such information, using graphical models [8], [7], [22],
[9], [11] or extract graph specific features [12] for routing
models. However, many of them either considered the graph
to be loosely coupled with ticket text, or ignored the text
entirely. Moreover, comprehensive graph analytics are costly
to compute.

Graph embedding is an effective and efficient method to
represent a graph into a low dimensional space, while preserv-
ing its information [31], [32], [33]. Different types of graph
embedding include node embedding, edge embedding, and
subgraph embedding. In our problem setting, we reckon that
the first type is applicable. Specifically, node embedding aims
to represent graph nodes in low dimensional embedding space,
using graph structure information and edge weights. In addi-
tion, to incorporate node features as input, we choose Graph
Convolutional Network (GCN) [34] over other embedding
methods. Specifically, it considers a graph as an adjacency
matrix A ∈ Rn×n, where n is the total number of nodes.
Meanwhile, D is its degree matrix, such that Dii =

∑
j Aij .

The node features are concatenated in X ∈ Rn×m, where m
is the number of features. To learn a representation vector for

each node, GCN propagates through multiple convolutional
layers to incorporate neighborhood information in multiple
hops. The values of a layer H(l+1) ∈ Rn×D is derived as:

H(l+1) = ReLU
(
D̃
− 1

2 ÃD̃
− 1

2H(l)W (l)

)
, (5)

where, Ã is the sum of A and identity matrix IN , W (l) is a
weight matrix for layer l and D̃ is the diagonal node degree
matrix of A. ReLU is the activation function introducing non-
linearity to the layer output. The parameter values are trained
using gradient descent.

In our setting, we consider the expert graph as a homoge-
neous graph. We use a technical lexicon with 40k terms and
phrases as node features. They are automatically generated by
semi-supervised learning similar to [35]. After training, each
node is represented in a 300-dimensional vector. To compare
with the semantic ticket text-view vector, we use a fully-
connected layer to project the graph embedding to a vector
zg and compute the cosine similarity between zg and yτ .

C. Multi-view DeepRouting

For a pair of ticket and group input, the text matching score
and the graph matching score are combined using,

R(τ, g) = αRtext(τ, g) + (1− α)Rgraph(τ, g) (6)

where α is a ratio, indicating the significance of text matching.
We find the value of α using validation set. During training,
the objective is to maximize the likelihood of resolver being
identified among non-resolver groups, for across the training
tickets. This is equivalent to minimizing the loss function,

L = − log
∏

(τ,g+)

P
(
g+|τ

)
(7)

where the probability of the resolver given a ticket is,

p
(
g+|τ

)
=

exp
(
βg+R (τ, g+)

)∑
g∈G exp(βgR(τ, g))

(8)

where β is a prior probability for a group to be the resolver,
estimated from training tickets.

The neural network parameters are trained using Stochastic
Gradient Descent with ADADELTA [36] optimizer to dynam-
ically adjust learning rate during training. Each mini-batch
consist of 64 positive ticket-group pairs. For each positive pair,
49 negative group are selected, including the non-resolvers in
their routing paths and the remaining are randomly sampled.
Initially, parameter weights are randomly set. Training of the
multi-view network takes more than 50 hours on a server with
Nvidia V100 GPU.

IV. EXPERIMENT

To evaluate DeepRouting’s performance, we conduct two
sets of experiments on a proprietary data set. First, we evaluate
the effectiveness our model in ranking the true resolver among
other groups. Second, we simulate the routing process in
Assistive Routing [37], and compare the performance of our
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Fig. 4. Ticket length distribution in number of terms, and routing sequence
lengths (right) of 500,000 archived tickets.

model with human and algorithmic baselines. Baselines are
selected individually for different evaluations.

A. Data set
From an enterprise support system archived, we first col-

lected 500,000 resolved tickets over the past year(s). The
overall data statistics are shown in Figure 4. Figure 4(a) shows
ticket length distribution in number of terms, showing a peak
at around 50 terms, and the majority of tickets are shorter than
150 terms. Figure 4(b) shows that the routing sequence length
follows a Power Law distribution. More than half of the tickets
are resolved by the first assigned group without further routing.
Figure 4(c) is the density distribution of resolver group by the
number of tickets they resolved. The majority of groups have
solved less than 1,000 tickets during the data collection period.

Next, we select tickets with length between 20 to 150
terms, assuming tickets that are too short or too long are
outliers. Among the remaining tickets, we filter again based
on the number of tickets their resolver have resolved. Groups
that have solved less than 50 or more than 5,000 tickets
are removed. From the selected tickets, we randomly select
55,000 tickets for training and 5,000 for validation. For each
positive pair, 49 negative group are selected, by including
the non-resolvers in its routing path and random sampling
for the remaining. For each expert group, 100 tickets are
randomly sampled from all tickets it has resolved. From each
of routing steps 1 to 4, we sample 500 from the selected
tickets for testing. In summary, we have 55,000 tickets for
training, 5,000 tickets for validation, and 2000 tickets for test.
We preprocessed and manually examined the selected tickets
to ensure that any personal information, or any information
that could be used to infer user’s identity, are removed.

B. Resolver Ranking
During its operation, each step in ticket routing is equivalent

to resolver ranking. In the first experiment, we compared the
multi-view DeepRouting model with five baseline models for
a single step resolver ranking.

BM25 [38] is a classic model for scoring documents with re-
spect to their relevance given a query in information retrieval.
We use a term vector to represent each ticket as a query and
each expert group as a document, which is represented as a
collection of tickets it has resolved in training set.

LDA [39] uses Latent Dirichlet Allocation model for topic
modeling. Then, we represent each ticket as a vector in topic
space. The number of topics are empirically set to 300.

TABLE I
PERFORMANCE FOR THE RESOLVER RANKING. THE BEST MODEL IS IN

BOLD-FACE, WHILE THE SECOND BEST CASE IS UNDERLINED.

HR@1 @3 @5 @10 MRR

BM25 0.635 0.728 0.773 0.885 0.760
LDA 0.148 0.276 0.503 0.597 0.147
Word2vecConcatenation 0.407 0.526 0.583 0.733 0.643
FastTextEmbedding 0.433 0.597 0.669 0.787 0.670
UFTRPointwise 0.687 0.785 0.927 0.948 0.780
UFTRPairwise 0.719 0.825 0.942 0.975 0.789

DeepRoutingText 0.665 0.784 0.895 0.918 0.774
DeepRoutingGraph 0.603 0.742 0.835 0.881 0.754
DeepRoutingMultiView 0.721 0.844 0.958 0.981 0.791

Word2vecConcatenation [29] and FastTextEmbedding [40] rep-
resent a family of word embedding techniques, which are the
state-of-the-art for many natural language applications. They
use neural network to learn a dense vector representation for
each word in the training corpus. Word2vec takes raw text as
input, output word vectors with the fixed size. FastText uses
sub-word information when learning word representations to
handle out-of-vocabulary words. We first trained 300 dimen-
sional word embedding from all tickets in the training set,
using both techniques. Subsequently, a ticket vector is the
inverse document frequency (IDF) weighted average vector
of all its unique word vectors. An expert group vector is
represented in the similar way. The relevance score between
a ticket and a group is the cosine similarity of their vector
representations.

UFTRPointwise, UFTRPairwise [12] belong to a ranking frame-
work using multiple types of hand-crafted features. The feature
types are Ticket, Group, Ticket-Group, and Group-Group.
Note that the original Group-Group features include the trans-
fer probabilities between a current group to a candidate group.
Since we only focus on one step resolver ranking in this
experiment, only the probability of a candidate being the
resolver is used. For pointwise version, a Random Forest
Regressor (RFR) model is trained using training set with
randomly selected negative samples with 1:1 ratio. During
testing, a score is generated for a ticket and each candidate
resolver for ranking. The pairwise model is a classification
model, determining if a group is likely to rank above the
other group. Since we are only interested in resolver’s ranking,
during testing, we compare the ground truth resolver with each
of the other groups to determine its ranking.

DeepRoutingText, DeepRoutingGraph, DeepRoutingMultiView
are different settings of DeepRouting. Text and Graph are
single-view versions, only using text and graph representation
of expert groups, respectively. DeepRoutingText is effectively
identical to the DSSM architecture. Due to the change in
network architecture, all models are trained independently on
training data, for fair comparison.

Performance for resolver ranking is evaluated by Hit Rate
(HR) and Mean Reciprocal Rank (MRR) in a leave-one-out



test. Particularly, for each test ticket with a ground truth
resolver, 49 other groups are randomly sampled to form the
candidate resolver list. Each model outputs a ranking of the re-
solver in the 50 groups. HR is computed at position 1, 3, 5, and
10. MRR considers the rank of the ground truth resolvers for
each test ticket. It’s formula is MRR = 1

|T |
∑T
i=1

1
rankresolver

.
Shown in Table I, multi-view DeepRouting outperforms the

other models across the board. Particularly, it achieves 0.981
in HR@10 and 0.791 in MRR. The second best model is
UFTRPairwise, which is not far behind. Both top performers
incorporate multiple views of information when representing
the expert groups. The difference lies in how features are
generated. In UFTR, features are manually crafted, while they
are automatically generated by neural networks in DeepRout-
ing. Also, both models consider the relative differences of the
ground truth and negative groups during training. UFTRPairwise
considers the relative position, whereby DeepRouting consider
the posterior probability of ground truth group among multiple
negative samples in the loss function. Noticeably, BM25 is
a strong baseline, performed better than three other baseline
models. FastTextEmbedding and DeepRoutingGraph rely on ab-
stract representation of expert groups from the input, are the
least performing models. Input for both could be too abstract
to contain valuable information about the expert group.

C. Assistive Routing

Many previous works [8], [10], [9], [11] evaluated their
approaches based solely on computed routing results. For
example, a system generates the most probable resolver at
every step, until the true resolver was found. With the routing
path, a MSTR score was computed based on the length of the
sequence. In [37], Han and Sun argued that, more information
from human routing decision could be utilized in evaluation.
Assistive Routing strategy is then proposed. Compared to the
fully computed evaluation, it better simulates ticket routing
systems in operation, while measuring the performance against
the ground truth path, instead of only resolver. Specifically, the
system under test generates a list of candidate resolvers at each
step. Reviewers in the current group is supposed to determine
if the resolver is in the list. Otherwise, they should make their
own routing decision.

In this experiment, we assume the top-k candidate groups
for a ticket are to be reviewed by a pseudo-reviewer. If the
true resolver is in the list, the reviewer could correctly route
the ticket to it and the ticket is resolved. Otherwise, the ticket
is routed to the next group along the ground truth routing path.
The process repeats until the resolver is reached. Each routing
step is scored by the distance from its proposed group to the
resolver. The best score a test ticket could achieve is 1, when
the resolver is proposed in the first step; the score decreases
exponentially for every extra step it requires. The overall per-
formance for a test set is the average scores of each test cases,
i.e., Mean Average Distance to Resolver (MADR). Formally,
MADR(T ) =

∑
t∈T φ(τ)

|T | ,where φ(t) =
∑
g∈Ŝτϕ(g)

|Ŝτ | , where

ϕ(g) = 1
24(g,gresolver)

is the scoring function for a group g,
and 4 represents “distance between”.

In addition to MADR, we also compute the MSTR score
for each method. Both scores of DeepRouting are compared
with multiple baselines, including the Human Routing score,
which is computed from the ground truth routing paths in test
set. As discussed earlier, most of previous works are partial
solution for our problem setting and not directly comparable.
Therefore, we choose two complete routing frameworks, Two-
stage Expert Recommendation (TER) [11] and Unified Frame-
work for Ticket Routing (UFTR) [12] with different settings
as baselines.

TER-FM is a greedy First-order Memoryless Markov model,
only considering the current group when determining the next
group, i.e.,

gi+1 = argmaxgP (g|gi),∀g ∈ G, (9)

where gi is the current group.

TER-FMS is a First-order Multiple active State search model,
considering all groups a ticket has been routed to. The next
group gt+1 is selected using

gi+1 = argmaxgP (g|gr),∀gr ∈ Sτ , g ∈ G\Sτ , (10)

where Sτ is the set of groups that is in the current routing
sequence.

TER-VMS is Variable-order Multiple active State search
algorithm, using a higher order Markov model. The next group
gt+1 is selected using

gi = argmaxgP (g|Sk),∀g ∈ G\Sτ , Sk ⊆ Sτ , (11)

where Sk is a subset of the current routing sequence.

TER-GGT is Generative Greedy Transfer proposed by Miao
et al. [9]. The routing probability of an expert group gi to
another group gi+1 is,

P (gi+1|τ, gi) =
P (τ |ei,i)P (gi+1|gi)

Z (t, gi)
(12)

where ei,i+1 characterizes the directional edge goes from gi
to gi+1. P (τ |ei,i+1) =

∏
wk∈τ P (wk|ei,i+1)

#(wk,τ) is the
product of probabilities of individual word tokens wk ∈ τ
being randomly drawn from all tickets routed along ei,i+1.
f(wk, τ) is an indicator function, equals to 1 if wk presents in
τ ; 0 otherwise. P (gi+1|gi) is the prior probability of group gi
sending a ticket to gi+1, estimated from archived routing paths.
Z (τ, gi) =

∑
gi+1∈G P (τ |ei,i+1)P (gi+1|gi) is the sum of

probabilities to all routing options. Essentially, the formulation
in Equation 12 is a softmax function where the edge weights
from gi to all possible nodes are normalized.

UFTRPointwise and UFTRPariwise are described in Section IV-B.
Similar to the settings in Resovler Ranking, we compare
three different settings of DeepRouting with the baselines. For
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Fig. 5. Number of human routing steps vs. number of Assistive Routing steps in (a) TER-GGT, (b) UFTRPairwise, and (c) DeepRoutingMultiView. In each
subplot, bars with the same colors represent test tickets that have 1 to 4 steps by human routing. The height of a bar indicates the ratio of tickets that resolved
by 1 to 4 steps in Assistive Routing, within its respective color. Note that, we are only interested in assistive routing performance; we exclude cases whereby
the resolver is identified after a model failed to recommend after n steps. Therefore, that height of bars with the same color do not necessarily sum up to 1
(best viewed in color).

TABLE II
PERFORMANCE COMPARISON IN ASSISTIVE ROUTING. THE BEST MODEL
IS IN BOLD-FACE, WHILE THE SECOND BEST CASE IS UNDERLINED. THE
MODELS USE DIFFERENT INFORMATION FOR ROUTING, INDICATED BY †

FOR TEXT AND ] FOR GRAPH.

MADR@1 @3 @5 @10 MSTR

Human Routing 0.701 2.500

TER-FM] 0.701 0.742 0.754 0.771 2.494
TER-FMS] 0.706 0.750 0.781 0.828 2.199
TER-VMS] 0.709 0.780 0.804 0.874 1.978
TER-GGT†, ] 0.711 0.805 0.883 0.924 1.915

UFTR†,]
Pointwise 0.755 0.863 0.913 0.985 1.846

UFTR†,]
Pairwise 0.757 0.893 0.925 0.990 1.676

DeepRouting†Text 0.719 0.818 0.905 0.958 1.871
DeepRouting]Graph 0.703 0.774 0.845 0.901 1.971

DeepRouting†,]MultiView 0.760 0.913 0.945 0.994 1.578

candidate resolver generation, we use the same information
retrieval based with graph expansion method used in [12], for
all models. Note that TER-based models hold a fixed candidate
set after the first stage, whereas UFTR and DeepRouting
models update candidates at every routing step.

The MADR scores at k ∈ 1, 3, 5, 10 and MSTR for assistive
routing are shown in Table II. Overall, DeepRoutingMultiView
model outperforms other baselines, improving from human
routing baseline by 8% and 40% in MADR@1 and @10,
respectively. It scores significantly higher than any of the TER
models in MADR. It is also the lowest in MSTR. Among the
TER-based models, GGT uses text features, performs better
than models using only graph information. The effects of
text and graph features are also observable from single view
DeepRouting models. Particularly, DeepRoutingGraph is behind
DeepRoutingText and barely comparable to the inferior TER

models. Even though the graph embedding model considers
edge information, the effectiveness in routing is limited. It
could be due to the decoupling of graph embedding model
training and routing model training. In comparison, the count-
based statistical features, though simple, are more expressive
and do not require training. Nevertheless, text information
has greater weights in solving the ticket routing problem in
general. Meanwhile, UFTR-based models are not far from
the best DeepRouting model. Even the difference between
pointwise and pairwise models are marginal. After all, having
both text and graph features at the same time are advantageous
over using either one, regardless of the modeling method.

Further, we evaluate the models’ effectiveness in solving
tickets with various difficulties. We use the number of human
routing steps as a proxy for a ticket’s difficulty. Particularly, we
aim to investigate how the models perform on tickets that took
1 to 4 human routings, only considering top-1 recommendation
at each step. They are effectively the fine-grained results from
which the MADR@1 results are computed. Among three best
model settings, our proposed model (Figure 5) is superior
in multiple aspects. Firstly, bars in the farthest row are the
tallest in Figure 5(c). This shows that DeepRoutingMultiView
managed to resolve the highest ratio of tickets in the first step.
In comparison, UFTRPairwise has the slightly lower ratio, while
TER-GGT resolved the least. Secondly, for rows other than the
farthest, DeepRoutingMultiView has the lowest bars compared to
the other two models, showing DeepRoutingMultiView is more
likely to propose the resolver in the first Assistive Routing
step. Lastly, for tickets that required 3 to 4 human routing
steps (green and purple bars), DeepRoutingMultiView is able
to resolve the most, compare to the other methods. As the
length of human routing sequence is an implicit indication of
a ticket’s difficulty, it shows that DeepRoutingMultiView is able
to handle difficult tickets more effectively.



V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a deep neural network approach
for ticket routing in an expert network. We applied classic text
matching and graph embedding in a multi-view architecture
to match a ticket with expert groups. The main improvement
from the other unified routing framework is that, features
are automatic extracted by neural network models. Empirical
results show superior performance of the proposed approach
in both resolver ranking and Assistive Routing. The results
also show that, text similarity is more effective compared to
routing graph modeling in ticket routing. A valuable future
research direction, is to investigate if simplifying the network
structure would improve the overall routing performance. As
for the technical choices, we propose to experiment with more
text matching frameworks, leveraging both neural networks
and hand-crafted features. We would also like to investigate an
end-to-end architecture, integrating the graph node embedding
during the training process. Lastly, the proposed multi-view
framework can be adapted to similar ticket processing systems.
However, the generality and robustness of the framework need
to be future examined with data from different systems.
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