Hashtag Recommendation for Hyperlinked Tweets

Aixin Sun

Surendra Sedhai

School of Computer Engineering, Nanyang Technological University, Singapore surendra001@e.ntu.edu.sg axsun@ntu.edu.sg

Recommendation by Learning To Rank

• Pairwise Learning to Rank:

- \rightarrow Learning: Let h_i^+ be a positive candidate hashtag and $h^$ be a negative candidate hashtag; then the pair $\langle h^+, h^- \rangle$ is a positive instance and $\langle h^-, h^+ \rangle$ is a negative instance in learning the model.
- \rightarrow Recommendation: Let H_c be the set of candidate hashtags. The recommendation score of candidate hashtag h_i : $f(h_i) =$

• Hyperlinked tweet: a tweet containing one or more hyperlinks to external documents.

Hashtag recommendation for hyperlinked tweets?

- \rightarrow Presence of hyperlink in a tweet is a strong indication of tweet being more informative.
- \rightarrow Functions of hashtags for providing right context to interpret the tweets, tweet categorization, and tweet promotion, can be extended to the linked documents.

Recommendation in two phases

- \rightarrow Candidate hashtag selection
- \rightarrow Recommendation by learning to rank

Candidate Hashtag Selection

• Candidate hashtag selection: selecting a subset of hashtags from all existing hashtags that have been used to annotate any of the observed tweets with or without hyperlinks.

Selected through five schemes:

 $\sum_{h_j \in H_c, h_i \neq h_j} I(h_i, h_j)$, where $I(h_i, h_j) = 1$ if $\langle h_i, h_j \rangle$ is classified as positive and 0 otherwise.

• Two sets of features:

- \rightarrow Five binary features: set to 1 if the hashtag is selected by each of the 5 selection schemes.
- \rightarrow Four binary features: Wikipedia entry? Top-level category in Yahoo! hierarchy? Popular domain? Hashtag matches webpage domain?

Dataset

- Data collection: Two months (May 1 to Jun 30, 2013) of sampled tweets using Twitter streaming API guided by hashtags.org: 24 million tweets published by 11.9 million users, containing 6.9 million links with 3.4 million distinct URLs; 1.37 million downloaded pages are in English.
- Training and Testing 15,000 randomly selected hyperlinked tweets from the first 40 days for training. 7,000 hyperlinked tweets from the remaining 20 days for testing.

- \rightarrow Top 20 most voted hasthags from the top 50 most similar tweets.
- \rightarrow Top 20 most voted hasthags from the top 50 most similar webpages.
- \rightarrow Top 20 most used hashtags for tweets from the **domain of** the hyperlink.
- \rightarrow Top 20 highly ranked hashtags based on **named entities** by Random Walk with Restart (RWR) model.
- \rightarrow Top 20 highly scored hashtags based on **named entities** by Language Translation (LT) model.
- Entity-hashtag graph and RWR

- $\rightarrow P(h_i|e_i), P(e_i|h_i)$: the number of times a hashtag h_i is used to annotate a tweet linking to a document containing a named entity e_i , divided by the frequencies of e_i and h_j .
- $\rightarrow P(h_k|h_i)$: asymmetric hashtag co-occurrence
- Language Translation model: named entities and hashtags as descriptions of the same content in two different languages: $Score(h_j) = \sum_{e_i \in N_e} P(h_j | e_i)$, where N_e is the named entities in the linked webpage of the tweet.