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ABSTRACT
The availability of user check-in data in large volume from the
rapid growing location-based social networks (LBSNs) enables a
number of important location-aware services. Point-of-interest (POI)
recommendation is one of such services, which is to recommend
POIs that users have not visited before. It has been observed that:
(i) users tend to visit nearby places, and (ii) users tend to visit dif-
ferent places in different time slots, and in the same time slot, users
tend to periodically visit the same places. For example, users usu-
ally visit a restaurant during lunch hours, and visit a pub at night.
In this paper, we focus on the problem of time-aware POI recom-
mendation, which aims at recommending a list of POIs for a user
to visit at a given time. To exploit both geographical and tempo-
ral influences in time-aware POI recommendation, we propose the
Geographical-Temporal influences Aware Graph (GTAG) to model
check-in records, geographical influence and temporal influence.
For effective and efficient recommendation based on GTAG, we de-
velop a preference propagation algorithm named Breadth-first Pref-
erence Propagation (BPP). The algorithm follows a relaxed breath-
first search strategy, and returns recommendation results within at
most 6 propagation steps. Our experimental results on two real-
world datasets show that the proposed graph-based approach out-
performs state-of-the-art POI recommendation methods substan-
tially.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information Filtering
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1. INTRODUCTION
Location-based social networks (LBSNs), such as Foursquare

and Facebook Places, have become increasingly popular recently.
They provide a platform for millions of users to share their geo-
graphical locations and experiences through check-ins. Each check-
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Figure 1: An example check-in

in represents a user’s visit to a point-of-interest (POI), such as a
restaurant, a sightseeing site, etc., at a specific visiting time. Fig-
ure 1 gives an example check-in: a user named Anon. User visited
Times Square on July 18, 2011. As of January 2014, Foursquare
accumulated over 5 billion check-ins made by 45 million users.

The availability of user check-in data in large volume offers the
opportunity to design appealing services to facilitate users’ travels
and social interactions. POI recommendation is one of such ser-
vices, which aims at recommending POIs to users who have not
visited them before. Note that, it is common to have thousands of
POIs even in a small city, and a user may have visited only a small
portion of them. POI recommendation can help both residents and
visitors to explore new interesting places in a city. On the other
hand, POI recommendation certainly benefits the business owners
of POIs for attracting more customers.

In this paper, we focus on the problem of time-aware POI rec-
ommendation, which is to recommend POIs for a target user to visit
at a specific time slot in a day (target time). The recommendation
results are time-aware due to the observation that a user tends to go
to different places at different time slots. For example, a person is
more likely to go to a pub rather than a restaurant at midnight.

From historical check-in records obtained from Foursquare or
other sources, two observations have been made in existing stud-
ies related to POI recommendation. First, many users tend to visit
nearby places [7, 30, 32]. We refer to this observation as the geo-
graphical influence on users’ daily activities. Second, many users
tend to visit different places at different time slots and periodically
visit the same places in the same time slot [7,17,32]. For example,
users usually go to work places in the morning and have dinner at
restaurants in the early evening. We refer to this observation as the
temporal influence on users’ daily activities.

The geographical influence suggests that the chance of a user
visiting a POI will be higher if this POI is closer to the user’s pre-
viously visited POIs. In other words, a POI recommendation algo-
rithm should consider geographical influence and rank such POIs
higher. On the other hand, the temporal influence suggests that a
POI recommendation algorithm shall consider user mobility pat-
tern and recommend the right types of places based on the time a
user plans to visit. For example, when we recommend POIs for a



user to visit during lunch hour, a restaurant should be given a higher
priority than a pub.

To exploit both geographical and temporal influences for time-
aware POI recommendation, we propose a graph-based approach.
In our approach, a graph named Geographical-Temporal influences
Aware Graph (GTAG) is constructed using all users’ check-in records.
GTAG consists of three types of nodes (user node, POI node, and
session node) and two types of links (check-in link and POI link).
Each user is represented by a user node that connects to a set of
session nodes of the user, each of which represents a time slot (e.g.,
an hour in a day). A session node of a user is connected to a POI
node if the user of the session node visits the POI in the corre-
sponding time slot. A pair of edges (between user node and session
node, and between session node and POI node, respectively) form a
check-in link, which represents a check-in record of the user. Two
POI nodes are connected through a POI link if they are located
geographically near each other. Hence, GTAG embeds both the
temporal and geographical information from the check-in records.
Introducing the session nodes for each user will make the data more
sparse, which is a challenge for recommendation. To alleviate the
data sparsity problem, we propose to compute the importance of
each session, and the sessions close to the target session are as-
signed larger weights, since the behaviors of a user in two close
time slots are similar.

Apart from effectiveness, efficiency is also an important consid-
eration in designing recommendation algorithms, for the number
of candidate items being always very large. Utilizing the struc-
tured properties of the GTAG, we propose an effective and efficient
recommendation algorithm named Breadth-first Preference Propa-
gation (BPP). The algorithm follows a relaxed breath-first search
strategy, and returns recommendation results within 6 propagation
steps.

In our experiments on two real-world datasets, the proposed GTAG
with BPP significantly outperforms state-of-the-art algorithms in-
cluding the random-walk based algorithms. To summarize, the
main contributions of this paper are three-fold:

• We propose the Geographical-Temporal influences Aware Graph
for time-aware POI recommendation, which encodes both
geographical and temporal information of user check-in records.

• We develop an effective and efficient Breadth-first Preference
Propagation algorithm for time-aware recommendation on
GTAG exploiting both geographical and temporal influences.

• We conduct extensive experiments to evaluate the proposed
method on two publicly available LBSN datasets collected
from Foursquare and Gowalla, respectively. Experimental
results show that our proposed method outperforms state-of-
the-art methods for time-aware POI recommendation.

The rest of the paper is organized as follows: we review previous
work in Section 2, and report the datasets and the observations on
temporal influence in Section 3. In Sections 4 and 5, we introduce
the GTAG and the recommendation algorithm BPP, respectively.
The experimental results are presented in Section 6. Finally, we
conclude this paper in Section 7.

2. RELATED WORK
Collaborative Filtering Collaborative filtering (CF) has been widely
adopted for recommender systems. CF exploits users’ historical
purchase ratings or preference to make recommendations, and it
can be divided into two categories, namely, memory-based CF and

model-based CF. Memory-based CF methods, such as user-based
CF and item-based CF [24], utilize user rating data to calculate
the similarity between users or items to make recommendations.
In contrast, model-based CF builds recommendation models using
data mining techniques, such as matrix factorization [15] and prob-
abilistic topic model [1]. Our proposed method is a graph-based
CF method, which falls in in the category of model-based. Most of
existing graph-based CF methods are based on random walks with
restart on the user-item graph [2, 13], while some recent proposals
employ different preference propagation strategies on the user-item
graph [3, 26].

POI Recommendation Most of POI recommendation studies ex-
ploit geographical information. User-based CF and item-based CF
are explored in [18, 29, 30]. Ye et al. [30] exploit social influence
and geographical influence under the framework of user-based CF
to make POI recommendations. The authors also study on im-
proving the efficiency for POI recommendations in their earlier
work [29]. Levandoski et al. [18] employ item-based CF to make
POI recommendations with the consideration of travel penalty, which
is proportional to the distance between the target user and a POI.

Several model-based approaches have been proposed. Noulas et
al. [23] find that random walk based approach significantly outper-
forms MF, user-based CF and item-based CF for POI recommen-
dation. Cheng et al. [5] develop a matrix factorization (MF) based
model, which incorporates the geographical information by a Gaus-
sian mixture model (GMM). Kurashima et al. [16] propose a topic
model, in which a POI is sampled based on the topics and the dis-
tance to historical POIs visited by the target user. Wang et al. [25]
propose algorithms under the framework of personalized Pagerank,
where the POIs far away from the visited POIs of the target user are
filtered out. Yin et al. [31] consider the topic differences between
cities, and propose an LDA-based model to recommend POIs for
a given user at a given city. Liu et al. [19] combines probabilistic
model with MF to recommend POIs.

Besides the geographical information, some other information
has been exploited, such as POI category (tags) [4, 11, 20, 22] and
social information [5,9,25,28,30]. However, POI categories are not
always available, and social information has been shown to con-
tribute little to the recommendation performance [5, 30].

Recommendation with Temporal Information A number of time-
aware recommendation techniques have been proposed under the
framework of decision-tree [33], matrix-factorization [14, 21, 27],
item-based CF [8] or graph [26].

Ding et al. [8] assume that the recent ratings of users should
play a bigger impact on their current preference than do the older
ratings. Based on the assumption, when estimating item similarities
for item-based CF, they decay the weight of older ratings.

Xiang et al. [26] assume that users’ purchase behaviors are influ-
enced by their long-term and short-term preferences. They propose
a bipartite Session-based Temporal Graph (STG) to model the two
kinds of preferences. The STG contains three types of nodes, user
node, item node and session node, where the time range is divided
into bins and each user-bin pair becomes a session node. A user is
connected to an item node if the user purchased the item, and the
item is also connected to the corresponding session node. Based
on the STG, they propose an Multi-Source Injected Preference Fu-
sion (MS-IPF) algorithm to propagate the preference from the tar-
get user nodes (reflecting long-term preference) and corresponding
session nodes (reflecting short-term preference) to candidate item
nodes. The preference that a candidate node receives via the short-
est path is used as its recommendation score. The MS-IPF algo-



rithm is designed for bipartite graphs, and we do not see how it can
be applied to general graphs.

Although both MS-IPF [26] and our method are graph-based
methods, they are greatly different in both the graph structure and
the recommendation technique, which will be detailed in Section 4.3.

Time-aware POI Recommendation Yuan et al. [32] propose a
model named UTE-SE to make time-aware recommendations, which
incorporates time dimension into user-based CF. To address the
sparsity problem, they calculate the check-in similarities between
different time slots, and employ various techniques to smooth the
check-in matrix. They also explore the geographical influence that
users tend to visit POIs that are close to their previously visited
POI. The scores calculated based on the temporal influence and ge-
ographical influence are linearly combined as the final recommen-
dation score for a candidate POI. Different from [32], our proposed
GTAG method is a graph-based method that exploits the geographi-
cal and temporal influences in an integrated way. Hu et al. [12] pro-
pose a topic-model based approach named Spatio-Temporal Topic
(STT), which exploits the spatio-temporal aspects of user check-
ins for time-aware POI recommendation. In STT, each user has
distributions over topics and regions, and each time slot has dis-
tributions over topics and POIs. The regions, topics and time to-
gether influence users’ checkin activities. However, the authors
do not provide details for parameter estimation and tuning, which
makes it hard to evaluate its effectiveness in the experiments. Gao
et al. [10] propose location recommendation framework with tem-
poral effects (LRT) to explore temporal influence for POI recom-
mendations. LRT is an MF-based method that factorizes the user-
time-POI check-in matrix to get users’ temporal preference matrix
Ut in time t and location characteristics matrix L. Then, the POI
preference of the target user is constructed and aggregated based
on L and Ut in all time slots. LRT does not exploit geographical
influence for recommendation. Note that LRT is not used to rec-
ommend POIs for a target time in [10]. In Section 6, we tailor it
for time-aware POI recommendation by removing the aggregation
step, i.e., the POI preference of the target user in target time t is
estimated based on L and Ut only.

3. TEMPORAL INFLUENCE ON USER
CHECK-IN BEHAVIOR

Since geographical influence (i.e., users tend to visit nearby places,
and the willingness of visiting a place decreases with the increase
of distance) has been verified in [32], in this section we concen-
trate on the temporal influence to users’ check-in behaviors on the
datasets released by authors of [32].

3.1 Dataset
The two datasets contain check-in records from Foursquare and

Gowalla, respectively. The Foursquare dataset contains 342,850
check-ins made in Singapore between Aug. 2010 and Jul. 2011.
The Gowalla dataset, originally from [7], contains 736,148 Gowalla
check-ins made within California and Nevada between Feb. 2009
and Oct. 2010. Each check-in is a 〈user,POI, time〉 tuple and each
POI has its own geographical coordinates.

For a fair comparison with the methods reported in [32], the same
data preprocessing is carried on the datasets. That is, the users who
checked in fewer than 5 POIs and the POIs which have fewer than 5
users checked in are removed. After preprocessing, the Foursquare
dataset contains 194,108 check-ins made by 2,321 users at 5,596
POIs, and the Gowalla dataset contains 456,988 check-ins made by
10,162 users at 24,250 POIs (see Table 1). Observe that the two

Table 1: Statistics on the datasets (after pre-processing)
Dataset # Check-ins # Users # POIs
Foursquare 194,108 2,321 5,596
Gowalla 456,988 10,162 24,250
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Figure 2: Returning probability on Foursquare dataset

datasets have different scales in terms of the size of entities (i.e.,
users, POIs, and check-ins) and the geographical range.

3.2 Observation of Temporal Influence
First, we examine the probabilities that users return to their firstly

visited POIs after different number of hours. Specifically, if a user
visits a POI multiple times, we calculate the time difference be-
tween her first check-in at the POI and each of her subsequent
check-ins. The time differences of all users at all POIs are aggre-
gated and grouped into bins on hourly basis. Figure 2 plots the
probability distribution obtained on the Foursquare dataset. Ob-
serve that, the returning peaks occur around every 24 hours (e.g.,
24, 48, 72, etc.), suggesting that users’ check-in activities are daily
periodic. That is, in close time periods of a day, users are likely to
visit the same places, and in different time periods of a day, users
visit different places. This observation is in accordance with the
findings reported in [6].

Next, to further understand the periodicity, we discard the date
information of the check-ins and compute the deviation hours of
each subsequent check-in of a user from the first check-in time of
the user at a POI. Figure 3 plots the returning probabilities at dif-
ferent hour deviations on the Foursquare dataset. From this proba-
bility distribution, it is clear that users tend to visit the same POIs
at close time of day, and their behaviors in close time are similar.
In addition, the curve fits exponential function well.

Note that, similar observations are made on the Gowalla dataset.
We choose not to plot the figures due to the page limitation.

4. GEOGRAPHICAL-TEMPORAL INFLU-
ENCES AWARE GRAPH (GTAG)

In this section, we detail the Geographical-Temporal influences
Aware Graph (GTAG) to exploit the observations of geographical
influence and temporal influence in time-aware POI recommenda-
tion. The notations used in this paper are listed in Table 2.

4.1 GTAG Structure
We build the GTAG based on the following intuitions:

1. Intuition 1: Users’ interests vary with time, and a user may
visit different POIs at different time [10, 32]. The temporal
interests of a user in a time is reflected as the POIs she visited
in that time.

2. Intuition 2: The check-in interests of a user in the time
closer to the target time are more relevant, and thus more
important, for recommendation.



Figure 3: Returning probability on Foursquare dataset (hour
deviation)

Table 2: Symbols
Symbol Description
G, E, V , Pi, j GTAG/TAG graph, edge set of G, node set of G,

set of paths from node i to node j
ei, j, wi, j edge from node i to node j, weight of ei, j

U , L, T , S user set, POI set, time slot set, session set
u, �, t, su,t user u ∈ U , POI � ∈ L, time t ∈ T , session of u, t

∈ S
Lu visited POI set of u
Su session node set of u.
An adjacent node set of n.

|ti, t j | time difference between ti and t j

dis(�i, � j) geographical distance between �i and � j

wi(d) the willingness a user visits a d-km far away POI

ri preference value of node i
η the parameter controlling the preference of session

nodes propagating to POI nodes and user nodes
τ the parameter controlling the preference of POI

nodes propagating to POI nodes and session nodes
H the parameter controlling the time influence
k the maximum number of POI nodes that a POI

node can connect to
α , β the parameters of power law function

3. Intuition 3: If two users have similar temporal interests in
two time, they tend to visit the same POIs in the two time.

4. Intuition 4: Users tend to visit their nearby POIs [30, 32].

To represent users’ interests at different time (Intuition 1), we
divide time into 24 hourly slots, and use hour as the time unit. Note
that we can adopt different time slots, and our proposed approaches
are equally applicable. For example, we can use 48 hourly time
slots to differentiate users’ activities in weekdays and weekends,
where the two sets of 24 hourly slots correspond to the hours in
weekdays and the hours in weekends, respectively. The set of time
slots is denoted by T . For ease of presentation, time and time slot
are used interchangeably in this paper.

In GTAG, users and POIs are represented by user nodes u ∈ U
and POI nodes � ∈ L, respectively. To represent users’ check-in in-
terests at different time (Intuition 1), we use a session node si, j ∈ S
to relate the POIs visited by user ui in time t j ∈ T . Here U , L
and S are the user node set, POI node set, and session node set, re-
spectively. These three types of nodes are connected by weighted
directed edges, namely, EU,S, ES,U , ES,L, EL,S and EL,L, where EX ,Y

denotes the set of edges from nodes in set X to nodes in set Y .
Edges in the five sets compose two types of links, namely, check-
in link and POI link, which embed the temporal and geographi-
cal influences, respectively. A check-in link represents a check-in
record, and it consists of edges between user node and session node,
and between session node and POI node. The edges eui,si, j ∈ EU,S,

Figure 4: GTAG constructed using the 7 sample check-ins

esi, j ,ui ∈ ES,U , esi, j ,�k ∈ ES,L, and e�k ,si, j ∈ EL,S form a check-in link,
which corresponds to user ui’s check-in on POI �k in time t j. Since
the check-in interests of a user in the time closer to the target time
are more relevant (Intuition 2), the edges connecting to the session
nodes that are close to the target time will be assigned with larger
weights (to be explained in Section 4.2). The edges from POI nodes
to session nodes bridge sessions of users that share similar POI in-
terests, which enables us to exploit other users’ temporal interests
for recommendation (Intuition 3).

To incorporate the intuition that users tend to visit their nearby
POIs (Intuition 4), we use a POI link e�k ,�m ∈ EL,L to connect �k to
�m if �m is close to �k in distance. Theoretically, there are |L||L − 1|
edges that link every pair of POIs. Incorporating all of them into
GTAG will greatly deteriorate the recommendation efficiency. In
addition, if two POIs are far from each other, users are less likely
to travel from one to the other, and thus the correlation between
them is small. We therefore set a threshold k to limit the number of
edges starting from one POI to other POIs, i.e., for each POI, only
the k nearest POIs are connected with it.

Figure 4 gives a sample set of 7 check-in records made by two
users (u1 and u2) on four POIs (�1 to �4) during two time slots (t1

and t2). The GTAG constructed using this sample set of check-in
records is illustrated on the right hand side of the figure. Since u2

visited POI �4 in time t2 (i.e., the last one in the 7 sample check-in
records), there are directed edges between u2 and s2,2, and between
s2,2 and �4 in the graph. �3 is connected to �4, since �4 is assumed
to be close to �3 in distance. Note that k is set to 1 in this example.

Generally, GTAG makes recommendations as follows: given a
target user ui and target time tq, we first set the weights of links
from user nodes to session nodes adaptively based on the target
time. We inject preference to the user node ui, and then propagate
the preference to candidate POI nodes via various paths. During
the propagation, both the geographical and temporal influences are
exploited. In the end, the POIs that receive larger preference will
be recommended. Before detailing the preference propagation, we
first introduce how to set the weights for edges in GTAG.

4.2 Weight Computation of the Edges
The initial weights of all edges in ES,U

⋃
ES,L
⋃

EL,S are set to 1.
We have also considered setting the weights of edges in ES,L and
EL,S based on the number of visits. However, poorer recommenda-
tion results were obtained in our experiments compared with using
1 as the weights. This is consistent with the result reported for
graph-based recommendation in [23].

Next, we detail how to set the initial weights for edges in EU,S

and EL,L, and how to normalize the weights for GTAG.



Weights of Edges in EU,S. Recall that our time-aware POI recom-
mendation task is to recommend POIs for a target user u to visit
at a target time tq. Naturally, the session node whose time is close
to the target time tq is more important to the recommendation task
(Intuition 2). Following previous work [8], we use an exponential
function to model the importance of the session node for time slot
t to the target time tq:

f (t, tq) = exp(− 1

H
· |t, tq|), (1)

where |t, tq| is the time difference between tq and t, and H is a pa-
rameter controlling the extent of temporal influence. A smaller H
leads to smaller weight for the sessions far from tq. Note that, if the
time slot of session node t matches tq, then f (t, tq) = 1.

We use the importance values of session nodes computed above
to initialize the weights of edges from user nodes to session nodes.
Specifically, given a target time tq for recommendation, the weight
of the edge from user ui to session node si, j is computed by

wui,si, j = f (t j, tq), (2)

where t j is the time slot of session node si, j.
We argue that the above weighting scheme offers at least two

advantages. First, the weight between a user node and a session
node is adaptively set based on the target time for recommendation.
That is, the GTAG adjusts the importance of session nodes based on
the target time for recommendation, so that the temporal influence
is considered. Second, the above weighting scheme alleviates the
data sparsity problem: when we recommend POIs for target time tq,
check-in records in all time sessions are considered with different
weights. If we only consider the check-ins during the target time
slot, the data will become much more sparse, and it is well known
that sparsity is a major challenge in recommendation.

Weights of Edges in EL,L. The observation on graphical influence
states that users tend to visit nearby places (Intuition 4). The will-
ingness of visiting a place decays with the increase of distance from
the current location. Here, we adopt a power-law function of dis-
tance to model the willingness of a user moving from one place to
another as in [32]. More specifically, the willingness of a user to
visit a d-km far away POI is defined by Equation 3:

wi(d) = α · dβ , (3)

where α and β are parameters of the power law function, which
can be learned by maximum likelihood estimation.

We employ the willingness as the weight of edge in EL,L:

w�i,� j = wi(dist(�i, � j)), (4)

where dist(�i, � j) is the geographical distance between POIs �i, � j.

Edge Weight Normalization. After setting the initial weights for
edges in GTAG, we normalize the edges’ weights as follows:

wi, j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

τ
∑

k∈Ai
⋂

L wi(dis(i, k)) + |Ai
⋂

S| if i ∈ L and j ∈ S,

τwi(dis(i, j))
τ
∑

k∈Ai
⋂

L wi(dis(i, k)) + |Ai
⋂

S| if i ∈ L and j ∈ L,

1

η |Ai
⋂

L| + 1
if i ∈ S and j ∈ U ,

η
η |Ai
⋂

L| + 1
if i ∈ S and j ∈ L,

wi, j∑
k∈Ai

wi,k
if i ∈ U and j ∈ S.

In these equations, Ai is the set of adjacent nodes of node i,
|Ai
⋂

S| is the number of adjacent session nodes of node i, and
|Ai
⋂

L| is the number of adjacent POI nodes of node i. τ is a pa-
rameter to balance the propagation preference of a location node to
its adjacent location nodes and session nodes. A larger τ indicates
that geographical distance plays a more important role in prefer-
ence propagation. η is another parameter that balances the impor-
tance of POI nodes and user nodes to the preference propagation of
a session node.

4.3 Comparison with STG
Our proposed GTAG is significantly different from the Session-

based Temporal Graph (STG) [26] in at least 4 aspects:

• The item nodes in STG are connected to both user nodes and
session nodes, while in GTAG the POI nodes are connected
to session nodes and POI nodes. The edges between POI
nodes in GTAG enable us to incorporate geographical infor-
mation for recommendation.

• The session nodes in GTAG are bridged by user nodes while
in STG they are not. The fundamental difference lies in
the different intuitions in building the graphs. In STG, a
user’s sessions are independent. If the target user has never
checked-in at the target time, the method will fail to make
recommendations for the target time. In GTAG, check-ins
from all sessions of a user are considered with different weights.

• The temporal preference considered in STG is either long-
term or short-term, while in GTAG the temporal preference
is periodic (i.e., each user has 24 session nodes).

• STG is a bipartite graph, while GTAG is not. Thus the rec-
ommendation method MS-IPF for STG cannot be applied to
GTAG.

5. BREADTH-FIRST PREFERENCE
PROPAGATION

The basic idea of the preference propagation is to first inject ini-
tial preference on the target user node u, and then propagate the
preference to candidates POI nodes through various paths over the
graph [26]. Defined in [26], the preference propagated by each path
p is the production of the initial preference ru assigned to target user
node u and the weights of all edges on the path:

r(p)
p =

∏
ei, j∈p

wi, j · ru, (5)

where wi, j is the weight of the edge ei, j contained in path p. For
each candidate POI �, its preference value is the sum of all prefer-
ence propagated to it through all paths from target user node u:

r� =
∑

p∈Pu,�

r(p)
p , (6)

where Pu,� is the set of paths from u to �. The top-ranked POIs
sorted by preference value are then recommended.

Two key elements need to be considered for effective and efficient
preference propagation: (i) the selection of the paths among all
possible paths from the target user node to POI nodes, and (ii) the
algorithm for efficient preference propagation along the selected
paths.

In this section, we first present the constraints in selecting paths
for preference propagation, and then present an efficient algorithm
named Breadth-first Preference Propagation (BPP) for preference



propagation. Finally, we analyze the time complexity of BPP in
Section 5.3.

5.1 Path Selection
There exist many possible paths between a user node and a POI

node. Enumerating all possible paths is computationally expensive,
and may introduce noise that will deteriorate the recommendation
accuracy [3, 26]. How to select a subset of paths from all possible
ones for preference propagation is a key challenge to efficient and
accurate recommendation. In our design, we select paths based on
the following three criteria:

1. The path must be a simple path, i.e., there is no repeated
node in a path. This constraint eliminates loop(s) in a path.
For example, in Figure 4, u1 → s1,1 → �2 → s1,2 → u1 → ...
is forbidden (for looping back to u1).

2. The path can contain only one visited POI node and session
node of the target user. This constraint avoids generating
very long propagation paths. For example, in Figure 4, u1 →
s1,1 → �1 → s1,2 → �2 is forbidden.

3. The path terminates when an unvisited POI node is met. With-
out this constraint, the preference will be propagated from an
unvisited POI to another unvisited POI, which will amplify
the uncertainty in recommendation. In fact, this constraint is
in accordance to the user-based CF method, in that only the
items purchased by the users who share at least one item with
the target user are considered as the candidate set.

The above three criteria determine that a valid path must be of
length 3, 4 or 6, as shown in Figures 5(a), 5(b) and 5(c), respec-
tively. Specifically, a preference propagation always starts from a
target user node (e.g., u1), and then visits one of the user’s session
nodes (e.g., s1,2), followed by a visited POI node (e.g., �2). After
that, the preference can be directly propagated to an unvisited POI
(e.g., �3), forming a 3-step path (illustrated in Figure 5(a)). On the
other hand, after reaching a visited POI node (e.g., �2), the next
node to visit in a path could be a session node of another user (e.g.,
s2,1, illustrated in Figures 5(b) and 5(c)). At this point, there are
two types of propagations: one is to reach an unvisited POI node
(e.g., �3) and stops, which forms a 4-step path as illustrated in Fig-
ure 5(b); the other one is to visit the user node of that session node
(e.g., u2), then to distribute the preference to the user’s other ses-
sion node (e.g., s2,2), and to reach an unvisited POI node (e.g., �4).
This propagation follows a 6-step path (see Figure 5(c)).

In fact, the 3-step path exploits the geographical influence: the
target user u is likely to check-in POIs that are close to her visited
POIs (Intuition 4). The 4-step path considers the temporal interests
of other users: if the set of visited POIs of user u in time t1 is similar
with that of user v in time t2, then in t1, u is likely to be interested
in the POIs visited by v in t2 (Intuition 3). Finally, the 6-step path
explores the correlations between time slots: if v shares similar
temporal interests with u, then v’s temporal interests that are close
to tq are also important for recommendation (Intuition 2 and 3).

5.2 Breadth-first Preference Propagation
With all valid paths selected based on the three criteria, a straight-

forward propagation method is to adopt the depth-first search (DFS)
strategy. Specifically, based on DFS we propagate the preference
from the target user node through all possible paths that satisfy the
three criteria in Section 5.1. The propagation of a path stops when
an unvisited POI node is reached. We name this algorithm Depth-
first Preference Propagation (DPP). However, the DPP algorithm
has high time complexity (See the analysis in Section 5.3) because

the same edge may be visited multiple times along different paths.
For example, in Figure 5(c), the edge e�1 ,�4

will be visited twice by
following the paths u1 → s1,1 → �1 → �4 and u1 → s1,2 → �1 → �4.

Comparing with DFS strategy, the breath-first search (BFS) strat-
egy is much more efficient for preference propagation. In BFS, a
node n first collects preference from all of its precedent nodes, and
then propagates the preference to its subsequent nodes of all paths
involving n in a batch manner. For example, following BFS, �1 first
aggregates the preference from s1,1 and s1,2, and then propagates its
received preference to �4 via edge e�1 ,�4

. As a result, the edge e�1 ,�4

is visited only once, whereas is visited twice in DFS.
However, BFS cannot be directly applied for preference prop-

agation, because it is designed for graph traversal and each node
can be visited only once. In contrast, when propagating preference,
some nodes need to be visited multiple times. For example, con-
sider the two 6-step paths in Figure 5(c):

• Path p1: u1 → s1,2 → �2 → s2,2 → u2 → s2,1 → �3

• Path p2: u1 → s1,2 → �2 → s2,1 → u2 → s2,2 → �4

If we follow BFS exactly, p2 is not valid as s2,2 has already been
visited in p1 at the third step. As a result, it cannot be visited at the
fifth step in p2.

To solve this problem, we relax the constraint on the times of vis-
iting a node, and allow a node being visited multiple times. In fact,
the multi-times-visiting problem only happens to the session nodes
of users who share at least one POI with the target user (e.g., s2,2),
because these nodes will be visited at different steps in different
paths.

However, after allowing a node being visited multiple times, a
new problem arises: the preference a node n′ receives from a prece-
dent node n will be propagated back to n, which violates the simple
path constraint. For example, u2 in Figure 5(c) receives preference
from s2,2 and s2,1, and propagates the preference to s2,1 and s2,2, re-
spectively. However, if we employ BFS, a part of the preference
from one node (e.g., s2,1) will be propagated back to itself, because
at u2 we cannot differentiate the preference from s2,1 between that
from s2,2. We could solve this problem by keeping a table at each
node to record the amount of preference the node receives from
each of its precedent nodes, but it will increase space cost signif-
icantly and incur extra computation. In this paper, we propose a
more efficient solution.

Consider a node n that propagates its preference rn · wn,n′ to its
adjacent node n′ ∈ An. After collecting the preference from its
adjacent nodes, n′ propagates its preference rn′ =

∑
n′′∈An′ rn′′ ·wn′′ ,n′

to its adjacent nodes An′ , one of which is n. Then, the amount of
preference originally propagated from n to n′ needs to be excluded
from the preference to be propagated from n′ to n, i.e., the amount
of preference that n receives from n′ should be:

(
∑

n′′∈An′
rn′′ · wn′′ ,n′ − rn · wn,n′ ) · wn′,n

=
∑

n′′∈An′
rn′′ · wn′′,n′ · wn′ ,n − rn · wn,n′ · wn′ ,n

= rn′ · wn′ ,n − rn · wn,n′ · wn′ ,n, (7)

where the second part is the portion of preference of n that will be
propagated back to itself through n′.

This inspires the following method to address the problem. We
pre-subtract the amount of preference from n that will be propa-
gated back to it through its neighbors to be visited (e.g., rn · wn,n′ ·
wn′ ,n) after propagating the preference from it (n) to its neighbors.
Then, the relaxed BFS can be applied for preference propagation.



(a) 3-step propagation (b) 4-step propagation (c) 6-step propagation

Figure 5: Examples of valid propagation paths of lengths 3, 4, and 6, from a user node u to a location node �. The numbered nodes
in black color indicate the propagation steps in each path.

Algorithm 1: Breadth-first Preference Propagation (BPP)

Input: user u, time t, GTAG graph Gt , recommendation size k
Output: Top-k POIs as recommendation results

1 Q ← queue of nodes to be visited;
2 N ← visited node set;
3 push u into Q;
4 while Q is not empty do
5 n ← pop head node of Q;
6 if n ∈ N then
7 continue;

8 if n is not a session node of those users who share at least
one POI with user u then

9 add n into N;

10 r̂n ← 0;
11 foreach n′ ∈ An do
12 if n′ � L̃u and n′ � N and n′ � Q then
13 Q.push(n′);

14 rn′ ← rn′ + rn · wn,n′ ;
15 if n′ ∈ Q and n ∈ An′ then
16 r̂n ← r̂n − rn · wn,n′ · wn′,n;

17 rn ← r̂n;

18 return top-k POIs in L − Lu based on recommendation scores;

For example, after performing pre-subtraction for s2,1 in Figure 5(c),
we can propagate the preference of u2 to its neighbouring node s2,1,
since the invalid preference that will be propagated back to it (i.e.,
rs2,1

· ws2,1 ,u2
· wu2 ,s2,1

) has already been subtracted.
We name the proposed propagation approach Breadth-first Pref-

erence Propagation (BPP), for it is designed based on BFS strategy.
The algorithm is shown in Algorithm 2. Line 8 relaxes the con-
straint on the times of visiting a node. If a node n′ is not in the set
of candidate POI nodes (̃Lu), and needs to be visited in subsequent
steps (not in N), we put it into the queue Q (lines 12-13), which
contains the nodes to be visited. Line 14 propagates the preference
from n to each of its neighbor nodes n′, and lines 15-16 perform the
pre-subtraction operation, i.e., if n’s neighbor n′ will be visited, and
n′’ preference will be propagated back to n (n ∈ An′ ), we subtract
this part of preference from n’s preference.

5.3 Time Complexity Analysis
Time Complexity of DPP. We first look at the 6-step path for DPP.
In the first step, one of target user u’s session nodes is selected,
which has |T | choices. Then, for each session node, we select one

POI node �, which has |L(s)| choices. Here |L(s)| is defined as the
maximum number of POIs a session node connects to. In the third
step, a session node of other users’ connection with � is reached,
and there are |S(�)| possibilities, where |S(�)| is the maximum number
of session nodes having links with a POI node. Then, the user
node is visited with the cost 1, followed by other session nodes
(|T |−1). Finally, a POI node is visited from the session node, where
there are |L(s)| choices. Based on the product rule, the complexity of
DPP is O(|T ||L(s)||S(l)||T ||L(s)|). In the worst case where |L(s)| = |L|,
|S(l)| = |U ||T |, the complexity becomes O(|T |3|L|2|U |). Obviously,
the complexities of 3 and 4-step propagations are much lower.

Time Complexity of BPP. For the BPP method, the propagation
starts from the target user node u. In the first step, all u’s session
nodes are visited, so the complexity is |T |. The second steps prop-
agates the preference from each u’s session node su,t to the POI
nodes it connects with by the cost of |T ||L(s)|. Then, the preference
is transformed from u’s visited POI nodes to other users’ session
nodes they connect with. The cost of the third step is |L(u)||S(�)|,
where L(u) is the maximum number of POIs a user has visited. We
define S(�)

� as the set of the session nodes having link with POI �,
and |Nu| as the number of users who co-visited at least one POI
with u. Then the cost of the fourth step (propagating from other
users’ session nodes to their corresponding user nodes) and the fifth
step (propagating from the other user nodes to their session nodes)
will be |⋃�∈Lu S(�)

� | and |Nu||T |. Finally, the preference reaches POI
nodes with the cost of |Nu||T ||L(s)|. For BPP, the total complexity of
6-step propagation is the sum of complexity of each step, which is
O(|T |+ |T ||L(s)|+ |L(u)||S(�)|+ |⋃�∈Lu S(�)

� |+ |Nu||T |+ |Nu||T ||L(s)|). In the

worst case (|L(s)| = |L|, |S(�)| = |Nu| = |U |, |⋃l∈Lu S(�)
� | = |U ||T |), the

complexity is O(|T ||U ||L|), which is much lower than that of DPP.

Time Complexity of MS-IPF. The worst case time complexity of
MS-IPF method proposed in [26] is O(|T ||U ||L|2)), which is higher
than that of BPP.

6. EXPERIMENTS
We systematically evaluate the proposed method and compare

our method with the state-of-the-art methods on 2 real-world datasets.
We first detail the experimental setting, then compare the perfor-
mance of these methods, and finally study the effect of the length
of time slot.

6.1 Experimental Setup
Dataset. We conducted our experiments on the two datasets, namely
Foursquare and Gowalla (see Table 1), introduced in Section 3.1,
which are the set of datasets used in the work [32].



Table 3: The 11 methods evaluated in our experiments. The
√

mark under T or G indicates the method utilizes temporal and
geographical influences.

Method Description T G
U User-based CF (Section 2) - -

G-BPP BPP on TAG without temporal influence - -
UG U with geographical influence [30] -

√
UTF U with time function [8]

√
-

UTE Smoothing enhanced time-aware CF [32]
√

-
UTE-SE UTE with geographical influence [32]

√ √
MS-IPF Multi Source IPF on STG [26]

√
-

LRT Location rec. with temporal effects [10]
√

-

TAG-RWR Random Walk with Restart on TAG
√

-
TAG-BPP BPP on TAG.

√
-

GTAG-BPP BPP on GTAG (Section 4)
√ √

By following the setting in previous work [32], we randomly
mark off 10% of each user’s visited POIs as development set to tune
parameters, and mark off another 20% POIs as test set to evaluate
the effectiveness of the recommendation methods. The remaining
70% POIs form the training set. The densities of the training sets
of the Foursquare and Gowalla datasets are 6.35 × 10−3 and 9.85 ×
10−4, respectively. As expected, after splitting a day into 24 hourly
slots, the data becomes much sparser: 2.65× 10−4 and 4.10× 10−5,
respectively.

Evaluation Metrics. To evaluate the accuracy of all methods (i.e.,
how well a method recovers the hold-off POIs in the test set for a
given user at a given time), we use two metrics, namely, Precision@N
and Recall@N (denoted by Pre@N and Rec@N, respectively), where
N is the number of top-ranked recommendations. The Pre@N
(Rec@N) is estimated by averaging the precision(recall) values of
all time slots, as it is in [32]. For each metric, we consider three
values of N (i.e., 5, 10, 20), where 5 is the default value.

Because both the Foursquare and Gowalla datasets have very low
density, it is common that recommendation methods deliver rel-
atively low precision and recall values [13, 30]. In addition, the
POIs in the test set of each user may represent only a small portion
of POIs that the user may be interested in. Thus, although the low
precision and recall values are reasonable, in this paper, we focus
on the relative improvements we achieved over baseline methods,
instead of the absolute values.

Recommendation Methods. We evaluated 11 methods as listed
in Table 3. The

√
mark in the table indicates a method utilizes

temporal and/or geographical influences.
U is the basic CF method without utilizing temporal or geograph-

ical influence. We use it to evaluate the improvement brought by
considering the temporal/geographical influence. UG is the method
proposed in [30], which linearly combines the results of user-based
CF and bayesian geographical model to make recommendation.
This method does not utilize temporal influence. UTF (user-based
CF with time function) is the user-based version of the algorithm
proposed in [8]. It estimates the similarity between users as the
conventional user-based CF does, but weights the check-ins accord-
ing to the gaps between their time slots and the target time slot by
an exponential time function, which is also used in our method.
We also tried the original item-based method in [8], but very poor
results were obtained; hence we choose not to report the results.
UTE is the time-aware user-based CF proposed in [32]. UTE-SE
is the enhanced version version of UTE incorporating geographi-
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cal influence. MS-IPF [26] and LRT [10] are the recommendation
methods using STG graph and MF, detailed in Section 2.

Methods TAG-RWR, TAG-BPP, and GTAG-BPP are all based
on techniques proposed in this paper. Specifically, TAG (temporal-
aware graph) is a simplified version of GTAG by removing the POI
links (i.e., EL,L). TAG is employed to fairly compare our prefer-
ence propagation methods with other methods that do not consider
geographical influence. The preference is propagated with Ran-
dom Walk with Restart (RWR) and BPP algorithms respectively for
TAG-RWR and TAG-BPP. To study the performance of our model
without temporal influence, we also use a simplified version named
G-BPP, in which each user only has 1 (24-hour) session node.

Parameters in all methods are tuned to their optimal values using
the development set. For RWR, we set the stop criteria to 0.0001
L-1 distance between vectors of two successive iterations, and the
restart probability is 0.15.

6.2 Impact of Parameters
Before comparing with the baseline methods, we tune the pa-

rameters of the proposed methods using the development set and
examine their impacts. There are four parameters, namely, η , H,
τ and k in the proposed GTAG-BPP method. Because TAG is a
simplified version of GTAG, we first tune η and H for TAG-BPP
on the development set. Then we apply the obtained η and H to
GTAG-BPP, and adjust τ and k. The default values of H and k
are empirically set to 3 and 500, respectively, when tuning η and
τ . Figures 6 and 7 show the Pre@5 of TAG-BPP and GTAG-BPP
with varying parameter settings, respectively. Due to the space lim-
itation, we only plot Pre@5. Similar observations hold for Rec@5.

Figure 6 shows that the optimal value of η for Foursquare and
Gowalla datasets are 0.2 and 0.08, respectively. Recall that η bal-
ances the importance of user nodes and POI nodes when propagat-
ing preference from session nodes; a smaller η means more pref-
erence will be propagated to user nodes, which will be further dis-
tributed to session nodes that are close to the target time. Gowalla
dataset is much sparser than Foursquare, and utilizing other ses-
sion interests can help mitigate the sparsity problem. This might
explain why the optimal η for Gowalla data is smaller than that for
Foursquare data.
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Figure 8: Performance of methods utilizing temporal influence

Parameter H controls the importance of session nodes with re-
spect to the target time. If H is small, the session nodes that are far
from the target time will contribute less. The optimal H for both
datasets is 3, and accuracy decreases as increasing H, showing that
the session interests close to target time are more important. In ad-
dition, when H is smaller than 3, poorer accuracy is observed on
both datasets, because small H leads to less importance of other
session nodes and worsens the sparsity problem.

In GTAG-BPP, parameter τ controls the amount of preference
in POI node that will be propagated to its nearby POI nodes. As
shown in Figure 7, GTAG-BPP achieves the best accuracy when
τ = 0.3 and 0.01 on Foursquare and Gowalla datasets, respectively.
To find out the reason for the difference, we compute the average
of willingness of visiting from one POI node to its nearby POIs
(i.e., the sum weight of POI edges from a POI node). The value is
95.98 and 238.37 respectively on Foursquare and Gowalla datasets.
A possible reason is that, in California, users’ activities are less
sensitive to geographical distance because most people drive cars.
Consequently, users are more likely to visit distant POIs. Thus, a
smaller τ can weaken the geographical influence. The best k on the
two datasets are 290 and 270, which are similar.

6.3 Performance of Methods
We conduct two sets of experiments. The first set of exper-

iments evaluates the accuracy of the methods utilizing temporal
influence (U, G-BPP, UTF, UTE, MS-IPF, LRT, TAG-RWR, and
TAG-BPP). The second set of experiments evaluate the effective-
ness of the methods utilizing geographical influence (UG, UTE-SE
and GTAG-BPP).

Methods Utilizing Temporal Influence. The precision and recall
of the 8 methods (U, G-BPP, UTF, UTE, MS-IPF, LRT, TAG-RWR,
and TAG-BPP) are reported in Figure 8, from which we observe
that:

• The proposed method TAG-BPP performs the best w.r.t. both
precision and recall at different N values on both datasets.

• Among the memory-based CF methods, UTE achieves the
best performance, followed by UTF. U does not exploit tem-
poral influence, and performs the worst. The low accuracy
delivered by U suggests that time is an important factor in
POI recommendation. Compared against UTE, TAG-BPP
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Figure 9: Performance of methods with geographical influence

improves the Pre@5 by 22% and 36% on Foursquare and
Gowalla datasets, respectively.

• Among the graph-based CF methods, G-BPP performs the
worst because it does not exploit the temporal influence. TAG-
RW achieves the best accuracy, probably because of the ef-
fectiveness of the TAG graph. Compared against TAG-RW,
TAG-BPP improves Pre@5 by 15% and 10% on the two
datasets, respectively. In addition, TAG-BPP beats MS-IPF
by 19% and 13% w.r.t. Pre@5 on the two datasets. Note that
TAG-DPP returns the same results as does TAG-BPP.

• The performance of LRT is not satisfactory, probably be-
cause MFmethod does not handle the datasets in low density
well. The bad result is also in accordance with that reported
in [23].

Methods Utilizing Geographical Influence. The precision and
recall of the 3 methods utilizing geographical influence (UG, UTE-
SE, and GTAG-BPP) are plotted in Figure 9.

Observe that UG, which exploits geographical but not tempo-
ral influence, delivers the worst results. UTE-SE, the state-of-the-
art method exploiting both temporal and geographical influences,
achieves much better accuracy than UG. GTAG-BPP achieved the
best accuracy among the three methods, which outperforms UTE-
SE by 20% and 35% in terms of Pre@5 on both datasets, respec-
tively. Compared against TAG-BPP (reported in Figure 8), GTAG-
BPP further improves the accuracy by 4% to 10%. The improve-
ment results from the incorporation of geographical influence.

Note that all improvements reported in this sections are signifi-
cant according to t-test with p-value < 0.01.

6.4 Effect of the Length of Time Slot
In this section, we study the effect of the length of time slot to

recommendation accuracy. When the time slots become longer, the
recommendation results will be less time-specific. As in [32], we
only consider the methods utilizing temporal influence to focus on
the effect of time slot length. We report the Pre@5 and Rec@5
only on the Foursquare data, since the results on the Gowalla data
are similar. From Figure 10, we have the following observations.

First, when increasing the length of time slots, all methods achieve
better precision, but poorer recall. This is because increasing the
length will bring in more groundtruth POIs for each user at each
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time slot, which makes it easier to capture groudtruth POIs among
the top N recommendations, resulting in better precision. However,
the number of correctly recommended POIs is constrained by the
number of recommendations, which leads to poorer recall values.

Second, for all lengths of time slots, the proposed method TAG-
BPP consistently outperforms baselines including the state-of-the-
art time-aware recommendation methods MS-IPF and UTE.

7. CONCLUSION
The availability of historical check-in data in LBSNs enables

POI recommendation service. In this paper, we focus on the prob-
lem of time-aware POI recommendation, which considers the tem-
poral influence in user activities. We propose the GTAG to model
the check-in behaviors of users and a graph-based preference prop-
agation algorithm for POI recommendation on the GTAG. The pro-
posed solutions exploit both the geographical and temporal influ-
ences in an integrated manner. We conduct extensive experiments
over two real-world LBSN datasets. The experimental results show
that the proposed methods beat all baselines significantly.

For the future work, it would be interesting to apply the pro-
posed framework to time-aware recommendation in other tasks,
e.g., product recommendation on e-commercial websites.
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